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Preface

Anyone doing philosophy today needs to have a sound understanding of a wide
range of basic mathematical concepts. Unfortunately, most applied mathematics
texts are designed to meet the needs of scientists. And much of the math used in
the sciences is not used in philosophy. You're looking at a mathematics book
that’s designed to meet the needs of philosophers. More Precisely introduces
the mathematical concepts you need in order to do philosophy today. As we
introduce these concepts, we illustrate them with many classical and recent
philosophical examples. This is math for philosophers.

It’s important to understand what More Precisely is and what it isn’t. More
Precisely is not a philosophy of mathematics book. It’s a mathematics book.
We're not going to talk philosophically about mathematics. We are going to
teach you the mathematics you need to do philosophy. We won’t enter into any
of the debates that rage in the current philosophy of math. Do abstract objects
exist? How do we have mathematical knowledge? We don’t deal with those
issues here. More Precisely is not a logic book. We’'re not introducing you to
any logical calculus. We won’t prove any theorems. You can do a lot of math
with very little logic. If you know some propositional or predicate logic, it
won’t hurt. But even if you've never heard of them, you’ll do just fine here.
More Precisely is an introductory book. It is not an advanced text. It aims to
cover the basics so that you're prepared to go into the depths on the topics that
are of special interest to you. To follow what we’re doing here, you don’t need
anything beyond high school mathematics. We introduce all the technical
notations and concepts gently and with many examples. We'll draw our
examples from many branches of philosophy — including metaphysics,
philosophy of mind, philosophy of language, epistemology, ethics, and
philosophy of religion.

It’s natural to start with some set theory. All branches of philosophy today
make some use of set theory. If you want to be able to follow what’s going on
in philosophy today, you need to master at least the basic language of set theory.
You need to understand the specialized notation and vocabulary used to talk
about sets. For example, you need to understand the concept of the intersection
of two sets, and to know how it is written in the specialized notation of set
theory. Since we’re not doing philosophy of math, we aren’t going to get into
any debates about whether or not sets exist. Before getting into such debates,
you need to have a clear understanding of the objects you're arguing about. Our
purpose in Chapter 1 is to introduce you to the language of sets and the basic
ideas of set theory. Chapter 2 introduces relations and functions. Basic set-
theoretic notions, especially relations and functions, are used extensively in the
later chapters. So if you’re not familiar with those notions, you've got to start
with Chapters 1 and 2. Make sure you’ve really mastered the ideas in Chapters
1 and 2 before going on.

After we discuss basic set-theoretic concepts, we go into concepts that are
used in various branches of philosophy. Chapter 3 introduces machines. A
machine (in the special sense used in philosophy, computer science, and
mathematics) isn’t an industrial device. It’s a formal structure used to describe
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some lawful pattern of activity. Machines are often used in philosophy of mind
— many philosophers model minds as machines. Machines are sometimes used
in metaphysics — simple universes can be modeled as networks of interacting
machines. You can use these models to study space, time, and causality.
Chapter 4 introduces some of the math used in the philosophy of language. Sets,
relations, and functions are extensively used in formal semantic theories —
especially possible worlds semantics. Chapter 5 introduces basic probability
theory. Probability theory is used in epistemology and the philosophy of science
(e.g., Bayesian epistemology, Bayesian confirmation theory). Mathematical
concepts are often used in ethics. Ultilitarians make great use of sums and
products — the utility of a possible world is the sum of the happinesses of the
persons in that world. So Chapter 6 discusses some of the math used in various
utilitarian theories. Finally, the topic of infinity comes up in many philosophical
discussions. Is the mind finitely or infinitely complex? Can infinitely many
tasks be done in finite time? What does it mean to say that God is infinite?
Chapter 7 introduces the notion of recursion and countable infinity. Chapter 8
shows that there is an endless progression of bigger and bigger infinities. It
introduces transfinite recursion.

