Anthony Brabazon
Michael O'Neill
Sean McGarraghy

Natural
Computing
Algorithms

Anthony Brabazon ¢ Michael O’Neill
Sean McGarraghy

Natural Computing Algorithms

@ Springer

Anthony Brabazon Michael O’Neill

Natural Computing Research Natural Computing Research
& Applications Group & Applications Group

School of Business School of Business

University College Dublin University College Dublin

Dublin, Ireland Dublin, Ireland

Sean McGarraghy

Natural Computing Research

& Applications Group
School of Business
University College Dublin
Dublin, Ireland

Series Editors
G. Rozenberg (Managing Editor)

Th. Bick, J.N. Kok, H.P. Spaink
Leiden Center for Natural Computing
Leiden University

Leiden, The Netherlands

A.E. Eiben
VU University Amsterdam
The Netherlands

ISSN 1619-7127

Natural Computing Series

ISBN 978-3-662-43630-1 ISBN 978-3-662-43631-8 (eBook)
DOI 10.1007/978-3-662-43631-8

Library of Congress Control Number: 2015951433

Springer Heidelberg New York Dordrecht London

© Springer-Verlag Berlin Heidelberg 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein
or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer-Verlag GmbH Berlin Heidelberg is part of Springer Science+Business Media (www.springer.com)

Contents

1

INtTOAUCEION o « wvon 5 v 5 5 59095 3 09 § § GUEPS § WSG00 B 99500 § § G595 5 § 1
1.1 Natural Computing Algorithms: An Overview 2
1.1.1 Biologically Inspired Algorithms..................... 2
1.1.2 Families of Naturally Inspired Algorithms 9
1.1.3 Physically Inspired Algorithms 10
1.1.4 Plant Inspired Algorithms 11
1.1.5 Chemically Inspired Algorithms 11
1.1.6 A Unified Family of Algorithms 11
1.1.7 How Much Natural Inspiration? 12
1.2 Striictiire el the Book: s ¢ v v sows 5 e o ¢ pas ¢ saies 5 § 0ies ¢ 8 12

Part I Evolutionary Computing

2

Introduction to Evolutionary Computing 17
2.1 Evolutionary Algorithms 18
Genetic Algorithm 21
3.1 Canonical Genetic Algorithm 21
31.1 ASimple GAExample.............civviiiiniinnn. 23
3.2 Design Choices in Implementing a GA 24
3.3 Choosing'a Representation. .. . cueu s cewe v we s wins 6 o e o 4 25
3.3.1 Genotype to Phenotype Mapping.................... 26
3.3.2 Genotype Encodings i i i 26
3.3.3 Representation Choice and the Generation of Diversity . 28
3:4 Ihitialising the Poplilation . ¢ coen s caps v oo g o 5 ¢ o © 3 29
3.5 Measuring Fitness 29
3.6 ‘Generating DIiversity ..« s s s svwns vvmivs v onsn s sien 5 ¢ viiea s s 31
3.6.1 Selection Strategy i 31
3.6.2 Mutation and Crossoverciiiiiiinnn.. 35
3.6.3 Replacement Strategy..........coiviiiiniinninnnnn 39

XI

XII

Contents
3.7 Choosing Parameter Values i, 40
348 SUIMINATN s = st & sitmiems & smass « svkas & S ¥ Swiais 's Swass & & SEEdE + & 41
Extending the Genetic Algorithm.......................... 43
4.1 Dynamic Environments 43
4.1.1 Strategies for Dynamic Environments 44
A2 IDIVEEEIEY: « « v 5 o s 5 swmwes & & svavens % sews s cEs @ @ SR § 44
4.2 Structured Population GAS .« ¢ cesns v eias v vvan s bavn o5 il v e 48
4.3 Constrained Optimisation 50
4.4 Multiobjective Optimisationo iiion.. 53
4.5 Memetic Algorithms i, 57
4.6 Linkage Learning, 59
4.7 Estimation of Distribution Algorithms 61
4.7.1 Population-Based Incremental Learning 62
4.7.2 Univariate Marginal Distribution Algorithm 63
4.7.3 Compact Genetic Algorithm 65
4.7.4 Bayesian Optimisation Algorithm 66
A8 SUNIEIATN v = s 5 ssosssim @ siswins & Suses & S & Sas & s & & SR o & 71
Evolution Strategies and Evolutionary Programming 73
5.1 The Canonical ES Algorithm 74
5 1.1 (14 1)-ES 74
512 (u+A)-ESand (u,A)-ES ... 75
5.3 Nutation i BS' ¢ ¢ s s meven 5 ¢ onien & ovns ¢ smn s 8 6056 = 3 75
5.1.4 Adaptation of the Strategy Parameters............... 76
.15 Recombiiation . « cous » s v smens 5 s v wene v o s @ 78
5.2 Evolutionary ProgPaifiiiing .» s sews 5 comns ¢ coms 8 5055 5 5 e v 4 80
5.3 SUMIMATY . o .ot 82
Differential Evolution 83
6.1 Canonical Differential Evolution Algorithm 83
6.2 Extending the Canonical DE Algorithm 88
6.2.1 Selection of the Base Vector 88
6.2.2 Number of Vector Differences 88
6.2.3 Alternative Crossover Rules 89
6.2.4 Other DE Variants i, 89
6.3 Discrete DE cums ¢ somes o sovs 7 somn & wamees © 05 5 S90m ¥ § a0 § 90
6.4 SUMIMATY . ..ot e e 92
Genetic Programming il 95
Tl Aenetic Prosrammning... . s « cewa v o e v vova s s o o« s + o 95
P10 GP AISORIBHIN. 5 5 ¢ v v smms 5 5 awng & o0 § S8 s 3 o0 5 4 97
7.1.2 Function and Terminal Sets......................... 98
7.1.3 Initialisation Strategv 100

7.1.4 Diversity-Generationin GP 102

7.2
7.3

7.4

7.5

Contents XIIT

Bloat in GP 105
More Complex GP Architectureso, 105
T30 DUNCHIONS = some ¢ dest 5 oot s Saunn ¥ 00ns ¥ SRS 5§ Suln v 105
7.3.2 ADF Mutation and Crossovercoovuvunenn 108
T3:3 MEINOT s « s o smassos v woamivs & wiverss & SEWE % S0 § ¥ T & 2 108
T30 LOODINE v vowns v s 5 S0ns 5 3 05000 § Sis 8 Va0 % § G005 5 4 109
7.3.5 Recursion i e 111
G VATIAITE sy ¢ o o maves 5 provas 5 arss § s 3 Sioms § § £6605 ¢ 4 112
7.4.1 Linear and Graph GP. 112
7.4.2 Strongly Typed GP i 112
T4.3 Grammar-Based GP ..« vonn « vomes 5 s s saven « 5 sms = 5 112
Semantics and GP e 113
DUINTAT s & nsssis o sounins 3 s 5 it § S « sEasie @ S & o SO 5 § 113

Part 11 Social Computing

8

Particle Swarm Algorithms 117
8.1 Social Search 118
8.2 Particle Swarm Optimisation Algorithm 118
8.2.1 Velocity Update........... ... i, 120
8.2.2 Velocity Control......... 123
8.2.3 Neighbourhood Structure........................... 124
8.3 Comparing PSO and Evolutionary Algorithms 125
8.4 Maintaining Diversity in PSO 127
8.4.1 Simple Approaches to Maintaining Diversity 129
8.4.2 Predator—Prey PSO L, 130
8:4.3 Charped Particle SWARI v « vomm « sivssn 5 swvwn @ & coseas % 3 132
Bidd Multiple SWATINES & wasn 1 sems 5 5 o & 900 £ 54005 5§ 53 5 3 134
8.4.5 Speciation-Based PSO, 135
85 Hybrid PSO Algorithvns : wwwe « s o v ¢ s 2 s 5 0 ssvmers o 2 136
86 DiSerete PO i i wiinis & Guind 5 it § 5liind & Badd 5 swiia & 8 Suiad 5 1 137
8.6.1 BinPSO 137
8.6.2 Angle-Modulated PSO, 138
8.7 Evolving a PSO Algorithm 139
8.8 Summary. 139
Ant Algorithms. 141
9.1 A Taxonomy of Ant Algorithms 142
9.2 Ant Foraging Behaviours 142
9.3 Ant Algorithms for Discrete Optimisation 144
9.3.1 Graph stTUCEUTE : : s ¢ swn &« sioh & 905550 § GaEs 5 ¥ 500 5 4 144
9.3.2 Ant System........... ... 147
9.3.3 MAX-MIN Ant System 151

9:3.4 Ant Colony SyStemi e o s 5 5 ivs « Goes 5 ams 5 5 s 5 152

X1V

10

11

12

Contents
9.3.5 Ant Multitour Systems.............c.coiiiiin, 153
9.3.6 Dynamic Optimisationcoiviiiiinn, 154
9.4 Ant Algorithms for Continuous Optimisation................ 155
9.5 Multiple Ant Colonies.ot 157
9.6 Hybrid Ant Foraging Algorithms 159
9.7 Ant-Inspired Clustering Algorithms 160
9.7.1 Deneubourg Model 161
9.7.2 Inimer and Faieta Model o b vvwvs o vvnn 1 siown o 5 snmn o 4 162
9.7.3 Critiquing Ant Clustering, 166
9.8 Classification with Ant Algorithms 167
9.9 Evolving an Ant Algorithmuuvveviiviiinsvviisvanias 169
910 OUMMAEY .4 -« feine 5 sboiiban & Subiegd 5 fomingd § sbinsions o Sonionie § nodbirsd & susoesd o 4 170
Other Foraging Algorithms 171
10.1 Honeybee Dance Language 171
10:2 Honieybhee FOraging uns o swws s soonp 5 somows & omeh & o6 6 £ 99008 & 3 172
10.2.1 The Honeybee Recruitment Dance................... 172
10.3 Designing a Honeybee Foraging Optimisation Algorithm...... 173
10:3.1 Bee:Systemn AlFGrithifi' » suws v s asmn v v s somon & 3 o & 4 174
10.3.2 Artificial Bee Colony Algorithm 175
10.3.3 Honeybee Foraging and Dynamic Environments 178
10.4 Bes Nest Site Selettion » » s v sows ¢ ¢ os ¢ siwn ¥ Sein § 5 0akn 4 ¢ 180
10.4.1 Bee Nest Site Selection Optimisation Algorithm 182
10.5 Honeyhee Mating Optimisation Algorithm 184
10:6 ISUMTNATR o5 2 fomn 5 biians § iand § LanH § S0ihd £ ase d aen ¥ 2 Gangs 4 186
Bacterial Foraging Algorithms 187
11.1 Bacterial Behaviours i 187
11.1.1 :Quorurm SEnSINgG .« cves « cwmn v coums s ok s saen b 5 Sems v s 187
11:1.2 SpoTulation & o s ¢ svns € 5055 5 5 dons § 5055 5 RIG% 5 & s 4 4 188
11.1.3 Mobility . ..ot 188
11.2 Chemotaxis in E. Coli Bacteria............................ 189
11.3 Bacterial Foraging Optimisation Algorithm 190
11.3.1 Basic Chemotaxis Model 191
11.3.2 Chemotaxis Model with Social Communication........ 192
11.4 Dynamic Environments 198
11.5 Classification Using a Bacterial Foraging Metaphor 198
11:6 SUINIHAT VA 5 s 2 oo & ¢ 000 § GaRs § ¢ 000D ¢ 00s § s 5 & 00 & 4 199
Other Social Algorithms 201
12.1 Glow Worm Algorithm 201
12.2 BateAIGOTIbhI: o ¢ cumocn « s o wson 5 sssamens ¢ svusive & stseast 5 & sisione + 4 206
12:2-1 Bat VOCALSations: sose s s s riams 5 davas vasl & 8 5552 4 7 206
12.2.2 Algorithm 207

