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Preface

This is a modern introduction to number theory, aimed at several different audi-
ences: students who have little experience of university level mathematics, students
who are completing an undergraduate degree in mathematics, as well as students
who are completing a mathematics teaching qualification. Like most introductions
to number theory, our contents are largely inspired by Gauss’s Disquisitiones Arith-
meticae (1801), though we also include many modern developments. We have gone
back to Gauss to borrow several excellent examples to highlight the theory.

There are many different topics that might be included in an introductory
course in number theory, and others, like the law of quadratic reciprocity, that surely
must appear in any such course. The first dozen chapters of the book therefore
present a “standard” course. In the masterclass version of this book we flesh out
these topics, in copious appendices, as well as adding five additional chapters on
more advanced themes. In the introductory version we select an appendix for each
chapter that might be most useful as supplementary material.! A “minimal” course
might focus on the first eight chapters and at least one of chapters 9 and 10.2

Much of modern mathematics germinated from number-theoretic seed and one
of our goals is to help the student appreciate the connection between the relatively
simply defined concepts in number theory and their more abstract generalizations
in other courses. For example, our appendices allow us to highlight how mod-
ern algebra stems from investigations into number theory and therefore serve as
an introduction to algebra (including rings, modules, ideals, Galois theory, p-adic
numbers,...). These appendices can be given as additional reading, perhaps as
student projects, and we point the reader to further references.

Following Gauss, we often develop examples before giving a formal definition
and a theorem, firstly to see how the concept arises naturally, secondly to conjecture
a theorem that describes an evident pattern, and thirdly to see how a proof of the
theorem emerges from understanding some non-trivial examples.

In the main text we occasionally refer to appendices that only appear in the masterclass version.
2Several sections might be discarded; their headings are in bold italics.

xvii



xviii Preface

Why study number theory? Questions arise when studying any subject, some-
times fascinating questions that may be difficult to answer precisely. Number theory
is the study of the most basic properties of the integers, literally taking integers
apart to see how they are built, and there we find an internal beauty and coherence
that encourages many of us to seek to understand more. Facts are often revealed by
calculations, and then researchers seek proofs. Sometimes the proofs themselves,
even more than the theorems they prove, have an elegance that is beguiling and
reveal that there is so much more to understand. With good reason, Gauss called
number theory the “Queen of Mathematics”, ever mysterious, but nonetheless gra-
ciously sharing with those that find themselves interested. In this first course there
is much that is accessible, while at the same time natural. easily framed, questions
arise which remain open, stumping the brightest minds.

Once celebrated as one of the more abstract subjects in mathematics, today
there are scores of applications of number theory in the real world, particularly to
the theory and practice of computer algorithms. Best known is the use of number
theory in designing cryptographic protocols (as discussed in chapter 10), hiding
our secrets behind the seeming difficulty of factoring large numbers which only
have large prime factors.

For some students, studying number theory is a life-changing experience: They
find themselves excited to go on to penetrate more deeply, or perhaps to pursue
some of the fascinating applications of the subject.

Why give proofs? We give proofs to convince ourselves and others that our
reasoning is correct. Starting from agreed upon truths, we try to derive a further
truth, being explicit and precise about each step of our reasoning. A proof must
be readable by people besides the author. It is a way of communicating ideas and
needs to be persuasive, not just to the writer but also to a mathematically literate
person who cannot obtain further clarification from the writer on any point that is
unclear. It is not enough that the writer believes it; it must be clear to others. The
burden of proof lies with the author.

The word “proof” can mean different things in different disciplines. In some
disciplines a “proof” can be several different examples that justify a stated hypoth-
esis, but this is inadequate in mathematics: One can have a thousand examples that
work as predicted by the hypothesis, but the thousand and first might contradict
it. Therefore to “prove” a theorem, one must build an incontrovertible argument
up from first principles, so that the statement must be true in every case, assuming
that those first principles are true.

Occasionally we give more than one proof of an important theorem, to highlight
how inevitably the subject develops, as well as to give the instructor different
options for how to present the material. (Few students will benefit from seeing
all of the proofs on their first time encountering this material.)

