mirprgr -
worids -

O]’ THE DAY SOFTWARE PUTS THE UNI-
VERSE IN A SHOEBOX..HOW IT WILL

HAPPEN AND WHAT IT WILL MEAN

david gelernter

Mirror Worlds

or the Day Software Puts the Universe in a Shoebox . . .

How It Will Happen and What It Will Mean

DAVID GELERNTER

Department of Computer Science
Yale University

New York Oxford Oxford University Press

Oxford University Press

Oxford New York Toronto

Pelhi Bombay Calcutta Madras Karachi
Kuala Lumpur Singapore Hong Kong Tokyo
Nairobi Dar es Salaam Cape Town
Melbourne Auckland Madrid

and associated companies in
Berlin Ibadan

Copyright © 1992 by Oxford University Press, inc.

First published in 1991 by Oxford University Press, Inc.,
200 Madison Avenue, New York, New York 10016

First issued as an Oxford University Press paperback, 1992
Oxford is a registered trademark of Oxford University Press

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise,

without the prior permission of Oxford University Press, Inc.

Library of Congress Cataloging-in-Publication Data

Gelernter, David Hillel.

Mirror waorids or the day software puts the universe in a shoebox :
how it will happen and what it will mean / David Gelernter.

p. cm. Includes bibliographical references (p.) and index.

ISBN 0-19-506812-2

ISBN 0-19-507906-X (PBK.)

1. Computer software. 2. Software engineering. 1. Title.
QA76.754.G45 1991 006—dc20 91-19178

10987654321
Printed in the United States of America

Contents

List of Figures
Acknowledgments
Notes on the Figures

Prologue

1 Mirror Worlds?
Sounds Like Fun, But So What?
i
ThisBook e

2 The Orb
Into the Mirror World
The Significance of Mirror Worlds
Significance, I: Gettinga Grip.
The hospital, for example
The Ensemble
Significance, II: The New Public Square
Building Mirror Worlds
Significance, I1I: Seeing the Whole
Addingitallup.

3 Disembodied Machines
A Machine?
Embodied Machines
The Design Process
So: What kind of machine?
The Computational Landscape

xi
xii

11

15
16
19
19
20
22
22
27
30
35

37
38

Contents

AnExample. o o 45
Building Info-structures 49
Organizing Space and Time 56
Details: How Procedures Work 57
The shape of computational spacetime 62
The Embodiment (Mere Hardware) 62
Space, Time and Multi-time 67
What is an ensemble? 67
What is “asynchronous”? 68
Sowhat? 68
Concretely... e 69
The Bottom Line 69
What do ensembles look like? 75
So you have a group of information machines... 76
Simple Machines for Coordination 89
DowntoEarth 90
Hypercomputers 91
Implications I: Nature 95
Implications II: Communication 101
The Deluge 107
The Problem 107
What data? 108
Software Architectures (Architectures?) 112
The Design of Real Time Knowledge Plants 114
The Noisiest Ensernble 117
Why do it thisway?, 117
Espalier 119
The Intensive Care Unit Prototype 122
There's more to it, of course... 124
Implications 130
Nerves o v o e e e 130
Turingware 133
True Bigness oo 137

InSum e 139

Contents

6 Simple Mind Machines

For Example—
The Raw Material

The Basic Operations
Implications of Plunge and Squish
Achieving Distraction
The BasicCycle
Squishing and Its Consequences
The Software Architecture
Implications I: The Ultimate Reference Room
Implications II: Understanding Language (7)
Implications III: The Mind Spectrum
Conclusionso v i it

7 Building Mirror Worlds
Facts vs. Forecasts
The Urge... o o i e
Why? e e e
The Basic Design,
The Agent Space o
The Chronicles v vt e e e e
The Recursive Free-Form Dollhouse
For Example c.....
InSum

