NATURAL COMPUTING

NATURAL
COMPUTING

DENNIS SHASHA
and CATHY LAZERE

NNNNNNNNNNNNN

Copyright © 2010 by Dennis Shasha and Cathy Lazere

All rights reserved
Printed in the United States of America
First Edition

For information about permission to reproduce
selections from this book, write to Permissions,
W. W. Norton & Company, Inc.,

500 Fifth Avenue, New York, NY 10110

For information about special discounts for bulk
purchases, please contact W. W. Norton Special Sales at
specialsales@wwnorton.com or 800-233-4830

Manufacturing by Courier Westford
Book design by Lovedog Studio
Production manager: Devon Zahn

Library of Congress Cataloging-in-Publication Data

Shasha, Dennis Elliott.
Natural computing : DNA, quantum bits, and the future
of smart machines / Dennis Shasha and Cathy Lazere. — Ist ed.
p. cm.
Includes bibliographical references and index.
ISBN 978-0-393-33683-2 (pbk.)
1. Natural computation. 2. Artificial intelligence.
3. Computer scientists. [. Lazere, Cathy A. IL. Title.
QA76.9.N37S33 2010
006.3—dc22
2010004807

W. W. Norton & Company, Inc.
500 Fifth Avenue, New York, N.Y. 10110
WWWw.wwnorton.com

W. W. Norton & Company Ltd.
Castle House, 75/76 Wells Street, London W1T 3QT

1234567890

CONTENTS

Preface

X1

Part I: ADAPTIVE COMPUTING

1. RODNEY BROQKS: Animals Rule

2. GLENN REEVES AND ADRIAN STOICA:

Design for a Faraway Planet

3. LOUIS QUALLS:

Putting Evolution on the Design Team

4. JAKE LOVELESS AND AMRUT BHARAMBE:
Riding the Big One

5. NANCY LEVESON: “It’s the System, Stupid”

11

23

43

55

69

X Contents

PART Il: HARNESSING LIFESTUFF 85

6. NED SEEMAN: At the Edge of Life 93

7 p ROTHE D Lif ff Lmi 105

8. STEVE SKIENA: Programming Bugs 121
9. GERALD SUSSMAN: Building a Billion Biocomputers 133
10. RADHIKA NAGPAL: From L 14
PART Ill: PHYSICS AND SPEED 157
11. MONTY DENNEAU: The Architect of Speed 165
12. DAVID SHAW: Anton and the Giant Femtoscope 179
13. JONATHAN MILLS: Doing What Comes Naturally 193
14. SCOTT AARONSON: Finding a New Law of Physics 215
Epilogue 233
Natural Computing Time Line 237
Acknowledgments 243
References 245

Index 251

PREFACE

When we began this book, we expected to talk to scientists who
were solving problems on the frontier of what is possible in com-
puting. We expected them to describe new computer archi-
tectures and a variety of new software techniques. The fifteen
scientists featured in Natural Computing control spacecraft from
millions of miles away, embed intelligence in smart bacteria, or
build computers to run as fast as a million desktops combined.
They work on the most challenging applications in science, engi-
neering, and even finance. We expected this diversity, but we
didn'’t expect the common vision that has emerged across all of
these fields: the future of computing is a synthesis with nature.

There are three major strands to this vision.

First, biological thinking has inspired new ways to do digital
computing. This hasn’t happened yet in your word processor or in
data centers, but it has occurred in applications that are pushing
technology to its most interesting limits. For example, computers
control spacecraft throughout flight and after landing. Manual

repair of onboard hardware, once in flight, is often impossible;

Xii Preface

but innovative spacecraft engineers propose designing machines
that will repair themselves. If you’re not in an engineering field,
you may not appreciate what a change in thinking this approach
represents. Instead of building a high-precision machine that can
handle every possibility, designers construct a machine that will
adapt itself to possibilities the designers cannot even imagine.

Although there is some debate about how to realize this new
design philosophy, many of the scientists profiled in this book
suggest that evolution or some form of learning should be
involved. At first glance, evolution and learning may seem very
different. Evolution works across many generations and organ-
isms, while learning and adaptation occur in a single organism.
Conceptually, however, they are very similar: try something and
see how it works; then respond to feedback by trying something
new that has a chance to be better. We associate learning with
conscious improvement, but evolution occurs subconsciously,
chemically, or even metabolically. For purposes of survival, how-
ever, learning and evolution have the same effect.

Many applications are based on evolutionary techniques. In
Natural Computing, a surfer dude turned mathematical finan-
cier uses evolutionary algorithms to figure out when to buy or
sell US Treasury bonds. A professor analyzes the safety of a mis-
sile defense system by checking how well safety procedures adapt
to failure. In these instances, evolution, learning, and adaptation
are linked.

Second, biological entities may replace silicon. Computing built
on DNA or bacterial cells is nearly free (billions of bacteria need
just a little sugar water to grow), and DNA computing also has
a massively parallel capacity. One day, living bacteria rather

than silicon electronics may compute inside our bodies or inside

Preface Xiil

microfactories. Harnessing life in this way will require the devel-
opment of an entirely new paradigm of computing. No longer
will a human hand design computers to work reliably for several
years, give them universally known names, and install them in
air-conditioned splendor.

