LIl ik
PECUETEL
I 11
_, i O S T
__ iy B

Network
Performance Analysis

Using the J Programming Language

@ Springer

Alan Holt

Network Performance
Analysis

Using the J Programming Language

@ Springer

Alan Holt, PhD

agholt@gmail.com

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library
Library of Congress Control Number: 2007936013

Printed on acid-free paper

ISBN 978-1-84628-822-7 e-ISBN 978-1-84628-823-4

(© Springer-Verlag London Limited 2008

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as per-
mitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publish-
ers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the

publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

987654321

Springer Science+Business Media

springer.com

Introduction

For reasons of tractibility, classical queuing theory assumes that the properties of net-
work traffic (arrival rates, service times) include the Markovian property. While the
Markovian assumption is valid for telephony networks, it has been widely reported
that, for data networks, traffic is fractal in nature [6, 13, 16, 37]. One way to represent
a traffic flow is as a stochastic process. Modelling traffic as Markovian stochastic
processes is attractive because flows can be characterised by only a small number
of parameters. Models of non-Markovian processes, however, are more complex and
analytical results are difficult to derive. Markovian traffic can be clearly distinguished
from Internet traffic patterns which exhibit properties of long-range dependence and
self-similarity. That is, traffic is bursty over a wide range of time scales. Backlog
and delay predictions are frequently underestimated if the Markovian property is
assumed when traffic is actually long-range dependent (and self-similar) [16, 28].

A number of methods for generating fractal-like traffic processes have been put for-
ward. Examples include Fractional ARIMA processes, Fractional Brownian motion,
chaotic maps and the superposition of heavy-tailed on/off sources. Network perfor-
mance can then be investigated using simulation techniques. Some of these fractal
traffic generating techniques are described in this book. We use J to simulate network
systems and analyse their performance under certain traffic conditions.

An alternative approach to simulation is network calculus. Network calculus is a
recent development where the exact properties of flows are unknown. The mathe-
matical foundations are based upon min-plus algebra, whereby the addition and mul-
tiplication operators of conventional algebra are exchanged for minimum and plus
operators. Instead of representing a traffic flow as stochastic process, a flow is char-
acterised by an envelope function. Service curves can also be expressed in this way.
Performance bounds can be derived through the application of min-plus algebraic
methods on flow arrival curves and network system service curves.

Another approach is to consider closed-loop methods of modelling networks. Inter-
net transport protocol such TCP (Transmission Control Protocol), and more recently
DCCP (Datagram Congestion Control Protocol [34]), adjust their transmission rates

2 1 Introduction

according to the congestion state of the network [29]. TCP sends data a “window”
at a time. TCP initially probes the network for bandwidth by increasing its window
size each time it receives an acknowledgment. TCP’s transmission rate is regulated
by the acknowledgment round-trip time. In the event of congestion, TCP reduces
its window size (and thus its transmission rate) and begins probing the network for
bandwidth once again. Congestion control algorithms can be modelled as dynamical
feedback systems, and flow patterns are governed by transport protocols reacting to
network events.

The aim of this book is to present network performance analysis techniques that do
not rely on the Markovian assumption. Topics in network performance analysis are
presented with the aid of the J programming language. J is rich in mathematical func-
tionality, which makes it an ideal tool for analytical methods. Throughout the book
a practical approach is favoured. Functions in J are developed in order to demon-
strate mathematical concepts, this enables the reader to explore the principles behind
network performance analysis.

The topics covered in this book are motivated by the author’s own research and in-
dustrial experience. The book outline is as follows. Chapters 2 and 3 provide an
introduction to the J programming language. Chapter 2 introduces the basic con-
cepts such as the data types and built-in J functions. Chapter 3 covers more advanced
topics, where the focus is programming in J.

Network calculus is introduced in Chapter 4. We demonstrate how arrival and ser-
vice curves can be expressed as J functions. We show how to derive upper bounds for
backlog, delay and output flow. Effective bandwidth and equivalent capacity tech-
niques are introduced as a means of deriving the network resource requirements for
deterministic QoS bounds.

Chapter 5 focuses on statistical analysis and stochastic processes. The concepts of
short-range and long-range dependence are introduced and we implement models
for generating time series with these properties. We introduce Autoregressive (AR)
and Moving Average (MA) models for generating short-range dependent time se-
ries. Fractional Autoregressive Integrated Moving Average (FARIMA) models are
presented for generating time series with long-range dependence and self-similarity.