We illustrate the mathematical concepts with philosophical examples. We
aren’t interested in the philosophical soundness of these examples. As
mentioned, we devote a chapter to the kinds of mathematics used in some
utilitarian theories. Is this because ufilitarianism is right? It doesn’t matter.
What matters is that utilitarianism uses lots of math, and that you need to know
that math before you can really understand utilitarianism. As another example,
we’ll spend many pages explaining the mathematical apparatus behind various
versions of possible worlds semantics. Is this because possible worlds really
exist? We don’t care. We do care that possible worlds semantics makes heavy
use of sets, relations, and functions. As we develop the mathematics used in
philosophy, we obviously talk about lots and lots of mathematical objects. We
talk about sets, numbers, functions, and so on. Our attitude to these objects is
entirely uncritical. We're engaged in exposition, not evaluation. We leave the
interpretations and evaluvations up to you. Although we aim to avoid
philosophical controversies, More Precisely is not a miscellaneous assortment of
mathematical tools and techniques. If you look closely, you’ll see that the ideas
unfold in an orderly and connected way. More Precisely is a conceptual
narrative.

Our hope is that learning the mathematics we present in More Precisely will
help you to do philosophy. You'll be better equipped to read technical
philosophical articles. Articles and ideas that once might have seemed far too
formal will become easy to understand. And you’ll be able to apply these
concepts in your own philosophical thinking and writing. Of course, some
philosophers might object: why should philosophy use mathematics at all?
Shouldn’t philosophy avoid technicalities? We agree that technicality for its
own sake ought to be avoided. As Ansel Adams once said, “There’s nothing
worse than a sharp image of a fuzzy concept.” A bad idea doesn’t get any better
by expressing it in formal terms. Still, we think that philosophy has a lot to gain
from becoming more mathematical. As science became more mathematical, it
became more successful. Many deep and ancient problems were solved by
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making mathematical models of various parts and aspects of the universe. Is it
naive to think that philosophy can make similar progress? Perhaps. But the
introduction of formal methods into philosophy in the last century has led to
enormous gains in clarity and conceptual power. Metaphysics, epistemology,
ethics, philosophy of language, philosophy of science, and many other branches
of philosophy, have made incredible advances by using the best available
mathematical tools. Our hope is that this conceptual progress, slow and
uncertain as it may be, will gain even greater strength.

Additional resources for More Precisely are available on the World Wide
Web. These resources include extra examples as well as exercises. For more
information, please visit

<http://broadviewpress.com/moreprecisely>
or
<http://www.ericsteinhart.com>.

Many thanks are due to the philosophers who helped with this project. Jim
Moor deserves thanks for helping with the structure of the project. I especially
appreciate the help of Chris Daly, Bob Martin, Tara Lowes, and Kathleen
Wallace. They carefully read all or part of the manuscript and made very
valuable suggestions. And I'm grateful to Gillman Payette for an extremely
close reading. His suggestions made this a much better text! Finally, I'd like to
thank Ryan Chynces and Alex Sager for being wonderful editors.
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SETS

1. Collections of Things

As the 19th century was coming to a close, many people began to try to think
precisely about collections. Among the first was the Russian-German
mathematician Georg Cantor. Cantor introduced the idea of a set. For Cantor, a
set is the collection of many things into a whole (1955: 85). It’s not hard to find
examples of sets: a crowd of people is a set of people; a herd of cows is a set of
cows, a fleet of ships is a set of ships, and so on. The things that are collected
together into a set are the members of the set. So if a library is a set of books,
then the books in the library are the members of the library. Likewise, if a
galaxy of stars is a set of stars, then the stars in the galaxy are the members of
the galaxy.

As time went by, Cantor’s early work on sets quickly became an elaborate
theory. Set theory went through a turbulent childhood (see van Heijenoort,
1967; Hallett, 1988). But by the middle of the 20th century, set theory had
become stable and mature. Set theory today is a sophisticated branch of
mathematics. Set theorists have developed a rich and complex technical
vocabulary — a network of special terms. And they have developed a rich and
complex system of rules for the correct use of those terms. Our purpose in this
chapter is to introduce you to the vocabulary and rules of set theory. Why study
set theory? Because it is used extensively in current philosophy. You need to
know it.