Motivation. Challenging mathematics courses, such as point-set topology, al-
gebraic topology, measure theory, differential geometry, and so on, tend to be dom-
inated at first by formal language and requirements. Little is given by way of
motivation. Sometimes these courses are presented as a prerequisite for topics that
will come later. There is little or no attempt to explain what all this theory is good
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for or why it was developed in the first place. Students are expected to subject
themselves to the course, motivated primarily by trust.

How boring! Mathematics surely should not be developed only for those few
who already know that they wish to specialize and have a high tolerance for bore-
dom. We should help our students to appreciate and cherish the beauty of math-
ematics. Surely courses should be motivated by a series of interesting questions.
The right questions will highlight the benefits of an abstract framework, so that
the student will wish to explore even the most rarified paths herself, as the bene-
fits become obvious. Number theory does not require much in the way of formal
prerequisites, and there are easy ways to justify most of its abstraction.

In this book, we hope to capture the attention and enthusiasm of the reader
with the right questions, guiding her as she embarks for the first time on this
fascinating journey.

Student expectations. For some students, number theory is their first course
that formulates abstract statements of theorems, which can take them outside of
their “comfort zone”. This can be quite a challenge, especially as high school
pedagogy moves increasingly to training students to learn and use sophisticated
techniques, rather than appreciate how those techniques arose. We believe that
one can best use (and adapt) methods if one fully appreciates their genesis, so
we make no apologies for this feature of the elementary number theory course.
However this means that some students will be forced to adjust their personal
expectations. Future teachers sometimes ask why they need to learn material,
and take a perspective, so far beyond what they will be expected to teach in high
school. There are many answers to this question; one is that, in the long term, the
material in high school will be more fulfilling if one can see its long-term purpose. A
second response is that every teacher will be confronted by students who are bored
with their high school course and desperately seeking harder intellectual challenges
(whether they realize it themselves or not); the first few chapters of this book should
provide the kind of intellectual stimulation those students need.

Exercises. Throughout the book, there are a lot of problems to be solved. Easy
questions, moderate questions, hard questions, exceptionally difficult questions. No
one should do them all. The idea of having so many problems is to give the teacher
options that are suitable for the students’ backgrounds:

An unusual feature of the book is that exercises appear embedded in the text.?
This is done to enable the student to complete the proofs of theorems as one goes
along.* This does not require the students to come up with new ideas but rather to
follow the arguments given so as to fill in the gaps. For less experienced students it
helps to write out the solutions to these exercises; more experienced students might
just satisfy themselves that they can provide an appropriate proof.

aThuugh they can be downloaded, as a separate list, from www.ams.org/granville-number-theory.
40ften students have little experience with proofs and struggle with the level of sophistication
required, at least without adequate guidance.
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Other questions work through examples. There are more challenging exercises
throughout, indicated by the symbol T next to the question numbers, in which the
student will need to independently bring together several of the ideas that have been
discussed. Then there are some really tough questions, indicated by the symbol ¥,
in which the student will need to be creative, perhaps even providing ideas not
given, or hinted at, in the text.

A few questions in this book are open-ended, some even phrased a little mis-
leadingly. The student who tries to develop those themes her- or himself, might
embark upon a rewarding voyage of discovery. Once, after I had set the exercises
in section 9.2 for homework, some students complained how unfair they felt these
questions were but were silenced by another student who announced that it was so
much fun for him to work out the answers that he now knew what he wanted to do
with his life!

At the end of the book we give hints for many of the exercises, especially those
that form part of a proof.

Special features of our syllabus. Number theory sometimes serves as an intro-
duction to “proof techniques”. We give many exercises to practice those techniques,
but to make it less boring, we do so while developing certain themes as the book
progresses, for examples, the theory of recurrence sequences, and properties of bi-
nomial coefficients. We dedicate a preliminary chapter to induction and use it to
develop the theory of sums of powers. Here is a list of the main supplementary
themes which appear in the book:

Special numbers: Bernoulli numbers; binomial coefficients and Pascal’s triangle;
Fermat and Mersenne numbers; and the Fibonacci sequence and general second-
order linear recurrences.

Subjects in their own right: Algebraic numbers, integers, and units; compu-
tation and running times: Continued fractions; dynamics; groups, especially of
matrices; factoring methods and primality testing; ideals; irrationals and transcen-
dentals; and rings and fields.

