A. H. Loule
More Than Life Itself
A Synthetic Continuation in Relational Biology



A. H. Louie

More Than Life Itself

A Synthetic Continuation in Relational Biology

\'4

ontos

verlag

Frankfurt | Paris | Lancaster | New Brunswick



Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibliographic data are available in the
Internet at http://dnb.d-nb.de.

North and South America by
Transaction Books
Rutgers University

Piscataway, NJ 08854-8042

trans@transactionpub.com

transaction

United Kingdom, Ireland, Iceland, Turkey, Malta, Portugal by
Gazelle Books Services Limited
White Cross Mills
Hightown
LANCASTER, LA1 4XS
sales(@gazellebooks.co.uk

Livraison pour la France et la Belgique:
Librairie Philosophique J.Vrin
6, place de la Sorbonne; F-75005 PARIS
Tel. +33 (0)1 43 54 03 47; Fax +33 (0)1 43 5448 18
www.vrin. fr

©2009 ontos verlag
P.O. Box 15 41, D-63133 Heusenstamm
www.ontosverlag.com

ISBN 978-3-86838-044-6

2009

No part of this book may be reproduced, stored 1n retrieval systems or transmitted
in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise
without written permission from the Publisher. with the exception of any material supplied specifically for the
purpose of being entered and executed on a computer system. for exclusive use of the purchaser of the work

Printed on acid-free paper
FSC-certified (Forest Stewardship Council)
This hardcover binding meets the International Library standard

Printed in Germany
by buch blcher dd ag



Contents

Praefatio: Unus non sufficit orbis Xiii
Nota bene XXiii
Prolegomenon: Concepts from Logic 1
In principio... 1
Subset 2
Conditional Statements and Variations 3
Mathematical Truth 6
Necessity and Sufficiency 11
Complements 14
Neither More Nor Less 17
PART I: Exordium 21
1 Praeludium: Ordered Sets 23
Mappings 23
Equivalence Relations 28
Partially Ordered Sets 31
Totally Ordered Sets 37
2 Principium: The Lattice of Equivalence Relations 39
Lattices 39

The Lattice QX 46



Mappings and Equivalence Relations
Linkage
Representation Theorems

3 Continuatio: Further Lattice Theory
Modularity
Distributivity
Complementarity
Equivalence Relations and Products
Covers and Diagrams
Semimodularity
Chain Conditions

PART II: Systems, Models, and Entailment

4 The Modelling Relation
Dualism
Natural Law
Model versus Simulation
The Prototypical Modelling Relation
The General Modelling Relation

5 Causation
Aristotelian Science
Aristotle’s Four Causes
Connections in Diagrams
In beata spe

6 Topology
Network Topology
Traversability of Relational Diagrams
The Topology of Functional Entailment Paths
Algebraic Topology
Closure to Efficient Causation

50
54
59

61
61
63
64
68
70
74
75

81

83
83
88
91
95
100

105
105
109
114
127

131
131
138
142
150
156



PART III: Simplex and Complex 161

7 The Category of Formal Systems 163
Categorical System Theory 163
Constructions in S 167
Hierarchy of S-Morphisms and Image Factorization 173
The Lattice of Component Models 176
The Category of Models 183
The A and the Q 187
Analytic Models and Synthetic Models 189
The Amphibology of Analysis and Synthesis 194

8 Simple Systems 201
Simulability 201
Impredicativity 206
Limitations of Entailment and Simulability 209
The Largest Model 212
Minimal Models 214
Sum of the Parts 215
The Art of Encoding 217
The Limitations of Entailment in Simple Systems 221

9 Complex Systems 229
Dichotomy 229
Relational Biology 233

PART IV: Hypotheses fingo 237

10 Anticipation 239
Anticipatory Systems 239
Causality 245
Teleology 248
Synthesis 250
Lessons from Biology 255

An Anticipatory System is Complex 256



11 Living Systems 259

A Living System 1s Complex 259
(M,R)-Systems 262
Interlude: Reflexivity 272
Traversability of an (M,R)-System 278
What 1s Life? 281
The New Taxonomy 284
12 Synthesis of (IM,R)-Systems 289
Alternate Encodings of the Replication Component 289
Replication as a Conjugate Isomorphism 2901
Replication as a Similarity Class 299
Traversability 303
PART V: Epilogus 309
13 Ontogenic Vignettes 311
(M,R)-Networks 311
Anticipation in (M,R)-Systems 318
Semiconservative Replication 320
The Ontogenesis of (M,R)-Systems 324
Appendix: Category Theory 329
Categories — Functors — Natural Transformations 330
Universality 348
Morphisms and Their Hierarchies 360
Adjoints 364
Bibliography 373
Acknowledgments 377

Index 379



X1l

Praefatio
Unus non sufficit orbis

In my mentor Robert Rosen’s iconoclastic masterwork Life Itself
[1991], which dealt with the epistemology of life, he proposed a Volume 2
that was supposed to deal with the ontogeny of life. As early as 1990,
before Life Itself (i.e., “Volume 1°) was even published (he had just then
signed a contract with Columbia University Press), he mentioned to me in
our regular correspondence that Volume 2 was “about half done”. Later, in
his 1993 Christmas letter to me, he wrote:

...I’ve been planning a companion volume [to Life Itself]
dealing with ontology. Well, that has seeped into every
aspect of everything else, and I think I’'m about to make a
big dent in a lot of old problems. Incidentally, that book
[Life Itself] has provoked a very large response, and I've
been hearing from a lot of people, biologists and others,
who have been much dissatisfied with prevailing dogmas,
but had no language to articulate their discontents. On
the other hand, I’ve outraged the “establishment”. The
actual situation reminds me of when I used to travel in
Eastern Europe in the old days, when everyone was
officially a Dialectical Materialist, but unofficially,
behind closed doors, nobody was a Dialectical
Materialist.
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When Rosen died unexpectedly in 1998, his book Essays on Life
Itself [published posthumously in 2000] was in the final stages of
preparation. But this collection of essays is not ‘Volume 2’ as he
explained in its Preface:

Thus this volume should be considered a supplement to
the original volume. It 1s not the projected second
volume, which deals with ontogenetics rather than with
epistemology, although some chapters herein touch on
ideas to be developed therein.

We see, therefore, that the “projected second volume” was then still a
potentiality. I have, however, never seen any actualization of this “Volume
27, and no part of its manuscript has ever been found.

Rosen did, nevertheless, leave behind a partially completed
manuscript tentatively entitled “Complexity”. This was a work-in-progress,
with only a few sections (mostly introductory material) finished. It may or
may not be what he had in mind for the projected second volume of Life
Itself My opinion is that it is not. To me, its contents are neither
sufficiently extent nor on-topic enough for it to be a more-than-half-done
Volume 2 on the ontogeny of life. In the years since, I had begun an
attempt to extend the manuscript into Life Iltself Volume 2, but this effort of
raising his orphan, as it were, was abandoned for a variety of reasons —
one of them was that I did not want to be Stissmayr to Mozart’s Requiem.

The book that you are now reading, More Than Life Itself, is
therefore not my completion of the anticipated Volume 2 of Robert
Rosen’s Life Itself. and has not incorporated any of his text from the
“Complexity” manuscript. It 1s entirely my own work in the Rashevsky-
Rosen school of relational biology. The inheritance of Nicolas Rashevsky
(1899-1972) and Robert Rosen (1934-1998), my academic grandfather
and father, 1s, of course, evident (and rightly and unavoidably so). Indeed,
some repetition of what Rosen has already written first (which is worthy of
repetition in any case) may occasionally be found. After all, he was a
master of Jles mots justes, and one can only rearrange a precise
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mathematical statement in a limited number of ways. As Aristotle said,
“When a thing has been said once, it is hard to say it differently.”

The crux of relational biology, a term coined by Nicolas Rashevsky,
is

“Throw away the matter and keep the underlying organization.”

The characterization of life is not what the underlying physicochemical
structures are, but by its entailment relations, what they do, and to what
end. In other words, life is not about its material cause, but is intimately
linked to the other three Aristotelian causes, formal, efficient, and final.
This 1s, however, not to say that structures are not biologically important:
structures and functions are intimately and synergistically related. Our
slogan is simply an emphatic statement that we take the view of ‘function
dictates structure’ over ‘structure implies function’. Thus relational
biology is the operational description of our endeavour, the characteristic
name of our approach to our subject, which 1s mathematical biology. Note
that ‘biology’ is the noun and “mathematical’ is the adjective: the study of
living organisms is the subject, and the abstract deductive science that is
mathematics is the tool. Stated otherwise, biology is the final cause and
mathematics is the efficient cause. The two are indispensable ingredients,
indeed complementary (and complimentary) halves of our subject.
Relational biology can no more be done without the mathematics than
without the biology. Heuristic, exploratory, and expository discussions of
a topic, valuable as they may be, do not become the topic itself; one must
distinguish the science from the meta-science.

The Schrodinger question “What 1s life?” 1s an abbreviation. A more
explicitly posed expansion is “What distinguishes a /iving system from a
non-living one?”; alternatively, “What are the defining characteristics of a
natural system for us to perceive it as being alive?” This 1s the
epistemological question Rosen discusses and answers in Life Itself. His
answer, in a nutshell, is that an organism — the term is used in the sense of
an ‘autonomous life form’, i.e., any living system — admits a certain kind
of relational description, that it is ‘closed to efficient causation’. (I shall
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explain in detail these and many other somewhat cryptic, very Rosen terms
in this monograph.) The epistemology of biology concerns what one learns
about life by looking at the living. From the epistemology of life, an
understanding of the relational model of the inner workings of what is alive
one may move on to the ontogeny of life. The ontology of biology
involves the existence of life, and the creation of life out of something else.
The ontogenetic expansion of Schrodinger’s question 1s “What makes a
natural system alive?”; or, “What does it take to fabricate an organism?”
This 1s a hard question. This monograph More Than Life Itself 1s my first
step, a synthesis 1n every sense of the word.

2

With the title that I have chosen for the book, I obviously intend it to
be a continuation of Robert Rosen’s conception and work in Life Itself.
But (as 1if it needs to be explicitly written) I am only Robert Rosen’s
student, not Robert Rosen himself. No matter how sure I am of my facts, |
cannot be so presumptuous as to state that, because I know my mentor-
colleague-friend and his work so well, what I write is what he would have
written. In other words, I cannot, of course, claim that [ speak for Robert
Rosen, but in his absence, with me as a ‘torch-bearer’ of the school of
relational biology, my view will have to suffice as a surrogate.

But surrogacy implicitly predicates nonequivalence. My formulations
occasionally differ from Rosen’s, and this is another reason why I find it
more congenial to not publish my More Than Life Itself as ‘“Volume 2 of
Robert Rosen’s Life Itself °. 1 consider these differences evolutionary in
relational biology: as the subject develops from Rashevsky to Rosen to me,
each subsequent generation branches off on the arbor scientiae. Any
errors (the number of which I may fantasize to be zero but can only hope to
be small, and that they are slight and trivially fixable) that appear in this
book are, naturally, entirely mine. The capacity to err 1s, in fact, the real
marvel of evolution: the processes of metabolism-repair-replication are
ordained from the very beginning to make small mistakes. Thus through
mutational blunders progress and improvements are made. The Latin root
for ‘error’, the driving force of evolution, is erratio, which means roving,
wandering about looking for something, quest.
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In complex analysis (the theory of functions of a complex variable),
analytic continuation 1s a technique used to extend the domain of a given
holomorphic (alias analytic) mapping. As an analogue of this induction, |
use the term synthetic continuation in the subtitle of this monograph that is
the song of our synthetic journey. Analytic biology attempts to model
specific fragments of natural phenomena; synthetic biology begins with
categories of mathematical objects and morphisms, and seeks their
realizations in biological terms. Stated otherwise, in relational biology,
mathematical tools are used synthetically: we do not involve so much in
the making of particular models of particular biological phenomena, but
rather invoke the entailment patterns (or lack thereof) from certain
mathematical theories and interpret them biologically. Nature is the
realization of the simplest conceivable mathematical ideas. 1 shall have a
lot more to say on analysis versus synthesis in this monograph.

Someone once said to Rosen: “The trouble with you, Rosen, is that
you keep trying to answer questions nobody wants to ask.” [Rosen 2006].
It appears that his answers themselves cause even more self-righteous
indignation in some people, because the latter’s notions of truth and
Rosen’s answers do not coincide. Surely only the most arrogant and
audacious would think that the technique they happen to be using to engage
their chosen field is the be-all and end-all of that subject, and would be
annoyed by any alternate descriptions, Rosen’s or otherwise. One needs to
remember that the essence of a complex system is that a single description
does not suffice to account for our interactions with it.  Alternate
descriptions are fundamental in the pursuit of truth; plurality spices life.