Epilogue

Notes

141
142
143
144
146
148
151
155
158
160
161
162
165
166
166
174
178

179
179
181
183
184
185
190
193
198
210

213

227

List of Figures

3.1 A computational landscape 44
3.2 The landscape created by the Pascal program. 48
3.3 Gathering plots into modules. 58
3.4 An inward-spiralling computational landscape. 60
4.1 AlLindaprogram 80
4.2 Life cycle of an infomachine 87
4.3 Piranha Parallelism. 96
51 The Trellis. 115
52 Espalier 119
5.3 The intensive care unit monitor: Excerpt. 123
5.4 The intensive care unit monitor 125
5.5 The Trellis dashboard 129
5.6 A Turingware Trellis 135
6.1 Thetranscript 146
7.1 The Agent Space. 187
7.2 By way of comparison... 188
73 AnAgent 191
7.4 Recursive free-form dollhouse: partial floorplan. 194
7.5 Piffelbourg Mirror World 203
7.6 The structure of a City Finances viewpoint. 205

Acknowledgments

Thanks are due first of all to my graduate students, who made much
of this work possible: particularly to Robert Bjornson, Michael Fac-
tor, Scott Fertig, Jerry Leichter and Venkatesh Krishnaswamy; to
Mauricio Arango and Donald Berndt, for their important contri-
butions to our software; and to Suresh Jagannathan, for countless
indispensable hard-core technical discussions.

It takes money to do research: many thanks, accordingly, to
Richard Lau of the Office of Naval Research, to Charles Holland
of the Air Force Office of Scientific Research, and to the National
Science Foundation’s Computer Science Program, more or less in
toto. These three agencies, models of seriousness and of scientific
integrity, have championed progressive computing throughout the
research community.

Thanks to George McCorkle for valuable suggestions about the
manuscript, and for general wisdom and encouragement. However
good or bad the final product, it's a lot better than it would have
been without his help.

Thanks to Chris Hatchell for providing the administrative glue
that holds the whole research effort together, and to Morrow Long
of the Yale Computer Science Department and Glenn Fleishman of
the Yale Printing Service for their help in producing the manuscript.

This book draws on the fruits of several particularly valuable
ongoing collaborations: with Perry Miller and the Medical Informat-
ics Group at the Yale Medical School; with Craig Kolb and Ken
Musgrave, of Benoit Mandelbrot’s group in the Yale Mathematics
Department; with Joe Harris and his colleagues at Sandia National
Laboratory in Livermore. Finally, in a category of its own—our ongo-
ing, ever more productive, important and valued collaboration with

xi

xii Note on the Figures

Scientific Computing Associates in New Haven.

Thanks to OUP in general and (especially) to my editor Jeff
Robbins in particular...

And thanks, finally, to several people who have provided both
technical and meta-technical advice and guidance: Steven Nowick,
Martin Schultz, Nicholas Carriero, my brother Joel and my father.
They have all contributed to this book, and made other contributions
besides—uva’makom she’eiyn ’anashim, hishtadeil lth’yot “ish. (In a
place where there are no men you strive to be a man...) (Pirke: Avos,
2:6.) Instead of man, read mensch; as a matter of fact, this is what
Hille] meant.

Note on the Figures

Figures 5.3 and 5.4 were executed by Michael Factor, Figures 5.1, 5.5
and 5.6 by Craig Kolb, and Figure 7.5 by Jane Gelernter. Figures 5.3
and 5.4 were designed by Michael Factor, and Figure 5.5 by Michael
Factor, Craig Kolb and the author. The others are by the author.

Mirror Worlds

This page intentionally left blank

No changing of place
at a hundred miles an hour,

You can’t imagine how strange it seemed
to be journeying on thus, without

any visible cause of progress

other than the magical machine,

nor making of stuffs a thousand
yards a minute,

with its flying white breath and
rhythmical, unvarying pace,

between these rocky walls, which are
already clothed with moss and

ferns and grass;

will make us
one whit stronger, happier
or wiser.

and when [reflected that

There was always more

in the world

than men could see,
walked they ever so slowly;

these great masses of stone had been cut
asunder to allow our passage thus far
below the surface of the earth, T felt that

they will see it no better
for going fast.
JoHN Ruskin! (1856)

no fairy tale

was every half so wonderful
as what I saw.