In Chapters 6 and 7, we show how to simulate traffic with both short-range and
long-range dependence properties. In Chapter 6, we simulate traffic with discrete
on/off models using various random number generators to generate traffic with the
desired correlation properties. In Chapter 7, we show how chaotic maps can be used
to generate simulated traffic.

ATM QoS is covered in Chapter 8. Leaky bucket and virtual scheduling algorithms
are developed in J. We show how cell conformance can be analysed using these
algorithms by running them on simulated traffic from continuous on/off models.

Chapter 9 examines Internet congestion control. We use | to build binomial conges-
tion control algorithms and explore the parameters that govern congestion window
increase and decrease.

1.1 Quality of Service 3

1.1 Quality of Service

The Internet was principally designed to offer a best-effort service [12]. While the
network makes a sincere attempt to transmit packets, there are no guarantees with
regard to reliable or timely delivery. Packets may be delayed, delivered out of order
or dropped. The end-to-end protocols (such as TCP) are given the responsibility of
recovering from these events. Packets incur delays during transmission due to link
speeds, and propagation delays. Delays are also incurred by packets waiting in buffer
queues. Memory buffers are used to resolve contention issues when two (or more)
packets arrive simultaneously at a communications link. A packet’s waiting time is
determined by the number of packets that are scheduled ahead of it; thus waiting
times increase with traffic volume. Furthermore, if traffic volumes are excessive,
contention for buffer memory arises, which is resolved by dropping packets.

Traffic management methods (and associated policies) can help to alleviate the trade-
off between QoS and network optimality. Traffic management is a complex technical
issue, but it is also an economical, political and ethical one. Like any limited re-
source, the allocation of network capacity can be somewhat controversial. Traffic
management policies are selected either to implement a reurral network, or a dif-
ferentiated one. In a neutral network, there is parity between users and services in
terms of how the network treats their packets. A neutral network however, does not
necessarily support fairness. Due to the flat-rate pricing policy of the Internet, heavy
users do not incur any additional financial cost over light users. Yet the burden of
congestion is borne by all.

In a differentiated network, there is discrimination between users and/or services.
The network provider controls the allocation of resources, electing to give some
users a better than best-effort service (and others a less than best-effort). Better than
best-effort services are covered extensively in the literature ([22, 73], for example).
Certain classes of user require either priority allocation or an assurance of a mini-
mum allocation of resources during periods of congestion. Resources are allocated
according to the particular QoS requirements of the user’s application. The aim is
either to guarantee or at least optimise QoS metrics, such as delay, jitter, throughput
or loss.

Less than best-effort (LBE), services are not so clearly defined. Typically, best-effort
is considered the lowest level of service [23]; that is, high-priority users are allo-
cated resources according to their needs, and any remaining resources are allocated
to lower-priority users. One may argue, however, that if a particular set of users is re-
ceiving a preferential service relative to another, then any “best-effort” commitment
to the low-priority users is not being met. The service they are receiving, therefore,
is almost certainly less than best-effort.

Nevertheless, the literature maintains that a best-effort service can be supported de-
spite the differentiation in flows and preferential resource allocation. Furthermore,
low-cost LBE services may be offered alongside best-effort and high-priority ser-
vices to users of applications that are tolerant to high loss rates, delay and jitter

4 1 Introduction

[19, 25]. During periods of congestion, LBE packets are delayed or dropped in pref-
erence to best-effort or high-priority traffic. Applications with LBE delivery can
make use of off-peak periods when network resources are underutilised. This en-
ables network providers to use otherwise spare capacity, without affecting best-effort
or higher priority traffic.

LBE services however, extend beyond low-cost service offerings by providers as a
means of selling available capacity on under-utilised links. There have been cases
where network providers have attempted to “discourage” the use of certain services
over their network. Voice over IP (VoIP) is a typical example. There have been
reports of provider discrimination against VolIP services. At the most basic level,
providers simply block IP ports such that VoIP traffic cannot pass between the sender
and receiver. A more subtle form of discouraging VoIP applications is delay packets
such that the QoS is degraded beyond a usable level [S0]. VoIP users may be unaware
they are being discriminated against, believing that the low voice quality is merely
a by-product of a best-effort service, when in actual fact the provider is inflicting a
less-than best-effort service on them.

