(zestaw Koscielny - Mirostaw Kurkowski
Marian Srebrny

Modern

Cryptography
Primer

Theoretical Foundations
and Practical Applications

@ Springer

Czeslaw Koscielny « Mirostaw Kurkowski «
Marian Srebrny

Modern
Cryptography
Primer

Theoretical Foundations
and Practical Applications

@ Springer

Czestaw Koscielny Marian Srebrny

Faculty of Information Technology Institute of Computer Science
Wroctaw School of Information Technology ~ Polish Academy of Sciences
‘Wroctaw, Poland Warsaw, Poland

and

Mirostaw Kurkowski

Inst. of Computer and Information Sciences
Czestochowa University of Technology
Czestochowa, Poland

Section of Informatics
University of Commerce
Kielce, Poland

and

European University of Information
Technology and Economics
Warsaw, Poland

ISBN 978-3-642-41385-8 ISBN 978-3-642-41386-5 (eBook)
DOI 10.1007/978-3-642-41386-5
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013955235

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Contents

1 Basic Concepts and Historical Overview

1.1

1.2

1.3

1.4

Introduction
I.1.T Encryption oo oo
1.1.2 Algorithmsand Keys
1.1.3 Strong Cryptosystems Design Principles
1.1.4 Computational Complexity of Algorithms
Simple Stream Ciphers
1.2.1 CaesarCipher
1.2.2 XOR Encryption (Vernam Cipher)
Simple Block Ciphers
1.3.1 Permutations oo
1.3.2 Transpositions

1.3.3 Example of a Simple Transposition Cipher
1.3.4 Example of a Substitution Block Cipher
1.3.5 Example of a Product Cipher

1.3.6 Generalized Substitutions—Bigrams
1.3.7 Polyalphabetic Substitutions
1.3.8 Vigenére Cipher
Wheel Cipher and Rotor Machines
141 WheelCipher
1.4.2 RotorMachines
Enigma

1.5.1 History of the Enigma
1.5.2 Construction of the Enigma
1.5.3 EnigmaOperation
1.5.4 Breaking the Enigma Cipher

[T T S S

10
11
13
13
13
14
17
17
18
20
20
21
21
22
23
24
26
29
31

Xi

Xii

Contents

Mathematical Foundations of Cryptography

2.1

22

24

2.5

Basic Concepts in the Theory of Algebraic Structures
211 Groups
2.1.2 RingsandFields
2.13 FiniteFields
2.14 PolynomialRing
2.1.5 Applications of Galois Fields

Elements of Number Theory
2.2.1 Divisibilityo
2.2.2 Prime Numbers and Their Properties
2.2.3 Euler’sFunction
2.2.4 Modular Congruences
2.2.5 Simple Modular Equations
2.2.6 Euler’s Theorem
Sieve of Eratosthenes, Euclidean Algorithms
2.3.1 Sieveof Eratosthenes
2.3.2 Euclidean Algorithm
2.3.3 Extended Euclidean Algorithm
Tests for Primality oo 0 o0

24,1 Fermat'sTest.
2.4.2 Fermat’s Primality Test
243 Miller-RabinTest
244 Algorithm AKS o oL
Computationally Hard Problems in Number Theory
2.5.1 Factorization o
2.5.2 Discrete Logarithm Problem

Foundations of Symmetric Cryptography

3.1

3.2

33

34

35
3.6

Idea of Symmetric Cryptography
3.1.1 The Feistel Network
The DES Algorithm
321 S-BOXES . v e e e e
3.2.2 Description of the DES Algorithm
323 BreakingDES o 0oL

Extensions of the DES Algorithm
33,1 TripleDES oo
332 DESX

Modes of Operation of the DES Algorithm
3.4.1 Electronic Codebook Mode of Operation
3.4.2 Cipher Block-Chaining Mode of Operation
3.4.3 Cipher Feedback Mode of Operation
The IDEA Algorithm
RC Algorithms o o
3.6.1 RC4 Algorithm
3.6.2 RCS5 Algorithm
3.6.3 RCS5-Breaking Project L
3.64 RC6 Algorithm

37
37
38
40
44
45
49
50
50
52
55
55
57
59
59
59
60
64
67
67
68
69
70
71
72
75

77
77
78
79
79
80
85
86
86
87
87
87
87
89
90
92
92
94
96
99

Contents

xiii

3.7 AES—The SuccessortoDES 100

3.7.1 Mathematical Foundations of AES 100

3.7.2 Description of the Algorithm 108

373 KeyExpansion. 111

3.74 Encryption Algorithm L. 113

3.7.5 Decryption Algorithm 114

3.8 Generalizations and Refinements of DES, IDEA and AES 117
3.8.1 Algorithms DES-768, IDEA-832, AES-1408, AES-1664,

and AES-1920 o 117

3.8.2 Generalized DES and AES Ciphers 118

4 Foundations of Asymmetric Cryptography 119

4.1 Idea of Asymmetric Cryptography 119

4.2 The Diffie-Hellman Algorithm 120

4.3 The ElGamal Algorithm 121

44 The RSA Algorithm 123

44.1 KeyGeneration 123

4.4.2 Encryption and Decryption 124

5 An Electronic Signature and Hash Functions 127

5.1 Digital Signature Algorithms 127

5.1.1 A Digital Signature 128

5.1.2 The RSA Signature 129

5.1.3 The ElGamal Signature 130

5.1.4 DSASignature o 131

5.2 Cryptographic Hash Functions 132

5.2.1 Classification of Hash Functions 134

5.2.2 Birthday Paradox and Brute Force 135

52.3 MDS Algorithm o 136

524 SHA-1 Algorithm 140

5.25 Keccak/SHA-3 o 142

6 PGP Systems and TrueCrypt 147

6.1 PGPSystem 147

6.1.1 The Idea and the History of PGP 147

6.1.2 PGP Algorithms 149

6.1.3 TheUseof PGP 152

6.1.4 Web of Trust and Key Certification 161

6.2 FireGPG and Enigmail 162

6.3 TrueCrypt e 164

6.3.1 Formating the TrueCrypt Volume 165

6.3.2 Encrypting a Partition 169

6.3.3 Forming a Hidden Volume 170

6.3.4 Work with Hidden Volumes 171

6.3.5 The Usageof Keyfiles 171

0.3.6 Summary e 172

Xiv Contents
7 Public Key Infrastructure 175
7.1 Public Key Infrastructure and Its Services 175