“One world is not enough.”

Uncritical generalizations about what Rosen said are unhelpful. For
example, according to Rosen, one of the many corollaries of being an
organism is that it must have noncomputable models. The point is that /ife
itself 1s not computable. This in no way means that he somehow implies
that computable models are useless, and therefore by extension people
involved with biological computing are wasting their time! There are
plenty of useful computing models of biological processes. The simple
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fact is that computing models (an indeed any models whatsoever) will be,
by definition, incomplete, but they may nevertheless be fruitful endeavours.
One learns a tremendous amount even from partial descriptions.

Along the same vein, some impudent people take great offence in
being told by Rosen that their subject area (e.g. the physics of mechanisms),
their ‘niche’, 1s special and hence nongeneric. Surely it should have been a
compliment! An algebraic topologist, say, would certainly take great pride
that her subject area 1s indeed not run-of-the-mill, and is a highly
specialized area of expertise. | am a mathematical biologist. 1 would not
in my wildest dream think that mathematics can provide almost all (in the
appropriately mathematical sense) the tools that are suitable for the study
of biology. A mathematical biologists 1s a specialist in a very specialized
area. There 1s nothing wrong in being a specialist; what is wrong 1s the
reductionistic view that the specialization is in fact general, that all (or at
least all in the ‘territory’ of the subject at hand) should conform to the
specialization. Why is being nongeneric an insult? Are some people, in
their self-aggrandizement, really pretentious enough to think that the
subject they happen to be in would provide answers to al/l the questions of
life, the universe, and everything?

Rosen’s revelations hit particular hard those who believe in the
‘strong” Church-Turing thesis, that for every physically realizable process
in nature there exists a Turing machine that provides a complete
description of the process. In other words, to them, everything is
computable. Note that Rosen only said that life 1s not computable, not that
artificial life is impossible. However one models life, natural or artificial,
one cannot succeed by computation alone. Life is not definable by an
algorithm. Artificial life does not have to be limited to what a computing
machine can do algorithmically; computing is but one of a multitude of
available tools. But for the ‘strong” Church-Turing thesis believers, they
would have the syllogism

Rosen says life is not computable.
Everything 1s computable.
Therefore Rosen says artificial life is impossible.
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Compare and contrast this to Alan Turing’s psychotic syllogism, a non
sequitur that 1s so iconic of his demise

Turing believes machines think.
Turing lies with men.
Therefore machines cannot think.

The following is a diagram of the modelling relation. (I shall have a
lot more to say about it in Chapter 4.)

decoding

causal Natural Formal inferential
entailment system system entailment

Natural systems from the external world generate in us our percepts of
‘reality’.  While causal entailments themselves may be universal truths,
perceived causal entailments are not. All we have are our own
observations, opinions, interpretations, our individual alternate
descriptions of ‘reality’ that are our personal models of ‘truth’. Causal
entailments are interpreted, not proven.

A mathematical proof is absolute; it is categorically more than a
scientific ‘proof” (and a judicial ‘proof’) of “beyond a reasonable doubt’.
A scientific theory can never be proven to the same absolute certainty of a
mathematical theorem. This is because a scientific ‘proof’ is merely
considered ‘highly likely based on the evidence available’; it depends on
observation, experimentation, perception, and interpretation — all of which
are fallible, and are in any case approximations of truth. Sometimes the
minimized doubt later turns out to be errors, and paradoxically, in the same
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spirit of ‘errors drive evolution’, the inherent weakness in scientific proofs
leads to scientific revolutions, when, ‘based on new evidence’, ‘proven’
theories are refined, updated, surpassed, or replaced.

Modelling is the art of bringing entailment structures into congruence.
The essence of an art 1s that 1t rests on the heuristic, the unentailed, the
intuitive leap. The encoding and the decoding arrows in the modelling
relation diagram are themselves unentailed. Theoretical scientists are more
artists than artisans. Natural Law assures them only that their art 1s not in
vain, but it in itself provides not the slightest clue how to go about it.
There is no right or wrong in art, only similarities and differences, the
congenial and the uncongenial.

Among the four arrows in the diagram of the modelling relation, only
inferential entailment may be proven in the rigorous mathematical sense.
Absolute statements about the truth of statements validated by proofs
cannot be disputed. Rosen proved the theorems that he stated in Life Itself,
although his presentations are not in the orthodox form of definition-
lemma-theorem-proof-corollary that one finds in conventional mathematics
journals and textbooks. His book is, after all, not a text in pure
mathematics.  While the presentation may be ‘Gaussian’, with all
scaffolding removed, there are nevertheless enough details in Rosen’s
prose that any reasonably competent mathematician can “fill in the blanks’
and rewrite the proofs in full, if one so wishes. But because of the
unorthodox heuristic form, people have contended Rosen’s theorems.
Since the dispute is over form rather than substance, it 1s not surprising that
the contentions are mere grumbles, and no logical fallacies in the theorems
have ever been found. A common thread running in many of the anti-
Rosen papers that I have encountered i1s the following: they simply use
definitions of terms different from Rosen’s, whence resulting in
consequences different from Rosen’s, and thereby concluding that Rosen
must be wrong! I shall in the present monograph recast Rosen’s theorems
in as rigorously mathematical a footing as possible, using the algebraic
theory of lattices. It is an interesting exercise in itself, but it is most
unlikely to convert any skeptics with their preconceived ideas of truth.
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The other three arrows in the modelling relation diagram — causal
entailment, encoding, and decoding — all have intuitive elements in their
art and science. As such, one if so inclined may claim that another’s
interpretations are uncongenial, but cannot conclude that they are wrong:
there are no absolute truths concerning them.

Rosen closed his monograph Anticipatory Systems with these words:

For in a profound sense, the study of models is the study
of man; and if we can agree about our models, we can
agree about everything else.

Agree with our models and partake our synodal exploration. Else agree to
disagree, then we shall amicably part company.

In the Preface of Life Itself, Rosen identified his intended readership
by quoting from Johann Sebastian Bach’s Clavieriibung I1I:

Denen Liebhabern,
und besonders denen Kennern von vergleichen Arbeit,
sut Gemiths Crgezung...

[ Written for those who love,
and most especially those who appreciate such work,
for the delight of their souls...]

Let me add to that sentiment by quoting a couplet from a Chinese classic:

3E %
=
8 8
iz R
[The diligent one sings for oneself,
not for the recruitment of an audience. ]
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The same readers who took delight in Life Itself should also enjoy this

More Than Life Itself. Be our companions on our journey and join us in
our songs.

L=
1

o

32

A. H. Louie
22 February, 2009
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Nota bene

Many references in this monograph are drawn from Robert Rosen’s
Trilogy:

o [FM| Fundamentals of Measurement and Representation of Natural
Systems [1978]

® [AS] Anticipatory  Systems:  Philosophical, = Mathematical, and
Methodological Foundations [1985a], and

o [L]] Life Itself: A Comprehensive Inquiry into the Nature, Origin, and
Fabrication of Life [1991].

Additional references are in

e [NC] “Organisms as Causal Systems which are not Mechanisms: an
Essay into the Nature of Complexity” [1985b] and

® [EL] Essays on Life Itself [2000].
My thesis

e [(CS] “Categorical System Theory” [1985]
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contains much of the background material on the category theory of natural
and formal systems. (See the Bibliography for publication details of these
references.) Familiarity with our previous work is not a prerequisite; it
would, however, make simpler a first reading of this monograph. I strive
to make i1t as self-contained as possible, but because of the subjects’
inherent complexity, the entailment patterns of the many concepts cannot
be rendered unidirectional and sequential. Some topics 1 present herein
depend not only upon material on previous pages but also upon material on
following pages. So in a sense this monograph is an embodiment of a
relational diagram in graph-theoretic form, a realization of the branches
and cycles of the entailment patterns.

In this book I assume that the reader 1s familiar with the basic facts of
naive set theory, as presented, for example, in Halmos [1960]. Set theory
from the naive point of view is the common approach of most
mathematicians (other than, of course, those in mathematical logic and the
foundations of mathematics). One assumes the existence of a suitable
universe of sets (viz. the universe of small sets) in which the set-theoretic
constructions, used in contexts that occur naturally in mathematics, will not
give rise to paradoxical contradictions. In other words, one acknowledges
these paradoxes, and moves on. This is likewise the position I take in this
monograph. In the Prolegomena I present some set-theoretic and logical
preliminaries, but more for the clarity of notations than for the concepts
themselves. For example, the relative complement of a set 4 in a set B
may be variously denoted as B~ 4, B— A, B\A, etc.; I use the first one.

I often used the language of caregory theory as a metalanguage in my
text. The definitive reference on this branch of abstract algebra is Mac
Lane [1978]. I give a concise summary in the Appendix of those category-
theoretic concepts that appear in my exposition.



Prolegomenon
Concepts from Logic

ARiS AR S
RERE
[Tl i=

The principle that can be stated
Cannot be the absolute principle.
The name that can be given
Cannot be the permanent name.

— Lao Tse (6th century BC)
Tao Te Ching
Chapter 1

In principio...

0.1 Kowaui evvorar o Book 1 of Euclid’s Elements begins with a list of
twenty-three definitions and five postulates in plane geometry, followed by
five common notions that are general logical principles. Common Notion 1
states



“Things equal to the same thing are also equal to one another.”

Equality 1s a primitive: such proclamation of its self-evident property
without proof is the very definition of axiom. Thus formally begins
mathematics...

It may be argued that equality is the most basic property in any
mathematical subject. In set theory, equality of sets is formulated as the

0.2 Axiom of Extension 7wo sets are equal if and only if they have the
same elements.

Subset

I shall assume that the reader has a clear intuitive 1dea of the notions
of a set and of belonging to a set. 1 use the words ‘set’, ‘collection’, and
‘family’ as synonyms. The elementary operations that may be performed
with and on sets are used without further comments, save one:

0.3 Definition If 4 and B are sets and if every element of A4 is an
element of B, then A is a subset of B .

The wording of the definition implies that there are two possibilities:
either 4= B, or B contains at least one element that is not in 4, in which
case A is called a proper subset of B. It has been increasingly popular in
the mathematical literature to use A B as notation, seduced by the
ordering relation <. This usage, unfortunately, almost always ends here.
c-users rarely use the then-consistent notation 4 c B, analogous to <, to

mean proper subset, but often resort to the idiosyncratic & instead. The

few exceptions that do employ < to mean ‘proper subset’ invariably lead
to confusion, because of the well-established standard notation

(1) Ac B



for ‘either A= B or A is a proper subset of B’. The notation I use in this
book is this standard which is inclusive of both senses of the containment
of set 4 in set B. Sometimes 4 < B 1s reversely described as ‘B 1s a
superset of A’

If 4 and B are sets such that Ac B and B c A4, then the two sets
have the same elements. It is equally obvious vice versa. The Axiom of
Extension 0.2 may, therefore, be restated as the

0.4 Theorem 7wo sets A and B are equal if and only if Ac B and
Bc A.

On account of this theorem, the proof of set equality 4 = B is usually split
into two parts: first prove that 4 < B, and then prove that B < 4.

Conditional Statements and Variations

0.5 Conditional Many statements, especially in mathematics, are of the
form ‘If p, then g. We have already encountered some in this prologue.
These are called conditional statements, and are denoted in the predicate
calculus of formal logic by

(2) pP—>q.

The if-clause p is called the antecedent and the then-clause g is called the
consequent. Note that the conditional form (2) may be translated
equivalently as ‘g if p.” So the clauses of the sentence may be written in
the reverse order, when the antecedent does not in fact ‘go before’, and the
conjunction ‘then’ does not explicitly appear in front of, the consequent.

If the antecedent 1s true, then the conditional statement is true if the
consequent is true, and the conditional statement is false if the consequent
is false. If the antecedent is false, then the conditional statement is true
regardless of whether the consequent 1s true or false. In other words, the



conditional p — g is false if p is true and ¢ is false, and it is true
otherwise.

0.6 I Say What I Mean

“Then you should say what you mean,” the March
Hare went on.

“I do,” Alice hastily replied; “at least — at least I
mean what [ say — that’s the same thing, you know.”

“Not the same thing a bit!” said the Hatter. “Why,
you might just as well say that ‘I see what I eat’ is the
same thing as ‘I eat what I see’!”