12:2.8 ANSCUSSION -« srsmne 5 swvwimis 5 s 5 smaesn Suoets & S & & G 5 4 210

Contents XV

12.3 Fish School Algorithm i i, 211
12.3.1. Pish:Schaol Searchi . « vwem « vowen « swawn o s % & oo o & 212
12:3:2 (SUMINAT: ¢ 20000 § S0t © S0 5 o ¢ Sa0s § e 8 5 Suss © ¢ 214

12,4 LoCUSES ..ot e 215
12:4.1 Lociist: Swarm Algorithimcws « s o mows 5 s s o o & 2 216

125 (SUMMATY i 5 i 5 o i s 3 400ns 5 500 5 S 000S § o0 3 s 5 5 Bovs 5 4 218

Part ITI Neurocomputing

13

14

Neural Networks for Supervised Learning 221
13.1 Biological Inspiration for Neural Networks 221
13.2 Artificial Neural Networks 222
13.2.1 Neural Network Architectures....................... 222
13.3 Structure of Supervised Neural Networks 224
13.3.1 Activation and Transfer Functions 226
13:3.2 Universal ApPprosximationrs: aus s weomes o s v oo s & 20059 5 4 228
13.4 The Multilayer Perceptron............ ... nenon.. 228
13.4.1 MLP Transfer Function 230
13.4.2 MLFP Activation Punction: = s wewes s seeen 5 s 5 ¢ e 2 4 230
13.4.3 The MLP Projection Construction and Response
Regions 231
13.4.4 Relationship of MLPs to Regression Models. 233
13.4.5 Training an MLP o 234
13.4.6 OVertTaining ..ox « i o sams 5 comms o s & s & o s & 3 237
13.4.7 Practical Issues in Modelling with and Training MLPs . 239
13.4.8 Stacking MLPs. 243
13.4.9 Recurrenit: NetWorks «u : sums o voman « snvan 5 s & 8 oo @ 3 244
13.5 Radial Basis Function Networks 246
13.5.1 Kernel Functions 246
13.5.2 Radial Basis: Funetions : s o voame ¢ s 2 swone 5 o o o 3 247
13.5.3 Intuition Behind Radial Basis Function Networks. 248
13.5.4 Properties of Radial Basis Function Networks 249
13.5.5 Training Radial Basis Function Networks............. 250
13.5.6 Developing a Radial Basis Function Network.......... 251
13.6 Support Vector Machines 252
1:3:6:1 SVM MEthod oo s 5 v 5 smn 5 somas 5 sons 5 2950 5 ¥ 25ws 5 i 258
13.6.2 Issues in Applications of SVM 258
137 BUMMIARY o somvn s sovosns = snan o st & sossmen & s & Sum & o s ¥ 4 259
Neural Networks for Unsupervised Learning 261
14,1 Self-organising Mapss « ¢ suvs ¢ voms 5 5 o v o0ns 5 Samy § v 50 ¥ 4 262
14.2 SOM Algorithm 264
14.3 Implementing a SOM Algorithm........................... 266

14.4 Classification with SOMsc. ittt i, 271

XVI

15

Contents
14.5 Self-organising SWarmcoiiinirn i nnen., 272
14.6 SOSwarm - and - SOM ... : coa « cems 5 e o s @ s 8 @ s « 275
14.7 Adaptive Resonance Theoryo iinen., 276
14.7.1 Unsupervised Learning for ART 277
14.7.2 Supervised Learning for ARTs 279
14.7.3 Weaknesses of ART Approaches 279
14.8 SUIMIMATY . o .ottt e e e 279
Neuroevolution 281
15.1 Direct: Ercodings . «ouww o o « watwn o s s eus & e s 9 S o & 282
15.1.1 Evolving Weight Vectors 282
15.1.2 Evolving the Selection of Inputs 283
15.1.3 Evolving the Connection Structure 283
15.1.4 Other Hybrid MLP Algorithms 286
15.1.5 Problems with Direct Encodings 287
18:2 NEAT cocen s suoms ¢ s 5 mepue 3 5oms 5 FE500 & S & SEE5 5 § @i & 4 289
15.2.1 Representation in NEAT 290
15.2.2 Diversity Generation in NEAT 291
15.:2.3 SPECIAtion = s onvs & o » s ¢ 2o ¥ 0a § G050 § 3 DUNE § 3 292
15.2.4 Incremental Evolution 296
15.3 Jndirect Encodings o « ws « e« sosmne » savas & s = & s = 3 297
15.4 Other Hybrid Neural Algorithmsot 297
15D SUMIATY . o ottt e e e 297

Part IV Immunocomputing

16

Artificial Immune Systems................. 301
16.1 The Natural Immune System v, 302
16.1.1 Components of the Natural Immune System302
16.1.2 Innate Immune System.............................302
16.1.3 Adaptive Immune System 304
1614 Daniger IThebiYic: « swmos o s o swmens & w5 siavmss & o smsis @ 3 309
16.1.5 Immune Network Theory 309
16.1.6 Optimal Immune Defence 310
16.2 Artificial Immiie, AIGOTItHING 5 somon 5 & s » oo s s 5 5 o0 5 4 310
16.3 Negative Selection Algorithm 310
16.4 Dendritric Cell Algorithm 315
16.5 Clonal Expansion and Selection Inspired Algorithms 320
16.5.1 CLONALG Algorithm 320
16.5.2 B Cell Algorithm 322
16.5.3 Real-Valued Clonal Selection Algorithm 323
16.5.4 Artificial Immune Recognition System 325
16.6 Immune: ProgramIming . « .coe « casn o ssms o swmn & ssmen § o s v s 330

167 SUMMIAT o o sivvs 5 5vmns & aos § e § 5000 © G085 Las 5 & w1 331

Contents XVII

Part V Developmental and Grammatical Computing

17

18

19

20

An Introduction to Developmental and Grammatical

COMPUMEINE oo+ s 3 samess 5 o simeus @ sieons & & sesegs & awawss = SEHs « 5 @ s HOOD
17.1 Developmental Computing................covievnee......33D
17.2 Grammatical Computing336
17.3 'What Isia:Grammar? . . « s « e o s & s s vien s o s » 3 337
17.3.1 "I'ypes of GEAININAT ovs : swwn s 5 ssioe & 50 5 saies & & ki « 4 338
17.3.2 Formal Grammar Notation 340
17.4 ‘Grammatical Inference . . .owu v vomn v v vrvi s vwn s s v v e o 4 341
17.5 Lindenmayer SYStemS « ; « vvuu s s § 5 ivs & 68 5 Fames s » s 5 4 341
17.6 SUMIMATYo e e 343
Grammar-Based and Developmental Genetic
Progranimiili: « e o suins o oms o s & o & @es o owmei § & e ¥ s 345
18.1 Grammar-Guided Genetic Programming.................... 346
18.1.1 Other Grammar-Based Approaches to GP 351
18.2 Developriental GP .cs o vvws 5 cvms 5 v oms v o § oo s 4 o § 5 351
18.2.1 Genetic L-System Programming351
18.2.2 Binary GP 302
18.2.3 ‘Cellular Eneoding ... ; svss s vamin v anas 3 v 5 ¥ owss » 5 354
18.2.4 Analog Cireuits 354
18.2.5 Other Developmental Approaches to GP 354
RSl ik g T T T YT I TTTTTYTY 356
Grammatical Evolution 357
19.1 A Primer on Gene Expression 358
19.2 Extending the Biological Analogy to GE 360
19.3 Examiple GE Mappitie” « « cons 5 swnn v sommen s sown 5 oams 5 2 wvws 5 3 361
19.4 Search Engine. 368
19.4.1 Genome Encodingo, 368
19.4.2 Mutation and Crossover Search Operators 368
19.4.3 Modularity 370
19:4.4 ‘Search AlgoritII: s & mim o v 5 v ¢ s + 5 s ¥ 5 371
19.5 Genotype—Phenotype Map........ 372
19.6 GIamInarsottt e e 372
19.7 SUMMIAEY o 5 cvan 5 voong v pow 3 v 5 990G 5 Pt § Peen 5 § e 4 4 373
Tree-Adjoining Grammars and Genetic Programming375
20.1 Tree-Adjoining GTamInarscouuerenenonenon.. 377
202 TAG3P o 377
20.3 Developmental TAG3P . . v o swmn b womin o swman @ sman 5 5 s+ & 379
20:4 TAGE 100 ¢ 500 8 diis 5 aad § L5008 8 LEEa4 5 Bond § S 2 § find 5 8 379

2005 SUMIMATY . . .o e e 381

XVIII Contents

21 Genetic Regulatory Networks. 383
21.1 Artificial Gene Regulatory Model for Genetic Programming . . . 383
21:1:1 Model “OULHL: 56 ¢ sesn & s v samns ¥ oams ¥ SO 5 ¥ S0sn 7 385

21.2 Differential Gene Expressiono .. 386
21.3 Artificial GRN for Image Compression 389
214 SUMMATT n 3 coun 5 0 00n 5 4 0055 5 509 5 LI5S § Susi § G0 % 5 Gans & s 389

Part VI Physical Computing

22 An Introduction to Physically Inspired Computing 393
22.1 A Brief Physics Primerciiiinii i 393
22.1.1 A Rough Taxonomy of Modern Physics 393

22.2 Classical Mechanics .« i swvs s swan v vassin v mwvess + eamn & ¥ s 5 5 395
22.2.1 Energy and Momentum 395
22.2.2 The Hamiltonian 396

22.3 "TherthodVITaMICE « samp 3 5 sews « saes & sowms § ows § oaw 5 § S0 3 5998
22.3.1 Statistical MechHanies: » s sons b vsivis 5 b 3 soind 5 § a5 4 400
22.3.2 Ergodicityot 402

22.4 :Quantum Mechanics .. « svws s coms s wamms « saren v warv & £ awms & 3 402
22.4.1 Observation in Quantum Mechanics 403
22.4.2 Entanglement and Decoherence 404
22.4.3 Noncommuting Operators 405
2244 Tunmelling 406
22.4.5 Quantum Statistical Mechanics 406

22:5 Quiahtiind COMPULINg « ¢ ¢ s ¢ s 5 400 § Sais § Sose 5§ oot « ¢ 407
22.5.1 Two-State Systems and Qubits...................... 407
22.5.2 Digital Quantum Computers........................ 408
22:5.3 Quantim INTOrMation s « «ews 5 5 s+ sooan ¢ Sas 5 ¢ avn3 5 8 409
22.5.4 Adiabatic Quantum Computation 410

22.6 Annealing and Spin Glasses............. ..o, 411
22.:6.1 Ising Spin/GlasSes : ooy s b 5 vtui s & Bosd 3 saied 5 & Sl 5 4 412
22.6.2 Quantum Spin Glasseso i 414