Computers made of bacteria or viruses come by the million,
have no names, and are provincial—they communicate only
with their neighbors. They also fail often. Getting them to do
something useful is daunting and might seem impossible, but it
must be possible because we already have what mathematicians
call an existence proof: humans are composed of about 100 tril-
lion cells and we are able to run, think, and love, even though
none of our individual cells can do those things.

Third, new applications may require rethinking the under-
lying physics of computation. Simulating protein folding or
breaking codes requires thousands of processors to coordinate
their work. Because communication through switches and
computer memory is slow compared with the speed of transis-
tors, such a strategy works best when there is little communi-
cation between faraway processors. For that reason, the fastest
digital machines on the planet are designed to move informa-
tion as little as possible.

For example, a multi-millionaire inventor has embarked on
the design of a machine to simulate the behavior of proteins. To
do this, his hardware moves the information concerning each
atom in the protein to very specific places within the active cir-
cuitry. At those places, information is combined with corre-
sponding information about neighboring atoms—all without
returning to the computer’s slow memory. The payoff may be

speeding up computation by a factor of 1,000, enough to accel-

Xiv Preface

erate a task that would normally require as much as a century to
one that could be completed in less than 100 days.

Another designer, much less well funded, has constructed a
computing device whose main computational element is a piece
of foam attached to 25 wires. Measuring the electric current
could offer a method to simulate the differential equations that
characterize a whole host of “continuous” scientific problems,
from the prediction of star trajectories in galaxies to the propa-
gation of pigmentation on butterfly wings. This “extended ana-
log computer” turns computing completely on its head. Instead
of calculating an answer using 1s and 0s and arithmetic in a digi-
tal computer, it measures an answer.

You may find yourself feeling affection for these machines.
Instead of the hard metal engines that do calculations or send
e-mails or play chess, you will see machines that are more
human—they repair themselves, attempt extremely hard prob-
lems, and sometimes make mistakes. These are computational
devices that may one day set your broken bones, maintain the
stability of bridges, or perhaps even help you breathe underwater.

In writing Natural Computing, we encountered a constella-
tion of ideas that could change the world decisively for the better.
Each chapter in this book describes a unique path to discov-
ery. We hope you enjoy reading the stories of these risk-seeking

adventurers as much as we enjoyed writing them.

Copyrighted material

Copyrighted material

MODERN MANUFACTURING BEGAN WITH THE NOTION OF INTER-
changeable parts, dating back to Johannes Gutenberg’s movable
type in the fifteenth century. By the eighteenth century, manu-
facturers had become more concerned about the precision of the
parts. Eli Whitney’s interchangeable musket parts had a precision
of Y30 inch (about 1 millimeter). Machine tolerances today are typ-
ically 10 micrometers (millionths of a meter), 100 times more pre-
cise than what Whitney could achieve. Optical tolerances are now
measured in the nanometer range—a million times more pre-
cise than Whitney’s. Designers now have the opportunity to build
machines of exquisite precision for the task at hand.

Mainstream computer science is built on algorithms. An
algorithm is a method that is guaranteed to produce a correct
response for a large class of stimuli with a specified efficiency.
Think of algorithms as recipes—to produce a particular dish,

combine specified ingredients in a recommended order to obtain

4 Adaptive Computing

a desired result. For example, a “mergesort” algorithm puts items
in order no matter what kinds of items are presented to it.

Although algorithms will always play a central role in com-
puting, some problems are fundamentally not algorithmic. Con-
sider the following problem: You are to survive in Antarctica and
keep equipment operating at any temperature down to —60°C
(=76°F). You know that your shelter and clothes may suffer any
one of many possible mishaps. How will you and your equip-
ment survive? An algorithmically oriented computer scientist
would complain that the problem is ill posed. If the mishaps are
great enough, it may not be possible to survive. But what if you
had to design a solution that would work most of the time? You
would need to build in adaptation or its cousin, evolution.

As early as 1954, the mathematician Nils Aall Barricelli, work-
ing at the Institute for Advanced Study at Princeton, simulated
simple models of evolution using a computer. About fifteen years
later, the German computer scientists Ingo Rechenberg and
Hans-Paul Schwefel used evolution to improve designs for com-
plex engineering problems.

In the natural world, evolution applies to organisms. In the
computational world, evolution applies to designs. In both cases,
evolution can lead to beautiful results without the benefit of a con-
scious designer. In 1975, John Holland of the University of Michi-
gan wrote a landmark book, Adaptation in Natural and Artificial
Systems, in which he showed the commonalities among the dif-
ferent approaches to evolutionary design and improved them
through a uniform mathematical framework.

Holland’s framework became the basis for modern genetic
(sometimes called “evolutionary”) algorithms. It consists of

repeated applications of the following procedure:

Adaptive Computing 5

1. Start with a population of possible designs (candidates).

2. Evaluate each one to give a “fitness” score, perhaps
based on monetary cost or energy consumption.
Remember the design that receives the best fitness score.

4. Create a new population by selecting the fittest candi-
date designs and changing them slightly in a random
way or changing them greatly by combining different

designs together.

Suppose you are using this method to design a car. If a good
design proposes a composite chassis with a six-cylinder engine
and another good design proposes an aluminum chassis with an
electric engine, the combined design might be a composite chas-
sis with an electric engine. Parent designs beget children having
some characteristics of each.