FANNY KEMBLE? (1830)

This page intentionally left blank

Prologue

This book describes an event that will happen someday soon: You
will look into a computer screen and see reality. Some part of your
world—the town you live in, the company you work for, your school
system, the city hospital-—will hang there in a sharp color image,
abstract but recognizable, moving subtly in a thousand places. This
Mirror World you are looking at is fed by a steady rush of new data
pouring in through cables. It is infiltrated by your own software
creatures, doing your business.

People are drawn to these software gadgets: When you switch one
on, you turn the world (like an old sweater) inside out. You stuff the
huge multi-institutional ratwork that encompasses you into a genie
bottle on your desk. You can see over, under and through it. You can
see deeply into it. A bottled institution cannot intimidate, confound
or ignore its members; they dominate it. And your computer’s screen
is transformed, into a clear surface with brilliant multi-colored life
unfolding just beyond. People will stop looking at their computer
screens and start gazing into them.

Mirror worlds will transform the meaning of “computer.” Our
dominant metaphor since 1950 or thereabouts, “the electronic brain,”
will go by the boards. Instead people will talk about crystal balls,
telescopes, stained glass windows—wine, poetry or whatever—-things
that make you see vividly.

Don’t like computers? Unamused by technology? For most peo-
ple, technology is the ocean on a bright cool Spring day. Sparkling
in the far distance; breathtakingly cold:; exhilarating once you've

2 Prologue

plunged in. At any rate, not to be over-delicate: This cold and
beautiful Ocean is coming to meet you. Mirror Worlds mean
another overwhelming rise in sea level. If you don’t choose to jump
in, what exactly do you choose?

Why not give it a try? Hold your breath. Let’s plunge.

Chapter 1
Mirror Worlds?

What are they?

They are software models of some chunk of reality, some piece
of the real world going on outside your window. Oceans of informa-
tion pour endlessly into the model (through a vast maze of software
pipes and hoses): so much information that the model can mimic the
reolity’s every move, moment-by-moment.

A Mirror World is some huge institution’s moving, true-to-life
mirror image trapped inside a computer—where you can see and
grasp it whole. The thick, dense, busy sub-world that encompasses
you is also, now, an object in your hands. A brand new equilibrium
is born.

Suppose you are sitting in a room somewhere in a city, and you
catch yourself wondering—what’s going on out there? What’s hap-
pening?

At this very instant, traffic on every street is moving or blocked,
your local government is making brilliant decisions, public money is
flowing out at a certain rate, the police are deployed in some pattern,
there’s a fire here and there, the schools are staffed and attended in
some way or other, oil and cauliflower are selling for whatever in local
markets... This list could fill the rest of the book. Suppose you'd
like to have some of this information. Why? Who are you to be so
nosy? Let’s say you're a commuter or an investment house or a school
principle or a CEO or journalist or politician or policeman or even a
mere, humble, tax-paying citizen. Let’s say you're just curious. You
want to browse, take in the big picture (it’s your city, isn’t it?)—form
some impression of how well the whole thing is working.

3

4 Mirror Worlds?

So you build a model. You lay out a detailed map on your living
room floor. You add little model buildings and bridges and cars and
policemen and so on, and lots of blackboards. On the blackboards
you will record information that doesn’t correspond to any physical
object—the state of the budget, the weather; thousands or maybe
millions of other tidbits. The blackboards are scattered all over.
Given the blackboards, you don’t really need the map, the buildings
and so on—the city-in-miniature. But you've realized that you’ll
need some way to organize all the data you intend to collect; and a
recognizable image is a powerful organizing device. If you dump lots
of little cars onto currently slow-go streets, use unfinished buildings
to indicate construction projects and so on—you can grasp at least
certain kinds of data quickly. And you can deploy the blackboards in
“reasonable” locations—the stock-prices blackboard in front of the
little stock exchange building; which gives you at least some hope of
finding them.

You buy some long tables and set them up around your model.
You have a few dozen phone lines installed. You hire a bunch of
people. Most of them will staff the phones; the rest will maintain
the model, moving things around and updating the blackboards to
reflect the latest information.