7.2 Modern Web Threats 175

7.3 Trusted Third Party, Certification Process 176

74 PKI. 180

7.5 Certificates, Keys and Management 183
7.5.1 Generating and Installing the Certificates 183

7.5.2 Configuration of Certificate 184

7.5.3 Cancellation of Certificates 190

8 Cryptographic Protocols 193
8.1 Examples of Cryptographic Protocols 194

8.2 Reliability 195
8.2.1 The Needham-Schroeder Protocol 196

8.3 Needham-Schroeder Symmetric Key Protocol 199

8.4 TIMEStamPs . . v v v v v e e e e e 201

8.5 Key Exchange Public-Key Protocol 202

8.6 Kerberos Systemo 203
8.6.1 Description of Kerberos Components 204

8.6.2 Example of Application of Kerberos 206

8.7 Verification of Correctness of Cryptographic Protocols 207
8.7.1 Axiomatic (Deductive) Method 208

8.7.2 Model Checking 209

8.7.3 Inductive Method 209

874 Results 210

8.7.5 Summary 211

9 Cryptographlc Applications for Network Security 213
Application of Cryptography to Internet Mail Systems Security . 213

9.1.1 PEM 213

9.1.2 S/MIME 214

9.1.3 MOSS 216

9.2 Security of Document Interchange 216
92,1 EDI. e 217

922 OpenEDI. 217

923 OBI e e 218

9.2.4 Swift, Edifact 218

925 EDIinPractice. 219

9.3 Computer Network Security—SSH and SSL Protocols 220
9.3.1 Introduction 220

9.3.2 Ideaofthe SSHProtocol 221

9.3.3 Using the SSH Protocol 224

9.3.4 Construction of SSL Protocol 225

9.3.5 TheUseof SSLin Practice 227

9.4 Wireless Network Security 229
94.1 WEPProtocol 229

9.4.2 WPA Protocol and Its Modifications 230
References e 233
Index 237

Chapter 1
Basic Concepts and Historical Overview

1.1 Introduction

Cryptography is the science of transforming, or encoding, information into a form
non-comprehensible for anyone who does not know an appropriate key. In such
forms information can be securely transferred via any communication channel or
stored in data archives with its access restricted or even forbidden (for one rea-
son or another). Cryptography is a part of a broader discipline called cryprology,
which includes also so-called cryptanalysis—the art of breaking codes (ciphers),
i.e., regaining the content of encrypted messages without an authorized access to
the decryption keys.

1.1.1 Encryption

Cryptography is the art of providing confidentiality of information (messages, docu-
ments) through encryption, whenever required, together with means of information
security, data integrity, entity and data authentication.

Let us suppose someone (a sender) wishes to deliver some information to some-
one else (a receiver) via a public channel, e.g., the Internet. Moreover, the sender
would like to make sure that no one else, but the intended receiver, can get the
content being transmitted. The sender can do so by hiding the information content
according to the following scheme. The information content being transferred is
called a plaintext, or a cleartext. The procedure of hiding the content is called en-
cryption, and the encrypted message is called its ciphertext or cryptogram. The re-
verse procedure of recapturing the content from its cryptogram is called decryption.
The encryption and decryption algorithms together form a cipher. These concepts
are illustrated in Fig. 1.1.

Depending on the encryption algorithm, a plaintext can be any information for-
mulated in any way as a sequence of bits, text file, sequence of voice samples, digi-
tal video, et cetera. The examples listed come from the pervasive digital world, but

C. Koscielny et al., Modern Cryptography Primer, 1
DOI 10.1007/978-3-642-41386-5_1, © Springer-Verlag Berlin Heidelberg 2013

2 1 Basic Concepts and Historical Overview

encryption decryption

plaintext = ciphertext > plaintext

Fig. 1.1 Encryption and decryption

clearly in general one can encrypt information presented in any form whatsoever—it
requires only an encryption algorithm to be applied or designed for this purpose. In
this book a cipher’s input is considered as binary data.

We usually denote a plaintext message by the letter M and its ciphertext by C.
Computer output ciphertext is a binary data sequence as well, often of the same size
as M, sometimes longer. (In the case of combining encryption with compression,
C may turn out smaller than M; encryption itself does not give this effect, usually.)
One can view encryption as a function E associating with each given plaintext data
its ciphertext data. The encryption procedure can then be written as the mathematical
formula:

EM)=C.
Similarly, the decryption procedure can be thought of as the function
D(C)=M,

which takes a cipher text C and outputs its plaintext M.
The goal of decrypting an encrypted message is to recapture the input plaintext;
hence the following is required:

D(E(M)) =M.

1.1.2 Algorithms and Keys

Historically, the security offered by a cipher was to a large extent based on keep-
ing secret its encryption/decryption algorithm. Modern cryptography considers that
such ciphers do not provide an adequate level of security. For instance, they can-
not be used by a larger group of users. A problem arises when someone would like
to leave the group, the others would have to change the algorithm. A similar proce-
dure would apply when someone reveals the algorithm. Another serious concern and
source of doubt about secret ciphers is due to the impossibility of having the quality
of the algorithms, their standardization and implementations, checked by external
experts.

A secret cipher algorithm would have to be uniquely designed for each group of
users, which excludes the possibility of ready-to-use software or hardware imple-
mentations. Otherwise, an adversary would be able to purchase an identical prod-
uct and run the same encryption/decryption algorithms. Each group of users would
have to design and implement their own cipher. If in such a group there was no good
cryptographer and cryptanalyst, the group would not know if its cipher was reliable
enough.

1.1 Introduction 3

encryption decryption

plaintext cryptogram plaintext

key K key K
Fig. 1.2 Encryption and decryption with one key

encryption decryption

plaintext > cryptogram > plaintext

key K key Ko
Fig. 1.3 Encryption and decryption with two keys

Modern cryptography solves the above security concerns in such a way that usu-
ally the cipher used is publicly known but its encryption/decryption execution uses
an extra private piece of information, called a cryptographic key, which is another
input parameter. A key is usually denoted by the letter K. It can take one of a wide
range or keyspace of possible values, usually numbers.

The central idea is that both encryption and decryption functions use a key, and
their outputs depend on the keys used, with the following formulae:

E(K,M)=C and D(K,C)=M.

In the literature often the following notation appears:
Exk(M)=C and Dg(C)=M

where the subscripts indicate the key. Note the following property (see Fig. 1.2):
Dg(Eg(M)) =M.