Although evolution can lead to better designs, small adap-
tations require less effort. For example, you can learn to ride a
bicycle or juggle without evolving. Adaptations at that level may
entail trial and error, but the organism doesn’t need to change.
Rodney Brooks does adaptation in motion. Since the 1980s,
he has designed robots that move intelligently by adaptation.
Since starting his pioneering work, Brooks has been inspired by
insects, elephants, and geckos. In the process, he has redefined
what it means for robots to be smart.

Suppose you are designing software for a robot that must
navigate the surface of another planet. You don’t know what the
exact task will be. You do know the ground is rough. You also
know the environment is extremely hostile, but you don’t know
the particulars. You are faced, in fact, not only with unknowns
but with what Glenn Reeves of NASA’s Jet Propulsion Labora-

6 Adaptive Computing

tory calls “unknown unknowns”—unknowns you can’t even
characterize. It won’t work to design a rover, send it, and then
hope for the best. In fact, the current state of the art is to diag-
nose from afar—100 million miles away. To do that, Reeves has
to design spacecraft instruments that act like chatty patients
talking about their current condition and reporting when they
feel better. When the instrument is sick, his team then has to
send up electronic prosthetics in the form of patches, or small
changes to the software. The device uses the patch in place of the
erroneous code in the same way a patient would use a prosthetic
limb in place of a non-functioning limb.

Adrian Stoica, who also works at the Jet Propulsion Labora-
tory, imagines future spacecraft that can heal themselves. Con-
sider the challenges: day and nighttime temperatures on the
surface of, say, Mars might vary from a frigid —133°C (-207°F) to
a balmy +27°C (+80°F). A person facing temperature variations
changes clothes. A circuit can’t cover itself, but perhaps it can
change how the electrons flow. Stoica has designed circuits that
can “evolve” a solution on their own. Stoica dreams of equipment
that will survive 100 years by evolutionary adaptation.

Some would argue that genetic algorithms do not deserve the
good name of algorithm, because they don’t guarantee efficiency
and correctness. This is true. A genetic algorithm offers no guar-
antees, but it often arrives at surprisingly good designs for prob-
lems having no known algorithms. Using genetic algorithms,
Louis Qualls designs custom nuclear power plants for extreme
environments, including space. To get the specifications—how
much power the plant should generate, how much it should
weigh if powering a spacecraft, and so on—he talks to special-

ists, gets design preferences from each of them, and then tries

Adaptive Computing 7

to arrive at a design that embodies a compromise among those
preferences while meeting the specifications. To do this, he must
choose among trillions of design possibilities. By hand, he can
explore only a fraction of the possibilities in his search for a good
design. He also knows that he often returns to designs he has
done previously because he has grown emotionally attached to
them. By contrast, when he uses genetic algorithms to program
his computer, the programs sometimes discover designs that he
would never have considered but either cost less or perform bet-
ter than his own. Further, if the specifications change (and they
often do), he can set the computer off to find another design, still
without any emotional attachment. It is quite likely that in the
future, most complex engineering artifacts will be designed in
this way.

Jake Loveless and Amrut Bharambe apply similar ideas to
finance and use genetic algorithms to design rules to help them
trade treasury bonds. While engineers use complex physical cri-
teria to determine “fitness,” Loveless and Bharambe use the most
basic financial measures: high profit at relatively low risk. To
determine whether a rule is good, they try it on historical data.
The search space (the number of possible rules) is scarily large
and they don’t understand the rules that their genetic algorithms
generate, but the method works.

Nancy Leveson works with nature too, but mostly human
nature as it meshes with high technology. She considers the marvels
of engineering—power plants, missile defense, and spacecraft—
and tries to make them safe. She started her career in computing,
but then took off for the jungles of New Guinea and pursued a
serious interest in cognitive psychology before returning with a

new perspective on computing. She believes that safety requires

8 Adaptive Computing

dependable adaptation—mistakes happen, but the system must
compensate for them. The “system,” in Leveson’s view, does
not stop at a convenient boundary like software specification.
It extends all the way up the human management chain. When
computing elements combine with people in life-critical situa-
tions, adaptability translates to multiple levels of feedback and
modification. A failure at a lower level must be compensated
for by a person or machine at a higher level. Leveson’s approach
tries to ensure that every level of a system detects problems at
the level below and responds appropriately. Conceptually sim-
ple, this approach is being used to help prevent accidental mis-

sile launches and air traffic accidents.

I~
(TP~
dp-dp 4\\‘“.} P ‘m'&““&?‘)
QGPYLEY

0 ‘ ,,““““Lr -ﬂil""]lr -Mm‘l-

q) "“-l!w ‘U“‘
.lﬂl!““‘“’ullmu’«ul“l""

~ Ip "‘g
|\l|l| !‘$

You’re all assuming there’s a logical representation inside the
robot. What if there is no logical representation? | had been
watching insects and how they do stuff ... do they really have
a three-dimensional rendering of the world around them—
a computer graphics model inside that puny little head with
50,000 neurons? Is that what those neurons are doing?