Formulas for cyclotomic polynomials, Dirichlet L-functions, the Riemann zeta-
function, and sums of powers of integers.

Interesting issues: Lifting solutions; polynomial properties; resultants and dis-
criminants; roots of polynomials, constructibility and pre-Galois theory; square
roots (mod n); and tests for divisibility.

Fun and famous problems like the abc-conjecture, Catalan’s conjecture, Egyp-
tian fractions, Fermat’s Last Theoremn, the Frobenius postage stamp problem, magic
squares, primes in arithmetic progressions, tiling with rectangles and with circles.

Our most unconventional choice is to give a version of Rousseau’s proof of the
law of quadratic reciprocity, which is directly motivated by Gauss's proof of Wil-
son’s Theorem. This proof avoids Gauss’s Lemma so is a lot easier for a beginning
student than Eisenstein’s elegant proof (which we give in section 8.10 of appendix
8A). Gauss’s original proof of quadratic reciprocity is more motivated by the in-
troductory material, although a bit more complicated than these other two proofs.
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We include Gauss’s original proof in section 8.14 of appendix 8C, and we also un-
derstand (2/n) in his way, in the basic course, to interest the reader. We present
several other proofs, including a particularly elegant proof using Gauss sums in
section 14.7.

Further exploration of number theory. There is a tremendous leap in the level
of mathematical knowledge required to take graduate courses in number theory,
because curricula expect the student to have taken (and appreciated) several other
relevant courses. This is a shame since there is so much beautiful advanced material
that is easily accessible after finishing an introductory course. Moreover, it can be
easier to study other courses, if one already understands their importance, rather
than taking it on trust. Thus this book, Number Theory Revealed, is designed
to lead to two subsequent books, which develop the two main thrusts of number
theory research:

In The distribution of primes: Analytic number theory revealed, we will discuss
how number theorists have sought to develop the themes of chapter 5 (as well as
chapters 4 and 13). In particular we prove the prime number theorem, based
on the extraordinary ideas of Riemann. This proof rests heavily on certain ideas
from complex analysis, which we will outline in a way that is relevant for a good
understanding of the proofs.

In Rational points on curves: Arithmetic geometry revealed, we look at solu-
tions to Diophantine equations, especially those of degree two and three, extending
the ideas of chapter 12 (as well as chapters 14 and 17). In particular we will prove
Mordell’s Theorem (developed here in special cases in chapter 17) and gain a basic
understanding of modular forms, outlining some of the main steps in Wiles’s proof
of Fermat’s Last Theorem. We avoid a deep understanding of algebraic geometry,
instead proceeding by more elementary techniques and a little complex analysis
(which we explain).

References. There is a list of great number theory books at the end of our
book and references that are recommended for further reading at the end of many
chapters and appendices. Unlike most textbooks, I have chosen to not include a
reference to every result stated, nor necessarily to most relevant articles, but rather
focus on a smaller number that might be accessible to the reader. Moreover, many
readers are used to searching online for keywords; this works well for many themes
in mathematics.® However the student researching online should be warned that
Wikipedia articles are often out of date, sometimes misleading, and too often poorly
written. It is best to try to find relevant articles published in expository research
journals, such as the American Mathematical Monthly,® or posted at arxiv.org which
is “open access”, to supplement the course material.

The cover (designed by Marci Babineau and the author).

In 1675, Isaac Newton explained his extraordinary breakthroughs in physics and
mathematics by claiming, “If I have seen further it is by standing on the shoulders

5Th0ugh getting just the phrasing to find the right level of article can be challenging.
EiAlthc:mgh this is behind a paywall, it can be accessed, like many journals, by logging on from most
universities, which have paid subscriptions for their students and faculty.
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of Giants.” Science has always developed this way, no more so than in the theory
of numbers. Our cover represents five giants of number theory, in a fan of cards,
each of whose work built upon the previous luminaries.

Modern number theory was born from PIERRE DE FERMAT's readings of the
ancient Greek texts (as discussed in section 6.1) in the mid-17th century, and his
enunciation of various results including his tantalizingly difficult to prove “Last
Theorem.” His “Little Theorem” (chapter 7) and his understanding of sums of two
squares (chapter 9) are part of the basis of the subject.