Some ciphers use different encryption and decryption keys (Fig. 1.3). This means
that the encryption key K is different from the corresponding decryption key K.
In this case we have the following properties:

Eg, (M) =C, Dg,(C)=M, Dg,(Eg,(M)) =M.

As pointed out above, the security of good ciphers is based on the secrecy of the
keys. The algorithms are publicly known and can be analyzed by the best experts.
Software and hardware implementations or partial components of the ciphers can
be produced and distributed on an industrial scale. Any potential intruder can have
access to the algorithms. As long as she does not know our private key and the cipher
is good enough, she will not be able to read our cryptograms.

By a cipher or cryptosystem we shall mean the two algorithms of encryption and
decryption together with (the space of) all the possible plaintexts, cryptograms and
keys. There are two general types of ciphers which use keys: symmetric ciphers and
public-key ciphers.

Symmetric ciphers, often also called traditional ciphers, secret-key ciphers,
single-key algorithms or one-key algorithms, use the same key for encryption and
decryption. Here, the same means that each of the two keys can be practically de-
termined (computed) from the other. The keys used in such ciphers have to be kept

4 1 Basic Concepts and Historical Overview

secret as long as the communication is supposed to be kept secret. Prior to use these
keys have to be exchanged over a secure channel between the sender and the re-
ceiver. Compromising such a key would enable intruders to encipher and decipher
messages and documents.

The basic idea of public key cryptographic algorithms is that encryption and
decryption use two different keys, matched in such a way that it is not possible in
practice to reconstruct one of them from the other. In such a cryptosystem each user
has a unique pair of keys—public and private. The first of them is publicly available.
Everybody can use it to encrypt messages. But only the corresponding private key
allows decryption. Thus the only person able to run decryption is the one who has
the private key.

1.1.3 Strong Cryptosystems Design Principles

An encryption procedure transforms a given plaintext document into its enciphered
form (cryptogram). An encryption algorithm input consists of a plaintext and a key.
It outputs the cryptogram. The associated decryption algorithm input consists of a
cryptogram and a key, and it outputs the original plaintext.

The basic step in any cryptosystem design is a kind of evaluation of the level of
security offered by the resulting system. It can be measured in terms of the com-
putational resources required to break—by any known or foreseeable method—the
ciphertexts generated by the system. In the course of many years of research the
following conditions have been developed as basic requirements on a strong cryp-
tographic algorithm:

e it should be infeasible to find the plaintext from its cryptogram without knowing
the key used;
e reconstructing the secret key should be infeasible.

A good cipher should meet the above criteria also when the cryptanalyst trying
to break it has access to some relatively large number of sample plaintexts together
with their corresponding cryptograms and knows all the details of the cipher al-
gorithm. It is generally assumed that the cryptanalyst has all the resources (space,
devices, technology) feasible currently and in the foreseeable future. Given these
assumptions, it should be emphasized strongly that a strong cryptographic system’s
robustness is based on the secrecy of the private keys.

We do not require that there does not exist a way to break such a cryptosys-
tem. We only require that there is no currently known feasible method to do so.
The strong cryptographic algorithms that correspond to the above definition could
theoretically be broken, althought in practice it happens very rarely.

The most important rules to date for constructing difficult-to-crack cryptographic
code systems were formulated by Claude Elwood Shannon [94] in 1949 (Fig. 1.4).
He defined breaking a cipher as finding a method to determine the key and/or clear-
text on the basis of its cryptogram. The cryptanalyst can obtain great help from
information about certain statistical characteristics of the possible plaintexts such as

1.1 Introduction 5

Fig. 1.4 Claude E. Shannon

the frequency of occurrences of various characters. On this basis one can determine
whether the plaintext is a program written in C, a fragment of prose in Japanese, or
an audio file. In each of these cases in every plaintext there is an apparent redun-
dancy of information which can greatly facilitate cryptanalysis. By now many statis-
tical tests based on information theory have been developed, which effectively help
in the breaking of ciphers whenever the plaintext statistics parameters are known.

According to Shannon a cryptographic system that allows excellent protection
against unauthorized access must not provide any statistical information about the
encrypted plaintext at all. Shannon proved that this is the case when the number
of cryptographic keys is at least as large as the number of possible plaintexts. The
key should therefore be of roughly the same or more bits, characters or bytes as
the plaintext, with the assumption that no key can be used twice. Shannon’s perfect
encryption system is called the single-key system or one-time pad.

According to Shannon to define a mathematical model of a reliable system of
strong cryptography it is necessary to be able to reduce the redundancy of plaintext
information, so that the redundancy is not carried into the cryptograms. Shannon
proposed techniques of diffusion and confusion, which in practice have been reduced
by many crypto designers to some kind of alternation of combining block cipher
components with substitutions and permutations.

Claude Elwood Shannon (30 April 1916-24 February 2001) was an eminent
American mathematician, founder of information theory, one of the many schol-
ars working during World War II with US military and government agencies as a
consultant in the field of cryptology.

1.1.4 Computational Complexity of Algorithms

In this section we introduce the basic concepts of theoretical and practical compu-
tational complexity, to the minimum extent that is necessary to understand modern
cryptography and the next chapters of this book. !

"For more on this background topic the reader is referred to [27, 68].

6 1 Basic Concepts and Historical Overview

Modern cryptography uses publicly known algorithms. Before their deployment
they are subject to objective analysis by independent experts. The private keys are
the closely guarded secrets, not the algorithms. Without knowing the appropriate
keys no one can encrypt/decrypt documents in any good cryptosystem. According
to Shannon’s principles the algorithms must be designed in such a way that the
complexity of the two tasks previously described as infeasible makes breaking the
ciphers practically impossible. Often, however, the high complexity is an estimated
upper bound on the performance of one algorithm, with the additional argument that
currently no efficient cipher-breaking algorithm is known.

An important part of the analysis of encryption and decryption algorithms, and
algorithms in general, is their computational complexity, the efficiency of calcula-
tions and of solving algorithmic and computational problems and problem instances.
In this context, by a computational problem we mean a function of the input data
into the output data, that we want to calculate using the analyzed algorithm.

As motivating examples, consider the problem of computing the determinant of
an integer-valued matrix and the problem of integer factorization. A given matrix or
an integer are called instances of these problems, respectively. The bigger the matrix
or integer, the more computational resources are needed to calculate the determinant
or the prime factors. In general, the bigger the size of the input data, the more re-
sources (time, space, processors) are needed to compute such a problem instance.
The complexity of an algorithm is a function of the instance input data size.