— Rodney Brooks

Chapter 1

Animals
Rule

WHEN ARTIFICIAL INTELLIGENCE (Al) WAS BORN IN THE 1950s,
excelling at IQ tests or chess seemed to be a good indication of
intelligence. After all, that’s what schools measured. Since then,
a slew of other definitions have been added to the mix, includ-
ing emotional IQ and Howard Gardner’s interpersonal and kin-
esthetic measures of intelligence. But if we define intelligence as
the ability to survive in the world, we need to look at more fun-
damental skills. How is it that we can walk, recognize objects,
and navigate around obstacles? You may say, “Animals can do

1?

that!” To which Rodney Brooks might respond, “Exactly!” In
fact, robots might do better if they didn’t copy humans in all
aspects of our behavior. For example, who walks better over
rough terrain—humans or insects? If you've ever seen insects
scramble out of impossible holes, you might vote for the insects.

In a seminal paper from 1990, “Elephants Don’t Play Chess,”
Rodney Brooks presented an evolutionary argument for the rel-

ative insignificance of human “higher” intelligence. Life arose

12 Adaptive Computing

on Earth 3.5 billion years ago, he noted; vertebrates and insects
appeared during the last 10% of that time, approximately 450
million years ago. The great apes emerged in the last 0.5% of that
period, about 18 million years ago. Agriculture was created only
19,000 years ago, 0.0005% of life’s time on Earth. Expert knowl-
edge has appeared only in the last few hundred years.

Computers are most successful at rapidly performing the skills
learned in the last few hundred years of human history, perhaps
because we are most conscious of those skills and they take the
most conscious effort. But our unconscious acts pose a greater
computing challenge. In the brief history of space travel, it has
been easier to build a computer program to guide a spacecraft
to Mars than to build a robot able to navigate over rough terrain
with anything like the skill of a billy goat. Evolution required
billions of years to arrive at the billy goat, but only a few mil-
lion more to arrive at human intelligence. The factor of 1,000 in
relative timescales should give us a certain humility before these
“primitive” intelligences.

When Brooks wrote his “Elephants” paper, the field of arti-
ficial intelligence modeled intelligence as symbol manipulation.
The scientific goal was to design sensor modules such as vision
systems. These would abstract the world into symbols and pass
the symbols into an intelligent core, a kind of electronic mon-
arch. The monarch would manipulate the symbols and then
instruct actuators (normally wheels) to move. In many ways, this
stepped process mirrored the idealized hierarchy of a large cor-
poration or the military—“brains” on top, eyes and limbs on the
bottom. Brooks objected to this paradigm on philosophical as
well as pragmatic grounds.

Brooks’s philosophical objections may have originated in his

Rodney Brooks 13

A Low-level processing %
TN
N2

Vo

Sensor

manipulating
monarch Reactor

The monarch madel. The monarch receives data from sensors,
reasons about it, and then emits decisions that are carried out
by reactors.

unlikely path to science and MIT, where he is now a professor at
CSAIL, the Computer Science and Artificial Intelligence Labora-
tory. Brooks was born in 1954 in Adelaide, Australia. Though not
exactly the outback, Adelaide was a long way from the centers of
computer science research, but the remoteness may have been to
Brooks’s advantage. Nobody told him the right way to approach
the field. At age eight, on his own, he began designing comput-
ers to play games. At twelve, he built a primitive computer out of
old telephone relays to play tic-tac-toe. He resolved to pursue a
career in game design.

In 1972, Brooks began studies at Flinders University of South

14 Adaptive Computing

Australia. On the weekends he was permitted to use the lone
university computer with its 16 kilobytes (roughly 16,000 bytes)
of memory and a 1-megabyte disk. Its million bytes were only
one-millionth of the memory capacity of a contemporary desk-
top computer. Still, a megabyte was a lot more than 16 kilobytes.
Brooks figured out how to program the computer as if it had the
full 1 megabyte of memory by moving data from the disk when
necessary. He used an innovation called virtual memory that had
been commercially realized only a few years earlier. Brooks didn’t
look for papers describing how to do it; he just did it. “Someone
had described to me the idea,” says Brooks. “It sounded pretty
good, so I implemented virtual memory on this computer.”
Brooks went to Stanford for his PhD, where he met another
up-and-coming roboticist: Hans Moravec, a graduate student a
few years ahead of him. In the summer of 1979, in a little lab in
the hills behind the campus, Brooks helped Moravec with a robot
known as Cart. At midnight each evening, when everyone else
went home, Brooks and Moravec would set up Cart. The robot
would move about 20 meters around the lab for the next 6 hours.
The two young scientists wanted to create stereo vision—giving
the robot depth perception by equipping it with slightly differ-
ent images from each of two viewpoints. Stereo vision normally
requires two cameras, but at that time cameras were expensive
and they had only one. So they had to slide the one camera from
side to side. “T was just a gofer to move furniture around, set things
up, get things connected,” says Brooks. The computer would have
a look at the world and then compute for 15 minutes and move a
meter. Then it would open its eyes, look, shut its eyes, and com-

pute for another 15 minutes. It would move a meter blind, based

Rodney Brooks 15

on where it thought things were. “At the time I thought it was way
too much computation,” notes Brooks.

Brooks’s doctoral thesis was on machine vision, a classic Al
approach in which the camera would feed a computer an image.
Brooks’s program would then translate the visual scene into
symbols to be processed by a hypothetical “intelligence”—the
symbol-manipulating monarch. “The basic idea that nobody was
questioning was that you've got a camera, you've got pixels, and
you just change the pixels into a logical description of the world,”
Brooks says.

On vacation in Thailand in 1988, Brooks visited his first wife’s
family home, which stood on stilts by a river. No one spoke English,
so Brooks sat by himself, watching insects. The more he watched,
the more he began to question the symbolic Al paradigm. He
just couldn’t believe that insects were capable of forming logical
descriptions inside “that puny little head with 50,000 neurons.”