“You might just as well say,” added the March Hare,
“that ‘I like what I get’ is the same thing as ‘I get what I
like’!”

“You might just as well say,” added the Dormouse,
which seemed to be talking in his sleep, “that ‘I breathe
when 1 sleep” is the same thing as ‘I sleep when I
breathe’!”

“It 1s the same thing with you,” said the Hatter, and
here the conversation dropped, and the party sat silent for
a minute,...

k]

— Lewis Carroll (1865)
Alice’s Adventures in Wonderland
Chapter VII A Mad Tea Party

Alice’s “I do” is the contention “I say what [ mean”. This may be
put as the conditional statement
“If I mean it, then I say it.”.

which is form (2), p —> ¢, with p = ‘I mean 1it” and ¢ = ‘I say it’. It is
equivalent to the statement



“I say it if  mean it.”.

The conditional p — ¢ may also be read as “ p only if q’. Alice’s
statement is then

“I mean it only 1f I say it.”.

The adverb ‘only’ has many nuances, and in common usage ‘only 1if” 1s
sometimes used simply as an emphasis of ‘if”. But in mathematical logic
‘only if” means ‘exclusively if”. So ° p only if g.” means ‘If g does not

hold, then p cannot hold either.” In other words, it is logically equivalent
to ‘If not ¢, then not p.’, which in the predicate calculus 1s

(where — denotes negation, the logical not). The conditional form (3) is
called the contrapositive of the form (2). The contrapositive of Alice’s “I
mean 1t only if [ say 1t.” ( = “If I mean it, then I say 1t.” ) is the equivalent
conditional statement

“If I do not say it, then I do not mean it.”.
0.7 I Mean What I Say The conditional form

4) q—>p

is called the converse of the form (2), and the equivalent contrapositive of
the converse, 7.e. the conditional form

(3) —p —> 9,

1s called the inverse of the original form (2). A conditional statement and
its converse or inverse are not logically equivalent. For example, if p is

true and ¢ is false, then the conditional p — ¢ is false, but its converse



q— p 1s true. The confusion between a conditional statement and its
converse is a common mistake. Alice thought “I mean what I say.” (i.e. the
converse statement “If I say it, then I mean 1t.”) was the same thing as “I
say what [ mean.” (the original conditional statement “If I mean it, then I
say it.”), and was then thoroughly ridiculed by her Wonderland
acquaintances.

0.8 Biconditional The conjunction

(6) VEZINCESD)

(where A is the logical and) is abbreviated into
(7) pPeq,

called a biconditional statement. Since g — p may be read “ p if ¢ and
p—>q may be read “ p only if ¢g’, the biconditional statement p <> g is
“ p ifand only if q’, often abbreviated into ‘ p iff ¢°. 1If p and g have the

same truth value (i.e. either both are true or both are false), then the
biconditional statement p <> g 1s true; if p and g have opposite truth

values, then p <> g 1s false.

Mathematical Truth

“Pure mathematics consists entirely of such
asseverations as that, if such and such a proposition is
true of anything, then such a such another proposition is
true of that thing. It is essential not to discuss whether
the first proposition is really true, and not to mention
what the anything is of which it is supposed to be true. ...
[f our hypothesis is about anything and not about some
one or more particular things, then our deductions
constitute mathematics. Thus mathematics may be de-



fined as the subject in which we never know what we are
talking about, nor whether what we are saying is true.”

— Bertrand Russell (1901)

Recent work on the principles of Mathematics

In mathematics, theorems (also propositions, lemmata, and
corollaries) assert the truth of statements. Grammatically speaking, they
should have as their subjects the statement (or the name of, or some other
reference to, the statement), and as predicates the phrase ‘is true’ (or
‘holds’, or some similar such). For example, the concluding Rosen
theorem in Section 9G of L/ is

0.9 Theorem There can be no closed path of efficient causation in a
mechanism.

(The word ‘mechanism’ has a very specific meaning in the Rosen lexicon:

0.10 Definition A natural system is a mechanism if and only if all of its
models are simulable.

I shall have a lot more to say on this in Chapter 8.) Theorem 0.9 should be
understood as

0.9' Theorem ‘There can be no closed path of efficient causation in a
mechanism.’ is true.

Or, what 1s the same,
0.9' Theorem T7Theorem 0.9 is true.
But, of course, this Theorem 0.9' really means

0.9" Theorem 7Theorem 0.9'is true.



Or, equivalently,
0.9" Theorem “Theorem 0.9 is true.’’ is true.

This “statement about a statement” idea may, alas, be iterated ad infinitum,
to

b}

0.9° Theorem ~~“ “ “ “ “Theorem 0.9 is true.”’ is true " is true ’ is
true " is true’

Lewis Carroll wrote about this hierarchical ‘reasoning about reasoning’
paradox in a witty dialogue What the Tortoise said to Achilles [1895].
Efficiency and pragmatism dictate the common practice that the predicate
is implicitly assumed and hence usually omitted. A theorem, then,
generally consists of just the statement itself, the truth of which it asserts.
0.11 Implication An implication is a true statement of the form

(8) ““p—>q’istrue.”

It is a statement about (the truth of) the conditional statement

©) P9q

The implication (8) is denoted in formal logic by

(10) p=9q,

which is read as “ p implies q°. When a conditional statement is expressed
as a theorem 1n mathematics, viz.

Theorem If p, then q.

it 1s understood in the sense of (8), that it is an implication.



The difference between — and = , ie. between a conditional
statement and an implication, 1s that of syntax and semantics. Note that
p — q 1s just a proposition in the predicate calculus, which may be true or

false. But p = ¢ 1s a statement about the conditional statement p — ¢,
asserting that the latter is a true statement. In particular, when p = ¢, the
situation that p is true and g is false (which is the only circumstance for
which the conditional p — ¢ 1is false) cannot occur.

0.12 Modus tollens Since a conditional statement and its contrapositive
are equivalent, when p—>gq is true, —-g > —p is also true. The

contrapositive inference
(11) (p=9)=>(—g=>-p)
is itself an implication, called modus tollens in mathematical logic.

Most mathematical theorems are stated, or may be rewritten, as
implications. The Rosen Theorem 0.9, for example, 1s p = g with p =

“N 1s a mechanism’ and g = ‘there is no closed path of efficient causation
in N, where N is a natural system. Stated explicitly, it is the

0.13 Theorem [f a natural system N is a mechanism, then there is no
closed path of efficient causation in N .

The equivalent contrapositive implication —g — —p 1s the

0.14 Theorem [f a closed path of efficient causation exists in a natural
system N, then N cannot be a mechanism.

0.15 Equivalence A true statement of the form

(12) “‘p<>q’istrue.”,
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which asserts the truth of a biconditional statement, 1s called an
equivalence. 1t is denoted as

(13) P9,

and 1sread as ‘ p and g are equivalent’. It 1s clear from the definitions that
the equivalence (13) is equivalent to the conjunction

(14) p=>q and g= p.
When p < ¢q, either both p and ¢ are true, or both are false.

When a biconditional statement 1s expressed as a theorem in
mathematics, viz.

Theorem p ifand only if q .

it is understood in the sense of (12) that the biconditional statement p <> g
is 1n fact true, that it is the equivalence p < ¢.

0.16 Definition A definition 1s trivially a theorem — by definition, as it
were. [t is also often expressed as an equivalence, i.e., with an ‘if and only
if” statement. See, for example, Definition 0.10 of ‘mechanism’.

Occasionally a definition may be stated as an implication (e.g.
Definition 0.3 of ‘subset’), but in such cases the converse is implied (by
convention, or, indeed, by definition). Stated otherwise, a definition is
always an equivalence, whether it is expressed as such or not, between the
term being defined and the defining conditions. Definition 0.3 1s the
implication p = g where p = ‘every element of A4 1s an element of B’

and g = ‘set A is a subset of set B’. But since this is a definition,
implicitly entailed is the converse g = p:
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0.3' Definition If a set 4 is a subset of a set B then every element of 4
is an element of B.

So the definition is really

0.3'"" Definition A set A 1s a subset of a set B if and only if every
element of A is an element of B.

Note that this implicit entailment is not a contradiction to the fact,
discussed above in 0.7, that a conditional statement i1s not logically
equivalent to its converse. The propositions p —>¢g and g —> p will

always remain logically distinct, and in general the implication p = ¢ says
nothing about ¢ = p. The previous paragraph only applies to definitions,
and 1ts syntax 1s

‘If p= q is adefinition,
(15) then also g = p.
whence p<q.’

Necessity and Sufficiency

0.17 Modus ponens The law of inference
(16) ‘If p=¢q and p is true, then ¢ 1s true.’
is called modus ponens.

This inference follows from the fact that when p = g, p — ¢ i1s true,
so the situation that p is true and g is false (the only circumstance for
which the conditional p — ¢ 1s false) cannot occur. Thus the truth of p
predicates ¢ . Incidentally, modus ponens is the ‘theorem’ that begins the

propositional canon in Lewis Carroll’s What the Tortoise said to Achilles
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[1895]. Note that the truth of p — g is required for the truth of p to entail
the truth of ¢. In a general (not necessarily true) conditional statement
p — q, the truth values of p and ¢ are independent.

Because of its inferential entailment structure (that the truth of p is
sufficient to establish the truth of g ), the implication p = ¢ may also be
read ° p is sufficient for g’. Contrapositively (hence equivalently), the
falsehood of ¢ 1s sufficient to establish the falsehood of p. In other words,
if g 1s false, then p cannot possibly be true; i.e. the truth of g 1s necessary

(although some additional true statements may be required) to establish the
truth of p. Thus the implication p = g may also be read ‘q 1s necessary

for p’. The equivalence p < ¢q (i.e. when  p iff ¢’ is true so that p and
q predicate each other) may, therefore, be read ° p i1s necessary and
sufficient for q .

0.18 Membership The concepts of necessity and sufficiency are
intimately related to the concept of subset. Definition 0.3" is the statement

(17) Ac B iff Vx(xe A)=(xe B).

Stated otherwise, when A4 i1s a subset of B (or, what is the same, B
includes A), membership in A4 is sufficient for membership in B, and
membership in B is necessary for membership in 4. Similarly, the Axiom
of Extension 0.2 is the statement

(18) A=B iff Vx(xe A)<(xeB);

1.e. membership in 4 and membership in B are necessary and sufficient
for each other.

The major principle of set theory is the
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0.19 Axiom of Specification For any set U and any statement p(x)

about x, there exists a set P the elements of which are exactly those x e U
for which p(x) is true.

It follows immediately from the Axiom of Extension that the set P is
determined uniquely. To indicate the way P 1s obtained from U and
p(x), the customary notation is

(19) P={er:p(x)}.

The “ p(x)’ in (19) is understood to mean “ ‘ p(x)’ is true” (with the
conventional omission of the predicate); it may also be read as ‘x has the
property p’.

For example, let N be the set of all natural systems, and let s(N )=

‘all models of N are simulable’. Then one may denote the set of all
mechanisms M (cf. Definition 0.10)] as

(20) M={NeN:s(N)}.

When the ‘universal set” U is obvious from the context (or
inconsequential), it may be dropped, and the notation (19) abbreviates to

(21) P={x:p(x)}.
As atrivial example, a set 4 may be represented as
(22) A={x:xe A}

0.20 Implication and Inclusion Statement (17) connects set inclusion
with implication of the membership property. Analogously, if one property
implies another, then the set specified by the former is a subset of the set
specified by the latter (and conversely). Explicitly, if x has the property p
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implies that x has the property ¢ , ie if Vx p(x)=¢g(x), then
P={x:p(x)} is asubset of O ={x:g(x)} (and conversely):

(23) PcQ iff Vx p(x)=q(x).

The equivalence (23) may be read as P < Q if and only if p is sufficient
for ¢, and also P — Q if and only if g is necessary for p.

For example, let N be the set of all natural systems, let I(N)= ‘there

1s no closed path of efficient causation in N ’, and let

(24) T={NeN:(N)}.

Let M be the set of all mechanisms as specified in (20). Theorem 0.9 (the
proof of which is the content of Chapter 9 of L/, and is given an alternate
presentation later on in Chapter 8 of this monograph) is the statement

(25) VNeN s(N)=t(N),

whence equivalently

(26) McT.

Complements

“I think that it would be reasonable to say that no man
who is called a philosopher really understands what is
meant by the complementary descriptions.”

— Niels Bohr (1962)
Communication 1117
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“Some believe the Principle of Complementarity, but
the rest of us do not.”