Our approach to sets is uncritical. We take the words of the set theorists at face
value. If they say some sels exist, we believe them. Of course, as philosophers,
we have to look critically at the ideas behind set theory. We need to ask many
questions about the assumptions of the set theorists. But before you can criticize
set theory, you need to understand it. We are concerned here only with the
understanding. You may or may not think that numbers exist. But you still
need to know how to do arithmetic. Likewise, you may or may not think that
sets exist. But to succeed in contemporary philosophy, you need to know at
least some elementary set theory. Our goal is to help you master the set theory
you need to do philosophy. Our approach to sets is informal. We introduce the
notions of set theory step by step, little by little. A more formal approach
involves the detailed study of the axioms of set theory. The axioms of set theory
are the precisely stated rules of set theory. Studying the axioms of set theory is
advanced work. So we won’t go into the axioms here. Our aim is to introduce
set theory. We can introduce it informally. Most importantly, in the coming
chapters, we’ll show how ideas from set theory (and other parts of mathematics)
are applied in various branches of philosophy.
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We start with the things that go into sets. After all, we can’t have collections of
things if we don’t have any things to collect. We start with things that aren’t
sets. An individual is any thing that isn’t a set. Sometimes individuals are
known as wurelemente (this is a German word pronounced oor-ella-mentuh,
meaning primordial, basic, original elements). Beyond saying that individuals
are not sets, we place no restrictions on the individuals. The individuals that can
go info sets can be names, concepts, physical things, numbers, monads, angels,
propositions, possible worlds, or whatever you want to think or talk about. So
long as they aren’t sets. Sets can be inside sets, but then they aren’t counted as
individuals. Given some individuals, we can collect them together to make sets.
Of course, at some point we’ll have to abandon the idea that every set is a
construction of things collected together by someone. For example, set theorists
say that there exists a set whose members are all finite numbers. But no human
person has ever gathered all the finite numbers together into a set. Still, for the
moment, we’ll use that kind of constructive talk freely.

2. Sets and Members
Sets have names. One way to refer to a set is to list its members between curly
braces. Hence the name of the set consisting of Socrates, Plato, and Aristotle is
{Socrates, Plato, Aristotle}. Notice that listing the members is different from
listing the names of the members. So

{Socrates, Plato, Aristotle} is a set of philosophers; but

{“Socrates”, “Plato”, “Aristotle”} is a set of names of philosophers.

The membership relation is expressed by the symbol €. So we symbolize the
fact that Socrates is a member of {Socrates, Plato} like this:

Socrates € {Socrates, Plato}.
The negation of the membership relation is expressed by the symbol ¢. We
therefore symbolize the fact that Aristotle is not a member of {Socrates, Plato}
like this:

Aristotle ¢ {Socrates, Plato}.
And we said that individuals don’t have members (in other words, no object is a
member of any non-set). So Socrates is not a member of Plato. Write it like
this:

Socrates ¢ Plato.

Identity. Two sets are identical if, and only if, they have the same members.
The long phrase “if and only if” indicates logical equivalence. To say a set S is



Sets 3

identical with a set T is equivalent to saying that S and T have the same
members. That is, if S and T have the same members, then they’re identical;
and if S and T are identical, then they have the same members. The phrase “if
and only if”’ is often abbreviated as “iff”. It’s not a spelling mistake! Thus

S =T if and only if S and T have the same members
is abbreviated as

S =T il S and T have the same members.
More precisely, a set S is identical with a set T iff for every x, x is in S iff x is in
T. One of our goals is to help you get familiar with the symbolism of set theory.
So we can write the identity relation between sets in symbols like this:

S =T iff (for every x)((x € S)iff (x € T)).
You can easily see that {Socrates, Plato} = {Socrates, Plato}. When writing the
name of a set, the order in which the members are listed makes no difference.
For example,

{Socrates, Plato} = {Plato, Socrates}.

When writing the name of a set, mentioning a member many times makes no
difference. You only need to mention each member once. For example,

{Plato, Plato, Plato} = {Plato, Plato} = {Plato};

{Socrates, Plato, Socrates} = {Socrates, Plato}.
When writing the name of a set, using different names for the same members
makes no difference. As we all know, Superman is Clark Kent and Batman is
Bruce Wayne. So

{Superman, Clark Kent} = {Clark Kent} = {Superman};

{Superman, Batman} = {Clark Kent, Bruce Wayne}.