In 1990, Brooks’s “Elephants” paper explained what he play-
fully called “nouvelle AI.” His hypothesis was that an intelligent
system had to have its representations grounded in the physi-
cal world. “The world is the best model of itself,” as he put it.
The world is up-to-date and contains all necessary details. This
meant that Brooks’s robots would dispense with the hierarchi-
cal structure of “classical” Al, with its symbolic representation
of the world. Instead, nouvelle Al robots would possess a set of
independently designed skills. Just as a human plays basketball
and walks using the same limbs and eyes, a robot shares sen-
sors and actuators for different skills. The skills, however, are
independent—some of them, especially the highest-level ones,

may fail without causing others to stop working.

16 Adaptive Computing

\
; 5
ﬁ Sensor

Wander Avoid

Vo

Reactor

Nouvelle Al. A robot should sense and then move according to
simple rules such as “Avoid collisions” or “Wander.”

Embodying this philosophy, the Brooks lab at MIT had built
an early robot called Allen in 1985, which Brooks puckishly had
named after Allen Newell, one of the early proponents of sym-
bolic Al. Allen had three skills: avoid collisions, wander around
randomly, and go to distant objects. “Allen would happily sit in
the middle of a room until approached, and then scurry away,
avoiding collisions as it went,” remembers Brooks. “The internal
representation was that every sonar return represented a repul-
sive force.”

At the lowest level, Allen acted like a frightened mouse, fol-
lowing a primal rule: avoid hitting or being hit. What would keep
Allen from hiding in a corner? Every 10 seconds, Allen would
be told to wander randomly. Note that wandering also requires

moving wheels, in accordance with the Brooks strategy of having

Rodney Brooks 17

different skills use the same actuators. The collision avoidance
skill takes precedence over wandering.

In its third function, the robot used its sonar to look for dis-
tant places and try to go to them. It would measure distance
using an odometer. Like a runner trying to complete a moun-
tain race while avoiding a slip off the edge, the robot combined
goal seeking with underlying survival skills. It seemed almost
too easy to be research. “I argue for simplicity,” says Brooks.
“Get away from hairy equations.” He contrasts that viewpoint
with the belief of some of his colleagues and critics, who think
the hairier the better. To Brooks, if you need to explain some-
thing with a lot of convoluted mathematics, the solution will be

» o«

“pretty unstable.” “I'm interested in building something that
can’t fail to work,” he says.

Rolling robots were one thing. What about walking robots
for scrambling over rough terrain? All that thinking in Thailand
would be put into play. Working with Colin Angle and Grinnell
Moore, a high school student, Brooks built a six-legged walking
robot named Genghis. “There weren’t many walking robots at
the time. Everyone else’s walking machine was big and fragile,”
remembers Brooks.

Brooks had been looking at high-speed videos of insects run-
ning. “They fall all the time and hit their metaphorical chin,” he
says. Because the strength-to-weight ratio is greater at smaller
sizes, they can afford to be really bad walkers. By contrast, a filly
at the Kentucky Derby can’t afford to fall—she might break a leg
and suffer a career-ending injury.

Brooks found a natural application for Genghis at the Jet Pro-
pulsion Laboratory (JPL). He started attending meetings as they

were talking about new Mars missions. JPL was promoting a

18 Adaptive Computing

Brooks's walking robot Genghis, a multi-legged, low-lying device
that could afford to fall.

1,000-kilogram robot called Robbie with a big arm at the front.
It moved a centimeter a minute. JPL estimated that a mission to
send Robbie to Mars would cost about $12 billion. Brooks knew
the required funding would never come through. At a meeting,
he suggested sending a small robot instead of a big one. “I remem-
ber one of the lifers at JPL who was an instrument builder say-
ing [as he tells the story, Brooks morphs his Aussie accent into a
southern drawl], ‘A scientist waits 15 or 20 years for a mission, he
doesn’t want a little bitty instrument—he wants a biginstrument.
You can’t send a little robot—you’ve got to send a big robot!””
Brooks proposed a compromise. Instead of sending a single
1,000-kilogram robot, send a hundred 1-kilogram robots. That

would cut the total mass down by a factor of 10 and spread the

Rodney Brooks 19

risk. “If you send a 1,000-kilogram robot, you have to be very
careful about what you do,” says Brooks. “If you screw up, you've
lost your $12 billion investment. If you’ve got 100 of them and
you lose one—big deal.”

Brooks found another benefit in the “swarm of robots” idea:
mass production. Building 100 copies of a small robot would
be cheaper than building a single 1,000-kilogram robot. But
then what do you do with 100 robots once they get to Mars?
“If you have a single 1,000-kilogram robot, you want to control
it at all times. If you have 100 [smaller robots], you can’t pos-
sibly control them; they have to be autonomous. So get over
it—make them autonomous from day one and let them out of
your control.”