One can define the complexity of an algorithm in various ways, however in gen-
eral it expresses the amount of resources needed by a machine (computer) to per-
form the algorithm. The resources considered most often are fime and space. For
obvious reasons, the amount of these resources can differ greatly from instance to
instance depending on several parameters. The time complexity of an algorithm is a
function that indicates how much time is needed for its execution. The time here is
not measured in seconds or minutes, but in the number of calculation steps, or of bit
operations. How many seconds it takes, depends largely on the equipment on which
the calculations are performed. Independently from equipment and from the rapid
development of computing devices, the complexity of an algorithm is defined as a
function expressing how many elementary operations on individual bits have to be
performed, in the course of each run of the algorithm, depending on the size of the
input data. The time complexity of a given computational problem is the function of
the input data size expressing the time complexity of the best algorithm solving the
problem.

The time complexity of a given algorithm is defined as the number of elemen-
tary operations on input data during one run of the algorithm. By the elementary
operations one usually understands the simplest nondecomposable instructions in a
certain programming language or in a certain abstract model of computation; e.g.,
a Turing machine or a (single-core) Random Access Machine, RAM. It does not
matter what language it is, because what matters is just the proportional order of
magnitude of the number of operations, up to a possible (finite) constant multiplica-
tive factor. Without loss of generality, it can be the language Java. Alternatively, one
can treat the single instructions (lines) of the algorithm’s pseudocode as the elemen-
tary operations. In this book we do not refer to anything like that, nor to any abstract

1.1 Introduction 7

machine model. Instead, as elementary we define the arithmetic bit-operations of
primary school addition and subtraction of the binary representations of nonnega-
tive integers.

The addition of binary numbers is calculated in the same way as traditional col-
umn addition of decimal numbers. You do it by writing one number below the other
and adding one column at a time: add up the digits (binary, bits), then write down the
resulting 0 or 1, and write down the carry to the next column on the left. Subtraction
is calculated just as addition, but instead of adding the binary digits you deduct one
bit from the other, and instead of the carry operation you take a borrow from the
next column.

Multiplication can be done using only the above elementary bit operations. The
school division algorithm is much more complicated, but it also refers only to the
same elementary operations on single bits. Just add the divisor to some extra pa-
rameter (initialized to zero) until it gets bigger than the dividend. Then the number
of additions made so far (minus one) makes the resulting quotient of the division,
while the dividend minus the final value of the extra parameter (minus the divisor)
makes the resulting remainder left over.

In computer architecture the elementary bit operations are implemented in a spe-
cial section of the central processing unit called the arithmetic logic unit, ALU.

In complexity analysis of a given algorithm it suffices to care about the time of
the dominating operation only. That is, the operation performed much longer than
all the other operations of the algorithm taken together. In this book, indeed in cryp-
tography in general, the multiplication of two integers is dominating in almost all
cases. Sometimes it is integer addition, subtraction, or division. In cryptography,
these four basic arithmetic operations can be taken as elementary, the more so as
more and more often these operations get hardware implementations in the arith-
metic and logical processors, and each of them can be executed in a single clock
tick.

Computational complexity is thus a kind of device-independent simplification,
an approximation that allows comparisons of the hardness of algorithms (programs)
regardless of the machines that can run them. It also neglects a lot of details such
as, for instance, the generally much shorter time required for a variety of auxil-
iary actions, for example, memory register access operations, (sub)procedure calls,
passing parameters, etc. It omits all the technical features of the computer on which
the calculations are performed. It is generally accepted that the algorithm execution
time is proportional to the number of elementary operations performed on the input
bits.

Adding two integers m and n written as |[m| and |n| binary digits (bits zero or
one), respectively, can be done in max(|m/|, |n|) bit-operations. Subtraction has the
same estimate. The primary-school multiplication of two |n|-bit integers requires at
most |n|? elementary bit-operations. Dividing an |m|-bit integer by an |n|-bit integer
requires at most |m| - |n| time.

In general, the larger the input data, the more resources needed for their process-
ing. However, an analyzed algorithm can do this in a nonuniform, not necessarily
monotone, way. The time and space it needs can vary considerably on different input

8 1 Basic Concepts and Historical Overview

instances of the same size. We distinguish: pessimistic complexity, that is the case
of input data on which the analyzed algorithm requires the most resources over all
data of that size; expected, or average complexity; and asymptotic complexity, i.e.,
the limit of the complexity function values on arbitrarily large inputs.

Space complexity refers to how much space on the computer is required. Space
complexity of an algorithm (program) is a measure of the amount of memory
needed, for example, the number of cells visited on a Turing machine tape. In this
book, indeed in modern cryptography in general, the required space is expressed in
bits—as the maximum number of bits simultaneously written down (stored) in the
course of the analyzed algorithm run.

It is generally considered that a superpolynomial performance of an algorithm,
i.e., expressed by a function with asymptotic growth faster than all polynomials with
integer coefficients, is infeasible (or intractable) on sufficiently large input data.
For example, when we say that there is no known feasible algorithm for integer
factorization, we usually mean: no algorithm running in polynomial time.

Theoretical polynomial complexity is not a sufficient criterion for practicality.
For example, in 2002 [4] published a polynomial time algorithm checking whether
a given natural number is prime (that is, divisible only by 1 and itself). However, the
degree of this polynomial is too high for practical use in testing primality of numbers
of the size currently interesting in practical applications. These are approximately
1000-bit integers.

One more concept of computational complexity is often called practical com-
plexity and measured in seconds on currently available computers and on input data
of the size of current interest. Algorithm AKS, mentioned above, has too high prac-
tical complexity. Similarly, the currently (August 2012) best attacks on the SHA-1
hash function standard are treated as merely theoretical, because the best of them
gives a chance of finding a collision (i.e., two different messages with the same
hash) in time corresponding to over 250 SHA-1 evaluations. Nobody can have that
much time on currently available computers (without very high extra financial and
organizational effort).

The concepts introduced above have been extensively studied in computational
complexity theory. The standard reference textbooks are [27, 77].

In modern cryptology the strength of a cipher (in general, a cryptosystem) is usu-
ally expressed in terms of the computational complexity of the problem of breaking
the analyzed cipher—how much time or space is required to find the secret key or
recover the plaintext from its encrypted version with no prior knowledge of the ap-
propriate secret key, even when the cryptanalyst has possibly a large number of pairs
plaintext/ciphertext. How much time is required refers to the fastest currently known
algorithm performing this task. Cryptography can be called cryptocomplexity.