Two sets are distinct if, and only if, they have distinct members:

{Socrates. Plato} is not identical with {Socrates, Aristotle}.

3. Set Builder Notation

So far we’ve defined sets by listing their members. We can also define a set by
giving a formula that is true of every member of the set. For instance, consider
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the set of happy things. Every member in that set is happy. It is the set of all x
such that x is happy. We use a special notation to describe this set:

the setof . . . {...}

the setof all x . . . {x...}

the set of all x such that . . . {xl...}

the set of all x such that x is happy { x| x1s happy }.

Note that we use the vertical stroke *1” to mean “such that”. And when we use
the variable x by itself in the set builder notation, the scope of that variable is
wide open — x can be anything. Many sets can be defined using this set-builder
notation:

the books in the library = { x | x is a book and x is in the library };
the sons of rich men = { x | x is the son of some rich man }.

A set is never a member of itself. At least not in standard set theory. There are
some non-standard theories that allow sets to be members of themselves (see
Aczel, 1988). But we’re developing standard set theory here. And since
standard set theory is used to define the non-standard set theories, you need to
start with it anyway! Any definition of a set that implies that it is a member of
itself is ill-formed — it does not in fact define any set at all. For example,
consider the formula

the set of all sets = { x | x is a set }.
Since the set of all sets 1s a set, it must be a member of itself. But we’ve ruled
out such ill-formed collections. A set that is a member of itself is a kind of
vicious circularity. The rules of set theory forbid the formation of any set that is

a member of itself. Perhaps there is a collection of all sets. But such a
collection can’t be a set.

4. Subsets

Subset. Sets stand to one another in various relations. One of the most basic
relations is the subset relation. A set S is a subset of a set T iff every member of

then xis in T. Hence
{Socrates, Plato} is a subset of {Socrates, Plato, Aristotle}.

Set theorists use a special symbol to indicate that S is a subset of T:

S < T means S is a subset of T.
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Hence
{Socrates, Plato} c {Socrates, Plato, Aristotle}.
We can use symbols to define the subset relation like this:
S < Tiff (for every x)(if x € S thenx € T).

Obviously, if x is in S, then x is in S; hence every set is a subset of itself. That
is, for any set S, S < S. For example,

{Socrates, Plato} is a subset of {Socrates, Plato}.

But remember that no set is a member of itself. Being a subset of S is different
from being a member of S. The fact that S — S does nof imply that S € S.

Proper Subset. We often want to talk about the subsets of S that are distinct
from S. A subset of S that is not S itself is a proper subset of S. An identical
subset is an improper subset. So

{Socrates, Plato} is an improper subset of {Socrates, Plato};
while

{Socrates, Plato} is a proper subset of {Socrates, Plato, Aristotle}.
We use a special symbol to distinguish proper subsets:

S < T means S is a proper subset of T.

Every proper subset is a subset. Soif S < T, then S — T. However, not every
subsel is a proper subset. Soif S T, it does not follow that S < T. Consider:

{Socrates, Plato} c {Socrates, Plato, Aristotle} True
{Socrates, Plato} c {Socrales, Plato, Aristotle} True
{Socrates, Plato, Aristotle} < {Socrates, Plato, Aristotle } True
{Socrates, Plato, Aristotle} < {Socrates, Plato, Aristotle} False

Two sets are identical iff each is a subset of the other:

S=Tiff (ScT) & (T <9)).
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We'll use “{}” to denote the empty set. For example,

{} ={ xlxis an actual unicorn };
{} = { x| xis a married bachelor }.

It is important not to be confused about the empty set. The empty set isn’t
nothing or non-being. If you think the empty set exists, then obviously you
can’t think that it is nothing. That would be absurd. The empty set is exactly
what the formalism says it is: it is a set that does not contain any thing as a
member. It is a set with no members. According to set theory, the empty set is
an existing particular object.