In 1989, Brooks wrote a paper for the British Interplane-
tary Society embodying his in-your-face plan. The title of that
paper—“Fast, Cheap, and Out of Control”—was later used
in 1997 for a documentary by Erroll Morris in which Brooks
appeared, along with a topiary artist, a lion tamer, and the
world’s foremost expert on naked moles. The paper resonated
with a NASA scientist named Donna Shirley. Shirley arranged
tor Colin Angle, an undergraduate at the time, to spend the sum-
mer of 1989 at the Jet Propulsion Laboratory. There Angle built
a little, half-kilogram robot called Tooth that could do many of
the things the 1,000-kilogram JPL robot Robbie could do. Rajiv
Desau and Dave Miller at JPL used the Tooth code to build Rocky
I and Rocky II, six-wheeled rovers. The current Mars rovers are
based on that design.

Inspired by that success, Brooks and the newly minted gradu-
ate Colin Angle decided to start a company for lunar and Mars

exploration. “We were going to send pairs of robots to the moon

20 Adaptive Computing

with advertising decals on them,” says Brooks. Eventually, Brooks
teamed up with David Scott, commander of Apollo 15. Through
Scott, Brooks became connected in 1992 to the Strategic Defense
Initiative (SDI), fondly labeled “Star Wars” by its opponents and,
under Clinton, renamed the Ballistic Missile Defense Organiza-
tion. The plan was to exploit bureaucratic rivalry. The developers
of ballistic missile defense had spacecraft called Brilliant Pebbles.
The idea was that these spacecraft would locate rocket plumes
of ballistic missiles in their launch phase and then ram them
with non-nuclear mini-missiles. But by 1992, the Soviet threat
had disappeared, so the Ballistic Missile Defense Organization
needed to show off its technology in other ways.

A new plan was proposed to put a Brilliant Pebble on a vehi-
cle called Clementine that would orbit the moon. The missile
detection instruments of the pebble would be replaced with
Brooks’s walking robot called Grendel. The pebble would land
on the moon, and the robot would do some environmental tests.
In 1993, a test run was conducted at Edwards Air Force Base. It
looked as though it could work. Interagency turf wars quickly
interfered, however. NASA protested that extraterrestrial explo-
ration was its job, so the idea was scrapped. Brooks’s Rocky VI,
however, was sent to Mars. NASA seemed on board with the
Brooks philosophy. “They said we're going to do it faster, cheaper,
better. We're not going to do it the old way. We’re going to do it
smarter,” Brooks recalls. Then the next mission to Mars failed.
“Faster, cheaper, better got canned.”

Since then, Brooks’s company, iRobot, has been making
autonomous vacuum cleaners called Roombas for household
use. It also manufactures bomb-disarming robots for the mili-

tary. The bioengineer Robert Full has collaborated with iRobot

Rodney Brooks 21

on robot construction and has revisited the insect inspiration.
After studying the movements of cockroaches and similar crawl-
ing insects with colleagues, Full determined that the legs of such
creatures could be modeled as articulated pogo sticks. Designing
moving robots this way enables them to navigate over difficult
obstacles and to move in and out of craters without a vision sys-
tem and with minimal computation. Springy limbs have elimi-

nated the need for thought in locomotion. Simplicity wins.

When you’re working with equipment on Earth, how you diag-

nose it and how you repair it are based on the fact that quite
literally you can walk up to it and touch it. The minute it leaves
the Earth, none of those things exist. You can’t touch it—you
can only observe it by what it tells you. You can’t go fix it. So
you have to deal with the fact that if something is going to

break, you either have to give up, or you have to work around it.

— Glenn Reeves

If you send out a spacecraft that will reach its target in 100
years, you can’t afford to use electronics that will fail within
10 years. You can try massive redundancy, but then you might
make a spacecraft that can’t fly. The goal is to see if these sys-

tems can become long life survivable all by themselves.

— Adridn Stoicd

Chapter 2

Design for
a Faraway Planet

IMAGINE YOU HAVE TO TROUBLESHOOT A MULTI-MILLION-DOLLAR
production system at a customer site. All eyes are on you—the
customer’s, your boss’s, and, if you're in charge, your colleagues’.
To analyze the problem, you test individual software and hard-
ware components, think, change the data, and run the software.
They’re watching you. You think some more, run the existing
data on different hardware, think as clearly as possible. They're
still watching. You think of a fix that might work. You try it. ..

Now imagine that your equipment is unique to your applica-
tion. Not only are your customers looking at you, but so is the
world press. The spacecraft is several minutes away at the speed
of light. In the best case, weather and power permitting, it can
communicate with you at 1,200 bits per second (a DSL line com-
municates 5,000 times faster). You can’t change the hardware or
even physically look at it.

Next, imagine that the spacecraft’s mission is to a distant

24 Adaptive Computing

planet, so far away that it takes 100 years to get there. Once there,
the spacecraft is subject to extremes in heat and cold. If a part
breaks, there’s no FedEx to replace it. Now suppose that somehow
the spacecraft can fix itself. Welcome to the challenges faced by

Glenn Reeves and Adrian Stoica of the Jet Propulsion Laboratory.

Fix and Learn

Born in 1960, Glenn Reeves grew up in South Pasadena. His
father worked as a civil engineer and manager for Caltrans, the
California State department in charge of freeways. As a young
boy, Reeves was interested in outer space. At his fifth birthday
party, cardboard cutouts of the moon, the planets, and stars hung
from the trees in the backyard. Other more grown-up dreamers
lived in the neighborhood—Pasadena is the home of the Jet Pro-
pulsion Laboratory (JPL).