220 SUINIIALY 5« v 5 oites § womn § sa0se & Darsiss ¥ Dy § Tai & o o ¥ s 415
23 Physically Inspired Computing Algorithms 417
23.1 Simulated Annealing 417
23.1.1 Search and Neighbourhoods 419
23.1.2 Acceptance of ‘Bad’ Moves 419
23.1.3 Parameterisation of SA L, 420

23. 1.4 Extensions of BA . s o s o v s v s s s o s s 421
23.1.5 Concluding Remiarks «: . soan &« smion & ome 5 auas s » s 5 4 421

23.2 Simulated Quantum Annealing 422
23.2.1 Tmplementation of SQA. ... i vovin s v & smen & 0 s« s 424

23.2.2 SQA Application to TSP-Type Problems 424

Contents XIX

23.3 Constrained Molecular Dynamics Algorithm 426
23.4 Physical Field Inspired Algorithms......................... 429
23.4.1 Central Force Optimisationcovvnn, 429
23.4.2 Gravitational Search Algorithm and Variants 431
23.4.3 Differences Among Physical Field-Inspired Algorithms . 435

23.5 Extremal Optimisation Algorithm 436
23,6 SUININATY . . ottt e e e e e 437
24 Quantum Inspired Evolutionary Algorithms 439
24.1: Qubit Representation .« i « cwws « canuie & s v asns s 8 @ares « 439
24.2 Quantum Inspired Evolutionary Algorithms (QIEAs) 440
24.3 Binary-Valued QIEA 440
24.3.1 Diversity Generation in Binary QIEA 443

24.4 Real-Valued QIEA i 446
24.4.1 Initialising the Quantum Population 446
24.4.2 Observing the Quantum Chromosomes 447
24.4.3 Crossover Mechanism 448
24.4.4 Updating the Quantum Chromosomes 449

240 QIEAS AN BDAS : oy s oo o sams § o v s § S0 & 5 0w ¢ 3 449
24.6 Other Quantum Hybrid Algorithms 450
240 SUTNTNAT Y ces = wsngans = sviniiens SEbass @ SHuTEGe = ECERT & SHsTass & SuSah = & UM = § 452

Part VII Other Paradigms

25 Plant-Inspired Algorithms 455
25.1. Plant BellaviGurs . o » « o o o 5 « s & e s s s o o o 5 455
252 HOTBEITE o & sy @ v & ¢ 0000+ Balos ¥ v 65000 £ SoS0s 3 Veie 5 & S5vie 5 & 456

25.2.1 Plant Movement and Foraging 457
25.2.2 ROOb FOTAZING: 1 + ¢ crarnis 5 ivevens v o st & samins o saastass & & wivais s 4 459
25:2.3 Predatory Plants seun s oo s segns s vonss sre v dand 5 4 461
25.3 Plant-Level Coordination e nnnenn.. 462
25.4 A Taxonomy of Plant-Inspired Algorithms 464
25.5 Plant Propagation Algorithms 464
25.5.1 Invasive Weed Optimisation Algorithm 464
25.5:2 Paddy Eield AlSorithiimy: ;oo v & s & e 5 samen 5 5 2% 5 4 467
25.5.3 Strawberry Plant Algorithm 468
25.6 Plant Growth Simulation Algorithm 469
25.6.1 The AlgoTithiii .. « vows s vees v cowns & pawe s cames & ¢ swws 5 472
25.6.2 Variants on the Plant Growth Simulation Algorithm ... 474
25.7 Root-Swarm Behaviour.............o, 475
25.7.1 Modelling Root Growth in Real Plants 476

25.8

25.7.2 Applying the Root-Swarm Metaphor for Optimisation. . 476
SUMIIATY v« assimes « soosnins o s & i & SwRes & omts § FE0s 5 o e & 0 477

XX Contents

26 Chemically Inspired Algorithms 479
26.1 A Brief Chemistry Primero, 479
26.2 Chemically Inspired Algorithms 481

26.2.1 Chemical Reaction Optimisation (CRO).............. 481
26.2.2 Artificial Chemical Reaction Optimisation Algorithm
(ACROAY 5 somn sy o s Soam 5 50055 & o § 9505 5 5 005 & 4 482
26.3 The CRO Algorithm i i 483
26.3.1 Potential and Kinetic Energy and the Buffer 483
26.3.2 Types of Collision and Reaction 484
26.3.3 The High-Level CRO Algorithm 485
26.3.4 On-wall Ineffective Collision 489
26.3.5 Decomposition 489
26.3.6 Intermolecular Ineffective Collision 490
206.3:7 SYNLHESIS: ¢ samen ¢ mvs 5 s 5 5o & D55 § oW 5 © S o 492
26.4 Applications of CRO i i 493
26.5 Discussion 0f CROY i icvws o i & wwnim v womsn « wwsve s st & & dmss s i 494
26.5.1 Potential Future Avenues for Research 496
26.6 SUIMIMATY . . . oottt e 498

Part VIII The Future of Natural Computing Algorithms

27 Looking Ahead .. ovnn s amay s qums 5 e oy & 95w ¢ Sai & & 95008 5 ¢ 501
271 Open Issues. 501
27.1.1 Hybrid Algorithms: .. cuws v commn o s s s s 0 suowa s 4 501

27.1.2 The Power and the Dangers of Metaphor 502

27.1.3 Benchmarks and Scalability 502

27.1.4 Usability and Parameter-Free Algorithms............. 503

27.1.5 Simulation and Knowledge Discovery 503

27.2 Concluding Remarks 503
References e e 505
Indexo 547

1

Introduction

Simulation
& Knowledge Discovery

Natural
Computing

Fig. 1.1. The three facets of natural computing: 1) natural systems as computa-
tional media (e.g., DNA and molecular computing), 2) simulation of natural systems
with the potential for knowledge discovery, and 3) algorithms inspired by the natural
world

Although there is no unique definition of the term natural computing, most
commonly the field is considered to consist of three main strands of enquiry:
see Fig. 1.1. The first strand concerns the use of natural materials and phe-
nomena for computational purposes such as DNA and molecular computing
(computing in vivo); the second strand concerns the application of computer
simulations to replicate natural phenomena in order to better understand
those phenomena (e.g., artificial life, agent based modelling and computa-
tional biology); and the third strand, which forms the subject matter of this
book, is concerned with the development of computational algorithms which
draw their metaphorical inspiration from systems and phenomena that occur
in the natural world. These algorithms can be applied to a multiplicity of

© Springer-Verlag Berlin Heidelberg 2015 1
A. Brabazon et al., Natural Computing Algorithms, Natural Computing Series,
DOI 10.1007/978-3-662-43631-8 1

2 1 Introduction

real-world problems including optimisation, classification, prediction, cluster-
ing, design and model induction. The objective of this book is to provide an
introduction to a broad range of natural computing algorithms.

1.1 Natural Computing Algorithms: An Overview

Natural computing is inherently multidisciplinary as it draws inspiration from
a diverse range of fields of study including mathematics, statistics, computer
science and the natural sciences of biology, physics and chemistry. As our un-
derstanding of natural phenomena has deepened so too has our recognition
that many mechanisms in the natural world parallel computational processes
and can therefore serve as an inspiration for the design of problem-solving
algorithms (defined simply as a set of instructions for solving a problem of
interest). In this book we introduce and discuss a range of families of natu-
ral computing algorithms. Figure 1.2 provides a high-level taxonomy of the
primary methodologies discussed in this book which are grouped under the
broad umbrellas of evolutionary computing, social computing, neurocomput-
ing, immunocomputing, developmental and grammatical computing, physical
computing, and chemical computing.

1.1.1 Biologically Inspired Algorithms

An interesting aspect of biological systems at multiple levels of scale (ecosys-
temns, humans, bacteria, cells, etc.) which suggests that they may provide good
sources of inspiration for solving real-world problems is that the very process
of survival is itself a challenging problem! In order to survive successfully or-
ganisms need to be able to find resources such as food, water, shelter and
mates, whilst simultaneously avoiding predators. It is plausible that mecha-
nisms which have evolved in order to assist survivability of organisms in these
settings, such as sensing, communication, cognition and mobility could prove
particularly useful in inspiring the design of computational algorithms. Virtu-
ally all biological systems exist in high-dimensional (i.e., many factors impact
on their survival), dynamic environments and hence biologically inspired al-
gorithms may be of particular use in problem solving in these conditions.

Although many aspects of biological systems are noteworthy, a few charac-
teristics of biological systems which provide food for thought in the design of
biologically inspired algorithms include: the importance of the population; the
emphasis on robustness (survival) rather than on optimality; and the existence
of multilevel adaptive processes.

Populational Perspective

In many biologically inspired algorithms the search for good solutions takes
place within a population of potential solutions. As in biological settings, indi-

An Overview

1.1 Natural Computing Algorithms

uonnoAs]
B3 BBy
wonnjoAs] £q
[enuaaag HLEMS uoynjoAz UOPN[OAT
[eanewurer [BEWWED [BdJBWWEIDY HOVL [N BUIEBID
uophjosy
dEOV.LA dEDVIL ledgeuimel 49D [muawdopaag (d€D) 4O papins—tewwels
/1’]’;
uopnjoay Sulwweldosd swypiody Sunwwerdos saifajeng
Fupmmeadong anauan . (B UYL MpuUan MAUIH LILUOHN[OAT uonm[oAY
Posay foreinday spauany [EPRBICHL e // \\
Sunndwo) [eaneuIwes .
s O [Eam 9 Bupnduio) Kroay L,

» [eyuawdofasaqg aauruosay aandepy

AleuonnjoAy
wyod|y WIess 1sn3o7|
WLORLY [00128 Ysid sdei
BuisiuediQ
Hs

wiyLod|y yeg swLody
Soyndmoy [BIMEN-— Funndwodeanay

W0y W0 Ay MO[5) \
SHIoMIIN
wy)Lod|y aag Lauoy — —— unnduwo) [epog m_Mm.M.“.M.“wﬁ
wy o dy duidedoy [eL)aeg
suoqydasria g
Aafel-nin

uopestumdo Sunpndwo) Sunndwoy)
UIBMS [eamay D [eatsAug Supndwodounurury
apnaeg

uopesjundo

Auojo saimeusq Fureauuy sunyod|y Laeuonnjoay suyoFY UoNIIAS w0 E Y w08y
uy AB[N2]0 |y pAulensuo)y paie[nuig paardsur—wmueng) ¥ uopsuedxy [pUo[) [[2D) MLAPUIQ uopaafag AnedaN

book

15

in th

d

1scusse

d algorithms d

mspire:

Fig. 1.2. A taxonomy of the nature

4 1 Introduction

viduals in a population can be considered an ndividual hypothesis (or learn-
ing trial) in the game of survival. From a species point of view, maintaining
a dispersed population of individuals reduces the chance that environmental
change will render the entire species extinct.

In contrast, in many traditional (non-natural-computing) optimisation al-
gorithms, the paradigm is to generate a single trial solution and then itera-
tively improve it. Consider for example, a simple random hill-climbing opti-
misation algorithm (Algorithm 1.1) where an individual solution is iteratively
improved using a greedy search strategy. In greedy search, any change in a
solution which makes it better is accepted. This implies that a hill-climbing
algorithm can find a local, but not necessarily the global, optimum (Fig. 1.3).
This makes the choice of starting point a critical one. Note that this is so for
all hill-climbing algorithms, including those that exploit information found so
far (e.g., Newton’s algorithm uses slope information, while the Nelder—Mead
algorithm does not need slopes but uses several previous points’ objective
function values).