The first modern number theory book, Gauss’s Disquisitzones Arithmeticae, on
which this book is based, was written by CARL FRIEDRICH GAUSS at the beginning
of the 19th century. As a teenager, Gauss rethought many of the key ideas in number
theory, especially the law of quadratic reciprocity (chapter 8) and the theory of
binary quadratic forms (chapter 12), as well as inspiring our understanding of the
distribution of primes (chapter 5).

Gauss’s contemporary SOPHIE GERMAIN made perhaps the first great effort to
attack Fermat’s Last Theorem (her effort is discussed in appendix 7F). Developing
her work inspired my own first research efforts.

SRINIVASA RAMANUJAN, born in poverty in India at the end of the 19th cen-
tury, was the most talented untrained mathematician in history, producing some
extraordinary results before dying at the age of 32. He was unable to satisfactorily
explain many of his extraordinary insights which penetrated difficult subjects far
beyond the more conventional approaches. (See appendix 12F and chapters 13, 15,
and 17.) Some of his identities are still inspiring major developments today in both
mathematics and physics.

ANDREW WILES sits atop our deck. His 1994 proof of Fermat’s Last Theorem
built on the ideas of the previous four mentioned mathematicians and very many
other “giants” besides. His great achievement is a testament to the success of
science building on solid grounds.

Thanks. I would like to thank the many inspiring mathematicians who have
helped me shape my view of elementary number theory, most particularly Bela
Bollobas, Paul Erdés, D. H. Lehmer, James Maynard, Ken Ono, Paulo Riben-
boim, Carl Pomerance, John Selfridge, Dan Shanks, and Hugh C. Williams as well
as those people who have participated in developing the relatively new subject of
“additive combinatorics” (see sections 15.3, 15.4, 15.5, and 15.6). Several peo-
ple have shared insights or new works that have made their way into this book:
Stephanie Chan, Leo Goldmakher, Richard Hill, Alex Kontorovich, Jennifer Park,
and Richard Pinch. The six anonymous reviewers added some missing perspec-
tives and Olga Balkanova, Stephanie Chan, Patrick Da Silva, Tristan Freiberg,
Ben Green, Mariah Hamel, Jorge Jimenez, Nikoleta Kalaydzhieva, Dimitris Kouk-
oulopoulos, Youness Lamzouri, Jennifer Park, Sam Porritt, Ethan Smith, Anitha
Srinivasan, Paul Voutier, and Max Wengiang Xu kindly read subsections of the
near-final draft, making valuable comments.



Gauss’s Disquisitiones
Arithmeticae

In July 1801, Carl Friedrich Gauss published Disquisitiones Arithmeticae, a book
on number theory, written in Latin. It had taken five years to write but was im-
mediately recognized as a great work, both for the new ideas and its accessible
presentation. Gauss was then widely considered to be the world’s leading mathe-
matician, and today we rate him as one of the three greatest in history, alongside
Archimedes and Sir Isaac Newton.

The first four chapters of Disquisitiones Arithmeticae consist of essentially the
same topics as our course today (with suitable modifications for advances made in
the last two hundred years). His presentation of ideas is largely the model upon
which modern mathematical writing is based. There follow several chapters on qua-
dratic forms and then on the rudiments of what we would call Galois theory today,
most importantly the constructibility of regular polygons. Finally, the publisher
felt that the book was long enough, and several further chapters did not appear in
the book (though Dedekind published Gauss’s disorganized notes, in German, after
Gauss’s death).

One cannot overestimate the importance of Disquisitiones to the development
of 19th-century mathematics. It led, besides many other things, to Dirichlet’s
formulation of ideals (see sections 3.19, 3.20 of appendix 3D, 12.8 of appendix 12A,
and 12.10 of appendix 12B), and the exploration of the geometry of the upper
half-plane (see Theorem 1.2 and the subsequent discussion).