Less-than best-effort services can also arise from network provider business prac-
tices. The Internet is no longer a network formed through the “cooperative anarchy”
[65] of government agencies and academic institutions. The infrastructure is divided
amongst many competitive Internet Service Providers (ISPs). Tier 2 ISPs “buy” rout-
ing tables wholesale from transit providers; thus traffic is exchanged between ISPs
via transit networks. Rival ISPs, however, may elect to cooperate and exchange traffic
through a mutual peering arrangement [48]. The benefits of peering are (potentially)
two-fold. Firstly, ISPs in a peering arrangement reduce their transit costs. Secondly,
by eliminating the transit hop and taking a more direct route, traffic latency is re-
duced. A peering arrangement between two ISPs may be attractive to one ISP but
not the other. Without the consent of both parties, peering will not occur. This has
given rise to a number of dubious business practices, whereby one ISP tries to en-
courage other to peer with it. For example, if ISP B receives traffic from ISP A
through some prior peering arrangement with another ISP, then ISP A could, using
policy routing, forward its traffic to ISP B through a transit provider. Furthermore,
ISP A may compound ISP B’s transit costs by “replaying” traffic using a traffic gen-
erator [49]. Such practices do not constitute a sincere attempt to deliver packets, and
thus packet delivery is not best-effort.

Textbooks describe the Internet Protocol as a best-effort packet delivery mechanism
[12] and Internet commentators talk of “retaining” a neutral network [9]. According
to Sandvig, however, “the Internet isn’t neutral now” [60]. Nor has it been for a long
time. As the Internet grew in the 1990s, it suffered from the rragedy of the commons
[46] and was subject to “overgrazing.” Furthermore, the Internet carries content that
some find undesirable. Providers adopt differentiated traffic management policies in
order to address these issues. Consider the following scenarios:

1.2 Network Utilisation 5

e According to reports, 75 to 95 percent [18, 74] of electronic mail is unsolicited
(SPAM). Providers go to a great deal of trouble trying to distinguish SPAM from
legitimate e-mail so that it can be purged from the network.

e Users vary considerably when it comes to their consumption of network re-
sources. In order to prevent a small number of heavy users causing congestion,
some ISPs impose caps on their subscribers. Subscribers that exceed their caps
are either blocked or charged extra.

e The Internet has undergone a revolution in the People’s Republic of China, yet it
is a prime example of how “the net can be developed and strangled all at once”
[67]. Content providers, in accordance with legislation, cooperate with the Chi-
nese government to censor traffic that carries information deemed to be “sensi-
tive.”

Discriminatory practices on the Internet are a reality; it is merely a question of which
practices one finds acceptable. As Sandvig points out, network neutrality is not the
issue, it is “who discriminates and for what purpose” [60]. Furthermore it may not
be appropriate to view QoS in terms of the service levels centred around best-effort,
but rather as varying degrees of the preferential allocation of resources.

As the amount of real-time traffic on the Internet increases, such as voice and video,
it is essential that support for QoS is provided. First and foremost, QoS is about ca-
pacity planning. Network resources need to meet traffic demands. Users, however,
have a sporadic need for resources, and peak demand is very rarely sustained for long
periods. If the network capacity level is set to the peak demand, then the network will
be idle for long periods. Fortunately, many applications are not entirely intolerant to
some delay or loss. The network, therefore, does not have to be excessively overpro-
visioned. Nevertheless, it is not easy, given the stochastic nature of network traffic,
to balance QoS requirements and resource efficiency.

1.2 Network Utilisation

In this section, we discuss the effects of network utilisation on performance. We take
the opportunity to introduce J and use it to explore some of the concepts presented.
Network utilisation is the ratio of demand over capacity. The load on a network link
cannot exceed 100 percent of capacity. It is possible, however, for the offered load to
exceed this figure, in that case the available buffer memory temporarily stores excess
traffic. Excessive backlog, and thus delay, can be avoided by limiting the level of
network utilisation. This is achieved by monitoring the traffic volumes and setting the
capacity relative to the offered load, so that the demand/capacity ratio (utilisation) is
sufficiently low so that the backlog is kept within acceptable bounds. The problem is
finding the utilisation level which yields “acceptable bounds™ for the backlog.