Algorithm 1.1: Hill Climbing Algorithm

Randomly generate a solution x;
Calculate the objective function value f(x) for the solution;

repeat
Randomly mutate solution;

if new solution is better than the current solution then
| Replace the current solution with the new one
end

until terminating condition;

Many of the biologically inspired algorithms described in this book main-
tain and successively update a population of potential solutions, which in the
ideal case provides a good coverage (or sampling) of the environment in which
we are problem-solving, resulting in a form of parallel search. This of course
assumes the process that generates the first population disperses the individ-
uals in an appropriate manner so as to maximise coverage of the environment.
Ideally as search progresses it might be desirable to maintain a degree of dis-
persion to avoid premature convergence of the population to local optima.
It is the existence of a population which allows these bioinspired algorithms
the potential to achieve global search characteristics, and avoid local optima
through the populational dispersion of individuals.

Dispersion and Diversity

It is important to highlight this point that we should not confuse the no-
tions of diversity (of objective function values) and dispersion. Often we

1.1 Natural Computing Algorithms: An Overview 5

Global
maximum
Local TN
: \
f(x) maximum ' %

/ \

PN / \

¥ ! \
i N 7 \
. N
. 'I ~ - p:
~ 7’

Starting point

X

Fig. 1.3. A hill-climbing algorithm will find a local optimum. Due to its greedy
search strategy it cannot then escape from this as it would require a ‘downhill’ move
to traverse to the global optimum

(over)emphasise the value of diversity within a population. From a compu-
tational search perspective it is arguably more valuable to focus on the dis-
persion (or coverage) of the population. It is possible to have an abundance
of diversity within a population; yet, at the same time, the population could
be converged on a local optimum. However, a population which has a high
value of dispersion is less likely to be converged in this manner. Figure 1.4
illustrates the difference between dispersion and diversity. The importance of
dispersion is brought into sharp focus if we expose the population to a chang-
ing environment where the location of the optima might change/move over
time. A population which maintains dispersion may have a better chance to
adapt to an environment where the global optimum moves a relatively far
distance from its current location.

Communication

Another critical aspect of most of the algorithms described in this book is that
the members of the population do not search in isolation. Instead they can
communicate information on the quality of their current (or their previous)
solution to other members of the population. Communication is interpreted
broadly here to mean exchange of information between members of the pop-
ulation, and so might take various forms: from chemical signals being left in
the environment of a social computing algorithm, which can be sensed by
individuals in the population; to the exchange of genes in an evolutionary
algorithm. This information is then used to bias the search process towards
areas of better solutions as the algorithm iterates.

6 1 Introduction

Global
optimum
Local PoT N
(%) optimum ’ *o
- d \
i 5, %
M LS
4 o

~ 4
i W@

X
A population with

(a) High Diversity, and

(b) High Dispersion

Global

opfimum
Local Y
f(x) optimum i)

A population with
(a) High Diversity, and
(b) Low Dispersion

Fig. 1.4. An illustration of the difference between a dispersed (top) and a diverse
(bottom) population. It is possible to have a large amount of diversity (e.g., a wide
range of objective function values) but still be converged on a local optimum

Robustness

‘Survival in a dynamic environment’ is the primary aim in many biological
systems. Therefore the implicit driver for organisms is typically to uncover and
implement survival strategies which are ‘good enough’ for current conditions
and which are robust to changing environmental conditions. Optimality is a
fleeting concept in dynamic environments as (for example), the location of
good food resources last week may not hold true next week.

Adaptiveness

Adaptiveness (new learning) occurs at multiple levels and timescales in bio-
logical systems, ranging from (relatively) slow genetic learning to (relatively)
fast lifetime learning. The appropriate balance between speed of adaptation
and the importance of memory (or old learning) depends on the nature of

1.1 Natural Computing Algorithms: An Overview 7

the dynamic environment faced by the organism. The more dynamic the en-
vironment, the greater the need for adaptive capability and the less useful is
memory.

An interesting model of adaptation in biological systems is outlined in
Sipper et al. [581] and is commonly referred to as the POE model. This model
distinguishes between three levels of organisation in biological systems:

i. phylogeny (P),
ii. ontogeny (O), and
iii. epigenesis (E).

Phylogeny concerns the adaptation of genetic code over time. As the
genome adapts and differentiates, multiple species, or phylogeny, evolve. The
primary mechanisms for generating diversity in genetic codes are mutation,
and, in the case of sexual reproduction, recombination. The continual gener-
ation of diversity in genetic codings facilitates the survival of species, and the
emergence of new species, in the face of changing environmental conditions.
Much of the research around evolutionary computation to date exists along
this axis of adaptation.

Ontogeny refers to the development of a multicellular organism from a zy-
gote. While each cell maintains a copy of the original genome, it specialises to
perform specific tasks depending on its surroundings (cellular differentiation).
In recent years there has been increasing interest in developmental approaches
to adaptation with the adoption of models such as artificial genetic regulatory
networks.

Epigenesis is the development of systems which permit the organism to
integrate and process large amounts of information from its environment. The
development and working of these systems is not completely specified in the
genetic code of the organism and hence are referred to as ‘beyond the genetic’
or epigenetic. Examples include the immune, the nervous and the endocrine
systems. While the basic structure of these systems is governed by the or-
ganism’s genetic code, they are modified throughout the organism’s lifetime
as a result of its interaction with the environment. For example, a human’s
immune system can maintain a memory of pathogens that it has been exposed
to (the acquired immune system). The regulatory mechanism which controls
the expression of genes is also subject to epigenetic interference. For exam-
ple, chemical modification (e.g., through methylation) of regulatory regions
of the genome can have the effect of silencing (turning off or dampening) the
expression of a gene(s). The chemical modification can arise due to the en-
vironmental state in which the organism lives. So the environment can effect
which genes are expressed (or not) thereby indirectly modifying an organism’s
genetic makeup to suit the conditions in which it finds itself.

In complex biological organisms, all three levels of organisation are inter-
linked. However, in assisting us in thinking about the design of biologically
inspired algorithms, it can be useful to consider each level of organisation
(and their associated adaptive processes) separately (Fig. 1.5). Summarising

1 Introduction

[adKyouayy

sisoua3idsy

Z adAjoudyqg

INOIARYRY
—
Surured| dwndyI|
\
sasuodsal ajeuu]

wdoaAd(- [adAjouan
uononpolday

WdOoIA(] - 7 ddAjoudn

\{

Auadojdy J

Fig. 1.5. Three levels of organisation in biological systems

1.1 Natural Computing Algorithms: An Overview 9

the three levels, Sipper et al. [581] contends that they embed the ideas of
evolution, structural development of an individual, and learning through en-
vironmental interactions.

Most biologically inspired algorithms draw inspiration from a single level
of organisation but it is of course possible to design hybrid algorithms which
draw inspiration from more than one level. For example, neuroevolution, dis-
cussed in Chap. 15, combines concepts of both evolutionary and lifetime learn-
ing, and evolutionary—development (evo-devo) approaches (e.g., see Chap. 21)
hybridise phylogenetic and ontogenetic adaptation.

1.1.2 Families of Naturally Inspired Algorithms

A brief overview of some of the main families of natural computing algorithms
is provided in the following paragraphs. A more detailed discussion of each of
these is provided in later chapters.

Evolutionary Computing

Evolutionary computation simulates an evolutionary process on a computer
in order to breed good solutions to a problem. The process draws high-level
inspiration from biological evolution. Initially a population of potential solu-
tions are generated (perhaps randomly), and these are iteratively improved
over many simulated generations. In successive iterations of the algorithm,
fitness based selection takes place within the population of solutions. Better
solutions are preferentially selected for survival into the next generation of
solutions, with diversity being introduced in the selected solutions in an at-
tempt to uncover even better solutions over multiple generations. Algorithms
that employ an evolutionary approach include genetic algorithms (GAs), evo-
lutionary strategies (ES), evolutionary programming (EP) and genetic pro-
gramming (GP). Differential evolution (DE) also draws (loose) inspiration
from evolutionary processes.

Social Computing

The social models considered in this book are drawn from a swarm metaphor.
Two popular variants of swarm models exist, those inspired by the flocking
behaviour of birds and fish, and those inspired by the behaviour of social
insects such as ants and honey bees. The swarm metaphor has been used to
design algorithms which can solve difficult problems by creating a population
of problem solvers, and allowing these to communicate their relative success
in solving the problem to each other.

10 1 Introduction
Neurocomputing

Artificial neural networks (NNs) comprise a modelling methodology whose
inspiration arises from a simplified model of the workings of the human brain.
NNs can be used to construct models for the purposes of prediction, classifi-
cation and clustering.

Immunocomputing

The capabilities of the natural immune system are to recognise, destroy and
remember an almost unlimited number of foreign bodies, and also to protect
the organism from misbehaving cells in the body. Artificial immune systems
(AIS) draw inspiration from the workings of the natural immune system to
develop algorithms for optimisation and classification.

Developmental and Grammatical Computing

A significant recent addition to natural computing methodologies are those
inspired by developmental biology (developmental computing) and the use
of formal grammars (grammatical computing) from linguistics and computer
science. In natural computing algorithms grammars tend to be used in a gen-
erative sense to construct sentences in the language specified by the grammar.
This generative nature is compatible with a developmental approach, and con-
sequently a significant number of developmental algorithms adopt some form
of grammatical encoding. As will be seen there is also an overlap between
these algorithms and evolutionary computation. In particular, a number of
approaches to genetic programming adopt grammars to control the evolving
executable structures. This serves to highlight the overlapping nature of nat-
ural systems, and that our decomposition of natural computing algorithms
into families of inspiration is one of convenience.

1.1.3 Physically Inspired Algorithms

Just as biological processes can inspire the design of computational algorithms,
inspiration can also be drawn from looking at physical systems and processes.
We look at three algorithms which are inspired by the properties of interacting
physical bodies such as atoms and molecules, namely simulated annealing,
quantum annealing, and the constrained molecular dynamics algorithm. One
interesting strand of research in this area is drawn from a quantum metaphor.

Quantum Inspired Algorithms

Quantum mechanics seeks to explain the behaviours of natural systems that
are observed at very short time or distance scales. An example of a system is a

1.1 Natural Computing Algorithms: An Overview 11

subatomic particle such as a free electron. Two important concepts underlying
quantum systems are the superposition of states and quantum entanglement.
Recent vears have seen the development of a series of quantum inspired hybrid
algorithms including quantum inspired evolutionary algorithms, social com-
puting, neurocomputing and immunocomputing. A claimed benefit of these
algorithms is that because they use a quantum inspired representation, they
can potentially maintain a good balance between exploration and exploitation.
It is also suggested that they could offer computational efficiencies.