As a young man, Dirichlet took his copy of Disquisitiones with him wherever
he went. He even slept with it under his pillow. As an old man, it was his most
prized possession even though it was in tatters. It was translated into French in
1807, German in 1889, Russian in 1959, English only in 1965, Spanish and Japanese
in 1995, and Catalan in 1996!
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Disquisitiones is no longer read by many people. The notation is difficult. The
assumptions about what the reader knows do not fit today’s reader (for example,
neither linear algebra nor group theory had been formulated by the time Gauss
wrote his book, although Disquisitiones would provide some of the motivation for
developing those subjects). Yet, many of Gauss’s proofs are inspiring, and some
have been lost to today’s literature. Moreover, although the more advanced two-
thirds of Disquisitiones focus on binary quadratic forms and have led to many of
today’s developments, there are several themes there that are not central to today’s
research. In the fourth book in our trilogy (1), Gauss’s Disquisitiones Arithmeticae
revealed, we present a reworking of Gauss’s classic, rewriting it in modern notation,
in a style more accessible to the modern reader. We also give the first English
version of the missing chapters, which include several surprises.



Notation

N — The natural numbers, 1,2,3, .. ..

Z — The integers, ...,—3,—-2,—1,0,1,2,3,....
Throughout, all variables are taken to be integers, unless otherwise specified.
Usually p, and sometimes ¢, will denote prime numbers.

@Q — The rational numbers, that is, the fractions a/b with a € Z and b € N.

R - The real numbers.

C — The complex numbers.

E surmmand and H summand
Some variables: Some variables:
Certain conditions hold Certain conditions hold

mean that we sum, or product, the summand over the integer values of some vari-
able, satisfying certain conditions.

Brackets and parentheses: There are all sorts of brackets and parentheses in math-
ematics. It is helpful to have protocols with them that take on meaning, so we do
not have to repeat ourselves too often, as we will see in the notation below. But we
also use them in equations; usually we surround an expression with “(” and “)” to
be clear where the expression begins and ends. If too many of these are used in one
line, then we might use different sizes or even “{” and “}” instead. If the brackets
have a particular meaning, then the reader will be expected to discern that from
the context.

A[z] — The set of polynomials with coefficients from the set A, that is, f(z) =
Zf:o a;x" where each a; € A. Mostly we work with A = Z.

A(z) —The set of rational functions with coefficients from the set A, in other words,
functions f(z)/g(x) where f(x),g(z) € Alz] and g(z) # 0.

[t] — The integer part of ¢, that is, the largest integer < (.
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Xxvi Notation

{t} — The fractional part of (real number) ¢, that is, {t} = ¢ — [t]. Notice that
0<{t} <l

(a,b) — The greatest common divisor of a and b.

[a,b] — The least common multiple of a and b.

bla — Means b divides a.

p¥|la — Means pF divides a, but not p**+1 (

the “exact power” of p dividing a.
I(a,b) — The set {am + bn : m,n € Z}, which is called the ideal generated by a
and b over Z.

where p is prime). In other words, k is

log — The logarithm in base e, the natural logarithm, which is often denoted by
“In” in earlier courses.

Parity — The parity of an integer is either even (if it is divisible by 2) or odd (if it
is not divisible by 2).

The language of mathematics

“By a conjecture we mean a proposition that has not yet been proven but which is
favored by some serious evidence. It may be a significant amount of computational
evidence, or a body of theory and technique that has arisen in the attempt to settle
the conjecture.

An open question is a problem where the evidence is not very convincing one
way or the other.

A theorem, of course, is something that has been proved. There are important
theorems, and there are unimportant (but perhaps curious) theorems.

The distinction between open question and conjecture is, it is true, somewhat
subjective, and different mathematicians may form different judgements concerning
a particular problem. We trust that there will be no similar ambiguity concerning
the theorems.”

—— Dan Shanks [Sha85, p. 2]
Today we might add to this a heuristic argument, in which we explore an open

question with techniques that help give us a good idea of what to conjecture, even
if those techniques are unlikely to lead to a formal proof.



Prerequisites

The reader should be familiar with the commonly used sets of numbers N, Z, and @,
as well as polynomials with integer coefficients, denoted by Z[z]. Proofs will often
use the principle of induction; that is, if S(n) is a given mathematical assertion,
dependent on the integer n, then to prove that it is true for all n € N, we need only
prove the following:

e S(1) is true.

e S(k) is true implies that S(k + 1) is true, for all integers k& > 1.
The example that is usually given to highlight the principle of induction is the
statement “1 +24+3+.--+n= @” which we denote by S(n).! For n =1 we

check that 1 = 42 and so S(1) is true. For any k > 1, we assume that S(k) is true
and then deduce that

14243+ -+ (k+1) = (1+2+43+-4k) + (k+1)

= M + (k+1) asS(k)is true
(k+1)(k+2)
2 1
that is, S(k+ 1) is true. Hence, by the principle of induction, we deduce that S(n)
is true for all integers n > 1.