A commonly cited rule of thumb for network utilisation is 30 percent [61, 68]. There
appears to be some confusion in some literature between achievable utilisation and

6 1 Introduction

the level of utilisation that can support a given QoS. Passmore conveys the perfor-
mance “limitations” of Ethernet [51]:

shared-media CSMA/CD Ethernet LANs where thirty percent is the effec-
tive utilisation limit.

Ethernet, however, has no such limitation, it is capable of much higher utilisation
levels, as reported in [7]. Furthermore it is fairly straightforward to demonstrate
empirically the utilisation capabilities of Ethernet. One of the origins of this “magic
number” is possibly the (slotted) Aloha wireless protocol, which, due to the
contention mechanism in the system, achieves a maximum throughput of 37 percent.
Here, we carry out an analysis of the throughput of Aloha using J. We also demon-
strate how throughput can be improved using carrier sensing techniques. The through-
put S for slotted Aloha is the function of the offered load G and is given by the
expression [66]:

§=Ge© (1.1

The mathematical expression in Equation (1.1) can be implemented by the J com-
mand line:

(x"@-) 01 2 3
0 0.367879 0.270671 0.149361

From the example above, the indented line is the J command that is entered by the
user (the J prompt is a three-space indentation). The sequence of characters « "~ @-
(enclosed in brackets) form a function; in this case they define the relationship be-
tween S and & in Equation (1.1). The list of values that follows is the argument
passed by the function (in this case the argument represents various values of).
The function is applied to each value in the argument list and outputs a correspond-
ing value of S on the nonindented line below. The symbols ~, » and - are arithmetic
operators and represent the exponential function, multiplication and negation respec-
tively. The @ primitive is called a conjunction in I and acts as a sequencing operator.
Without going into detail at this point, think of @ as an apply operator. Thus, the ex-
ponential function is applied to the negated values of the arguments (G). The result
of this operation is then multiplied by the argument values. J composition rules may
not seem intuitive at first, but they will be covered in more detail later. It can be seen
that the throughput reaches a maximum of approximately S ~ .0.37 for G = 1. For
pure Aloha (nonslotted), the maximum achievable throughput is even lower:

S = Ge ¢ (1.2)
Equation (1.2) can be realised by the J expression below:

(»"@-@+:) 0 0.5 1 2 3
0 0.18394 0.135335 0.0366313 0.00743626

Image
not
avallable

1.2 Network Utilisation 9

weekly daily
o
(=] +
™ 1}
o |] !
o wn
i 8 g £ |00 \
z z ' \
=
8 g : 3 || V -
o - (=2
& \
o o
e V J
o
S - sat sat sat sat sat sat
T T T T T T 1T 1 T T T 1
0 10 30 50 70 1 2 3 4 5 6 7
weeks weeks
5 minutes millisecond
o ©
3
o © o
E £
s o 5 <«
2 &7 =
8 - 7
o 4
T T T T T T T T T T T
0 5 10 15 20 00 02 04 06 08 1.0
hours seconds

Fig. 1.2. Measured network traffic at various time scales

The top-right graph of Fig 1.2 shows the aggregate daily traffic volumes over a seven-
week period. It shows the periodicity of peaks and troughs for weekday and weekend
traffic respectively. There appears to be anomalously low traffic on Friday of the
second week and Monday of the third week; this corresponds to the Easter bank
holiday. The bottom-right graph (Fig 1.2) shows the five-minute traffic volumes over
one day. The busy and off-peak periods of the day are evident.

Traffic flows on these time scales do not provide much useful insight into queue
dynamics. Rather they are of more interest to the forecaster for the purpose of pre-
dicting future resource requirements or identifying peak and off-peak periods. While
useful for long/medium-term forecasting, the time intervals over which traffic is ag-
gregated are too long and the degree of “smoothing” does not convey any detailed
burst-level behaviour.

The bottom-right graph of Fig 1.2 shows burst-level traffic. The traffic aggregates for
each millisecond are shown for a one-second period. At these time scales, traffic is
(typically) stationary. In traditional telephony, traffic arrival processes smooth expo-
nentially quickly with the increase in aggregation interval. However, traffic patterns
in packet data networks have complex structures, even for periods of stationarity,

10 1 Introduction

when packet arrivals can be highly correlated in time, exhibiting local trends and
cycles [6, 13, 16, 28].