1.1.4 Plant Inspired Algorithms

Plants represent some 99% of the eukaryotic biomass of the planet and have
been highly successful in colonising many habitats with differing resource po-
tential. Just like animals or simpler organisms such as bacteria (Chap. 11),
plants have evolved multiple problem-solving mechanisms including complex
food foraging mechanisms, environmental-sensing mechanisms, and reproduc-
tive strategies. Although plants do not have a brain or central nervous system,
they are capable of sensing environmental conditions and taking actions which
are ‘adaptive’ in the sense of allowing them to adjust to changing environmen-
tal conditions. These features of plants offer potential to inspire the design
of computational algorithimms and a recent stream of work has seen the de-
velopment of a family of plant algorithms. We introduce a number of these
algorithms and highlight some current areas of research in this subfield.

1.1.5 Chemically Inspired Algorithms

Chemical processes play a significant role in many of the phenomena described
in this book, including (for example) evolutionary processes and the workings
of the natural immune system. However, so far, chemical aspects of these pro-
cesses have been largely ignored in the design of computational algorithms.
An emerging stream of study is beginning to remedy this gap in the litera-
ture and we describe an optimisation algorithm inspired by the processes of
chemical reactions.

1.1.6 A Unified Family of Algorithms

Although it is useful to compartmentalise the field of Natural Computing
into different subfields, such as Evolutionary and Social Computing, for the
purposes of introducing the material, it is important to emphasise that this
does not actually reflect the reality of the natural world around us. In na-
ture all of these learning mechanisms coexist and interact forming part of a
larger natural, complex and adaptive system encompassing physical, chemical,
evolutionary, immunological, neural, developmental, grammatical and social
processes, which, for example, are embodied in mammals. In much the same

12 1 Introduction

way that De Jong advocated for a unified field of Evolutionary Computa-
tion [144], we would favour a unification of all the algorithms inspired by the
natural world into the paradigm of Natural Computing and Natural Comput-
ing Algorithms. Increasingly we are seeing significant overlaps between the
different families of algorithms, and upon real-world application it is common
to witness their hybridisation (e.g., neuroevolution, evo-devo etc.). We antic-
ipate that the future of natural computing will see the integration of many
of these seemingly different approaches into unified software systems working
together in harmony.

1.1.7 How Much Natural Inspiration?

An obvious question when considering computational algorithms which are
inspired by natural phenomena is how accurate does the metaphor need to
be? We consider that the true measure of usefulness of a natural computing
algorithm is not its degree of veracity with (what we know of) nature, but
rather its effectiveness in problem solving; and that an intelligent designer of
algorithms should incorporate ideas from nature — while omitting others —
so long as these enhance an algorithm’s problem-solving ability. For example,
considering quantum inspired algorithms, unless we use quantum computers,
which to date are experimental devices and not readily available to the general
reader, it is not possible to efficiently simulate effects such as entanglement;
hence such algorithms while drawing a degree of inspiration from quantum
mechanics must of necessity omit important, even vital, features of the natural
phenomenon from which we derive inspiration.

1.2 Structure of the Book

The field of natural computing has expanded greatly in recent years beyond its
evolutionary and neurocomputing roots to encompass social, immune system,
physical and chemical metaphors. Not all of the algorithms discussed in this
book are fully explored as yet in terms of their efficiency and effectiveness.
However, we have deliberately chosen to include a wide range of algorithms
in order to illustrate the diversity of current research into natural computing
algorithms.

The remainder of this book is divided into eight parts. Part I starts by pro-
viding an overview of evolutionary computation (Chap. 2), and then proceeds
to describe the genetic algorithm (Chaps. 3 and 4), evolutionary strategies
and evolutionary programming (Chap. 5), differential evolution (Chap. 6),
and genetic programming (Chap. 7). Part II focusses on social computing
and provides coverage of particle swarm optimisation (Chap. 8), insect al-
gorithms (Chaps. 9 and 10), bacterial foraging algorithms (Chap. 11), and
other social algorithms (Chap. 12). Part III of the book provides coverage
of the main neurocomputing paradigms including supervised learning neural

1.2 Structure of the Book 13

network models such as the multilayer perceptron, recurrent networks, radial
basis function networks and support vector machines (Chap. 13), unsuper-
vised learning models such as self-organising maps (Chap. 14), and hybrid
neuroevolutionary models (Chap. 15). Part IV discusses immunocomputing
(Chap. 16). Part V of the book introduces developmental and grammati-
cal computing in Chap. 17 and provides detailed coverage of grammar-based
approaches to genetic programming in Chap. 18. Two subsequent chapters
expose in more detail some of grammar-based genetic programming’s more
popular forms, grammatical evolution and TAG3P (Chaps. 19 and 20), fol-
lowed by artificial genetic regulatory network algorithms in Chap. 21. Part VI
introduces physically inspired computing (Chaps. 22 to 24). Part VII intro-
duces some other paradigms that do not fit neatly into the earlier categories,
namely, plant-inspired algorithms in Chap. 25, and chemically inspired com-
puting in Chap. 26. Finally, Part VIII (Chap. 27) outlines likely avenues of
future work in natural computing algorithims.

We hope the reader will enjoy this tour of natural computing algorithms
as much as we have enjoyed the discovery (and in some cases rediscovery) of
these inspiring algorithms during the writing of this book.

Part 1

Evolutionary Computing

2

Introduction to Evolutionary Computing

‘Quwing to this struggle for life, variations, however slight and from
whatever cause proceeding, if they be in any degree profitable to the
individuals of a species, in their infinitely complex relations to other
organic beings and to their physical conditions of life, will tend to
the preservation of such individuals, and will generally be inherited
by the offspring. The offspring, also, will thus have a better chance
of surviving, for, of the many individuals of any species which are
periodically born, but a small number can survive. I have called this
principle, by which each slight variation, if useful, is preserved, by the
term Natural Selection’. (Darwin, 1859 [127], p. 115)

Biological evolution performs as a powerful problem-solver that attempts to
produce solutions that are at least good enough to perform the job of survival
in the current environmental context. Since Charles Darwin popularised the
theory of Natural Selection, the driving force behind evolution, molecular biol-
ogy has unravelled some of the mysteries of the components that underpinned
earlier evolutionary ideas. In the twentieth century molecular biologists un-
covered the existence of DNA, its importance in determining hereditary traits
and later its structure, unlocking the key to the genetic code. The accumu-
lation of knowledge about the biological process of evolution, often referred
to as neo-Darwinism, has in turn given inspiration to the design of a family
of computational algorithms known collectively as evolutionary computation.
These evolutionary algorithms take their cues from the biological concepts of
natural selection and the fact that the heritable traits are physically encoded
on DNA, and can undergo variation through a series of genetic operators such
as mutation and crossover.

© Springer-Verlag Berlin Heidelberg 2015 17
A. Brabazon et al., Natural Computing Algorithms, Natural Computing Series,
DOI 10.1007/978-3-662-43631-8 2

18 2 Introduction to Evolutionary Computing

2.1 Evolutionary Algorithms

Evolutionary processes represent an archetype, whose application transcends
their biological root. Evolutionary processes can be distinguished by means of
their four key characteristics, which are [57, 92]:

i. a population of entities,
ii. mechanisms for selection,
iii. retention of fit forms, and
iv. the generation of variety.

In biological evolution, species are positively or negatively selected depending
on their relative success in surviving and reproducing in the environment.
Differential survival, and variety generation during reproduction, provide the
engine for evolution [127, 589] (Fig. 2.1).

Selection
Parents
Population
Initialisation Variety Generation
Offspring
Replacement

Fig. 2.1. Evolutionary cycle

These concepts have metaphorically inspired the field of evolutionary com-
putation (EC). Algorithm 2.1 outlines the evolutionary meta-algorithm. There
are many ways of operationalising each of the steps in this meta-algorithm;
consequently, there are many different, but related, evolutionary algorithms.
Just as in biological evolution, the selection step is a pivotal driver of the algo-
rithm’s workings. The selection step is biased in order to preferentially select
better (or ‘more fit’) members of the current population. The generation of
new individuals creates offspring or children which bear some similarity to
their parents but are not identical to them. Hence, each individual represents
a trial solution in the environment, with better individuals having increased
chance of influencing the composition of individuals in future generations.
This process can be considered as a ‘search’ process, where the objective is to
continually improve the quality of individuals in the population.

3

Genetic Algorithm

While the development of the genetic algorithm (GA) dates from the 1960s,
this family of algorithms was popularised by Holland in the 1970s [281]. The
GA has been applied in two primary areas of research: optimisation, in which
GAs represent a population-based optimisation algorithm, and the study of
adaptation in complex systems, wherein the evolution of a population of
adapting entities is simulated over time by means of a pseudonatural selec-
tion process using differential-fitness selection, and pseudogenetic operators
to induce variation in the population.

In this chapter we introduce the canonical GA, focussing on its role as an
optimising methodology, and discuss the design choices facing a modeller who
is seeking to implement a GA.

3.1 Canonical Genetic Algorithm

In genetics, a strong distinction is drawn between the genotype and the phe-
notype; the former contains genetic information, whereas the latter is the
physical manifestation of this information. Both play a role in evolution as
the biological processes of diversity generation act on the genotype, while the
‘worth’ or fitness of this genotype in the environment depends on the survival
and reproductive success of its corresponding phenotype. Similarly, in the
canonical GA a distinction is made between the encoding of a solution (the
‘genotype’), to which simulated genetic operators are applied, and the pheno-
type associated with that encoding. These phenotypes can have many diverse
forms depending on the application of interest. Unlike traditional optimisation
techniques the GA maintains and iteratively improves a population of solu-
tion encodings. Evolutionary algorithms, including the GA, can be broadly
characterised as [193]:

2ft + 1] = r(o(s(a]t]))) (3.1)

© Springer-Verlag Berlin Heidelberg 2015 21
A. Brabazon et al., Natural Computing Algorithms, Natural Computing Series,
DOI 10.1007/978-3-662-43631-8 3

22 3 Genetic Algorithm

where z[{] is the population of encodings at timestep ¢, v(.) is the random
variation operator (crossover and mutation), s(.) is the selection for mating
operator, and r(.) is the replacement selection operator. Once the initial pop-
ulation of encoded solutions has been obtained and evaluated, a reproductive
process is applied in which the encodings corresponding to the better-quality,
or fitter, solutions have a higher chance of being selected for propagation of
their genes into the next generation. Over a series of generations, the better
adapted solutions in terms of the given fitness function tend to flourish, and
the poorer solutions tend to disappear. Just as biological genotypes encode
the results of past evolutionary trials, the population of genotypes in the GA
also encode a history (or memory) of the relative success of the resulting
phenotypes for the problem of interest.

Therefore, the canonical GA can be described as an algorithm that turns
one population of candidate encodings and their corresponding solutions into
another using a number of stochastic operators. Selection exploits information
in the current population, concentrating interest on high-fitness solutions. The
selection process is biased in favour of the encodings corresponding to bet-
ter /fitter solutions and better solutions may be selected multiple times. This
corresponds to the idea of survival of the fittest. Crossover and mutation per-
turb these solutions in an attempt to uncover even better solutions. Mutation
does this by introducing new gene values into the population, while crossover
allows the recombination of fragments of existing solutions to create new ones.
Algorithm 3.1 lists the key steps in the canonical genetic algorithm.

An important aspect of the algorithm is that the evolutionary process
operates on the encodings of solutions, rather than directly on the solutions
themselves. In determining the fitness of these encodings, they must first be
translated into a solution to the problem of interest, the fitness of the solution
determined, and finally this fitness is associated with the encoding (Fig. 3.1).