Similarly to time complexity, space complexity is defined as the amount of space
required for running an algorithm. It can be measured either by the maximum num-
ber of cells in an abstract machine model of the algorithm execution or by the size
of actual physical memory space expressed in bits or bytes.

1.1 Introduction 9

A specific big-oh notation has been introduced for comparison of the rate of
growth of functions describing the computational complexity of algorithms. The
expression

fn) € O(g(n))

is read and defined as: function f is at most of order g if and only if there exist
positive real ¢ and natural n, such that for every n greater than or equal to n,, the
value f(n) is at most equal to the product ¢ - g(n). In symbols it can be written as
follows:

f()=0(gn)) & Ier, Jnpex(n =no= f(n) <c-gn).

By way of a simple illustration, we give an estimate of the time cost (computa-
tional time complexity) of the algorithms for grade-school addition and multiplica-
tion of binary integers.

Consider two binary numbers x and y of bit-length k. Adding these binary num-
bers is usually realized as k additions of single bits. So, the time complexity is
O (k). Multiplying x by y is in the worst case (when y has all ones in the binary
notation) k — 1 additions of x to x shifted by one bit to the left each time. It requires
(k — 1) - k = k* — k additions of single bits. So, the time complexity of integer
multiplication is O(kz), ie., quadratic.2

Basic Complexity Classes

e O(l)—constant complexity—the algorithm performs a constant number of steps
no matter what size its input data is.

e O (n)—linear complexity—for each input data size |n|, the algorithm performs a
number of steps proportional to |r]. The growth rate of the running time is linear
w.r.t. the input data size.

e O(n*)—quadratic complexity—the algorithm’s running time is proportional to
the square of the input data size |n|.

e O(n?), 0O(n*),...—polynomial time complexity.

e O(log n)—logarithmic complexity.

e O(2")—exponential complexity—the algorithm performs a constant number of
operations for every subset of the size n input data.

e O(n!)—the algorithm performs a constant number of steps on each permutation
of the size n input data.

Algorithms of exponential or higher complexity are infeasible. Their running
time grows rapidly with increasing n. On large input data size, their running time
gets monstrously, inconceivably long. If we imagine that we have two computers,
one of which can perform a million operations per second, and the second is a mil-
lion times faster (which gives the performance of 1012 operations per second), the
time required by an exponential algorithm (with time complexity O(2")) is shown
in Table 1.1.

2See Table 2.1 in [68].

10 1 Basic Concepts and Historical Overview

Table 1.1 Running time of

an algorithm of class @(2") ~ Inputsizen 20 30 100

10° op./s roughly 1's about 35 years about 4. 10'® years
102 op./s about 107%s about 18.5 min about 4- 10'° years

Table 1.2 Enumerating Alelclpl Iwlxy]z
letters of the Latin alphabet

112(3(4]...]23]|24|25|26

The table clearly shows that even a big increase of hardware computational power
cannot beat the device-independent complexity of an algorithm. The time required
for its execution can become unimaginably large. For example, for n = 100, in both
cases probably we would never see the results.

Here we are talking about asymptotic complexity bounds. This does not exclude
the possibility of particular input data instances of even very large size that can be
computed very fast by an exponential time complexity algorithm. In practice an al-
gorithm’s running time, measured in seconds, behaves irregularly, with many downs
and ups. Over the last decade or two a whole domain of research has arisen with
significant successful real-life applications of some asymptotic exponential time al-
gorithms, often on some industrial-scale input sizes.

1.2 Simple Stream Ciphers

1.2.1 Caesar Cipher

One of the simplest encryption algorithms is the so-called Caesar cipher, already
used by the Roman army.3 Let us assume that the texts we want to encrypt are writ-
ten in the 26-letter Latin alphabet excluding capitalization. We assign consecutive
positive integers to symbols of the alphabet (see Table 1.2).

The idea of the algorithm consists in replacing each symbol of a plaintext with
the symbol whose number is greater by three computing modulo 26 (the last three
letters of the alphabet X, Y, Z are replaced with, respectively, A, B, C). If we denote
the integer assigned to a letter x by L, then we can write the replacement operation
mathematically in the following way (addition is performed modulo 26, however
we do not replace 26 with 0):

C(L,)=L, +3.

30ne can find comprehensive information about this and many other ciphers used in the past in
[54]. The history of contemporary cryptography is well discussed in [29]. See also Sect. 7.3 in
[68].

1.2 Simple Stream Ciphers 11

An important feature of the Caesar cipher is the distributivity of encryption over
the sequence of symbols that forms a plaintext. Formally, we can present it as fol-
lows:

Cxy)=C(x)C(y).

Obviously, it is easy to notice that the algorithm can be modified by changing the
number of positions by which symbols are shifted.

Although very simple, the Caesar cipher is a symmetric key algorithm. The key
in the original version of the Caesar cipher is equal to 3 (the shift parameter). In the
next section we will generalize Caesar’s method to all possible permutations of the
alphabet.

What is interesting is that the Caesar cipher was used even during World War I
by the Russian army. The applied shift parameter was equal to 13.

From the theoretical point of view the cost of encrypting a k-bit ciphertext is
linear—it equals O (k). Of course, nowadays it is very easy to break the Caesar
cipher even with an unknown shift parameter. Actually, it can be broken without
using a computer—a piece of paper and a pen are enough.

1.2.2 XOR Encryption (Vernam Cipher)

Now we are going to present an encryption algorithm known in the literature as the
Vernam cipher or simply XOR. This algorithm, which requires some mathematical
knowledge, uses the XOR function. Formally, the latter is a Boolean function (i.e.,
a function f: {0, 1} x {0, 1} — {0, 1}) that satisfies the following conditions:

fO,00=7(1,1)=0 and f0,1)=f(1,00=1.

One can easily notice some of its properties. For arbitrary x, y, z € {0, 1} the
following equations hold:

. f(x,y) = f(y,x) (commutativity),
. flx,x)=0,
. f(x,0) =x (0 is a neutral element of f).
It can be proved that the function is associative, i.e.,

Cfl f.D) = f(fF(x,),).