Now you hire several thousand more people (let’s say) and send
them out into the city. Some are posted permanently at interesting
points: you'd like to know traffic conditions everywhere. Some are
assigned to particular institutions: What are the city council, the
board of education, the police department, the mayor’s office doing
at the moment? How’s water quality and the value of city bonds
holding up? Your researchers are in constant phone-contact with
the staffers back in your living room, passing in the latest data for
instant transfer to the model.

Good work. (Glad you didn’t just sit there brooding...)

Now, whenever that “what’s going on?” mood is upon you, you
need merely rise from your sofa, glance (languidly) at your model
and you know.

Yes, but—it was difficult and a tad expensive to set up; and how
good is it, really? Certainly it’s a lot better than nothing. But it’s
interesting that... If you do the smart thing, chuck the whole set-up
and build the model out of software instead -

Sounds Like Fun, but So What? 5

You don’t merely get something that’s plausible—that’s achiev-
able, where the hardware version is obviously ridiculous, for most
people in any case. More important: the software model is stagger-
ingly more powerful than the best hardware model could possibly
be.

The software model of your city, once it’s set up, will be available
(like a public park) to however many people are interested, hundreds
or thousands or millions at the same time. It will show each visi-
tor exactly what he wants to see—it will sustain a million different
views, a million different focuses on the same city simultaneously.
Each visitor will zoom in and pan around and roam through the
model as he chooses, at whatever pace and level of detail he likes.
On departing, he will leave a bevy of software alter-egos behind, to
keep tabs on whatever interests him. Perhaps most important, the
software model can remember its own history in perfect detail; and
can reminisce pointedly whenever it is asked. And everything is up
to date, to the millisecond.

Such models, such Mirror Worlds, promise to be powerful, fasci-
nating, and gigantic in their implications. They are scientific viewing
tools—microscopes, telescopes—focused not on the hugely large or
small, but on the human-scale social world of organizations, insti-
tutions and machines; promising that same vast microscopic, tele-
scopic increase in depth, sharpness and clarity of vision. Such Mir-
ror Worlds don’t exist, yet. But most of the necessary components
have been designed, built and separately test-fired, and we are now
entering the assembly stages that will produce complete (albeit small-
scale) prototypes. The intellectual content, the social implications of
these software gizmos make them far too important to be left in the
hands of the computer sciencearchy. The rest of this book explains
why.

Sounds Like Fun, but So What?

Software today offers assistance to the specialist (in everybody) —
not to the citizen. The mere citizen deals with the increasingly per-
ilous complexity of his government, business, transportation, health,
school, university and legal systems unaided. Mirror Worlds repre-
sent one attempt to change this state of affairs.

6 Mirror Worlds?

You set up a software mirror wherever you like, then allow some
complex real-world system to unfold before it. The software faith-
fully reflects whatever is going on out front. But this is a three-
dimensional kind of reflection: The program reaches out and engulfs
some chunk of reality. Like a child-sized play village modeled pre-
cisely on a real town and tracking reality’s every move, the Mirror
World supplies a software object to match and track every real one.

A hospital Mirror World has a software version of every patient,
doctor, bed, room—and every abstract entity that’s important: cash
in the bank, drugs on order and so on. Through permanent sen-
sors and ordinary terminal-based record-keeping, the Mirror World
reflects the real one. When a patient is scheduled for surgery, the
date is noted in the software Doppelginger. When the patient is
transferred to the X unit, the software version is too. The organi-
zation’s current status is presented in the form of an intricate and
constantly-changing picture that you explore from your computer
screen, skimming the surface or diving deeper as you like.

What’s the point? These Mirror Worlds are like regular old-
fashioned databases, to some extent. If you need to find Shmoe’s
salary or Schwartz’s social security number, you can look it up. But
they go far beyond this. The Mirror World is directly accessible,
twenty-four hours a day, to the population that it tracks. You can
parachute in your own software agents. They look out for your inter-
ests, or gather data that you need, or let you know when something
significant seems to be going on. You consult the Mirror World like
an encyclopaedia when you need information; you read it like a dash-
board when you need a fast take on current status. Fundamentally
these programs are intended to help vou comprehend the powerful,
super-techno-glossy, dangerously complicated and basically indiffer-
ent man-made environments that enmesh you, and that control you
to the extent that you don’t control them.