— Anonymous
0.21 Definition The relative complement of a set A in a set B 1s the set
of elements in B butnotin A4:
(27) B~A={xeB:x¢A}.
When B is the ‘universal set” U (of some appropriate universe under
study, e.g. the set of all natural systems N), the set U ~ 4 is denoted A4°,
le.

(28) A°={xeU:xg A},

and 1s called simply the complement of the set A. An element of U 1is
either a member of 4, or not a member of A4, but not both. That is,

AUA =U,and ANA =T

The set specified by the property p, P= {x: p(x)} . has as its
complement the set specified by the property —p; i.e.

(29) P ={x:—p(x)}.
In the predicate calculus, there are these
0.22 Laws of Quantifier Negation

(30) —Vx p(x)< 3Ix —|p(x)
(31) —3x p(x) < Vx —p(x)
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The negation of the statement S(N ) = ‘all models of N are
simulable’ is thus —s(N)= ‘there exists a model of N that is not

simulable’ This characterizes the collection of natural systems that are not
mechanisms as those that have at least one nonsimulable model.

The predicate calculus also has this trivial tautology:
0.23 Discharge of Double Negation

The negation of the statement 7(N)= ‘there is no closed path of
efficient causation in N’ is therefore —.I(N )= ‘there exists a closed path of

efficient causation in N’. The equivalent contrapositive statement of (25)
1s hence

(33) VN eN—t(N)=—-s(N),

which gives the

0.24 Theorem [f there exists a closed path of efficient causation in a
natural system, then it has at least one model that is not simulable (whence
it is not-a-mechanism).

I shall explore the semantics of Theorems 0.9, 0.13, 0.14, and 0.24
(instead of just their sample syntax used in this prologue to illustrate
principles of mathematical logic) in Chapter 8 ef seq.
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Neither More Nor Less

0.25 Nominalism

“I don’t know what you mean by ‘glory’,” Alice said.

Humpty Dumpty smiled contemptuously. “Of course
you don’t — till I tell you. I meant ‘there’s a nice knock-
down argument for you’!”

“But ‘glory’ doesn’t mean ‘a nice knock-down
argument’,” Alice objected.

“When 7 use a word,” Humpty Dumpty said, in a
rather scornful tone, “it means just what I choose it to
mean — neither more nor less.”

“The question 1s,” said Alice, “whether you can make
words mean so many different things.”

“The question 1s,” said Humpty Dumpty, “which is to
be master — that’s all.”

— Lewis Carroll (1871)
Through the Looking-Glass,
and What Alice Found There
Chapter VI Humpty Dumpty

Humpty’s point of view is known in philosophy as nominalism, the
doctrine that universals or abstract concepts are mere names without any
corresponding ‘reality’. The issue arises because in order to perceive a
particular object as belonging to a certain class, say ‘organism’, one must
have a prior notion of ‘organism’. Does the term ‘organism’, described by
this prior notion, then have an existence independent of particular
organisms? When a word receives a specific technical definition, does it
have to reflect its prior notion, the common-usage sense of the word?
Nominalism says no.
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0.26 Semantic Equivocation A closely related issue is a fallacy of
misconstrual in logic known as semantic equivocation. This fallacy is
quite common, because words often have several different meanings, a
condition known as polysemy. A polysemic word may represent any one
of several concepts, and the semantics of its usage are context-dependent.
Errors arise when the different concepts with different consequences are
mixed together as one. For a word that has a technical definition in
addition to its everyday meaning, non sequitur may result when the
distinction is blurred.

Confusion often ensues from a failure to clearly understand that
words mean “neither more nor less” than what they are defined to mean,
not what they are perceived to mean. This happens even in mathematics,
where terms are usually more precisely defined than in other subjects. The
most notorious example is the term ‘normal’, which appears in numerous
mathematical subject arcas to define objects with specific properties. In
almost all cases (e.g. normal vector, normal subgroup, normal operator),
the normal subclass is nongeneric within the general class of objects; i.e.
what 1s defined as ‘normal’ i1s anything but normal in the common-usage
sense of ‘standard, regular, typical’.

While 1t 1s not my purpose in this monograph to dwell into
nominalism and semantic equivocation themselves, they do make
occasional appearances in what follows as philosophical and logical
undertones.

0.27 Structure ‘Extreme’ polysemous words, those having two current
meanings that are opposites, are called amphibolous. For example, the
word ‘structure’, which means ‘a set of interconnecting parts of a thing’
(1its Latin root 1s struere, to build), has antonymous usage in biology and
mathematics: ‘concrete’ in one, and ‘abstract’ in the other.

In biology, ‘structure’ means material structure, the constituent
physicochemical parts. In our subject of relational biology, our slogan is
‘function dictates structure’. Entailment relations within living systems are
their most important characteristics.
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In mathematics, on the other hand, ‘structure’ (as in set-with-
structure) in fact means the relations defined on the object. A structure on
a set 1s a collection of nullary, unary, binary, ternary ... operations
satisfying as axioms a variety of identities between composite operations.
Thus a partially ordered set (which I shall introduce in Chapter 1) is a set
equipped with a binary operation < having certain specified properties. A
group is a set equipped with a binary (the group multiplication), a nullary
(the unit element), and a unary (the inverse) operation, which together
satisfy certain identities. A topological space’s structure is a collection of
its subsets (the open sets) with certain prescribed properties. And so forth.
It is perhaps this ‘relations are structure’ concept in mathematics that
inspired Nicolas Rashevsky on his foundation of relational biology.

0.28 Function We should also note the polysemy of the word ‘function’.
The Latin functio means ‘performance’. An activity by which a thing
fulfils a purpose, the common meaning of “function’, may be considered a
performance. This is the word’s biological usage, although the teleologic
‘fulfils a purpose’ sense is regularly hidden. (I shall have much more to
say on this later.) A mathematical function may be considered as a set of
operations that are performed on each value that is put into it. Leibniz first
used the term function in the mathematical context, and Euler first used the
notation f(x) to represent a function, because the word begins with the

letter f .

Since 1n mathematics “function” has a synonym in ‘mapping’, in this
book I shall use mapping for the mathematical entity (¢f. Definition 1.3),
and leave function to its biological sense.
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PART I

Exordium

No one really understood music unless he was a scientist,
her father had declared, and not just a scientist, either, oh,
no, only the real ones, the theoreticians, whose language
was mathematics. She had not understood mathematics
until he had explained to her that it was the symbolic
language of relationships. “And relationships,” he had
told her, “contain the essential meaning of life.”

— Pearl S. Buck (1972)
The Goddess Abides
Part |
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Equivalence relation is a fundamental building block of epistemology.
The first book of the Robert Rosen trilogy 1s Fundamentals of
Measurement and Representation of Natural Systems [FFM]. It may equally
well be entitled ‘Epistemological Consequences of the Equivalence
Relation’; therein one finds a detailed mathematical exposition on the
equivalence relation and 1its linkage to similarity, the pre-eminent
archetypal concept in all of science, in both the universes of formal
systems and natural systems.

Equivalence relation 1s also a fundamental building block of
mathematics. The concept of equivalence is ubiquitous. Many of the
theorems in this book depend on the fact that the collection of equivalence
relations on a set is a mathematical object known as a lattice. In this
introductory Part I, I present a précis of the algebraic theory of lattices,
with emphasis, of course, on the topics that will be of use to us later on.
Some theorems will only be stated in this introduction without proofs.
Their proofs may be found in books on lattice theory or universal algebra.
The standard reference is Lattice Theory written by Garrett Birkhoff, a
founder of the subject [Birkhoff 1967].
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1

Praeludium:
Ordered Sets

Mappings

1.1 Definition
(1) If X is aset, the power set PX of X is the family of all subsets of X .
(i1) Given two sets X and Y, one denotes by X x Y the set of all ordered

pairs of the form (x,y) where xe X and yeY . The set X xVY is
called the product (or cartesian product) of the sets X and Y .

1.2 Definition A relation i1s a set R of ordered pairs; i.e. Rc X xY, or
equivalently R e P(X xY ) for some sets X and Y .

The collection of all relations between two sets X and Y 1s thus the
power set P(X xY).

1.3 Definition A mapping is a set f of ordered pairs with the property
that, if (x,y)e f and (x,z)e f,then y==z.

Note the requirement for a subset of X x Y to qualify it as a mapping
is in fact quite a stringent one: most, i.e., common, members of P(X X Y)

do not have this property. A mapping is therefore a special, ie.,
nongeneric, kind of relation. But genericity is not synonymous with
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importance: general relations and mappings are both fundamental
mathematical objects of study.

1.4 Definition Let f be a mapping. One defines two sets, the domain
of f and the range of f, respectively by

(1) dom(f)={x:(x,y)e f forsome y}
and
(2) ran(f)=1{y:(x,y)e f forsome x}.

Thus f is a subset of the product dom(f)xran(f). If ran(f)

contains exactly one element, then f is called a constant mapping.

Various words, such as ‘function’, ‘transformation’, and ‘operator’,
are used as synonyms for ‘mapping’. The mathematical convention is that
these different synonyms are used to denote mappings having special types
of sets as domains or ranges. Because these alternate names also have
interpretations in biological terms, to avoid semantic equivocation, in this
book I shall — unless convention dictates otherwise — use mapping (and
often map) for the mathematical entity.

1.5 Remark The traditional conception of a mapping is that of something
that assigns to each element of a given set a definite element of another
given set. I shall now reconcile this with the formal definition given above.

Let f be a mapping and let X and Y be sets. If dom(f)=X and
ran(f) c Y, whence f is a subset of X xY , one says that f is a mapping
of X into Y , denoted by

(3) fX->Y,

and occasionally (mostly for typographical reasons) by
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4) XLy,

The collection of a/l mappings of X into Y is a subset of the power set
P(X xY); this subset is denoted ¥ (see A.3, in the Appendix).

To each element xe X , by Definition 1.3, there corresponds a
unique element y €Y such that (x, y)e f . Traditionally, y 1s called the

value of the mapping f at the element x, and the relation between x and
y is denoted by y = f(x) instead of (x,y)e f. Note that the y= f(x)
notation is only logically consistent when f is a mapping — for a general
relation f, it is possible that y =z yet both (x,y)ef and (x,z)ef; if
one were to write y=f(x) and z= f(x) in such a situation, then one

would be led, by Euclid’s Common Notion 1 (¢f 0.0 and also the
Euclidean property 1.10(e) below), to the conclusion that y=z: a direct
contradictionto y # z .

With the y = f(x) notation, one has

(5) ran(f)={y:y=f(x) forsome x|,
which may be further abbreviated to

(6) ran(f)={f(x):xedom(f)}.

One then also has

(7) f

{(x,f(x)):xeX}.

From this last representation, we observe that when X < R and
Y <R (where R 1s the set of real numbers), my formal definition of a
mapping coincides with that of the ‘graph of f ° in elementary

mathematics.
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Sometimes it is useful to trace the path of an element as it is mapped.
Ifae X, beY, and b= f(a)a one uses the “‘maps to’ arrow (note the short

vertical line segment at the tail of the arrow) and writes

(8) fa—b.

Note that this ‘element-chasing’ notation of a mapping in no way implies
that there 1s somehow only one element a in the domain
dom(f)={a} =X, mapped by f to the only element b in the range

ran(f)=1{b} Y. a is a symbolic representation of variable elements in
the domain of f, while » denotes its corresponding image b= f(a)
defined by f. The notation f:a+r>b is as general as f: X —> 7Y . the

former emphasizing the elements while the latter emphasizing the sets.
One occasionally also uses the ‘maps to’ arrow to define the mapping f

itself:
(9) X f(x)‘

1.6 Definition Let f be a mapping of X into Y. If Ec X, f(E), the
image of E under f, is defined to be the set of all elements f(x)eY for

xek;ie.,
(10) f(E)={f(x):xeE}cY.
In this notation, f(.X) is the range of f".

1.7 Definition If f is a mapping of X into Y, the set Y is called the
codomain of f, denoted by cod( f).

The range f(X)=ran(/f) is a subset of the codomain ¥ = cod( /),
but they need not be equal. When they are, i.e. when f(X)=Y, one says
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that f is a mapping of X onto Y , and that f: X — Y is surjective (or is a
surjection). Note that every mapping maps onto its range.

1.8 Definition If £EcY, f'(£) denotes the set of all xe X such that
f(x)eE:

(11) fHUE)={x:f(x)eE}c X,

and is called the inverse image of E under f. If yeY, f'({y}) is
abbreviated to /™' (), so it is the set of all xe X such that f(x)=y.