When we consider the function XOR as an operation defined on the set {0, 1},
then the above equations can be expressed as follows:

(a) 0OXOR0O=1XOR1=0,

(b) 0 XOR1=1XOR0=1,

(c) x XORy=y XOR x,

(d) x XORx =0,

(e) x XOR0O=1x,

(f) (x XOR (y XOR z)) = ((x XOR y) XOR z).

W b =

=

12 1 Basic Concepts and Historical Overview

If we take two sequences of bits X = (xy,xz,....x,) and Y = (y1. y2..... W),
then by X XOR Y we mean the sequence of values of the XOR operation on consec-
utive entries of sequences X and Y:

XXORY = (x1,x2. ..., X%,) XOR (y1,¥2, .-, ¥n)
= (x1 XOR y1,x2 XOR y2, ..., x, XOR y,).

The above properties allow us to execute the following encryption algorithm. In
order to encrypt a k-bit sequence we divide it into blocks with n elements each (in
case there are not enough bits for the last block, we fill it with, e.g., zeroes). As a
key we take an arbitrary (random) bit sequence of length n: K = (ky, k2, ..., k).
The ciphertext for a block A = (ay, az, ..., a,) is simply expressed by:

C =K XOR A= (ky XOR ay,ky XOR ay, ..., k, XOR a,)

The above-mentioned features of the XOR operation enable us to specify the
method by which the ciphertext is decrypted. In order to reconstruct the block A it
is sufficient simply to execute:

K XORC=K XOR (K XOR A) = A.

Indeed, for any entry of the ciphertext ¢; (i = 1, ..., n) we have:

k,‘ XOR ;= k,' XOR (k,‘ XOR ai) = (k,‘ XOR k,') XOR [4F3
=0XOR a; = dj.

The second equation in the above notation follows from the associativity of XOR,
while the third and the fourth ones follow from properties 2 and 3, respectively.

The cost of this encryption is very low and, as in the case of the Caesar cipher,
is equal to O (k) for a k-bit ciphertext. Let us notice that if the key applied is appro-
priately long (for instance of several bits), then the cipher provides a high security
level. Due to its construction it is not vulnerable to any known attacks but the brute
force technique. The latter, however, is actually unfeasible in the case of long keys
because of its time complexity. Moreover, if the key length is as long as the length
of the ciphertext and the key is used only once, then the Vernam cipher turns out
to be an ideal cipher that cannot be broken. It can easily be seen that one can ad-
just a key for a ciphertext of a given length and any plaintext of the same length.
The complexity of the brute force method for breaking encryption with a k-bit key
equals O (25).

Despite its simplicity, the Vernam cipher is still applied: WordPerfect, a very
popular text editor, uses it in an only slightly modified version. This encryption
scheme is used in many other ciphers, e.g., DES and AES, as well. It is also applied
in secure communication with the use of the first quantum communication networks.

1.3 Simple Block Ciphers 13

1.3 Simple Block Ciphers

1.3.1 Permutations

The Caesar cipher is one of the simplest substitution ciphers. Replacing each al-
phabet letter with another one is performed in a regular manner—it depends on the
alphabetical order. One can easily see that this assignment may be done arbitrarily.

Let us now recall some elementary mathematical facts. Given a finite set X, any
one-to-one function f: X — X is called a permutation.

If the cardinality of X is equal to n, then there are n! permutations (one-to-one
functions) on X.

The Caesar cipher can be generalized to all possible permutations of the alphabet.
In this situation a key is given by a 26-element non-repetitive sequence of integers
from 1 to 26. Such a sequence determines the substitution that has to be applied in
order to encrypt a message.

It can be seen that for an alphabet with 26 characters the number of all permu-
tations equals 26!, which amounts to about 4 - 10%°, a number that is large even for
modern computers. Verification of all possible keys (sequences) would take a great
deal of time.

It turns out, however, that substitution ciphers can easily be broken using so-
called frequency analysis. Certain letters and combinations of letters occur more
often than others. Therefore, it is easy to check which symbols appear in a given
ciphertext and with what frequency (for obvious reasons it is better to work with
suitably long ciphertext messages).

1.3.2 Transpositions

Another simple method of encryption consists of inserting a plaintext in adequately
defined (e.g., as geometrical shapes) blocks. Such a block may be represented as
an array with a given number of rows and columns. A plaintext is placed in the
matrix row-wise. Then the matrix is transposed (rows are replaced with columns).
The ciphertext should be read row-wise after such a transposition.

Example 1.1 Let us consider the following plaintext: ITISASIMPLEEXAMPLE. If
we decide to encrypt the message with a simple transposition cipher using, for in-
stance, a 3 x 6-matrix, then we obtain the matrix with the plaintext (Table 1.3).
After performing the transposition, we get the matrix presented in Table 1.4:
Finally, we get the ciphertext: ISILXPTAMEALISPEME.
In this system, the key is given by the matrix dimensions. For example, in the
case of a 6 x 3-matrix the ciphertext is as follows: IIXTMAIPMSLPAELSEE.

14 1 Basic Concepts and Historical Overview

Table 1.3 Matrix with the

: 1 T 1
plaintext s| Als
1 M P
L E E
XA M
P L E
Table 1.4 Transposition 1] S I |{L| X |P

=)
=
m
:>
o

Table 1.5 Table for

constructing encryption ojrjrj21]s 013
templates B enene 1{3(22|3]|]0]0]3
310131210 1 03
2 1 0] 2 1 2132
1|21 (103 (1]2
2 1 0 lLjo(0]|2]|3

1.3.3 Example of a Simple Transposition Cipher

We are going to explain the principle of constructing such a cipher by a simple,
however non-trivial, example. Now, a plaintext and a ciphertext are expressed over
a 32-symbol alphabet:

ABCDEFGHIUKLMNOPQRSTUVWXYZ .: ,; -

which consists of 26 capital letters of the Latin alphabet, a space, a period, a colon,
a comma, a semicolon, and a hyphen. We assume that a block of a plaintext contains
48 symbols from the above alphabet which are arranged in 6 rows. Given these
assumptions, we can apply the following encryption algorithm for a transposition
cipher:

1. Create a table with 6 rows and 8 columns and fill it with integers 0, 1, 2 and
3 in such a way that the number of zeroes, ones, twos and threes is the same
and equals 12. At the same time, try to minimize the number of adjacent cells
containing the same integers. These conditions are satisfied in Table 1.5. Such a
table can easily be found, for instance by means of the following program written
in Pascal:

var i, k, r: Byte;
1: array[0..3] of Byte;
begin
repeat
Randomize;

1.3 Simple Block Ciphers 15

Table 1.6 Block of the ADIUNKT

plaintext
LECTURER

AFORYZM
APHORISM
AKTORKA -
ACTRES S

for 1:=0 to 3 do 1[1]:=0;
for i:=1 to 6 do
begin
for k:=1 to 8 do
begin
r:=Random(4); Inc(l[xr]);
Write(r:2);
end;
WriteLn
end;
WriteLn;
until (1[0]1=1[1]1) and (1[0]1=1[2]) and(1[0]=1[31)
end.