So Mirror Worlds function in pari as fire walls opposing the
onslaught of chaos. But they aren’t mere fire breaks. They are
beer halls and grand piazzas, natural gathering places for infor-
mation hunters and insight searchers. Most important, they are
microcosms—intricate worlds come alive in small packages. Whether
in the shape of a Victorian winter garden, an electric train layout, a
Joseph Cornell shadow-hox or a mere three-inch plastic dome with

1791 7

snowflakes softly settling inside, microcosms are intriguing. They
show you patterns and help you make discoveries that you’d never
have come across otherwise. At their best, they are thought-tools of
great power and evocativeness.

But Mirror Worlds aren’t happening in a vacuum. Today’s world
technology scene is no placid pond, exactly. And the technological
context isn’t incidental to this story: it will figure in every paragraph.
So we need to step back a moment before we begin.

1791

People were pretty sure, in 1791, that the industrial revolution had
happened. 1t was history.

The world had been transformed. The spinning jenny and the
power loom, the coke-fired blast furnace and above all Watt’s all-
powerful steam engine were ready and waiting. In 1791, William
Hutton frothed over in describing the growth of Birmingham, that
industrial super-city. “These additions are so amazing, that even
an author of veracity will barely meet belief.”! Fifteen years earlier,
Adam Smith had enthused over the “universal opulence”? that Eng-
land’s state-of-the-art, machine-driven economy had produced. “Let
any person consider the progress of everything in Britain during the
last twenty years...”® wrote Arthur Young in 1774.

In retrospect, little had changed. There were no railroads. Cot-
ton was a minor industry in Britain. Manchester was a smallish
town. Who were these people kidding, patting themselves on the
back and congratulating themselves up and down on the advanced
state of their technology? On the world-transforming wonders it had
wrought? In 1791, the industrial revolution was merely building up
a head of steam. The Big Bang came later.

Glancing backwards from a vantage-point two centuries hence,
1991 will look a lot like 1791. The technological world of today has
that same pastoral sparsely-settled leafiness. Everything is neat and
well-ordered and tentative: a garden in earliest Spring. Nothing basic
has changed. Yes, software has accomplished great things. But as Al
Jolson so presciently announced in Hollywood’s first Talkie, you ain’t
heard nothing vet. The real softwarc revolution won’t have much to

10 Mirror Worlds?

will likely be the most complex information machines ever built.
They might possibly be the most complex machines of any kind every
built.

But in discussing these prodigies of power and complexity, I'll
need to deal, too, with the simplest of information machines.

§ The Paleolithic, Revisited

In the hyper-compressed world of software technology, it’s the
twenty-first century and the old stone age simultaneously.

At the same time we develop vast complex software worlds, the
simple machines of information structure are also just being invented.
The wheel, the ramp, the wedge, the screw, the lever. Much of to-
day’s software-structures research amounts precisely to this search
for universal, simple information-machines that can support vast
complex structures. It makes no sense to reinvent the bolt and the
geartrain every time you design a mechanical device. Builders of
information machinery too would prefer to start with the universal,
basic stuff in hand. But what are the simple information machines?
It took some time (presumably millenia) to come up with the initial
basic five. We'd like five more by this afternoon. If it’s not too much
trouble.

But you can’t merely will them into existence. In some respects,
you're faced with a design problem (what engineers do); in others,
more a problem of discovery. The wheel and the lever are man-made
tools. But they’re so pervasively important that they look almost like
natural phenomena. Not mere engineering doodles; almost intrinsic
in the logical woodwork of mechanical problem-solving, just waiting
to be found out. Chances are, there is a set of basic information
machines waiting to be found out as well. And Mirror Worlds are so
complicated that it’s especially important that we build them out of
simple, universal elements; otherwise, we drown in complexity.