Note that /' ( y) may be the empty set, or may contain more than

one element. If, for each yeY, () consists of ar most one element
of X, then f i1s said to be a one-to-one (1-1 , also injective) mapping of X
into Y. Other commonly used names are * f : X — Y is an injection’, and
“f:X —>7Y isanembedding’. This may also be expressed as follows: f is
a one-to-one mapping of X into ¥ provided f(x,)= f(x,) whenever

x,x,€ X and x, # x,.

If Ac X, then the mapping i: 4 —> X defined by i(x)=x for all

x € A is a one-to-one mapping of A4 into X, called the inclusion map (of
A X).

If f:X —>Y is both one-to-one and onto, i.e. both injective and
surjective, then f is called bijective (or is a bijection), and that it
establishes a one-fo-one correspondence between the sets X and Y .

While the domain and range of f are specified by f as in Definition
1.4, the codomain is not yer uniquely determined — all that is required so
far 1s that it contains the range of f as a subset. One needs to invoke a
category theory axiom (see Appendix: Axiom A.1(cl)), and assigns to each
mapping f aunique set ¥ =cod( /) as its codomain.
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Equivalence Relations

Recall Definition 1.2 that a relation R i1s a set of ordered pairs,
Rc X xY for some sets X and Y. Just as for mappings, however, there
are traditional terminologies for relations that were well established before
this formal definition. [ shall henceforth use these traditional notations,
and also concentrate on relations with X =Y .

1.9 Definition If X 1s a set and Rc X x X , one says that R 1s a
relation on X , and write x Ry instead of (x,y) eR.

1.10 Definition A relation R on a set X is said to be
(r) reflexive if forall xe X', xRx;

(s) symmetric if forall x,ye X', xRy implies yRx;

(a) antisymmetric if forall x,ye X, xRy and yRx imply x=y;
(t)  transitive if forall x,y,ze X, xRy and yRz imply xRz,
(e) Euclidean if forall x,y,ze X, xRz and yRz imply xRy.

1.11 Definition A relation R on a set X is called an equivalence relation
if 1t 1s reflexive, symmetric, and transitive; i.e. if it satisfies properties (r),
(s), and () in Definition 1.10 above.

The equality (or identity) relation / on X , defined by x/y if x=1y,
1s an equivalence relation. As a subset of X' xX , I 1s the diagonal
1 ={(x,x):xeX } Because of reflexivity (r), any equivalence relation

Rc X x X must have (x,x)e R for all xe X ; thus / ¢ R. The universal

relation U on X , defined by xUy if x,ye X, is also an equivalence

relation. Since U = X x X', for any equivalence relation R on X one has
RcU.

The equality relation 7/ is Euclidean. Indeed, when R=17, the
Euclidean property (e) 1s precisely Euclid’s Common Notion 1 (¢f. 0.0):
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“Things equal to the same thing are also equal to one another.” One
readily proves the following

1.12 Theorem If a relation is FEuclidean and reflexive, it is also
symmetric and transitive (hence it is an equivalence relation).

1.13 Definition Let R be an equivalence relation on X. For each xe X
the set

(12) [x], ={ye X xRy}

1s called the equivalence class of x determined by R, or the R-equivalence
class of x. The collection of all equivalence classes determined by R is
called the quotient set of X under R, and is denoted by X/R; i.e.

(13) X/R={[x], xe X}

1.14 All or Nothing By reflexivity (r), one has x€[x], for all xe X

The equivalence classes determined by R are therefore all nonempty, and

(14) X =[x,

xeX

Also, the members of X/R are pairwise disjoint. For suppose
x,yeX and [x] N[y],#D. Choose ze|[x],N[y],. whence xRz and
vRz . By symmetry (s) and transitivity (7) one has y Rx. Now if we [x]R,
xRw , so together with yRx just derived, transitivity (7) gives yRw,
whence we|y],. This shows that [x], <[y],. By symmetry (of the
argument) [y], <[x],. and consequently [x], =[»]..

Stated otherwise, every element of X belongs to exactly one of the
equivalence classes determined by R.
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One usually uses the notation < instead of R when it is a partial
order.

1.21 Definition A partially ordered set (often abbreviated as poset) is an
ordered pair <X,$> in which X 1s asetand < is a partial order on X .

When the partial order < is clear from the context, one frequently for
simplicity omits it from the notation, and denote <X ,S) by the underlying

set X'. Each subset of a poset is itself a poset under the same partial order.

1.22 Definition Let (X,<) be aposetand x,ye X . If x<y, one says ‘x
is less than or equal to y’, or “ y 1s greater than or equal to x’, and write
“y=x". One also writes “x<y’ (and “y>x’) for “x<y and x=#y’,

whence reads “ x 1s less than y’ (and * y 1S greater than x).

The simplest example of a partial order 1s the equality relation 7.
The equality relation, as we saw above, 1s also an equivalence relation, and
it i1s in fact the only relation which is both an equivalence relation and a
partial order.

The relation < on the set of all integers Z is an example of a partial
order. As another example, the inclusion relation — is a partial order on

the power set P4 of aset 4.

Morphisms 1n the category of posets are order-preserving mappings:

1.23 Definition A mapping f from a poset (X,g‘\,> to a poset <Y_,S},> 1S

called order-preserving, or isotone, if
(16) x<,y in X implies f(x)<, f(y) in Y.

(The somewhat awkward symbols <, and <, are meant to indicate the

partial orders on X and Y may be different. With this clearly understood,
[ shall now simplify the notation for the next part of the definition.) Two
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posets X and Y are isomorphic, written X =Y | if there exists a bijective
map f:X — Y such that both f and its inverse ' :Y — X are order-
preserving; 1.€.

(17) x<y in X iff f(x)<f(y) in Y.

Any poset may be represented as a collection of sets ordered by
inclusion:

1.24 Theorem Let (X.<) be a poset. Define X —PX, for xe X,
by

(18) f(x):{yeX:yéx}.

Then X is isomorphic to the range of f ordered by set inclusion c; i.e.

(X.<)=(f(X).c).

1.25 Definition The converse of a relation R is the relation R such that
xRy if yRx.

Thus the converse of the relation ‘is included in” < is the relation
‘includes’ o the converse of ‘less than or equal to” < is “greater than or
equal to” >=. A simple inspection of properties (r), (a), and (7) leads to the

1.26 Duality Principle The converse of a partial order is itself a partial
order.

The dual of a poset X =(.X,<) is the poset X =(X,>) defined by

the converse partial order. Definitions and theorems about posets are dual
in pairs (whenever they are not self-dual). If any theorem is true for all
posets, then so is its dual.

1.27 Definition Let < be a partial order on a set X and let Ac X'. The
subset A 1s bounded above if there exists xe X such that a < x for all
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ae A; such xe X is called an upper bound for A. An upper bound x for
A 1s called the supremum for A if x <y for all upper bounds y for 4. A

subset A4 can have at most one supremum (hence the article zhe), and if it
exists it 1s denoted by sup 4.

The terms bounded below, lower bound, and infimum (notation inf A4)
are defined analogously. A set that 1s bounded above and bounded below

1s called bounded

1.28 The Greatest and the Least Every element of X is an upper
bound for the empty set O X . So if @ has a supremum in X ., then
sup @ 1s an element such that supd <y for all ye X ; such an element (if
it exists) is called the least element of X , and this is the element
supd =1nf X .

Dually, inf &, if it exists, is an element such that y <inf & for all
ve X ; such an element is called the greatest element of X , and this is the
element inf @ =sup X .

Let 4 be a set and consider the poset (PA,C). Each subset S < PA4

(1.e. each family of subsets of 4) is bounded above (trivially by the set 4)
and bounded below (trivially by the empty set &), hence bounded. A
subset B of 4 (i.e. BePA) is an upper bound for S if and only if

US c B, and a lower bound for S if and only if Bc ﬂS. Thus

Seo Seo

US =sup S and ﬂS:infS. The least element of <PA,C> 1s @, and

Ses Ses

the greatest element of (PA,c) is A.

The greatest and least elements of a poset X are only considered to
‘exist’ if they are members of X . It is important to note, however, that an
upper bound, a lower bound, the supremum, and the infimum (if any exists)
for a subset 4 — X are only required to be elements of the original poset
X . They may or may not be in the subset A itself. In the example in the
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previous paragraph, US =sup$S and ﬂS =inf S are members of PA,

Sed Sed
but they are not necessarily members of S.

Even in cases where there is no greatest or least element, there may
be elements in a poset that have no other elements greater than or less than
they are:

1.29 Definition Let < be a partial order on a set X and let Ac X'. An
element xe 4 1s maximal 1f whenever ye 4 and x<y one has x=y.

Stated otherwise, x€ 4 1s maximal if x<y for no ye 4. Dually, an
element x € 4 1s minimal 1f whenever ye 4 and y<x one has x=1y, or
equivalently if y <x forno ye 4.

Note that maximal and minimal elements of A4 are required to be
members of A .

The greatest element (if 1t exists) must be maximal, and the least
element (1f 1t exists) must be minimal. But the converse is not true. As an

example, let 4 be the three-element set {1,2,3}. [ts power set is

PA={0.{1}.121.{3}.{1.2}. {13} . {2.3}. 4]},

partially ordered by —. The element A4 i1s the greatest element (hence a
maximal element) of this poset (PA,C) and the element & is the least

2

element (hence a minimal element). Now consider S < P4 with

S={{1}.{1.2}.{1.3}.

<5,c:> is a poset in its own right. One has

supS =S ={1}U{L2}U{L.3} ={1,2.3} = 4

se$

and
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inf S = JS={1}N{L2}N{L3}={1}.
sed
So both sup$S and Inf S exist in P4, but supSe¢ S while InfSe$ .
($,c) has no greatest element, but both {1,2} and {1,3} are maximal

elements. (S,c) has {1} as its least element (which is therefore also a

minimal element).

1.30 Theorem Any (nonempty) finite subset of a poset has minimal and
maximal elements.

proOF Let (X, <) be a poset and 4={x,,x,,..,x,} be a finite subset

of X. Define m = x,and for k =2,...,n, define

(19) I X, if x, <m,_,
“ |m,_, otherwise

Then m, will be minimal. Similarly, 4 has a maximal element. O

1.31 Poset as Category A partially ordered set (X.<) may ifself be

considered as a category, in which the objects are elements of X', and a
hom-set X (x,y) for x,ye X has either a single element or is empty,

according to whether x < y or not. Product in this category corresponds to

infimum, and coproduct corresponds to supremum. This 1s a single-poset-
as-a-category, and is completely different from ‘the category of all posets
and isotone mappings’ considered in 1.23 above. Note the analogy to a
single-set-as-a-category (1.e. a discrete category) versus the category Set of
all sets and mappings (see A.2 and A.3).
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2

Principium:
The Lattice of Equivalence Relations

Lattices

2.1 Definition A lattice is a nonempty partially ordered set (L,S) in
which each pair of elements x,y has a supremum and an infimum in L.
They are denoted by xv y=sup{x,y} and x Ay =inf {x,y}, and are often
called, respectively, the join and meet of x and y.

For any elements x,y of a lattice,
(1) XSy & XVYy=y & XAY=X.

If the lattice L (as a poset) has a least element 0, then OAx=0 and
Ovx=x for all xe L. If it has a greatest element 1, then xAl1=x and
xvl=1forall xe L.

It is trivially seen from condition (1), known as consistency, that
every totally ordered set is a lattice, in which xv y 1s simply the larger and

x A y 1s the smaller of x and y. The poset <PA,c>, of the power set of a

set 4 with the partial order of inclusion, is also a lattice; for any X,Y € P4,
XvY=XUY and X AY=XNY.
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The families of open sets and closed sets, respectively, of a
topological space are both lattices. In these lattices the partial orders, joins,
and meets are the same as those for the power set lattice.

The collection of all subgroups of a group G 1is a lattice. The partial
order < 1s set-inclusion restricted to subgroups, i1.e. the relation ‘is a
subgroup of’. For subgroups H and K of G, HAK=H(K , but
H v K 1s the smallest subgroup of G containing # and K (which 1is
generally not their set-theoretic union).

A lattice may also be regarded as a set with two binary operators, v
and A, i.e. the triplet (L,v,/\). Again, for simplicity of notation, we often

abbreviate to the underlying set and denote the lattice as L. The two
operators satisfy a number of laws that are similar to the laws of addition
and multiplication, and these laws may be used to give an alternative
definition of lattices.