The empty set is a subset of every set. Consider an example: {} is a subset of
{Plato, Socrates}. The idea is this: for any x, if x is in {}, then x is in {Plato,
Socrates}. How can this be? Well, pick some object for x. Let x be Aristotle.
Is Aristotle in {}? The answer is no. So the statement “Aristotle is in {}” is
false. And obviously, “Aristotle is in {Plato, Socrates} is false. Aristotle is not
in that set. But logic tells us that the only way an if-then statement can be false
is when the if part is true and the then part is false. Thus (somewhat at odds
with ordinary talk) logicians count an if-then statement with a false if part as
true. So even though both the if part and the then part of the whole if-then
statement are false, the whole if-then statement “if Aristotle is in {}, then
Aristotle is in {Socrates, Plato}” is true. The same reasoning holds for any
object you choose for x. Thus for any set S, and for any object x, the statement
“if x1sin {}, then x is in 8™ is true. Hence {} is a subset of S.

We can work this out more formally. For any set S, {} < S. Iere’s the proof:
for any x, it is not the case that (x € {}). Recall that when the antecedent (the if
part) of a conditional is false, the whole conditional is true. That is, for any Q,
when P is false, (if P then Q) is true. So for any set S, and for any object x, it is
true that (if x € {} then xis in S). So for any set S, it is true that (for all x)(if x €
{} then xis in S). Hence for any set S, {} c S.

Bear this clearly in mind: the fact that {} is a subset of every set does not imply
that {} is a member of every set. The subset relation is not the membership
relation. Every set has the empty set as a subset. But if we want the empty set
to be a member of a set, we have to put it into the set. Thus {A} has the empty
set as a subset while {{}, A} has the empty set as both a subset and as a
member. Clearly, {A} is not identical to {{}, A}.

6. Unions of Sets

Unions. Given any two sets S and T, we can take their union. Informally, you
get the union of two sets by adding them together. For instance, if the Greeks =
{Socrates, Plato} and the Germans = {Kant, Hegel}, then the union of the
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MACHINES

1. Machines

Machines are used in many branches of philosophy. Note that the term
“machine” is a technical term. When we say something is a machine, we mean
that it has a certain formal structure; we don’t mean that it’s made of metal or
anything like that. A machine might be made of organic molecules or it might
even be made of some immaterial soul-stuff. All we care about is the formal
structure. As we talk about machines, we deliberately make heavy use of sets,
relations, functions, and so on. Machines are used in metaphysics and
philosophy of physics. You can use machines to model physical universes.
These models illustrate various philosophical points about space, time, and
causality. They also illustrate the concepts of emergence and supervenience.
Machines are also used in philosophy of biology. They are used to model living
organisms and ecosystems. They are used to study evolution. They are even
used in ethics, to model interactions among simple moral agents. But machines
are probably most common in philosophy of mind.

A long time ago, thinkers like Hobbes (1651) and La Mettrie (1748) defended
the view that human persons are machines. But their conceptions of machines
were imprecise. Today our understanding of machines is far more precise.
There are many kinds of machines. We’ll start with the kind known as finite
deterministic automata. As far as we can tell, the first philosopher to argue that
a human person is a finite deterministic automaton was Arthur Burks in 1973.
He argues for the thesis that, “A finite deterministic automaton can perform all
natural human functions.” Later in the same paper he writes that, “My claim is
that, for each of us, there is a finite deterministic automaton that is behaviorally
equivalent to us” (1973: 42). Well, maybe there is and maybe there isn’t. But
before you try to tackle that question, you need to understand finite deterministic
automata. And the first thing to understand is that the term automaton is
somewhat old-fashioned. The more common current term is just machine. So
we’ll talk about machines.

2. Finite State Machines

2.1 Rules for Machines

A machine is any object that runs a program. A program guides or governs the
behavior of its machine. It is a lawful pattern of activity within the machine — it
is the nature or essence of the machine. Suppose that some machine M runs a
program P. Any program P is a tuple (I, S, O, F, G). The item I is the set of
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possible inputs to M. The item S is the set of possible sfates of M. The item O
is the set of possible outputs of M. The item F is a transition relation that takes
each (input, state) pair onto one or more states in S. It is a relation from I x S to
S. The item G is an output relation that takes each (input, state) pair onto one or
more outputs in O. Itis a relation from I x S to O.