This re-creation of technology on a new footing, in a new way, is
an intellectual event of real importance. It’s also the sort of event
that, by its very nature, is easy to miss. These are simple machines
we're talking about, after all. Nothing fancy; nothing showy. When
the first test-pryings using a prototype lever came off successfully
at some Paleolithic research institute (whose funding no doubt had
just been slashed) —most likely, no-one held a press conference. A

This Book 11

pivoting stick: big deal. Many thousands of years later, early re-
search trials of the potter’s wheel in Ancient Sumeria? are unlikely
to have dominated dinnertable conversation at mid-town watering
holes. The Sumerians knew how to write, but this new “wheel” tech-
nology hardly ranked up there with cattle inventories as a favorite
topic. We are more technology-conscious today. When a rocket goes
up, we are moderately interested. Far from the camera crews, tech-
nologists are doing experiments that are laughably less spectacular.
But, maybe, more important: They are inventing new simple ma-
chines; recreating the technological universe.

Of course, technology has gone through many phases since the
last bout of simple-machine development culminated, with the wheel,
in rather a big way. New engineering vocabularies arose for making
metal, building structures, harnessing water and wind power, keeping
time, building many kinds of engines: a series of techno-revolutions
of earthshaking importance. And yet, all these machines were made
of stuff and, in one important sense anyway, an information machine
is not. The rise of information machinery may or may not prove
more important, in the end, than the rise of clocks or watermills or
electric power. But it should be clear that something is going on
here that is new, different and worth understanding. We're starting
a new chapter in technological history. Chapter one—machines built
out of something; chapter two, machines built out of nothing. Merely
enacted, temporarily embodied by an irrelevant hunk of metal, plastic
and silicon called a computer.

And so,

This Book

has three layers. Mirror Worlds don’t make sense if they are served in
isclation. They are much happier as the insides of a conceptual Deli
Sandwich. The bottom layer deals with the basic nature of software
and the simple machines we are now in the process of inventing. The
upper layer deals with the ultimate motivation in building Mirror
Worlds—the search for what I will call “topsight.” Each chapter
serves up another slice of Mirror World between these wrappers.
The goal is not the usual (for this kind of book) quick stroll down
Wondertech Boulevard, admiring the window displays and then back

This Book 13

tail. Then (Chapter 6) we look at the attic, where bushels of fact are
fed into the History Presses (“expert datapools”) for transformation
into something like “the wisdom of experience.” The expert dat-
apoois we describe are simple programs with a propensity to behave
in complicated ways—to “speculate,” to “get distracted,” occasion-
ally to “free associate.” What would you want with a program that
occasionally stops paying attention to you? Good question. I’ll get
to it...

And finally the Mirror World itself: In Chapter 7 we describe how
the whole thing is put together, out of the components and using the
technologies we’ve already explored in some detail.

Discussing Mirror Worlds means discussing the future. But we
aren’t talking about hazy science fiction. We have arrived at the mus-
ing, prototype-building and detailed planning reflected in this book
by the fact that the tools and materials for Mirror World building
are in hand, and the job is underway.

52 Disembodied Machines

With infomachinery it’s a different story. Programs that amount
to a quarter of a million lines of text (there are about 7000 lines
in this book, so picture 35 volumes of program) are not in the least
unusual. Many programs are much longer. 250,000 lines is enough to
create an enormously complex info-landscape with many thousands
of regions. How can you design, build and understand such complex
landscapes?

Not easily.

It’s very hard to make programs come out right. After a decent
amount of effort they tend to be mostly right, with just a few small
bugs. Fixing those small bugs (a bug can be small but catastrophic
under the wrong circumstances) might take ten times longer than
the entire specification, design, construction and testing effort up to
this point. These are subtle structures.

If you're a software designer and you can’t master and subdue
monumental complexity, you're dead: your machines don’t work.
They run for a while and then sputter to a halt, or they never run
at all. Hence “managing complexity” must be your goal. Or, we
can describe exactly the same goal in a more positive light. We can
call it the pursuit of topsight. Topsight-—an understanding of the big
picture—is an essential goal of every software builder. It’s also the
most precious intellectual commodity known to man.

§ Engineering Topsight

To manage software complexity, you must seek a deep and thorough
understanding of the structure of your problem; and then you must
transfer this understanding directly into software. Like studying a
face carefully enough to achieve a deep understanding of what it
really looks like, then transferring this understanding directly into a
painted portrait. The goal of the exercise is to achieve something
that is so universally important and yet so hard to come by that it
doesn’t even have a word to describe it. So I’ll make one up: topsight.
(I don’t like this coinage particularly and would be glad to have a
better one. If you can think of one, let me know.)