2.2 Theorem Let L be a lattice, then for any x,y,z€ L,

(a) [associative] xv(yvz)=(xvy)vz, xa(yaz)=(xAy)Aaz;
(b) [commutative] XV y=yVvX, XAV=VAX,
(¢) [absorptive] xn(xvy)=x, xv(xay)=x,

(d) [idempotent] xvx=x, xAx=x.

Conversely, if L is a set with two binary operators v and N satisfying
(a)—(c), then (d) also holds, and a partial order may be defined on L by the
rule

(e) x=<y ifandonlyif xvy=y

[whence if and only if x Ay =x]. Relative to this ordering, L is a lattice
such that xv y =sup{x,y} and x A y =inf {x,y}.
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We have already seen the duality principle for partial orders in 1.26.
As one may deduce from Theorem 2.2, this duality is expressed in lattices
by interchanging v and A (hence interchanging < and >), resulting in its
dual. Any theorem about lattice remains true if the join and meet are
interchanged.

2.3 Duality Principle The dual of a lattice is itself a lattice.

2.4 The Greatest and the Least The greatest element of a poset (if it
exists) must be maximal, and the least element (if it exists) must be
minimal. [ illustrated with an example in 1.29 that the converse is not
necessarily true. But for a lattice, one has

Theorem /n a lattice, a maximal element is the greatest element (and
hence unique); dually, a minimal element is the least element (and hence
unique).

prooF Let x; and x, be two maximal elements. Their join x, v x, 1s
such that x, <x,vx, and x, <x,vx, (by definition of v as the
supremum). Because x, is maximal, it cannot be less than another
element, so x, <x,vx, = x,=x vXx,; similarly, because x, is
maximal, x, <x,vx, = x,=xvx,. Therefore x =x,. Thus
there can only be one maximal element.

Now let x be the only maximal element, and y be an arbitrary
element of the lattice. One must have x < y v x by definition of v ;
but x is maximal, so x<yvx = x=yvx, whence y<x (by
property 2.2(e) above). Thus x is the greatest element. O

Note that this theorem does not say a lattice necessarily has the greatest
and the least elements, only that if a maximal (respectively, minimal)
element exists, then it is the greatest (respectively, least).
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2.5 Inequalities Let L be a lattice, and let x,y,z € L. Then

(a) [isotone]| if x<z, then xAy<yAz and xvy<yvz,

(b) |distributive] x/\(yv:)z(x/\y)v(x/\z) and
xv(yaz)s(xvy)a(xvz),

(¢) [modular] if x<z, then xv(yAnz)<(xvy)ncz.

While any subset of a poset 1s again a poset under the same partial
order, a subset of a lattice need not be a lattice (because xvy or x Ay

may not be members of the subset even if x and y are). So one needs to
make the explicit

2.6 Definition A sublattice of a lattice L is a subset M which is closed
under the operators v and A of L; 1.e. M c L is a sublattice if xvye M

and xAye M forall x,ye M.

The empty set is a sublattice, and so is any singleton subset. Let
a,be L and a<b. The (closed) interval is the subset |a,b| c L consisting

of all elements xe L such that a<x<h. An interval [a,b] need not be a

chain (Definition 1.33), but it is always a sublattice of L, and it has the
least element a and the greatest element 5.

Let A be a set and let * be a fixed element of 4, called the base
point. A pointed subset of A 1s a subset X of A such that xe X (cf.
Example A.6(i1) in the Appendix). The pointed power set P A is the

subset of the power set PA containing all pointed subsets of 4 ; i.e.
P A={XcA:*eX} P,A isasublattice of PA.

Note that 1t 1s possible for a subset of a lattice L to be a lattice
without being a sublattice of L. For example, as we saw above, the
collection £(G) of all subgroups of a group G is a lattice. When G is

considered a set (forgetting the group structure), PG is a lattice with v=U
and A=[1. Z(G) is a subset of PG, but it is not a sublattice of PG .
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While Z(G) and PG have the same partial order < =c and the same meet

operator A =[1, the join operator v of Z(G) 1s not inherited from that of
PG.

For another example, let X be a set, whence the power set
P(XxX) is a lattice with v=UJ and A=[). A relation on X is a subset

of X x X, so the collection QX of all equivalence relations on X 1s a
subset of P(X x X). As we shall soon see, QX is again a lattice, but not

usually a sublattice of P(X x X ) In particular, the union of two

equivalence relations need not be an equivalence relation. QX 1s another
example of a lattice with a join operator different from the standard set-
theoretic union.

A morphism in the category of lattices is defined in the obvious
structure-preserving fashion:

2.7 Lattice Homomorphism A mapping f from a lattice L to a lattice
L' is called a (lattice) homomorphism if for all x,ye L

(2) f(xvy)zf(x)vf(y) and f(x/\y)zf(x)/\f(y).

A lattice homomorphism preserves the ordering: x<y =
f(x)<f(y). But not every order-preserving mapping (i.e. poset

homomorphism) between lattices 1s a lattice homomorphism.

2.8 Lemma [f f is a homomorphism from a lattice L into a lattice L',
then the image f (L) is a sublattice of L'.

If a lattice homomorphism f:L — L' is one-to-one and onto, then f

is called an isomorphism of L onto L', and the two lattices are said to be
isomorphic. 1f f:L— L' is one-to-one, then f is an embedding, L and
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(where S° denotes the interior of the set S) are the join and meet that
make O into a complete lattice. Similarly, for {G,:ae A}cC, the

operations

asA acA

(5) VGQ=[UG£,] and AG,=()G,

asA acA

(where S~ denotes the closure of the set S) are the join and meet that
make C into a complete lattice. [Note that when the index set A4 is finite,

the ( ) and () of the definitions are redundant, and these new v and A

become identical to set-theoretic union and intersection respectively.] This
is another example that shows it is possible for a subset of a lattice L to be
a lattice without being a sublattice of L. With the operators defined as in
(4) and (5), both O and C are themselves lattices, and they are both
subsets of PX . But neither is a sublattice of PX , because in each case, the
partial order, join, and meet are not a/l identical to the —, U, and (] of PX .

The Lattice QX

Let X be a set and let QX denote the collection of all equivalence
relations on X' . A relation on X is a subset of X' x X', so QX is a subset
of P(XxX). An equivalence relation as a subset of X' x.X has a very
special structure (Lemma 1.19), so an arbitrary subset of an equivalence
relation is not necessarily itself an equivalence relation. The partial order
< of set inclusion, when restricted to QX , implies more. When two
equivalence relations R, R, € QX are such that R < R,, 1t means that in

fact every R -equivalence class is a subset of some R,-equivalence class.
This also means, indeed, that the blocks in the partition defined by R, are
obtained by further partitioning the blocks in the partition defined by R,.
Stated otherwise, the blocks of R, are obtained from those of R, by taking
set-theoretic unions of them. [ shall henceforth use the notation R <R,
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when R,R, e QX are such that R < R,. An alternate description of
R <R, is

2.13 Definition Let R and R, be equivalence relations on a set X'. One
says that R, refines R, (and that R, 1s a refinement of R,) if for all
x,ye X,

(6) xRy = xR)y.

When R, refines R,, 1.e. when R < R,, one says that R, is finer than R,,
and that R, is coarser than R, .

One may verify that the relation of refinement on QX is a partial
order. Thus

2.14 Theorem <QXS> is a partially ordered set.

The equality relation / 1s the least element, and the universal relation
U 1s the greatest element in the poset <(§1X ,S). Stated otherwise, the

equality relation /, which partitions X into a collection of singleton sets,
is the finest equivalence relation on X ; the universal relation U , which has
one single partition that is X itself, is the coarsest equivalence relation on
X . Contrast this with the fact that & 1s the least element iIn

<P(X X X),(:), while the largest element is the same U = X x X .

2.15 Definition Let R and R, be equivalence relations on a set X .
Their meet R, A R, 1s defined as

(7) x(R AR,y iff xRyand xR,y.

It is trivial to verify that R= R A R, 1s an equivalence relation on X,
and that R refines both R, and R, i.e.
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(8) R<R and R<R,

and 1s the coarsest member of QX with this property. In other words,
9) R=R AR, =inf{R,R,}.

One also has

2.16 Lemma The equivalence classes of R A R, are obtained by forming
the set-theoretic intersection of each R -equivalence class with each R,-
equivalence class. As subsets of P(XxX), R AR, =R NR,.

Since the collection of equivalence classes form a partition, the R, -class
and R,-class that intersect to form R, A R,-class are uniquely determined.

The definition of meet may easily be extended to an arbitrary index
set A and a collection of equivalence relations {R, :ae A}

(10) x(/\{Ra)y iff xRy forall ac A,
And one has
(11) AR, =inf(R, ae 4}.

The set-theoretic union of two equivalence relations does not
necessarily have the requisite special structure as a subset of X x X
(Lemma 1.19) to make it an equivalence relation. The join has to be
defined thus:

2.17 Definition Let R and R, be equivalence relations on a set X .
Their join R, v R, is defined as follows: x(R v R,)y iff there is a finite

sequence of elements x,,...,x € X such that
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(12) XRx, xRx,, x, Rx,, ....x RYy.

One readily verifies that R = R, v R, 1s an equivalence relation on X', and
that R is refined by both R, and R,, 1.e.

(13) R <R and R, <R,
and is the finest member of QX with this property. In other words,
(14) R=R VR, =sup{R,R,}.

One concludes from (13) that, as subsets of P(X xX), R, c R VR, and
R, c R Vv R,, whence RRUR, c R v R,. The set (and relation) R, v R, is
called the tranmsitive closure of the union R UR, .

For an arbitrary index set 4 and a collection of equivalence
relations {R, :ae€ A}, the definition of the join V' R, (i.e. the transitive

aed

closure of the union U R ), that corresponds to the binary join in (12), is:

aeA

x(\/ Ra) y iff there exist a finite sequence of elements x,,...,x, € X and

acA

indices a,,...,a, € A such that
(15) xR, x, xR, x,, X, R, X, ....x, R, y.

With the meet and join as defined in 2.15 and 2.17, QX is a lattice.
In fact,

2.18 Theorem QX is a complete lattice.
Because of the one-to-one correspondence between equivalence relations

and partitions (Lemma 1.18), any sublattice of the lattice of equivalence
relations 1s also called a partition lattice.
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Mappings and Equivalence Relations

2.19 Definition Given a mapping f: X —Y . one calls two elements
x,,X, € X f-related when f(x,)= f(x,), and denotes this relation by R,

1.e.
(16) xR x, iff f(x)=/(x,).

Then R, is an equivalence relation on X', whence the equivalence classes
determined by R, form a partition of X'. f is a constant mapping on each
R, -equivalence class. R, is called the equivalence relation on X induced

by f.and f is called a generator of this equivalence relation.

The equivalence relation induced on a set X by a constant mapping
is the universal relation U (with only one single partition block which is
all of X'). The equivalence relation induced on a set X by a one-to-one
mapping is the equality relation / (with each partition block a singleton
set).

Any mapping with domain X induces an equivalence relation on X .
It 1s a very important fact that a// equivalence relations on X are of this

type:

2.20 Theorem [f R is an equivalence relation on X , then there is a
mapping | with domain X suchthat R=R,.

prooF Consider the mapping from X to the quotient set of X under
R, 7: X — X/R, that maps an element of X to its equivalence class;

1.€.
(17) m(x)=[x], for xeX.

This mapping 7 is called the natural mapping (projection) of X
onto X/R, and has the obvious property that R_= R. 0
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2.23 Definition Let X be a set. An observable of X is a mapping with
domain X . The collection of all observables of X . i.e. the union of Y~
for all Set-objects Y , may be denoted " .

2.24 Equivalent Observables We just saw that a mapping f with
domain X induces an equivalence relation R, € QX . Dually, equivalence
relations on a set X induce an (algebraic) equivalence relation ~ on the

set of all mappings with domain X (i.e. on the set «* of observables of X ),
as follows. If f and g are two mappings with domain X', define f ~ g if

R, =R, 1e. ifand only if

(20) f(x)=1(y) © g(x)=g(y) forall x,yeX.

This means the equivalence relations induced by f and g partition their
common domain the same way. Stated otherwise, f/ ~ g iff / and g are

generators of the same equivalence relation in QX . By definition, an
observable cannot distinguish among eclements lying in the same
equivalence class of its induced equivalence relation. Two algebraically
equivalent mappings ‘convey the same information’ about the partitioning
of the elements of X — one cannot distinguish the elements of X further
by employing equivalent observables. Succinctly, one has

(21) S~ = Qx.