It is unlikely that there is some panacea utilisation figure that meets all capacity
planning requirements and delivers QoS. It is not that the “30 percent” rule is wrong;
in the absence of a better figure, it is as good as any. However, the QoS requirements
will vary according to the users and the applications they run.

1.3 Traffic Management

The network processes packets according to three categories of traffic management
policy:

e forwarding policy
e scheduling policy
e drop policy

If network providers do not apply any active traffic management, the respective for-
warding, scheduling and drop policies are (typically): shortest-path/lowest-cost to
destination, first-come-first-served (FCFS) and drop-from-tail. In a neutral network
environment, all packets, regardless of user and service, are treated the same. Users
compete with each other for resources. The (neutral) network provider does not pro-
tect users from one another, thus greedy users may get a larger proportion of re-
sources, while the pain of congestion is shared equally. Network providers may elect
to employ traffic management policies, such as Fair-Queuing [68] and Random Early
Detect (RED), [20] in order to distribute congestion costs amongst users in propor-
tion to their contribution to it.

Assuming dynamic routing protocols are being used (rather than static routing), the
traditional IP forwarding policy is the shortest-path (or least-cost) to destination.
Upon receiving the packet, each router examines the destination address in the IP
header and looks up the next hop of the corresponding router. The “shortest-path”
depends on the routing protocol. For example, RIP [12] uses number-of-hops as a
routing metric, whereas OSPF [69] uses a cost metric based upon the speed of the
link. Shortest-path routing algorithms can lead to traffic hotspots where links on the
shortest-path are congested, while those that are not, are underutilised.

Load balancing can be achieved by manually manipulating the routing metrics. This,
however, is not an ideal method, as a slight change in operating conditions can sig-
nificantly degrade the stability of the network.>

A better method is to use policy routing [44], whereby packets are routed based
on some attributes of the packet header other than the destination address (source

* Speaking from bitter experience.

1.3 Traffic Management 11

address or port numbers for example). Packet routes are determined through network
management functions and traffic engineering policies. Policy routing does present a
number of problems. First of all, keeping track of routing policies currently in effect
is administratively difficult. Secondly, each packet incurs extra processing overheads
in determining the flow to which it belongs.

Protocols, such as Multiprotocol Label Switching (MPLS), [2] provide an infrastruc-
ture for the management of predefined paths through the network. MPLS routers at-
tach tags to packets at the edge of the network according to the flow to which they
belong. Flows can be identified by routers in the core with minimal overhead and
packets can be forwarded/scheduled/dropped accordingly.

There are two QoS frameworks for IP networks, namely, Differentiated services
(DiffServ) and Integrated services (IntServ), Differentiated services involve classi-
fying flows at the edge of the DiffServ “cloud” by setting the Differentiated Services
Code-Point (DSCP) in the IP header. Each code-point is associated with some class
of service. Thus, flows mapped to a particular class are forwarded, scheduled and
dropped according to a set of policies that implement the service class. DiffServ
specifies a coarse-grained QoS. Given that the DSCP is only one byte, there is a sig-
nificant restriction on the number of flows that can be represented. QoS, therefore, is
applied to aggregates of flows.

In contrast, IntServ is a fine-grained architecture, Resources are reserved in the
network for individual flows using a signalling protocol, namely, the Resource reSer-
Vation Protocol (RSVP) [73]. The Tratfic SPECification (TSPEC) specifies the para-
meters for a leaky-bucket algorithm, such as the token arrival rate and bucket depth.
Aflow A= {A(t),t =0,1,...}, where A(¢) is the amount of traffic in the interval
[0, ¢], and conforms to the traffic specification function « if:

Alt) — A(s) < et —s) Yi=s (1.4)

The TSPEC parameters { M, p,r, b} describe a dual leaky-bucket, where p is the
peak rate, M is the maximum packet size, r is the sustainable rate and b is the burst
tolerance. Thus «(t) = min|pt + M, rt + b|.