Decoding step
Encoded string Solution
(genotype) (phenotype)

l |

Fitness value

Fig. 3.1. Decoding of genotype into a solution in order to calculate fitness

3.1 Canonical Genetic Algorithm 23

Algorithm 3.1: Canonical Genetic Algorithm

Determine how the solution is to be encoded as a genotype and define the
fitness function;

Create an initial population of genotypes;

Decode each genotype into a solution and calculate the fitness of each of the
n solution candidates in the population;

repeat

Select n members from the current population of encodings (the parents)
in order to create a mating pool;

repeat

Select two parents randomly from the mating pool;

With probability pe,oss, perform a crossover process on the encodings
of the selected parent solutions, to produce two new (child) solutions;
Otherwise, crossover is not performed and the two children are
simply copies of their parents;

With probability pmut, apply a mutation process to each element of
the encodings of the two child solutions;

until n new child solutions have been created;
Replace the old population with the newly created one (this constitutes a
generation);

until terminating condition;

3.1.1 A Simple GA Example

To provide additional insight into the workings of the canonical GA, a simple
numerical example is now provided. Assume that candidate solutions are en-
coded as a binary string of length 8 and the fitness function f(x) is defined
as the number of 1s in the bit string (this is known as the OneMaz problem).
Let n = 4 with peross = 0.6 and pyyue = 0.05. Assume also that the initial
population is generated randomly as in Table 3.1.

Table 3.1. A sample initial random population

Candidate String Fitness

A 10000110 3
B 01101100 4
@ 10100000 2
D 01000110 3

Next, a selection process is applied based on the fitness of the candidate
solutions. Suppose the first selection draws candidates B and D and the second

24 3 Genetic Algorithm

draws B and A. For each set of parents, the probability that a crossover (or
recombination) operator is applied is peyoss. Assume that B and D are crossed
over between bit position 1 and 2 to produce child candidates E and F (Table
3.2), and that crossover is not applied to B and A.

Table 3.2. Crossover applied to individuals B and D from Table 3.1, after the first
element of each binary string, to produce the offspring E and F

Initial Parent Candidate B Candidate D
0 1101100 0 1000110

Resulting Child Candidate E Candidate F
0 1000110 0 1101100

Crossover is not applied to B and Aj; hence the child candidates (G and H)
are clones of the two parent candidates (Table 3.3).

Table 3.3. No crossover is applied to B and D; hence the child candidates G and
H are clones of their parents

Initial Parent Candidate B Candidate A

01101100 10000110
Resulting Child Candidate G Candidate H
01101100 10000110

Finally, the mutation operator is applied to each child candidate with
probability py,¢. Suppose candidate E is mutated (to a 1) at the third locus,
that candidate F is mutated (to a 1) at the seventh locus, and that no other
mutations take place. The resulting new population is presented in Table
3.4. By biasing selection for reproduction towards more fit parents, the GA
has increased the average fitness of the population in this example from 3
(= 3213 t0 4 (= HELUE) after the first generation and we can see that
the fitness of the best solution F in the second generation is better than that
of any solution in the first generation.

3.2 Design Choices in Implementing a GA

Although the basic idea of the GA is quite simple, a modeller faces a number
of key decisions when looking to apply it to a specific problem:

3.3 Choosing a Representation 25
Table 3.4. Population of solution encodings after the mutation operator has been
applied

Candidate String Fitness
E 01100110 4

F 01101110 5
G 01101100 4
H 10000110 3

what representation should be used?

how should the initial population of genotypes be initialised?

how should fitness be measured?

how should diversity be generated in the population of genotypes?

Each of these are discussed in the following sections.

3.3 Choosing a Representation

In thinking about evolutionary processes, two distinct mapping processes can
be distinguished, one between the genotype and the phenotype, and a second
between the phenotype and a fitness measure (Fig. 3.2). In applying the GA,
the user must select how the problem is to be represented, and there are two
aspects to this decision. First, the user must decide how potential solutions
(phenotypes) will be encoded onto the genotype. Secondly, the user must
decide how individual elements of the genotype will be encoded.

r

Genotypic Phenotypic Fitness
space space metric

Fig. 3.2. Mapping from genotypic to phenotypic space with each phenotype in
turn being mapped to a fitness measure

28 3 Genetic Algorithm

Table 3.5. Integer conversion for standard and Gray coding

Canonical
Integer Value Binary Code Gray Code
0 000 000
1 001 001
2 010 011
3 011 010
4 100 110
5 101 111
6 110 101
7 111 100

For many problems, a real-valued genotype encoding is the most natural
representation and most current optimisation applications of the GA use real-
valued encodings (for example, 2.13, ..., —14.56).

3.3.3 Representation Choice and the Generation of Diversity

The choice of representation is crucial as it determines the nature of the search
space traversed by the GA. The choice also impacts on the appropriate design
of diversity generation processes such as crossover and mutation.

Ideally, small (big) changes in the genotype should result in small (larger)
changes in the phenotype and its associated fitness. This feature is known
as locality. For example, if there is a good pairing of representation and di-
versity operators, minor mutations on the genotype will produce relatively
small changes in the phenotype and its fitness, whereas a crossover between
two very different parents will lead to a larger change in the phenotype. This
means that the operators of mutation and crossover will perform distinctly
different search processes.

Going back to the previous example of Gray coding, it can be observed
from the integer to Gray mapping in Table 3.5, that a small change in the
phenotype corresponds to a small change in the genotype. However, the reverse
is not true. A single bit-flip in the genotype can lead to a large change in the
phenotype (integer value). Hence, even a Gray encoding has poor locality
properties and will not necessarily produce better results than the canonical
binary coding system.

Raidl and Gottlieb [525] emphasise three key characteristics for the design
of quality evolutionary algorithms (EAs):

i. locality,
ii. heritability, and
iii. heuristic bias.

Locality refers to the case where small steps in the search space result in
small steps in the phenotypic space. Strong locality increases the efficiency of

3.5 Measuring Fitness 29

evolutionary search by making it easier to explore the neighbourhood of good
solutions, whereas weak locality means that evolutionary search will behave
more like random search.

Heritability refers to the capability of crossover operators to produce chil-
dren that utilise the information contained in their parents in a meaningful
way. In general, good heritability will ensure that each property of a child
should be inherited from one of its parents, and that traits shared by both
parents should be inherited by their child. Crossover operators with weak
heritability are more akin to macro-mutation operators.

Heuristic bias occurs when certain phenotypes are more likely to be cre-
ated by the EA than others when sampling genotypes without any selection
pressure. In an unbiased case, each item in the phenotypic space has the same
chance of occurring if a genotype is randomly generated.

Obviously, inducing heuristic bias can be good if it tends to lead to better
solutions (in contrast, random search will tend to have lower heuristic bias),
but inducing bias tends to reduce genotypic diversity, which can hinder the
search for a global optimum. Heuristic bias arises from the choice of represen-
tation and the choice of variation operators.

3.4 Initialising the Population

If good starting points for the search process are known a priori, the efficiency
of the GA can be improved by using this information to seed the initial pop-
ulation. More commonly, good starting points are not known and the initial
population is created randomly. For binary-valued genotypes, a random num-
ber between 0 and 1 can be generated for each element of the genotype, with
random numbers > 0.5 resulting in the placing of a 1 in the corresponding
locus of the genotype. If a real-valued representation is used, and boundary
values for each locus of the genotype can be determined, each element of the
genotype can be selected randomly from the bounded interval.

3.5 Measuring Fitness

The importance of the choice of fitness measure when designing a GA cannot
be overstressed as this metric drives the evolutionary process. The first step
in creating a suitable fitness measure is to identify an appropriate objective
function for the problem of interest. This objective function often needs to be
transformed into a suitable fitness measure via a transformation (for example,
to ensure that the resulting fitness value is always nonnegative); hence:

F(z) = g(f(x)) (3.2)

30 3 Genetic Algorithm

where f is the objective function, g transforms the value of the objective
function into a nonnegative number, and F' is the fitness measure. A sim-
ple example of a transformation is the linear rescaling of the raw objective
function value:

g(e) = af (@) +b (3.3)

where a is chosen in order to ensure that the maximum fitness value is a
scaled multiple of the average fitness and b is chosen in order to ensure that
the resulting fitness values are nonnegative. Using rescaled fitnesses rather
than raw objective function values can also help control the selection pressure
in the algorithm (Sect. 3.6.1).

In addition to absolute measures of fitness as just described, it is also
possible to define fitness in relative rather than absolute terms, thus avoiding
having to calculate explicit fitness values for each population member. For
example, if our aim is to evolve a chess player we could evaluate the population
by allowing individuals to play tournaments against each other where the
winner of the tournament is deemed the fittest.

Estimating Fitness

Evaluating the fitness of individual members of the population is usually the
most computationally expensive and time-consuming step in a GA. In some
cases it is not practical to obtain an exact fitness value for every individual
in each iteration of the algorithm.

A simple initial step is to avoid retesting the same individuals, so before
testing the fitness of a newly created individual, a check could be made to
determine if the same genotype has been tested in a prior generation. If it has
been, the known fitness value can simply be assigned to the current individual.

More generally, in cases where fitness function evaluation is very expensive,
we may wish to use less costly approximations of the fitness function in order
to quickly locate good search regions.

One method of doing this is problem approximation, where we replace the
original problem statement (fitness function) with a simpler one which approx-
imates the problem of interest, the assumption being that a good solution to
the simpler problem would be a good starting point in trying to solve the real
problem of interest. An example of this would be the use of crash simulation
systems where designs that perform well in computer simulations could then
be subject to (expensive) real-world physical testing.

A second approach is to try to reduce the number of fitness function eval-
uations by estimating an individual’s fitness based on the fitness of other
‘similar’ individuals. Examples of this include fitness inheritance, where the
fitness of a child is inherited from its parent(s), or fitness imitation, where all
the individual solutions in a cluster (those close together as defined by some
distance metric) are given the same fitness (that of a representative solution
of the cluster). Hence, an approximate fitness evaluation is used for much of

3.6 Generating Diversity 31

the EA run, with the population, or a subset of the better solutions in the
population, being exposed to the real (expensive) fitness function periodically
during the run. This process entails a trade-off, with the gains from the reduc-
tion in the number of fitness evaluations being traded off against the risk that
the search process will be biased through the use of fitness approximations.

A practical problem that can arise in applying GAs to real-world problems
is that the fitness measures obtained can sometimes be noisy (for example,
due to measurement errors). In this case, we may wish to resample fitness
over a number of training runs, using an average fitness value in the selection
and replacement process.

3.6 Generating Diversity

The process of generating new child solutions aims to exploit information from
better solutions in the current population, while maintaining explorative ca-
pability in order to uncover even better regions of the search space. Too much
exploitation of already-discovered good solutions runs the risk of convergence
of the population of genotypes to a local optimum, while too much exploration
drives the search process towards random search.

A key issue in designing a good GA is the management of the ezplo-
ration vs. exploitation balance. The algorithm must utilise, or exploit, already-
discovered fit solution encodings, while not neglecting to continue to explore
new regions of the search space which may contain even better solution en-
codings. Choices for the selection strategy, the design of mutation and re-
combination operators, and the replacement strategy, determine the balance
between exploration and exploitation. Selection and crossover tend to pro-
mote exploitation of already-discovered information, whereas mutation tends
to promote exploration.