2. Cut four rectangular pieces of paper that have the same size as the tables from the
first step of the algorithm. Then create four templates, numbered 0, 1, 2 and 3.
In each template cut 12 holes covering the cells which contain the number of the
template.

3. The cryptogram will be written on a blank piece of paper that is exactly the
size of the template. Put this piece of paper consecutively against the templates
prepared in the second step and insert 48 letters of the plaintext into empty cells
(4 times 12 letters).

The decryption algorithm is easier and consists of only one step:

1. Put the templates consecutively against the ciphertext and read the symbols of
the plaintext from the holes and write them down in the matrix of six rows and
eight columns.

Let us take the part of the Polish-English dictionary shown in Table 1.6 as a plain-
text. After encrypting this text according to the algorithm we obtain the cryptogram
given in Table 1.7. It can easily be verified that by decrypting this ciphertext accord-
ing to the algorithm presented above one obtains the proper plaintext.

The just-described substitution block cipher, whose keys are given by encryption
templates and the order of their use, can be specified in a more formal manner. If
we enumerate 48 symbols of a plaintext consecutively, then the encryption process
obtained by applying templates takes the form of the table presented in Table 1.8,
from which it follows that the first symbol of the ciphertext corresponds to the first
symbol of the plaintext, the second symbol corresponds to the 13th symbol of the

16 1 Basic Concepts and Historical Overview

Table 1.7 Block of the

- AURARKDA
cryptogram of the
transposition cipher E-PHATUC
TNROKRTE
RA-TFSSM
OARYLSZK
TME - CTO
Table 1.8 Encryption 1 13 14 25 37 38 2 39
permutation
1540 26 27 41 3 4 42
43 54428 616 7 45
29 17 8 30 18 31 46 32
19 33 20 21 9 47 22 34
35 23 10 24 11 12 36 48
permutation

3743 4546 2 3 9 22
26 29 33 35 36 39 42 44
4 11 12 20 25 28 30 32
34 40 41 47 5 6 810
13 16 17 19 24 31 38 48

plaintext, the third to the 14th, etc. Using this table, which represents a permutation
of the set {l,2,...,48}, one may thus determine the encryption procedure more
precisely than by means of encryption templates. What is more, considering this
permutation as an encryption key, it is possible to specify the exact number of all
possible keys for the above cipher, which is equal to

48! = 12413915592536072670862289047373375038521486354677760000000000,

which amounts to about 1.241391559 - 10°2, Not a small number, especially when
compared to the number of all atoms on our planet which is estimated to be 1031,

In order to decrypt ciphertexts of the cipher in question one has to apply the
permutation that is inverse to the encryption permutation presented in Table 1.9. At
first sight it seems that the cipher may be broken by trying 48! permutations one
by one. Assuming that we would be able to test a million permutations per second
(even such an assumption is too optimistic for the current state of technology), it
would take around 10% years to break a ciphertext. On the other hand, the age of
the universe is estimated to be 10! years. However, if cryptanalysts apply statistical
tests, then breaking such a cipher takes them just a couple of seconds.

1.3 Simple Block Ciphers 17

Table 1.10 Symbols of the

- ; A[B|C|D|E|F|G|H|[I|J|K|L|M|N|O|P
plaintext and corresponding -
symbols of the cryptogram X[H[Y|U]Z|R VIQIA[: [W[T].|BIC
Q[R TIU|VIW|X|Y|Z R -
S|D E(T1|G|L|F|J[K|-[M[P|N[O
ciphertext symbols and
plaintext symbols JIO[PIR|TIX|V|BJUY|Z|W b
corresponding to them QIR[S|T|U|lV|IW|X|Y|Z -
I|FIQIM|D/H|L |A[C|E|-|G|K[N|S
Table 1.12 The block of the X UQ I - E
substitution cipher)
cryptogram obtained using WZYEIDZD
Table 1.10 which corresponds XRBDIJIKT
to the block of the plaintext XCVBDQ;; T
presented in Table 1.6 X :EBD : X
XYEDZ:: : M

1.3.4 Example of a Substitution Block Cipher

In the easiest case the operation of substitution block ciphers consists in replacing
symbols of a plaintext with other symbols one by one. Hence, when performing
the encryption algorithm we have to apply a table which contains the rule of this
substitution, i.e., the table represents some permutation of the alphabet. Of course,
in order to decrypt messages one uses the inverse permutation.

Let us assume that in the considered case the same alphabet as in the example of a
transposition cipher is used, the 48-symbol block of a plaintext is the same as previ-
ously, and the substitution table presented in Table 1.10 is applied during encryption.
Then one obtains immediately a table for use during decryption (Table 1.11).

Now, we can illustrate the process of creating a cryptogram using the substitu-
tion cipher. If the plaintext is given by the block presented in Table 1.6, then, after
applying Table 1.10 and executing 48 symbol substitution operations, one gets the
cryptogram shown in Table 1.12. The obtained cryptogram may yet be easily de-
crypted since its symbols occur in the same order as the corresponding symbols in
the plaintext. For this reason cryptanalysts break substitution ciphers very quickly.

1.3.5 Example of a Product Cipher

A product cipher applies two encryption algorithms sequentially: it starts by en-
crypting a plaintext by means of the first algorithm, then the obtained cryptogram

1.3 Simple Block Ciphers 19

of the key without repetitions. The empty entries of the matrix are filled with the
remaining letters of the alphabet (i.e., those that do not appear in the key).
We obtain the following matrix:

CIR[Y[P]T
O[G[AH[T
S|K[B|D|E
F|L|M|N|Q
U[VIW[X|Z

The cryptogram is created from a plaintext by appropriate, i.e., with respect to the
matrix, substitutions of pairs of letters (if the text has an odd number of symbols,
then it is completed with any symbol).