A machine is finite iff its set of program states is finite. Such a machine is also
known as — you guessed it — a finite state machine (an FSM). A machine is
infinite iff its set of states is infinite. A machine is deterministic iff the relations
I' and G are functions. For a deterministic machine, the item I is a transition
function that maps each (input, state) pair onto a state. In symbols, F: I xS —
S. And the item G is an output function that maps each (input, state) pair onto
an output. In symbols, G: I x S — O. A machine is non-deterministic iff either
F is not a function or G is not a function (they are one-many or many-many).
We’ll only be talking about deterministic machines.

There are many ways to present a machine. One way is to display its program
as a list of dispositions. Each disposition is a rule of this form: if the machine
gets input w while in state x, then it changes to state y and produces output z.
For example, consider a simple robot with three emotional states: calm, happy,
and angry. One disposition for this emotional robot might look like this: if you
get a smile while you’re calm, then change to happy and smile back. Of course,
the robot may have other dispositions. But it’s important to see that the
emotional robot has all and only the dispositions that are defined in its program.
It has whatever dispositions we give it. We might give it dispositions that allow
it to learn — to form new dispositions, and to modify its original programming.
But even then, it won’t have any undefined dispositions. It is wholly defined by
its program.

Another way to present a machine is to display its program as a state-transition
network. A state-transition network has circles for states and arrows for
transitions. Each arrow is labeled with <input / output>. Figure 3.1 shows how
a single disposition is displayed in a state-transition network. Figure 3.2 shows
some of the state-transition network for the emotional robot.

current input / output

state

Figure 3.1 Diagram for a single disposition.
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punch / frown

frown / frown back smile / smile back

smile / make calm face frown / make calm face

kiss / smile

Figure 3.2 State-transition network for an emotional robot.

We can also define the robot by writing its components in set-theoretic notation.
So

I = {frown, smile, punch, Kiss};
S = {angry, calm, happy};
O = {frown back, smile back, make calm face}.

Table 3.1 details the function F while Table 3.2 details the function G. The
functions F and G in these tables are complete — they include all the dispositions
of the robot.

(frown, calm) — angry (frown, calm) — frown back
(smile, calm) — happy (smile, calm) — smile back
(punch, calm) — angry (punch, calm) — frown back
(kiss, calm) — happy (kiss, calm) — smile back
(frown, happy) — calm (frown, happy) — make calm face
(smile, happy) — happy (smile, happy) — smile back
(punch, happy) — angry (punch, happy) — frown back
(kiss, happy) —  happy (kiss, happy) — smile back
(frown, angry) — angry (frown, angry) — frown back
(smile, angry) — calm (smile, angry) — make calm face
(punch, angry) — angry (punch, angry) — frown back
(kiss, angry) —  happy (kiss, angry) — smile back
Table 3.1 The function F. Table 3.2 The function G.




Index

abstraction, 28

accelerating Turing machine, 162
acceleration, 149, 161, 162
Achilles, 152

action, 132

agent, 132

aleph, 166, 177

aleph-naught, 166
alternatives, 134

ancestor, 30

ancestral, 32

Anselm, 45, 155
anti-symmetric, 26

arity, 26

assign, 50

Augustine, 46

average, 61

basis clause, 147

Bayes Theorem, 120

Bayesian conditionalization, 129
Benacerraf, 19

best of all possible worlds, 143
beth numbers, 176

bijection, 51

binary digits, 78

binary relation, 25

bits, 78

boolean, 78

Borges Book, 160

Brave Officer Objection, 36
Cantor, 1, 151, 163

Cantor’s Diagonal Argument, 169
cardinal number, 166
cardinality, 61, 164

career, 68

Cartesian product, 23

cellular automaton, 79
characteristic function, 54, 101
circularity, 33

class theory, 63

closed, 42

closure, 29

codomain, 25, 50

compatible worlds, 138
complement of an event, 113

composition, 30
computable function, 162
conditional probability, 117
configuration, 68
confirmation, 128
converse, 26

countable, 167
counterpart, 58
counterpart theory, 102
counting, 149, 164

curly braces, 2

de dicto necessity, 98, 106
de dicto possibility, 98, 106
de re necessity, 99, 107

de re possibility, 99, 107
degree, 26

degree of belief, 127
degrees of perfection, 45, 155, 180
denumerable, 167
deterministic, 66
difference, 10