3.6.1 Selection Strategy

The design of the ‘selection for mating’ strategy determines the selection pres-
sure (the degree of bias towards the selection of higher-fitness members of the
population) of the algorithm. If the selection pressure is too low, information
from good parents will only spread slowly through the population, leading to
an inefficient search process. If the selection pressure is too high, the popula-
tion is likely to get stuck in a local optimum, as a high selection pressure will
tend to quickly reduce the degree of genotypic diversity in the population.
Better-quality selection strategies therefore, encourage exploitation of high-
fitness individuals in the population, without losing diversity in the population
too quickly.

Although a wide variety of selection strategies have been designed for the
GA, two common approaches are fitness proportionate selection and ordinal
selection.

32 3 Genetic Algorithm
Fitness Proportionate Selection

The original method of selection for reproduction in the GA is fitness-
proportionate selection (FPS) and under this method the probability that
a specific member of the current population is selected for mating is directly
related to its fitness relative to other members of the population. The selection
process is therefore biased in favour of ‘good’ (i.e., fit) members of the current
population. Given a list of each of the n individuals in the population and
their associated fitnesses f;, a simple way to implement FPS is to generate a

random number r € [0, Z?:L fj), then select the individual i such that:

i—1 i
i=1 =1

As a numerical example, suppose n = 4, f; = fo = 15, f3 = 10 and f; =
20. Therefore, Z;: 1 f; = 60. Assume a random draw from [0, 60) produces
29.4. This value falls in the range [15,30) and hence results in the selection
of individual 2. The FPS selection process can be thought of as spinning a
roulette wheel, where the fitter individuals are allocated more space on the
wheel (Fig. 3.5).

7

Selection
pointer

Fig. 3.5. Fitness-proportionate selection with the area on the roulette wheel cor-
responding to the fitness of each member of the population. Here individual 2 is
selected

Although this method of selection is intuitive, it can produce poor results
in practice as it embeds a high selection pressure in the early stage of the
GA. Under FPS, the expected number of offspring for each encoding in the
population is given by %—:i’ where P,y is the observed performance (fitness) of
the corresponding solution and P, is the average performance of all solutions
in the current population.

3.6 Generating Diversity 35

As selection works on phenotypes (and their related fitness) it is ‘represen-
tation independent’. This is not the case for the diversity generating operators
of mutation and crossover.

3.6.2 Mutation and Crossover

The mutation operator plays a vital role in the GA as it ensures that the
search process never stops. In each iteration of the algorithm, mutation can
potentially uncover useful novelty. In contrast, crossover, if applied as a sole
method of generating diversity, ceases to generate novelty once all members
of the population converge to the same genotype.

The rate of mutation has important implications for the usefulness of se-
lection and crossover. If a very high rate of mutation is applied, the selection
and crossover operators can be overpowered and the GA will effectively re-
semble a random search process. Conversely, if a high selection pressure is
used, a higher mutation rate will be required in order to prevent premature
convergence of the population. In setting an appropriate rate of mutation, the
aim is to select a rate which helps generate useful novelty but which does not
rapidly destroy good solutions before they can be exploited through selection
and crossover. In contrast to mutation, crossover allows for the inheritance of
groups of ‘good genes’ or building blocks by the offspring of parents, thereby
encouraging more intensive search around already discovered good solutions.

There is a close link between the choice of genotype representation and
the design of effective mutation and crossover operators. Initially, mutation
and crossover mechanisms for binary encodings are discussed, followed by the
consideration of what modifications should be made to these for real-valued
encodings.

Binary Genotypes

The original form of crossover for binary-valued genotypes was single point
erossover (Fig. 3.7). A value p.,.s is set at the start of the GA (say at 0.7)
and for each pair of selected parents, a random number is generated from
the uniform distribution U(0,1). If this value is < 0.7, crossover is applied
to generate two new children; otherwise crossover is bypassed and the two
children are clones of their parents. Crossover rates are typically selected from
the range peross € (0.6,0.9) but, if desired, the rate of crossover can be varied
during the GA run.

One problem of single point crossover, is that related components of a
solution encoding (schema) which are widely separated on the string tend
to be disrupted when this form of crossover is applied. One way of reducing
this problem is to implement two point crossover (Fig. 3.8), where the two
cut positions on the parent strings are chosen randomly and the segments
between the two positions are exchanged.

36 3 Genetic Algorithm

Parent1 ((0[1[Qf1]1]1]0]0]

Parent 2 0|Oll(1|0|1|01|

chit1 To[1[o[1]o]1]o0[1]

Child 2 olof[1][1][1][1]0]0]

Fig. 3.7. Single point crossover where the cut-point is randomly selected after the
third locus on the parent genotypes. The head and tail of the two parents are mixed
to produce two child genotypes

Parent 1 Li]]‘(}l 1111o0l0
Parent 2 Edlll(}‘l 0 1‘

Vv

Child 1 o[1[1]1]o][1]0]0]

Child 2 ofolof1T171]o]1]

Fig. 3.8. Two-point crossover

Another popular form of crossover is uniform crossover. In uniform crossover,
a random selection of gene value is made from each parent when filling each
corresponding locus on the child’s genotype. The process can be repeated a
second time to create a second child, or the second child could be created
using the values not selected when producing the first child (Fig. 3.9). To im-
plement the latter approach, a random number r is drawn from the uniform
distribution U(0,1) for each locus. If r < 0.5, child 1 inherits from parent 1;
else, it inherits from parent 2, with child 2 being comprised of the bit values
not selected for child 1.

For binary genotypes, a mutation operation can be defined as a bit-flip,
whereby a ‘0’ can be mutated to a ‘1" or a ‘1’ to a ‘0". Figure 3.10 illustrates

3.6 Generating Diversity 37

IU.?I | 0.22 |U.34 | 0.67]u.93|

Parent 1 Illolllolll
Parent 2 |l|l|0|0|0|
Child 1 |1|0I1|0|0|
Child 2 [t fofo]t]

Fig. 3.9. Uniform crossover where a random choice is made as to which parent
donates a bit to child 1. Child 2 is then constructed using the bits not selected for
inclusion in child 1

an implementation of the mutation process, where py,yt = 0.1. Five random
numbers (corresponding to a genotype length of five bits) are generated from
U(0,1) and if any of these are < 0.1 then the value of that bit is ‘flipped’. This
mutation process is repeated for all child solutions generated by the crossover
process.

Typical mutation rates for a binary-valued GA are commonly of the order
Pmut = % where L is the length of the binary string. Of course, there is no
requirement that the mutation rate must remain constant during the GA run

(Sect. 3.7).

|0.45 | 0.69 I 0.23 | 0.09 Io.scal

Lfefefofed
Lfefofrfed

Fig. 3.10. Tllustration of mutation, with the bit at the fourth locus being ‘flipped’

38 3 Genetic Algorithm
Real-Valued Genotypes

The crossover operator can be modified for real-valued genotypes so that (for
example) elements from the string of each parent are averaged in order to
produce the corresponding value in their child(ren) (Fig. 3.11). Figure 3.12
illustrates this geometrically in two dimensions.

More generally, the real values in each locus of the child may be calculated
as Py +a(Py— Py), where Py and P» are the real values for that locus in each of
the two parents, and « is a scaling factor randomly drawn from some interval
(say [—1.5,41.5]). This crossover operator defines a hypercube based on the
location of the parents (Fig. 3.13).

Parent 1 n
Parent 2 nnn

: B

Child [(3+1)2 [(-2-4)2] (8+9)2 |

Fig. 3.11. Simple real-valued crossover with two parents producing a single child

(2,2)

e (1515

e

® (1,1)

Fig. 3.12. Simple real-valued intermediate crossover with two parents (1,1) and
(2,2) producing a single child at (1.5,1.5)

Many alternative mutation and crossover schemes for real-valued encod-
ings exist. For example, a simple strategy for modifying mutation for real-
valued encodings is to implement a stochastic mutation operator, where an
element of a real-valued string can be mutated by adding a small (positive or
negative) real value to it. Each element of the string x; could be mutated by
adding a random number drawn from the normal distribution N (0, ct;), where

3.6 Generating Diversity 39

(2.5,-0.5) (2.5,2.5)

(2,2)

(1.1)

(-0.5,-0.5) (-0.5,2.5)

Fig. 3.13. Hypercube defined by crossover operator where parents are (1,1) and
(2,2), with a € [—1.5,1.5]

the standard deviation «; is defined by the user. This mutation scheme will
produce relatively small mutations most of the time, with occasional larger
mutation steps.

3.6.3 Replacement Strategy

In deciding which parents and children survive into the next generation a wide
variety of replacement strategies can be applied, including:

i. direct replacement (children replace their parents),
ii. random replacement (the new population is selected randomly from the
existing population members and their children),
iii. replacement of the worst (all parents and children are ranked by fitness
and the poorest are eliminated), and
iv. tournament replacement (the loser of the tournament is selected for re-
placement).

In the canonical GA, a generational replacement strategy is usually adopted.
The number of children produced in each generation is the same as the cur-
rent population size and during replacement the entire current population is
replaced by the newly created population of child encodings.

The ratio of the number of children produced to the size of the current
population is known as the generation gap. Hence, the generation gap is typ-
ically 1.0. It is also possible to create more offspring than members of the
current population (generation gap > 1), and then select the best n (where n
is the population size) of these offspring for survival into the next generation.

Many variants on the replacement process exist. As already seen, the num-
ber of children produced need not equal the current population size, and the
automatic replacement of parents by children is not mandatory. A popular

42 3 Genetic Algorithm

will be found in finite time and progress towards better solutions may be
intermittent rather than gradual. Consequently, the time required to find a
high-quality solution to a problem is not determinable ex ante. The GA, and
indeed all evolutionary optimising methodologies, rely on feedback in the form
of fitness evaluations. For some problems, measuring fitness can be difficult
(perhaps fitness can only be assessed subjectively by a human) or expensive
in terms of cost or computation time. In these cases, GA may not be the most
suitable choice of optimising technique.

In this chapter, we have outlined the primary components and principles
upon which the GA is based. The next chapter describes a number of exten-
sions of the GA model.

4

Extending the Genetic Algorithm

The previous chapter provided an overview of the main concepts behind the
GA. Since the introduction and popularisation of the GA, a substantial body
of research has been undertaken in order to extend the canonical model and to
increase the utility of the GA for hard, real-world problems. While it is beyond
the scope of any single book to cover all of this work, in this chapter we intro-
duce the reader to a selection of concepts drawn from this research. Many of
the ideas introduced in this chapter have general application across the mul-
tiple families of natural computing algorithms and are not therefore limited
to GAs. The chapter concludes with an introduction to Estimation of Dis-
tribution Algorithms (EDAs). EDAs are an alternative way of modelling the
learning which is embedded in a population of genotypes in an evolutionary
algorithm and have attracted notable research interest in the GA community
in recent years.