Let us consider the following plaintext: ENCRYPTIONKEYS. At the first stage
of encryption, the sequence of letters is divided into pairs EN CR YPTI ON KE YS.
Each pair is transformed with respect to the rectangle contained in the matrix de-
termined by the letters that form the pair (according to the row-wise order). For
instance, the pair EN is converted to the pair QD (as these two letters form the two
remaining corners of the rectangle defined by the digraph EN). If encrypted letters
are placed in the same row/column or they are equal, then we choose the symbols
to their right, e.g., AW is converted to HX, while FL is converted to LM.

= 2w |2z|lo
H|z|lolm || m

The whole ciphertext is as follows: QDRYPTCOFHBSBC.
Let us present another example of a bigram system.

Example 1.3 Keys are given by two independent permutations of a 25-letter alpha-
bet. We place them in two square matrices (of dimension 5 x 5).

AK|N|Y|E E|R|T|B|O
RID|U|O|I W(T|U|M|K
QS |W|[B|G N|D|A|S |F
H|IC|X|T|Z Q|X|G|Z |V
VIM|L|P|F H|Y|P|L|C

A plaintext, for instance TODAYISABEAUTIFULDAY , is divided into several rows
of a fixed length:

TIO|D/A|Y|T|S|A|B|E
A|U|IT|T|F|UIL|D[A]Y

Index

Symbols
2nd preimage resistance property, 134

A

AES cipher, 77, 99, 100, 105, 108, 110, 111,
117,118

AKS algorithm, 8, 67, 71

Asymmetric cryptography, 129, 196

Asymmetric key cryptography, 4

Authentication, 194-196, 198, 201, 203, 205

B

BAN logics, 196, 208
Biham Eli, 86
Birthday paradox, 136
Birthday problem, 135
Bletchley Park, 33-35

C

Caesar cipher, 10-13

Carmichael numbers, 67, 69

Certificate Revocation Lists, 175, 176, 182

Certificates, 175, 186, 187, 190, 205

Certification Authority, 175-183, 202

Chinese Remainder Theorem, 58

Cipher block-chaining mode, 87

Cipher feedback mode, 89

Clarke Edmund, 210

Collision resistance property, 134

Computational complexity, 6-8, 10, 56, 67,
209

COPACOBANA project, 85

Coppersmith Dan, 79

Cryptographic protocols, 193-195, 207, 212

Cryptography, 1. 5, 7, 10, 24, 37, 49, 59, 69,

71,775,127, 175

C. Koscielny et al., Modern Cryptography Primer,

D

Damm Arvid, 24

DES cipher, 77, 79, 80, 84-86, 117, 118
DESCHALL project, 85

DESX cipher, 87

Diffie Whitfield, 85
Diffie-Hellman problem, 76
Discrete logarithm problem, 75
Distributed.net project, 85, 97
Divisibility, 50, 55

Divisibility relation, 37

DSA signature algorithm, 76, 131

E

Electronic codebook mode, 87
Electronic signature, 127, 128

ElGamal cipher, 130, 131

Elliptic curves, 76

Enigma, 23-35

Eratosthenes, 60

Euclid, 60

Euclidean algorithm, 47, 59—64, 103, 131
Euclidean algorithm - extended version, 64-66
Euler’s function, 37, 55, 59

Euler’s theorem, 59

F

Factorization, 52, 53

Factorization problem, 72

Feistel Horst, 78, 79

Feistel network, 78, 82, 83

Fermat’s little theorem, 59, 67, 68, 71
Fermat’s primality tests, 6769
Finite fields, 37, 41, 44

G
Galois fields, 41, 43, 44, 49, 50
General number field sieve algorithm, 73

DOI 10.1007/978-3-642-41386-5, © Springer-Verlag Berlin Heidelberg 2013

238

Greatest common divisor, 37, 51, 65, 66
Groups, 3742, 44, 75,76

H
Hash functions, 132
Hellman Martin, 85

1
IDEA cipher, 77,90, 117, 118
IPSec protocol, 182

K

Keccak hash function, 142—-145
Kerberos protocol, 202, 204
Kerberos system, 203, 206

Key repositories, 175

L

LDAP server, 189

Least common multiple, 37, 51
Lowe Gavin, 198

M

MD4 hash function, 135, 140

MD5 hash function, 134-137, 140
Miller-Rabin primality tests, 67, 69, 70
Model checking, 196, 208, 209, 211

N
NSPK protocol, 197, 202
NSSK protocol, 199

P

Permutations, 5, 9, 11, 13, 16-19, 22-24, 26,
29,31, 32, 80, 81, 84,90, 93-95, 118

Playfair cipher, 18, 20

Polyalphabetic substitutions, 20

Polynomial rings, 4648

Polynomials, 4548, 71, 101, 103, 106, 115

Preimage resistance property, 134

Primality tests, 67

Prime numbers, 37, 44, 52-54, 59, 60, 66,
68-71

Public Key Infrastructure, 175, 176, 180, 181

R

RC ciphers, 77

RC4 cipher, 92-94

RCS cipher, 94, 96, 100

RC6 cipher, 99

Registration Authority, 175, 176
Rejewski Marian, 31, 33

Rings, 37, 4044

Index

Rivest Ronald, 93, 96, 136
Rotor machines, 22, 23
Roézycki Jerzy, 31

RSA cipher, 72

RSA Factoring Challenge, 72

S

S-boxes, 79, 80, 83

S/MIME system, 182

Scherbius Arthur, 24

Session key distribution, 194

SET protocol, 182, 210

SHA hash function, 134

SHA-1 hash function, 8, 135, 142

SHA-3 competition, 142

Shamir Adi, 86

Shannon Claude, 4, 18

Sieve of Eratosthenes, 59, 60

SSL protocol, 92, 182

Symmetric cryptography, 3, 11, 77, 78, 86,
108, 196, 199, 200, 207, 210, 211

T

Temporal logic, 209
Timestamps, 201

TLS protocol, 210
Transpositions, 13, 14,17, 18
TripleDES cipher, 86

Trusted Third Party, 197
Turing Alan, 33

U

Unique factorization, 51

US National Bureau of Standards, 79

US National Institute of Standards and
Technology, 131

A\

Verifying of cryptographic protocols, 207
Vernam cipher, 11. 12, 93

Vigenere cipher, 20

w
WEDP protocol, 92
Wheel cipher, 21, 22

X

X.509 standard, 176

XOR function, 11. 12, 78, 83, 84, 87, 89, 93,
113

¥/
Zygalski Henryk, 31