Note that the algebraic equivalence f ~g only means that
X /Rf =X /Rg . in other words, there i1s a one-to-one correspondence
between f(X) and g(X). but there may be no relation whatsoever
between the values f(x) and g(x) for xe X. Indeed, the two mappings
f and g may even have codomains that do not intersect. In particular, if
their codomains are equipped with metrics, the fact that f(x) may be
‘close’ to f () in cod( /) says nothing about the closeness between g (x)

and g(») in cod(g). So in this sense, even equivalent mappings give
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‘alternate information’ about the elements of X, when the codomains are
taken 1into account.

2.25 Qualitative versus Quantitative An observable of X , as 1 define
it, may have any set ¥ as codomain. The difference between ‘qualitative’
and ‘quantitative’ thus becomes in degree and not in kind. Indeed, an
observable measures a “‘quantity’ when Y is a set of numbers [e.g. when Y
is a subset of N, Z, Q, R, or even C (respectively the sets of natural
numbers, integers, rational numbers, real numbers, and complex numbers),
without for now straying into the territories of quaternions and Cayley
numbers], and measures a ‘quality’ when Y is not a “numerical set’.

Seen in this light, quantitative is in fact a meagre subset of qualitative.
The traditional view of reductionism 1s (among other things) that every
perceptual quality can and must be expressible in numerical terms.
Consider Ernest Rutherford’s infamous declaration “Qualitative is nothing
but poor quantitative.” For us, the features of natural systems in general,
and of biological systems in particular, that are of interest and importance
are precisely those that are unquantifiable. Even though the codomains of
qualitative observables can only be described ostensively, the observables
themselves do admit rigorous formal definitions. Rosen has discussed
much of this in earlier work. See, for example, AS, NC, LI, EL.

Linkage

Let R, and R, be equivalence relations on a set X . Recall
(Definition 2.13) the partial order of refinement in the lattice QX : R <R,
(R, refines R,) if

(22) XRy = xRy.
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2.26 Lemma [f R, is a refinement of R,, then there is a unique mapping
p:X/R — X/R, that makes the diagram

X/R,
T A
(23) X L p
»
X/R,
commuite.
prOOF Define p([x]R )=[x]Rq. O
The mapping p induces an equivalence relation on X/R . By

Lemma 2.21, one sees that (X/R;)/R, = X/R,. In other words, when R,
refines R,, one may regard X /R, as a quotient set of X/R, .

The refinement relation between two equivalence relations may be
defined through their generators:

2.27 Lemma Let f and g be two mappings with domain X. R, <R,
in QX if and only if

(24) f(x)=rf(y) = g(x)=g(y) forallx,yeX.

2.28 Definition If R<R m QX then g 1s called an invariant of R.

An 1invariant of an equivalence relation R i1s an invariant of every
refinement of R. R, is the largest equivalence relation of which g is
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invariant. An invariant of R is constant on the equivalence classes of R.
An invariant g of R will in general take the same value on more than one

R-class; it takes on distinct values on distinct R-classes iff R=R_, i.¢,

iff g is a generator of R.

If R, <R, , then by Lemma 2.26 there is a unique mapping
h:X/R, — X/R, that makes the diagram

X/R

=

(25)

o

XIR,

commute. This says the value of g at every xe X is completely
determined by the value of f through the relation

(26) g(x)=h(f(x)).

Thus, in the obvious sense of ‘is a function of”, one has

2.29 Lemma [f R, <R, in QX, then g is a function of f.

2.30 Definition Let f and g be observable of X'. Let 7,: X — X/R,
and 7, - X > X / R, be the natural quotient maps. For the R, -equivalence

class [x]R eX/R , consider the set of R -equivalence classes that
f
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intersect [x]R ; 1.e. consider the set
f

room ([, ) = D], € X/R,: 1(x)= 7 (9)]

(27)
_ {[y]Rg € X/R, [y]Rg ﬂ[x]Rg + O }

Note that [x] ez, ozr}l([x]R ) so the set (27) is necessarily nonempty,
2 i i

containing at least one R, -equivalence class. One says

(a) g 1s totally linked to f at [x]R if the set (27) consists of a single R, -
’

class;

(b) g 1s partially linked to f at [x]R if the set (27) consists of more than
f

one R -class, but is not all of X/Rg ;

(c¢) g is unlinkedto f at [x]Rf if the set (27) is all of X/R, .

Further, one says that g is totally linked to f if g is totally linked to f at
each x|, € X/R, . and that g is (totally) unlinked to f if g is unlinked

to f ateach [x]| X/R, .

It is immediate from the definition that Rj. SRg has another

characterization:

2.31 Lemma g is totally linked to f if and only if R, refines R,.

And therefore

2.32 Corollary f and g are totally linked to each other iff R, =R, i.e.
f-g.
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In 1953, B. Jonsson found a simpler proof that gave a stronger result.
2.38 Theorem Every lattice has a type 3 representation.

The proofs involved transfinite recursion, and produced (non-
constructively) an infinite set X in the representation, even when the
lattice L 1s a finite set. For several decades, one of the outstanding
questions of lattice theory was whether every finite lattice can be
embedded into the lattice of equivalence relations on a finife set. An
affirmative answer was finally given in 1980 by P. Pudlak and J. Ttima:

2.39 Theorem FEvery finite lattice has a representation <X S > with a
finite set X .

A representation of a lattice L induces an embedding of L into the
lattice of subgroups of a group. Given a representation <X f > of L,let G

be the group of all permutations on X that leave all but finitely many
elements fixed, and let Z(G) denote the lattice of subgroups of G. Define

h:L—%(G) by
(31) h(a)={¢cG:x f(a)¢(x) forall xe X}

[Note that f(a)e@QX, so x f(a)@(x) in (31) is the statement ° x is
f(a)-related to #(x); ie. (x.¢(x))e f(a).] One sees that h is an

embedding (1.e. a one-to-one lattice homomorphism), thus

2.40 Theorem Every lattice can be embedded into the lattice of
subgroups of a group.
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3

Continuatio:
Further Lattice Theory

Modularity

3.1 Definition Let L be alattice, and let x, y,z € L. The modular identity
(which is self-dual) 1s

(m) if x<z then xv(yaz)=(xvy)Arz.

Not all lattices satisfy property (m); but if a lattice does, it is said to be
modular.

Recall the modular inequality 2.5(c) [ if x<z, then xv(yAz)
<(xv y)Az ], which is satisfied by al/ lattices.

Let G be a group and let £(G) denote the lattice of subgroups of G .
Let N(G) be the set of all normal subgroups of G. N(G) is a sublattice
of £(G), inheriting the same v and A. Recall (2.1) that for subgroups H

and K of G, HAK=H(\K, and H v K is the smallest subgroup of G
containing H and K. For H. K e N(G), the join becomes the simpler

Hv K=HK in N(G). Note that this is not a ‘different” v, but a
consequent property because H and K are normal subgroups. N(G) is a

modular lattice, while £(G) in general is not.
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3.2 Transposition Principle /n any modular lattice, the intervals
|b.avb] and [anb,a]| are isomorphic, with the inverse pair of

isomorphisms x+—> xAa and y+> yvb.

Two 1ntervals of a lattice are called fransposes when they can be
written as [6,a v b] and [a A b,a] for suitable a and &, hence the name of

Theorem 3.2.

A natural question to ask after having Theorem 2.38, that every
lattice has a type 3 representation, i1s whether all lattices have, in fact,
representations of either type 1 or type 2 (¢f- Definition 2.36). The answer
1s negative for general lattices, and is positive only for lattices with special
properties, which serve as their characterizations.

3.3 Theorem A lattice has a type 2 representation if and only if it is
modular.

The lattice N(G) of normal subgroups of a group G is modular,

whence by Theorem 3.3 it has a type 2 representation. It, indeed, has a
natural representation (X, /) with X =G (as the underlying set) and, for

HeN(G), f(H)= {(x,y)e GxG:xy'e H}‘ (This representation is in
fact type 1.)

While type 2 representation 1s completely characterized by the single
modular identity (m), the characterization of lattices with type 1
representations is considerably more complicated. The question of whether
a set of properties exists that characterizes lattices with type 1
representations (1.e. such that a lattice has a type 1 representation if and
only if 1t satisfies this set of properties) 1s an open question. It has been
proven thus far that even if such a set exists, it must contain infinitely
many properties.
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Distributivity

3.4 Lemma In any lattice L , the following three conditions are
equivalent:

(dl) forall x,y,zeL, xn(yv:z (x/\y V(xAz);

(d2) forall x,y,ze L, xv(y/\-)z(xvy) (xv:);
(m') forall x,y,z€ L, (xvy)/\:éxv(y/\:)‘

3.5 Definition A lattice L is distributive 1f it satisfy one (hence all three)
of the conditions (d/), (d2), and (m").

Recall the distributive inequalities 2.5(b) [ (dl) with = 1n place of =
and (d2) with < in place of = ], which are satisfied by a// lattices; but the
conditions (dl), (d2), and (m') are not. Note also that the ‘for all
x,y,z€ L’ quantifier is essential for their equivalence. In an arbitrary
(non-distributive) lattice L, when one of (dI), (d2), and (m") is true for
three specific elements x,y,z € L, 1t does not necessarily imply that the
other two are true for the same three elements.

Any chain (or totally ordered set) is distributive. The dual of a
distributive lattice is distributive, and any sublattice of a distributive lattice
1s distributive. The power set lattice 1s distributive; 1t 1s in fact the
canonical distributive lattice. Every distributive lattice has a representation
in a power set lattice:

3.6 Theorem A distributive lattice can be embedded into the power set
lattice (PX,c) of some set X .

Combining condition (m") with the modular inequality 2.5(c), one
has

3.7 Theorem Every distributive lattice is modular.
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A distributive lattice also has the nice ‘cancellation law’:

3.8 Theorem For a lattice to be distributive, it is necessary and sufficient
that

(1) if xAnz=yAz and xvz=yvz, then x=y.

Complementarity

3.9 Definition Lect L be a lattice with least e¢lement 0 and greatest
element 1 [whence O=inf L=sup@ and l=supL=infJ]. A comple-

ment of an element xe L is an element ye L such that xvy=1 and
xAy=0.

The relation ‘is a complement of” is clearly symmetric. Also, O and 1
are complements of each other.

3.10 Definition A lattice L (with O and 1) 1s said to be complemented 1f
all its elements have complements.

Let L be a lattice, a,be L, and a<b. The interval [a,b]cL 1S

itself a lattice, with least element a and greatest element » . A
complement of xe[a,b] i1s thus a ye[a,b] such that xA y=a and

xv y=b,1in which case one also says x and y are relative complements in
the interval [a,b]. The interval [a,b] is complemented if all its elements

have complements.

3.11 Definition A lattice L is said to be relatively complemented 1f all
its intervals are complemented.
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distributive, it is necessary and sufficient that relative complements be
unique (1f they exist).

3.15 Theorem In any interval of a distributive lattice, an element can
have at most one complement. Conversely, a lattice with unique
complements (whenever they exist) in every interval is distributive.

Complementarity may also be used to characterize modular lattices:

3.16 Theorem A lattice L is modular if and only if for each interval
[a,b]cL, any two comparable elements of [a,b] that have a common

complement are equal; i.e. iff for all \a.b|c L and x,.x,,vela.bl, i
p q 2 1> 2>y E] ]

(1) x,<x, or x,<x,,
(1) x,Ay=x,Ay=a, and

(1) x,vy=x,vy=b,

then x, =x,.

One may use these theorems to show that a particular lattice 1s not
distributive by demonstrating an element with two distinct complements, or
not modular by demonstrating an element with two distinct comparable
relative complements. Thus, in view of the constructions in the proofs of
Theorems 3.13 and 3.14, and Theorems 3.15 and 3.16, one may conclude
that the full lattice QX of all equivalence relations on a set X 1s not in
general distributive, and nof in general modular. But because of the
representation theorems, it evidently contains distributive and modular
sublattices.

3.17 Definition A Boolean lattice is a complemented distributive lattice.
In a complemented lattice, every element by definition has at least

one complement. In a distributive lattice with 0 and 1, every element by
Theorem 3.8 has at most one complement. Thus
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3.18 Theorem I[n any Boolean lattice L, each element x has one and
only one complement x*. Further, for all x,y,z € L

(1) xvx*=1, xAx*=0;
(i) (x*)*=x;
(111) (xvy)*zx*/\y*, (X/\y)*zx*vy*.