4.1 Dynamic Environments

Many of the most challenging problems facing researchers and decision-makers
are those with a dynamic nature. That is, the environment in which the so-
lution exists, and consequently the optimal solution itself, changes over time.
Examples of dynamic problems include trading in financial markets, time
series analysis of gene expression data, and routing in telecommunication net-
works. Biological organisms inhabit dynamic environments and mechanisms
have arisen to promote the ‘survivability’ of biological creatures in these en-
vironments. These mechanisms are useful sources of inspiration in helping
us to design computer algorithms to attack real-world problems in dynamic
environments.

© Springer-Verlag Berlin Heidelberg 2015 43
A. Brabazon et al., Natural Computing Algorithms, Natural Computing Series,
DOI 10.1007/978-3-662-43631-8 4

44 4 Extending the Genetic Algorithm
4.1.1 Strategies for Dynamic Environments

In designing an evolutionary algorithm for application in a dynamic environ-
ment, the nature of the environmental changes will determine the appropriate
strategy. For example, if change occurs at a slow pace, adapting the rate of
mutation in a GA may be sufficient to allow the population to adjust to a
slowly changing location for the global optimum. If the environment alters
in a cyclic fashion, a memory of good past solutions may be useful. On the
other hand, if the environment is subject to sudden discontinuous change then
more aggressive adaptation strategies will be required. Hence, we can adopt
a variety of strategies, including [302]:

restart of the learning process,

generation of more genotypic diversity if environmental change is detected,
maintenance of genotypic diversity during the GA run,

use of a memory mechanism to retain good past solutions (assumes cycling
solutions), and

e use of multiple populations.

In an extreme case, it may be necessary to restart the learning process as past
learning embedded in the population is no longer useful. More generally, if
past learning still provides some guide to finding good solutions in the current
environment, the focus switches to how best to adapt the current population
in order to track the optimal solution as it changes. The following subsections
discuss various aspects of diversity generation and maintenance. The use of
multiple populations is discussed in Sect. 4.2.

4.1.2 Diversity

Maintaining diversity in the population of genotypes is important in all EC
applications. Even in static environments, a population needs diversity in
order to promote a good exploration of the search space. The role of diversity is
even more important when faced with a dynamic environment. In the absence
of any countermeasures, the canonical GA will tend to lose genotypic diversity
during its run as selection and crossover will tend to push the population to
a small set of genotypic states; hence the canonical algorithm needs some
modification when it is applied in a dynamic environment.

Depending on the expected rate of environmental change, the modeller
may decide to maintain a high degree of populational diversity at all times
(useful if the environment has high rate of change), or generate it ‘on demand’
when a change in the environment is detected. At first glance it may appear
that the better option is to maintain populational diversity at all times. How-
ever, maintaining diversity has a cost, either in terms of having a larger pop-
ulation, or in terms of less intensive exploitation of already discovered good
regions. If the environment only changes occasionally, generation of diversity
when environmental change is detected may be the better option.

4.1 Dynamic Environments 45
Diversity Generation if Change Is Detected

Cobb’s hypermutation strategy [115] was one of the earliest approaches to
varying the rate of diversity generation as changes in the fitness landscape are
detected. In this approach, if a change in the fitness landscape is detected, the
base mutation rate of the GA is multiplied by a hypermutation factor. The
size of the factor determines its effect; so if it is very large, it is equivalent to
randomly reinitialising the entire population.

A common approach in the detection of environmental change is to use a
sentry strategy. In a sentry strategy the fitness of a number of fixed genotypes
(a form of memory) is monitored throughout the run. If the environment
changes, the fitness of some or all of the locations of these sentries will alter
and this provides feedback which is used to set the rate of mutation of the
GA. If a large change in fitness occurs, indicating that the environment has
changed notably, the rate of mutation is increased.

The sentry strategy can be applied in a number of ways. The sentries can
remain outside the adapting population of solutions or they can be available
for selection and crossover. In the latter case, while the sentries can influence
the creation of new child solutions, they remain ‘fixed’ in location and are not
mutated or replaced. Morrison [420] provides a discussion of quality strategies
for sentry location, finding that random location often provides good results.
In addition to providing information on whether the environment is changing,
a sentry strategy can also provide information on where it is changing, thereby
providing feedback on whether the changes are local or global.

Diversity Maintenance During Run

Rather than waiting for environmental change to occur and then playing
‘catch-up’, a strategy of maintaining continual diversity in the population
can be followed. A wide variety of methods can be used for this purpose,
including:

e weakening selection pressure,
e continual monitoring of populational diversity,
e restricted mating/replacement,

e fitness-sharing/crowding, and

e random immigrants.

Strong selection pressure implies that the GA will intensively sample current
high fitness individuals, leading, if unchecked, to a rapid convergence of the
population to similar genotypic forms. This can make it difficult for the pop-
ulation to adapt if environmental change occurs, particularly if the change
occurs in a region of the landscape which is not currently being sampled by
the population of solutions. Hence, the use of a lower selection pressure will
help maintain diversity in the population of genotypes. Another related con-
sideration when implementing a GA in a dynamic environment is what form

46 4 Extending the Genetic Algorithm

of selection and replacement strategy to implement. The steady-state GA can
offer advantages over the canonical generational GA. It allows a quicker re-
sponse to a shift in the environment, as high-quality, newly created children
are immediately available for mating purposes.

The degree of diversity of a population can be continually monitored in real

time as the GA runs. Populational diversity can be defined on many levels,
including diversity of fitness values and diversity of phenotypic or genotypic
structures. Multiple measures of diversity can be defined for each of these. For
example, diversity in a collection of real-valued fitnesses could be measured
using the standard deviation of those values. However measured, if population
diversity falls below a trigger level, action can be taken to increase diversity
by raising the level of mutation or by replacing a portion of the population
by newly created random individuals.
Under a restricted mating or restricted replacement strategy, individuals
which are too similar are not allowed to mate, and in a restricted replacement
strategy a newly created child is precluded from entering the population unless
it is sufficiently different to existing members of the population. The object
in both cases is to avoid convergence of the population to a small subset of
genotypes.

A fitness-sharing mechanism [213] aims to reduce the chance that a mul-
titude of similar individuals will be selected for reproduction, thereby reduc-
ing the genetic diversity of subsequent generations. An example of a fitness-
sharing mechanism is:

Q)

fi@)=5——
> s(d(i, §))
j=1

(4.1)

where f(i) represents the original raw fitness of individual i. If there are a
number of individuals which are similar to i in the population, its fitness
for use in the selection process is reduced. The shared (reduced) fitness of
individual 7 is denoted as f’(i), and this corresponds to i’s original raw fitness,
derated or reduced by an amount which is determined by a sharing function.

The sharing function s as in (4.2) provides a measure of the density of the
population within a given neighbourhood of i. For any pair of individuals i, j
in the population, the sharing function returns a value of ‘0’ if 7 and j are
more than a specified distance ¢ apart (Fig. 4.1), and a value of ‘17 if they are

identical.
1—-(2)" ifd<t
s(d) = {0 (2)° ifd<s (1.2)

otherwise.

where d is a measure of the actual distance between two solutions and « is a
scaling constant. To provide intuition on the sharing formula, if two individu-
als in the current population are virtually identical, the distance between them
is close to zero. Consequently, the raw fitness of each individual is reduced by
50%, reducing each individual’s chance of being selected for reproduction.

4.2 Structured Population GAs 49

/ Population 1 \

r 3

Population 2 41> | Population 4

v

\ Population 3 /

/ Population 1 \

Population 2 Population 4

\ Population 3 /

Fig. 4.2. Two examples of an island topology. The top network has unrestricted
migration between all islands and the bottom network has a ring migration topology,
where individuals can only migrate to one adjacent island

strategies can be used. For example, migration of individuals from one popu-
lation to another may be unrestricted, or it may be confined to a predefined
neighbourhood for each population (Fig. 4.2).

Illustrating one implementation of an island model, suppose there are four
subpopulations with an unrestricted migration structure. A migration pool
can be created for each subpopulation consisting of individuals selected from
the other three subpopulations (perhaps their most fit individual). For each
subpopulation in turn, a random selection is then made from its migration
pool, with this individual replacing the worst individual in the subpopulation
it enters.

Cellular EA

In cEA each individual genotype is considered as occupying a cell in a lattice
(or graph) structure (Fig. 4.3). The operations of selection and recombination
are constrained to take place in a small neighbourhood around each individual.
When a cell is being updated, two parents are selected from its surrounding

50 4 Extending the Genetic Algorithm

neighbourhood, and genetic operators are applied to the two parents to pro-
duce an offspring, with this offspring replacing the current genotype stored in
that cell.

Each cell has its own pool of potential mates and in turn is a member of
several other neighbourhoods, as the neighbourhoods of adjoining cells over-
lap. Therefore, in contrast to dEA, which typically has a few relatively large
subpopulations, there are typically many small subpopulations in cEA.

O0O00O0O
O0Ce0OO0
CeOOO
OO0
Sleielele.

Fig. 4.3. A grid structure where a neighbourhood is defined around an individual
(here the shaded cell)

In implementations of cEAs, updates of the state of each cell can he syn-
chronous, where all cells are updated simultaneously using the cell contents in
the current lattice. As the new genotypes are created, they are copied across to
the next generation’s lattice one at a time. Alternatively, the update process
can be asynchronous, where the lattice is updated one cell at a time so that
new genotypes can influence the update process as scon as they are created.
One method of asynchronous update is to update all cells sequentially from
left to right, and from line to line, starting from the top left corner (fized line
sweep). Another method of asynchronous update is to randomly select (with
uniform probability and with replacement) which cell to update during each
time step (uniform choice).

4.3 Constrained Optimisation

Many important problems consist of attempting to maximise or minimise an
objective function subject to a series of constraints. The constraints serve to
bound the feasible region of valid solutions, possibly to a very small subset of
the entire (unbounded) search space (Fig. 4.4).

More formally, a constrained optimisation problem (assuming that the
objective function is to be maximised) can be stated as follows: find the vector
z = (z1,Z2,...,24)7 ,z € R? in order to:

Maximise f(x) (4.3)

4.3 Constrained Optimisation 51

Constraints

A L

Feasible/ -

region

Fig. 4.4. Feasible region for a maximisation problem bounded by the = and y axes
and three other constraints

subject to
inequality constraints: gi(z) <0, i=1,....,m (4.4)
equality constraints: hi(z) =0, i=1,...,r (4.5)
boundary constraints: ot < g < P G =1,...,d. (4.6)

The boundary constraints can be used to enforce physical conditions such as
mass > 0, etc. There are several approaches that can be taken when using a
GA for constrained optimisation. A simple approach is to apply the GA as
normal and assign zero fitness to any genotypes which generate an illegal so-
lution which breaches one or more constraints. This strategy can be poetically
referred to as the death penalty [409]. A problem with this approach is that
even with low-dimensional problems it can produce a highly inefficient search
process. If the problem is highly constrained, many generated genotypes may
be illegal (for example, none of the initially randomly generated solutions
might be feasible); hence much of the GA’s effort is wasted. There is also a
risk that there could be over-rapid convergence on the first feasible solution
found. As the dimensionality of the problem increases, the above problems
are worsened as ratio of invalid solutions outside the feasible area to valid
solutions inside the feasible area will rapidly increase. Two key issues arise
when applying the GA to a constrained optimisation problem:

i. it may be difficult to generate an initial population of feasible genotypes,
and

ii. crossover and mutation may act to convert a legal solution into an illegal
one.