Set against the San Gabriel Mountains, JPL sprawls over
almost two hundred acres. It was founded in the 1930s by the
California Institute of Technology (Caltech). In the wake of
Sputnik, JPL designed the first American satellite, Explorer I,
which was launched in 1958, shortly before Reeves was born. JPL
is essentially a laboratory for NASA; its employees design space-
craft and robotic missions to explore the moon and the planets.

“We would drive by JPL when I was young,” remembers
Reeves. “My mom would point as we were driving by and say to
me, ‘You know you’re going to work there someday.’ I didn’t even
know what the place was.” In high school, Reeves pursued sci-
ence, but only halfheartedly. He liked physics but didn’t excel at
it. He took a math self-study program and fell behind. His main

passion was working as an auto mechanic. “I was far more inter-

Glenn Reeves and Adrian Stoica 25

ested in having a job and making some money than preparing
for a career,” he admits.

At high school graduation, Reeves knew he should go to
college—his parents had insisted on that—but where to go and
what to study escaped him. He planned to go to the University
of California at Santa Barbara, but then he became romantically
involved with a local woman and decided to attend Cal Poly at
Pomona instead. There he took introductory courses in hotel
and restaurant management, accounting, and information sys-
tems. It was his first exposure to the computers of the day, which
required writing instructions on Fortran punch cards. “That lit-
tle puzzle of how to do that very simple programming had me
sufficiently intrigued to say, well, maybe I’d like to do this,”
Reeves recounts.

Reeves majored in computer science and continued living in
South Pasadena, commuting every day to Pomona. A chance
meeting changed his life. On his way to school one day, he noticed
one of his professors, John Rohr, sitting at a bus stop. Reeves was
en route to Rohr’s class and realized that if Rohr kept waiting for
the bus, the class wouldn’t happen. So he offered Rohr a ride. In
the course of their conversation during that drive, Rohr talked
about his work on the software for deep-space missions at JPL.

Rohr became Reeves’s advisor and arranged a summer job
for Reeves at JPL. That short-term job led to a full-time position
after Reeves graduated in 1983. He was assigned as a program-
mer for the spacecraft test equipment of the Magellan spacecraft.
Named after the Portuguese explorer Ferdinand Magellan, the
spacecraft’s mission was to map the surface of Venus.

Spacecraft test equipment of that era had two roles. First, it

had to act like the ground control equipment, the electronics that

26 Adaptive Computing

communicates with the spacecraft. Second, it had to act like the
spacecraft itself, including the parts that hadn’t been built yet.
With these functions, the test equipment enabled the develop-
ment team to build, test, and simulate flying the spacecraft long
before the final assembly was completed.

Reeves’s boss, Robert Anderson, broke with tradition by
replacing the mainframe-based spacecraft test equipment with
many interconnected single-board computers. In retrospect, the
advent of microprocessors made this a logical choice. Micropro-
cessors simplified the architecture: many independent boards
reduced the likelihood of a full system failure and eliminated
the single mainframe as a potential bottleneck. Reeves considers
Anderson to be his most influential mentor: “He taught me that
sometimes you have to step back and start with a blank sheet of
paper. There’s a point where capitalizing on your legacy and heri-
tage is no longer the right path forward anymore.”

After the Magellan project, Reeves did a brief stint outside
JPL. As in many organizations, leaving and then returning is
one way to increase pay and responsibility. In 1991, he came
back as the leader of the team developing the software for the
test equipment for the Cassini spacecraft. Cassini’s mission was
to explore Saturn’s rings and moons. Because Cassini had many
more instruments than Magellan, Reeves extended Anderson’s
distributed architecture to a greater number of interfaces and
simulation requirements. Each device on the spacecraft had a
corresponding dedicated computer, software, and specialized
hardware interface. About 20 computers were coordinated and
time-synchronized. They logged data, automated testing for con-
sistency, and provided connections to human ground operators.

Cassini was successfully launched in October 1997. In the

Glenn Reeves and Adrian Stoica 27

course of its mission, Cassini entered Saturn’s orbit on June 30,
2004. In January 2005 a major component, the Huygens probe,
built by the European Space Agency, dove toward one of Saturn’s
moons, Titan, to report on the composition of the atmosphere
before it landed on the surface.

In the 1990s, NASA also initiated a series of robotic missions
to Mars. It may come as a surprise to us wingless bipeds that land
travel is far more difficult than flying. The challenge begins with
the mechanical puzzle of landing without crushing the equip-
ment. Once on the surface, the hardware must cope with dust,
extreme temperature variations, and the difficulty of phon-
ing home. These robotic missions clearly required a new view
of design. Because of his success with prior projects, Reeves was
selected to lead the team working on spacecraft software devel-
opment (“flight software”) for the Mars Pathfinder mission.

The new challenges must have seemed daunting. The space-
craft had to perform three independent missions: launch and
travel to Mars, land successfully, and then act as a weather sta-
tion and communication station for the Sojourner rover. The
spacecraft had to accomplish all of this after surviving an almost
crash landing on Mars and coping with limited power while
being bombarded with powerful radiation.

After launch, no human can touch a spacecraft’s equipment
or probe it physically. Even electronic communication is frag-
ile. “If the antenna pointed toward Earth is off a little bit, you
won’t hear the spacecraft, because it’s transmitting with a power
of what amounts to a 100-watt bulb. That’s compounded by how
slow it is—how many minutes it takes for a round-trip,” explains
Reeves. With all of these potential problems, things tend to go

wrong. Fully 50% of the Mars missions have suffered failures,

28 Adaptive Computing

and most of those failures have resulted in the catastrophic loss
of the spacecraft. Many spacecraft are built with redundant
hardware, and careful thought is given to the problems and fail-
ures that might develop. But not everything can be anticipated.
Not one of the Mars missions has been error-free.