A Boolean lattice 1s self-dual. Its structure may be considered as an
algebra with two binary operations v, A, and one unary operation *
(satisfying the requisite properties), whence it is called a Boolean algebra.
Note that a Boolean algebra 1s required to be closed under the operations v,
A, and * So a proper interval of a Boolean algebra may be a Boolean
sublattice, but is not necessarily a Boolean subalgebra. A distributive
lattice with 0 and 1, however, has a largest Boolean subalgebra formed by
its complemented elements:

3.19 Theorem 7The collection of all complemented elements of a
distributive lattice with 0 and 1 is a Boolean algebra.

The power set lattice PX is a Boolean algebra, called the power set
algebra of X . A field of sets 1s a subalgebra of a power set algebra.

3.20 Stone Representation Theorem FEach Boolean algebra is iso-
morphic to a field of sets.

Equivalence Relations and Products

3.21 Lemma Let X=X, xX, and let R ,R, € QX be the equivalence

relations on X induced by the natural projections mw X —>X, ,
T, X —>X, ie R=R,_, R,=R,. Then

(1) Each R, -class intersects every R,-class; each R,-class intersects

every R, -class;
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(11) The intersection of an R -class with an R,-class contains exactly one

element of X, whence R, A R, =1 (the equality relation);

(1)) R, Vv R, =U (the universal relation).

The conditions R AR, =1 and R v R, =U, of course, say that R and R,

are complements in the lattice QX (Definition 3.9 and Theorem 3.13).
This lemma follows directly from the definitions and the observation that

an R,-class is of the form {(a,y): y € X,} for some fixed ae X, and an
R, -class 1s of the form {(x,b):xe Xl} for some fixed b€ X,; in other
words, each R, -class 7, (a) is a copy of X,, and each R,-class 7" () is

a copy of X,.

The converse of Lemma 3.21 1s also true:

3.22 Lemma Let X be a set and let R ,R, € QX safisfy the three
conditions (1)—(111) in Lemma 3.21. Then X = X, x X,, where X, =X/R1
and X, =X/R,.

pROOF By Lemma 2.16, the equivalence classes of R, AR, are
obtained by forming the set-theoretic intersection of each R, -

equivalence class with each R, -equivalence class. Given
R,R, e QX , amap

(4) ¢ X/(R AR)—> X/R x X/R,

may therefore be defined, that sends a R, A R,-class to the uniquely
determined ordered pair of R, -class and R, -class of which the

R, A R,-class 1s the intersection. This map ¢ is one-to-one.
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If condition 3.21(i) is satisfied, then ¢ is onto X/R x X/R,,
whence

(35) X/(RAR)=X/R xX/R,.

Condition 3.21(11) then completes the proof to the requisite
X=X/RxX/R,. O

In terms of generating observables, one has

3.23 Lemma Let X be a set equipped with two observables f, g. Then

there is always an embedding (i.e. a one-to-one mapping)
(6) ¢:X/ng—>X/Rf><X/Rg.

This embedding is onto if and only if [ and g are unlinked to each other.

Covers and Diagrams

The notion of ‘immediate superior’ in a hierarchy may be defined in
any poset:

3.24 Definition Let X be a poset and x,y e X. One says y covers x, or
x is covered by y, if x <y and there isno z€ X for which x<z< y.

The covering relation in fact determines the partial order in a finite
poset: the latter is the smallest reflexive and transitive relation that contains
the former.

3.25 Definition Let X be poset with least element 0. An element ae X
is called an atom if a covers 0.
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In the poset (PX_,C), for A, Bc X, B covers A 1f and only 1f

Ac B and B~ A contains exactly one element. Any singleton subset of
X is an atom. In the poset <QXS> for two partitions R, and R,, R,

covers R, if and only if one of the blocks of R, is obtained by the union of
two blocks of R, while the rest of the blocks of R, are identical to those of
R,. In these two examples, note that we are considering the full posets PX

and QX ; with their subsets, the ‘gaps’ in the covers may of course be
larger.

3.26 Hasse Diagram Using the covering relation, one may obtain a

graphical representation of a finite poset X . Draw a point (or a small
circle or a dot) for each element of X'. Place y higher than x whenever

x<y, and draw a straight line segment joining x and y whenever y
covers x. The resulting graph 1s called a (Hasse) diagram of X .

Let us consider two simple examples. Let 4 be the three-element set
{1,2,3}. Its power set is

PA={0.{1).(2).{3}.11.2}.{13}.{2.3}.4}.

The diagram of (P4,c) is

(7)
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Semimodularity

3.29 Lemma [n any lattice, if x#y and both x and y cover =z, then
z=xAY. Dually, if x#y and z covers both x and y, then z=xVv y.

3.30 Theorem [n a modular lattice,

(1) if x#y and both x and y cover z (whence z=xny), then xvy

covers both x and y;

(1) if x#y and z covers both x and y (wWhence z=xVv y), then both x

and y cover XA y.

3.31 Corollary In a modular lattice, x covers x Ny if and only if xv y

covers ).

3.32 Definition A lattice 1s (upper) semimodular if x covers xAy
implies xv y covers y. The dual property is called /lower semimodular,

for a lattice in which x v y covers y implies x covers x A y.

Corollary 3.31 says that a modular lattice is both (upper)
semimodular and lower semimodular. Upper semimodularity is equivalent
to the condition (1) in Theorem 3.30, and dually, lower semimodularity is
equivalent to the condition (i1) in Theorem 3.30. Henceforth I shall follow
the convention that ‘semimodular’ by itself means ‘“upper semimodular’.

The lattice of equivalence relations QX 1s not modular if X contains
four or more elements. However,

3.33 Theorem QX isa semimodular lattice.
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Chain Conditions

Most of the partially ordered sets and lattices we encounter are

infinite, but many of them satisfy certain ‘finiteness conditions’.

3.34 Lemma In any poset (X ,<) the following conditions are equivalent:

(a)

(11)

(5)
(12)

|ascending chain condition, ACC]| every ascending chain becomes
stationary: if

X, SX, SX; S,
then there exists n €N such that x, = x, forall k > n,
every strictly ascending chain terminates: if

X, <Xy <Xy < e
then the chain has only finitely many terms;

[maximum condition] every nonempty subset of X has a maximal
element.

PROOF (a)=>(b) 1s trivial, because the chain in (b) can become
stationary only by terminating.

(b)=(c) follows, because for a nonempty subset ¥ — X', one
may pick x, € Y. If x; is not maximal, one may choose x, € ¥ such

that x, <x,. Generally, for each x, €Y, either x, 1s maximal, or
there exists x,,, € Y such that x, <x,_,. Thus one obtains a strictly

ascending chain of the form in (), which must then terminate. The
last element in the chain is then maximal in Y .

(c)=(a): given an ascending chain of the form in (a), let x,
be maximal in the set {x,x,,x,,..}. Then x, <x, for all keN,

<x o <ees

+l — Tn+2 — »

whence with the ascending chain condition x, < x_ one

must have x =x

n+l

=x, , =+, 1e. the chain becomes stationary. O
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Dually, one has

3.35 Lemma /n any poset (X.<) the following conditions are equivalent:

(a) |descending chain condition, DCC| every descending chain becomes
stationary: if

(13) X ZXyZ Xy 2000,

then there exists n€ N such that x, = x, for all k > n;
(b) every strictly descending chain terminates: if
(14) X, > Xy > X >0,

then the chain has only finitely many terms;

(¢) [minimum condition] every nonempty subset of X has a minimal
element.

Recall Theorem 1.30 that any nonempty finite subset of any poset has
minimal and maximal elements. The maximum and minimum conditions
3.34(c) and 3.35(c) — for every nonempty subset, finite or infinite — are
not satisfied by all posets. The two lemmata say that when a poset satisfies
condition (c), then it also equivalently satisfies the corresponding
conditions (a) and (b). Note that the proof of the implication (b)=(c)
requires the Axiom of Choice (1.37), and it may be shown that this is
indispensable. Indeed, the implication 3.34(a) = (c¢) is Zorn’s Lemma
(1.36). Stated otherwise, without the Axiom of Choice (whence its
equivalent Zorn’s Lemma), the maximum condition is stronger than the
ascending chain condition; but with the Axiom of Choice, both are
equivalent.

The poset of natural numbers (N, <) satisfies the DCC. Condition

3.35(b) says that an infinite strictly descending chain cannot exist. This
fact is the basis of an invention by Pierre de Fermat:
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3.36 The Method of Infinite Descent Suppose that the assumption that
a given natural number has a given property implies that there is a smaller
natural number with the same property. Then no natural number can have
this property.

Note that the method of infinite descent actually uses the fact that 1s
the ‘opposite’ of its name: there cannot be infinite descent in natural
numbers. Stated otherwise, using the method, one may prove that certain
properties are impossible for natural numbers by proving that if they hold
for any numbers, they would hold for some smaller numbers; then by the
same argument, these properties would hold for some still-smaller numbers,
and so on ad infinitum, which is impossible because a sequence of natural
numbers cannot strictly decrease indefinitely. It may even be argued that
Fermat used this method in (almost) all of his proofs in number theory.
(He might have, perhaps, even used it in the one proof that a margin was
too narrow to contain!)

The next two lemmata say that induction principles hold for posets
with chain conditions.

3.37 Lemma Let <X,§> be a poset satisfying the ACC. [fP(x) is a

statement such that

(i)  P(x) holds for all maximal elements x of X ;
(ii) whenever P(x) holds for all x>y then P(y) also holds;

then P(x) is true for every element x of X .

PROOF Let Y = {xe X:ﬁP(x)} (i.e., Y is the collection of all xe X
for which P(x) is false). I shall show that ¥ has no maximal
element. For if yeY is maximal, then consider elements xe X
such that x>y . Either no such elements exist, or P(x) has to be
true, because y is maximal. But then condition (ii) implies that
P(y) is true, contradicting y€Y . (When there are no elements
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xe X with x>y, the antecedent of condition (ii) is vacuously
satisfied.) Since (X, <) satisfies the 4CC, whence by Lemma 3.34

also the maximum condition, the only subset of X that has no
maximal element is empty. Thus ¥ =@, and so P(x) is true for

every element x of X . O
Dually, one has

3.38 Lemma Lef <X,S> be a poset satisfying the DCC. If P(x) is a

statement such that

(i)  P(x) holds for all minimal elements x of X,
(11) whenever P( y) holds for all y < x then P(x) also holds;

then P(x) is true for every element x of X .

Note that in both Lemmata 3.37 and 3.38, condition (1) is in fact a
special case of (i1). If x 1s a minimal element of X, then there are no
elements ye X with y<x. The antecedent of condition 3.38(i1) 1s
vacuously satisfied, whence P(x) is true; i.e. (ii)=(i). Condition (i) is
included in the statements of the lemmata because maximal and minimal
elements usually require separate arguments. Compare Lemma 3.38 with
ordinary mathematical induction; we see that (1) is analogous to ordinary
induction’s ‘initial step’, and (i1) is analogous to the ‘induction step’.
Indeed, Lemmata 3.37 and 3.38 are known as Principles of Transfinite
Induction. Lemma 3.38 is used more often in practice than Lemma 3.37,
because it 1s usually more convenient to use the DCC and minimum
condition than their dual counterparts.

3.39 Definition A poset <X ,é) is well-ordered if every nonempty subset
of X has a minimal element.

This is, of course, simply the minimum condition of Lemma 3.35(¢).
The concept of “well-ordered set’ has a separate set-theoretic history, and 1s



PART II

Systems, Models, and Entailment

If, then, it 1s true that the axiomatic basis of theoretical
physics cannot be extracted from experience but must be freely
invented, can we ever hope to find the right way? Nay, more, has
this right way any existence outside our 1llusions? Can we hope
to be guided safely by experience at all when there exist theories
(such as classical mechanics) which to a large extent do justice to
experience, without getting to the root of the matter? I answer
without hesitation that there is, in my opinion, a right way, and
that we are capable of finding it. Our experience hitherto justifies
us in believing that nature is the realisation of the simplest
conceivable mathematical ideas. I am convinced that we can
discover by means of purely mathematical constructions the
concepts and the laws connecting them with each other, which
furnish the key to the understanding of natural phenomena.
Experience may suggest the appropriate mathematical concepts,
but they most certainly cannot be deduced from it. Experience
remains, of course, the sole criterion of the physical utility of a
mathematical construction. But the creative principle resides in
mathematics. Ina certain sense, therefore, I hold it true that pure
thought can grasp reality, as the ancients dreamed.

— Albert Einstein (10 June 1933)
On the Methods of Theoretical Physics
Herbert Spencer Lecture, University of Oxford