direction, 28
disconfirmation, 128
disjoint, 9

dispositions, 66

doloric consequence, 133
domain, 25, 50

doxastic function, 127
dual universe, 58

empty set, 6, 16
endurantists, 41
epistemology, 122
equicardinality, 61
equinumerosity, 165
equivalence classes, 27
equivalence relation, 27
eternally recurrent universe, 57
event, 109

expected utility, 135
experiment, 109
extension, 87

Extensional English, 126
finitary, 158

finite, 157

fission problem, 38



Index 193

Frege, 28 modal semantics, 94
function, 49 model, 89

game of life, 77 n-ary relation, 26
generation, 31 natural numbers, 19, 147
God, 47, 156, 180 nested sum, 60

graph, 36 network, 71

great chain of being, 45 non-deterministic, 66
Halting Problem, 162 one-to-one, 50

happy, 171, 172 onlo, 51

hedonic consequences, 133 open worlds, 140
Henological Argument, 45 optimal open worlds, 142
hierarchy, 63 order relation, 44

Hilbert Hotel, 158 ordered n-tuple, 22
Hilbert Paper, 154 ordered pair, 21

Hume’s Principle, 61 ordered quadruple, 22
identity, 2, 27 ordered triple, 22
improper part, 48 ordinal numbers, 163, 166
improper subset, 5 parent, 30

independent, 119 part, 48

indiscernibility, 27 parthood relation, 48
individual, 2 partial universes, 17
infinitary, 157 partition, 27

infinite, 151, 157 perdurantists, 42

infinite sequence, 159 persistence, 41

initial rule, 147 personal identity, 33
injection, 51 possible worlds, 94, 125, 138, 179
intension, 100 possible worlds semantics, 94
intersection, 8 posterior probability, 122
intersection of two events, 112 power set, 13

into, 51 Power Set Argument, 172
inverse, 26, 52 powers of a relation, 31
isomorphism, 55 predicate, 95

iteration, 30 prefix, 139

iterative hierarchy of pure sets, 18 prime numbers, 158
levels, 11 prior probabilities, 121
Lewis, 102 probability, 101, 110

life grid, 77 probability distribution, 114
limit rule, 151 program, 65

Locke, 34, 155 proper class, 63, 181

lost possibilities, 140 proper part, 48
machine, 65, 132, 137 proper subset, 5
many-to-one, 50 proposition, 101

maps, 50 pure sets, 16

mechanical universe, 77 quasi-order, 44

members, 1 Quine, 20

membership, 2 racetrack, 152

memory criterion, 34 range, 25

mereology, 48 ranks, 11



194

rationality, 136
recursion clause, 147
recursive definition, 32, 147
reduction, 19
reference function, 86
referent, 86

reflexive, 26

reflexive closure, 29
relation, 25

right, 145

rigid designator, 95
Royce, 153

Royce map, 154

run, 138

Russell’s Paradox, 62
sad, 171, 172

sample space, 109
selection, 169
selection tables, 17
selections, 15
sequence, 60

series, 60

set, 1

set-builder notation, 4
sets of sets, 11
singleton, 6
state-transition network, 66
stroke series, 147
structuralism, 20

subjective probability function, 127

subset, 4

successor relation, 68
successor rule, 147
superset, 6

supertask, 159

More Precisely

surjection, 51
symmetric, 26
symmetric closure, 29
syntactic form, 90
Thomson Lamp, 160
transfinite, 151
transfinite recursion, 179
transitive, 26

transitive closure, 30, 31
truth-condition, 90
truth-value, 90
truth-value assignment, 53
tuples, 22

Turing Machine, 82, 161
uncountable, 175

union, 7

union of two events, 112
unit set, 6

universe, 42, 76
urelemente, 2
utilitarianism, 132
utility, 70, 134, 141
utility function, 70
vocabulary, 86

von Neumann, 19, 151, 163
world utilitarianism, 136
world-indexed properties, 95
worldmate relation, 102
wrong, 145

Zeno, 152

Zeno instant, 153, 161
Zeno point, 153, 161
Zeno tape, 161, 169
Zermelo, 20

Zeus, 161