There are two philosophies about what to do when problems
arise: (1) abandon the mission or (2) try a workaround. Reeves,
the former auto mechanic, believes in anticipating problems as
much as possible while building in tools to work around prob-
lems he doesn’t anticipate—the “unknown unknowns,” as he
calls them. This philosophy comes in handy when you have to
salvage a multi-million-dollar spacecraft. The fix-it philosophy
also ensures that lessons learned from the problems become part
of the engineering knowledge base. “If you give up, then you’ll
never learn anything,” says Reeves. “You won’t know what to fix
in the future because you won’t know what went wrong.”

As most engineers know, there are good failures and bad
ones. If there is a single root cause and it’s something you could
fix in the future, that’s a good failure. If you can’t find the root
cause, then fantasies take over and you don’t know what to do
next. After all, the spectrum of possible causes is enormous—
workmanship problems on one-of-a-kind devices, the harsh
environment, dust, radiation, and aliens, to name just a few. “We
haven’t flown enough spacecraft to really understand the space
environment. We have some knowledge, but we’re still somewhat
guessing,” admits Reeves.

So far, the failures have been good ones; indeed, all of the fail-
ures to date could have happened on Earth. To understand both
the errors and their solutions, we need to understand a bit about

the debugging setup. For each spacecraft it sends into space, JPL

Glenn Reeves and Adrian Stoica 29

builds what amounts to a duplicate spacecraft on Earth. That
way, activities can be practiced and commands can be verified.
If the behavior of the spacecraft is abnormal, the Earth-bound
mechanics have a platform for diagnosis and resolution.

Spacecraft are designed to send data and status information
from time to time. If, for example, a basic “system OK” status
message arrives but scientific data doesn’t, there might be a prob-
lem with a scientific instrument but not with the whole device.
Ground control can take an active debugging role by issuing
commands that change the behavior of the spacecraft, notably
by uploading software corrections or by restarting various com-
ponents. Just as we often “fix” a problem on a personal computer
by restarting the machine, we can do the same with spacecraft
computers. As on Earth, however, restarting is sometimes not
enough.

The Mars Pathfinder consisted of two vehicles: the Sojourner
rover (a mobile robot designed to do experiments on the plan-
et’s surface) and the lander that provided the communica-
tion station, the imaging, and the weather station capabilities.
Reeves worked on the lander. His job was to develop the software
that took the spacecraft from Earth to the Martian orbit, per-
formed the landing, and then executed activities on the surface.
The rover operated independently; communication would come
through the lander and be relayed to Earth.

To world acclaim on July 4, 1997, the Pathfinder landed on the
surface of Mars, bouncing happily on its airbags. It started to col-
lect scientific data and perform its mission. But a few days later,
the lander’s computer began repeatedly restarting itself, stopping
all useful work. Reeves was asked to find out why. “If a computer

is sitting in front of you, you hit Ctrl-Alt-Delete and you reboot.

30 Adaptive Computing

The basic theory is the same in space,” says Reeves. “The hard
part is we need to know what the vehicle was doing just prior to
the reset.”

Fortunately, Reeves’s group had designed the ability to trace
what the computer was doing while it executed. They had a record
of all messages sent, which significant events had occurred in the
software, and, above all, which tasks were being executed and
when. The debugging team* determined that a low-priority task
was blocking a high-priority task. It was as if a stream of taxis
had occupied an intersection and blocked an ambulance that was
rushing toward a hospital.

The lander’s operating system, developed by a company
called Wind River, allowed higher-priority tasks to stop lower-
priority tasks from running, except when the lower-priority
task held a “lock” on a particular resource that the higher-pri-
ority task needed. In this case, the resource was a queue used to
pass messages containing scientific data to one of the science-
processing tasks. “Our first question was, Why should the low-
priority task hold the lock for so long? This is where having a
good test bed on Earth came in handy,” notes Reeves. The team
could use exactly the same software on the test bed as on the
flight vehicle. Over the course of several days, they were able
to cause the same problem to occur. The problem then became
obvious—it was a priority inversion situation (see the box “Pri-

ority Inversion”).

* The debugging team consisted of Rick Achatz, Dave Cummings, Kim
Gostelow, Don Meyer, Karl Schneider, Dave Smyth, Steve Stolper, Greg
Welz, and Pam Yoshioka at JPL, along with Mike Deliman, Brian Lazara,
and Lisa Stanley at Wind River, the vendor of the VxWorks operating
system that was used on the Mars Pathfinder.

40 Adaptive Computing

licate, then shutting them down if they go rogue is not as simple
as unplugging the power. They may go out of control because of
numbers and replication.” He maintains, however, that the posi-
tives still outweigh the negatives.

In formulating advanced concepts for space, Stoica has played
with the idea of ferraforming on other planets—creating human-
friendly habitats on Mars, for example. “It’s a mixture of the liv-
ing and the artificial with a functional purpose.” Maybe when
humans arrive at a terraformed Mars, robots will form a wel-

coming committee. They might offer champagne. Cheers?