The Resource SPECification (RSPEC) specifies the resources requirements of the
flow. For a given flow A, the resource function 3 should yield an output B, such
that:

B(t)— A(s) = 3(t—s) Vizs (1.5)

In order to support any degree of QoS, something must be known about the nature
of the flows entering the network so that resources can be allocated accordingly.
Consider a single server where packets arrivals are distributed according to a Poisson
distribution with mean rate A. Furthermore, the number of packets serviced per unit
time is also Poisson distributed with mean rate .. For a flow of traffic intensity p =
A/ i, the probability that the backlog equals or exceeds n is p™. For a traffic intensity
of p = 0.3, the J expression shows that the backlog diminishes exponentially with n:

12 1 Introduction

0.37(1 2 3 4 5)
0.3 0.09 0.027 0.0081 0.00243

The average delay for a single M/M/1 queue (where the M means Markovian) is
given by the expression:
1/p

ED) = 12

(1.6)

If 1t = 5, then the delay increases exponentially with traffic intensity p:

rho 0 0.2 0.4 0.6 0.8 0.9
0.2 l-rho
0.2 0.25 0.333333 0.5 1 2

ae ||
.

Traffic flows in data networks, however, are not necessarily Poisson. Representing
traffic as a wide-sense increasing envelope curve lends itself to analytical treatment
using network calculus methods. For example, in Equations (1.4) and (1.5), « and
(3 represent arrival and service curves respectively. Given these two (wide-sense in-
creasing) curves, the upper bound for the backlog can be derived by the network
calculus result: max[a(s) — 3(s)], Vs > 0. Bounds for delay and output traffic can
also be derived using network calculus, as will be discussed in detail in this book.

1.4 Queue Analysis

We complete this chapter by carrying out an analysis of the queue dynamics of a
working conserving link. We show how J can be used to build models of network
systems for the purpose of analysis.

Consider a network traffic source transmitting packets across a communications link
of capacity c. It is assumed that the scheduling policy is FCFS and the buffer queue
is sufficiently large that packets are never dropped. Packets arriving at the interface
of the communications link, form a discrete-time arrival process a = {a(t),{ =
0,1,2,...}. Packets depart from the link at each time interval at a maximum rate c.
If a(t) > ¢, then packets in excess of ¢ are buffered. In the next time interval ¢ + 1,
the link attempts to clear the backlog () and then forwards any new arrivals a(t+1)
up to the bound c. The backlog is given by the Lindley equation [39] below:

gt +1) = (q(t) +a(t +1) —e)" (1.7

where the ()" is max(0, z) and ¢(0) = 0. Here, we show how to implement the
Lindley equation in J, such that we can examine the queuing dynamics of a work con-
serving link. The function requires two parameters; the initial queue size ¢(0), and
the arrival process over a (finite) sequence of discrete time intervals ¢ = 1,..., N.
The J function gnext returns the backlog ¢(f + 1), and is defined thus:

1.4 Queue Analysis 13
gnext =: 0: >. gprev + anext - c

Note that the terms: 0 :, > ., anext, +, gprev, — and ¢ in the J expression above are all
functions. J supports a racir programming style; that is, there is no explicit reference
to arguments. The built-in functions + and - are the addition and subtraction oper-
ators respectively. The larger-of function > ., is also a built-in funtions, and returns
the argument with the greater value:

0 >. 1 NB. max

Note that the NB. construct denotes a comment. In order to make the gnext more
recognisable, we can define the max function, and redefine gnext, thus:

max =: >. NB. define max function
gnext =: 0: max gprev + anext - c

The function 0 :2 is one of I’s constant functions, it returns a value zero, irrespective
of its arguments:

The function anext (a(t+1)) returns the number of arrivals, gprev returns the backlog
(q(t)) and ¢ is the capacity of the link. These functions will be defined shortly, but
first we must introduce a few more built-in J functions. We cannot make explicit
reference to arguments when programming tacitly, although we can access arguments
through the the functions left [and right] which return the left and right arguments,
respectively:

01 2 [345 NB. return left argument
012

012] 3 45 NB. return right argument
345

We use [and] to extract a and g, respectively. However, we need the values of
a(t + 1) and ¢(¢) from these vectors. The term ¢(t) is relatively straight forward, as
it is the last element of vector g. The tail function { : returns the last element of a
list:

{: 01 2345
5

% In addition to 0: there are a number of corresponding integer constant verbs that range
from -9 to 9.