If insight is the illumination to be achieved by penetrating inner
depths, topsight is what comes from a far-overhead vantagepoint,
from a bird’s cye view that reveals the whole the big picture; how
the parts fit together. (“Overview” comes fairly close to what I

Building Info-structures 53

mean. But an “overview” is something vou either have or you don’t.
Topsight is something that, like insight, you pursue avidly and con-
tinuously, and achieve gradually.)

It is the quality that distinguishes genius in any field. (What
Newton displayed when he saw planets reeling round the sun and
teardrops falling as two pieces of one picture; what Churchill showed
when he grabbed for the Dardanelles to break an impasse in France;
what Hamlet is transfixed by: the special providence in the fall of
a sparrow...) It is the keystone of a beautifully transparent defini-
tion of philosopher: one who seeks “to transcend the world of human
thought and experience, in order to find some point of vantage from
which it can be seen whole.”? But topsight is emphatically not a feat
for philosophers and geniuses only. Every thinking person aims to
achieve it-—to understand how the parts relate, how it all adds up.
It’s not easily won. The fact that we don’t even have a word for this
vital commodity is evidence, more than anything else, of our reluc-
tance (or inability) to teach it. Its significance is denigrated by the
run-of-the-mill hacks, bureaucrats and cadres who swing chattering
from detail to detail like monkeys in branches, never sensing or car-
ing about the forest in the large. Such people more or less run the
world. But all thoughtful people—most people, when all is said and
done—-are born with a powerful inclination to seek this thing --

If you're a software designer, at any rate, your task is hard and
clear. When you're presented with a difficult problem, vou seek
topsight; you use whatever topsight you’ve achieved as your guide
through the treacherous terrain of program building.

It’s a tall order, but the alternative is clear-cut: to drown in
complexity.

§ Programs illuminated by topsight...

have one unmistakable property: clarity. No down-directed gaze can
penetrate an opaque structure. The software designer works always
with the aim of coherence and clarity of statement. (I will return to
this phrase...)

Clarity is marked by three major phenomena. Or, in operational
terms, you get clarity by applying three principles. Perhaps you
build software in a constant blaze of topsightful inspiration, and
we’re merely characterizing your handiwork: we recognize it by the

54 Disembodied Machines

presence of three attributes. Or maybe you’re merely trying to
achieve the same affect by humble, serious, meticulous work (good
for you—give that guy a cigar); you follow three guiding principles.
It amounts to the same thing.

§ The Three-Fold Way to Clarity

In software building, there are three ways. (Actually, I'm not sure
whether this is an exhaustive list. I suspect it is, but maybe not. In
any event, these are the three that underlie this book.) The three
principles are Recursive Simplicity, Uncoupling and FEspalier. 1’1l
introduce the latter two in later chapters, and the first below.

The essence of all three methods is the same; it is design sense.
This is where engineering comes down to aesthetic judgement. To
impose clarity upon complexity through deep and careful design-
thinking is the crucial achievement of the master programmer. I've
just noted that the software builder works always with the aim of
coherence and clarity of statement—this is George Henderson, Art
Historian, imagining the unknown master architect of Chartres.? The
software revolution balances ultimately on a fine point of aesthetics.

This fact bears investigating. I'll return to it.

§ Recursive Simplicity

An object is recursive in structure when the whole is structurally
identical to its parts—or at least to some of them. You can build
a large electronic circuit out of smaller pieces that are themselves
electronic circuits. You can build a large algebraic expression—
something plus something else, times something else—out of smaller
pieces that are themselves algebraic expressions. You don’t build
a large toaster out of smaller toasters—recursive structures are un-
common; but: The most important event in the history of software
happened somewhere around 1959, when the designers of a program-
ming language called “Algol 60” realized that you can build a large
program out of smaller programs.

Break out the Dom Perignon!! Why? Because this principle rep-
resents such an immense break-through for the clarity of information
machines. I don’t need to understand how a million different struc-
tures fit together. I need only master a few, a small handful—for