To highlight the technique of induction with more examples, we develop the
theory of sums of powers of integers (for example, we prove a statement which
gives a formula for 12 + 22 + ... 4+ n? for each integer n > 1) in section 0.1 and
give formulas for the values of the terms of recurrence sequences (like the Fibonacci
numbers) in section 0.2.

!There are other, easier, proofs of this assertion, but induction will be the only viable technique
to prove some of the more difficult theorems in the course, which is why we highlight the technique here.

I
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Induction and the least counterexample: Induction can be slightly disguised. For
example, sometimes one proves that a statement T'(n) is true for all n > 1, by
supposing that it is false for some n and looking for a contradiction. If T'(n) is
false for some n, then there must be a least integer m for which T'(m) is false. The
trick is to use the assumption that T°(m) is false to prove that there exists some
smaller integer k£, 1 < k < m, for which T'(k) is also false. This contradicts the
minimality of m, and therefore T'(n) must be true for all n > 1. Such proofs are
easily reformulated into an induction proof:

Let S(n) be the statement that 7(1), T(2),...,T(n) all hold. The induction
proof then works for if S(m — 1) is true, but S(m) is false, then T(m) is false and
so, by the previous paragraph, T'(k) is false for some integer k, 1 < k < m — 1,
which contradicts the assumption that S(m — 1) is true.

A beautiful example is given by the statement, “Every integer > 1 has a prime
divisor.” (A prime number is an integer > 1, such that the only positive integers
that divide it are 1 and itself.) Let T(n) be the statement that n has a prime
divisor, and let S(n) be the statement that 7(2),7'(3),...,T(n) all hold. Evidently
S(2) = T(2) is true since 2 is prime. We suppose that S(k) is true (so that
T(2),T(3),...,T(k) all hold). Now:

Either k+1 is itself a prime number, in which case T'(k+1) holds and therefore
S(k + 1) holds.

Or k+1 is not prime, in which case it has a divisor d which is not equal to either
lork—+1,and so 2 < d < k. But then S(d) holds by the induction hypothesis,
and so there is some prime p, which divides d, and therefore divides k + 1. Hence
T(k + 1) holds and therefore S(k + 1) holds.

(The astute reader might ask whether certain “facts” that we have used here deserve
a proof. For example, if a prime p divides d, and d divides k& + 1, then p divides
k+ 1. We have also assumed the reader understands that when we write “d divides
k+ 17 we mean that when we divide k& + 1 by d, the remainder is zero. One of our
goals at the beginning of the course is to make sure that everyone interprets these
simple facts in the same way, by giving as clear definitions as possible and outlining
useful, simple deductions from these definitions.)



Chapter 0

Preliminary Chapter
on Induction

Induction is an important proof technique in number theory. This preliminary
chapter gives the reader the opportunity to practice its use, while learning about
some intriguing number-theoretic concepts.

0.1. Fibonacci numbers and other recurrence sequences

The Fibonacci numbers, perhaps the most famous sequence of integers, begin with
Fo=0, Fi=1, Fo =1, F3 =2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233,....

The Fibonacci numbers appear in many places in mathematics and its applica-
tions.! They obey a rule giving each term of the Fibonacci sequence in terms of
the recent history of the sequence:

F, = F,_1+ F,_» for all integers n > 2.

We call this a recurrence relation. It is not difficult to find a formula for F,:

1 ([1+v5\" [1-5
(0.1.1) F, = ﬂ — —\6 for all integers n > 0,
VE 2 2
145

where —5= and 1_2‘/5 each satisfy the equation z +1 = z2. Having such an explicit
formula for the Fibonacci numbers makes them easy to work with, but there is a
problem. It is not obvious from this formula that every Fibonacci number is an
integer; however that does follow easily from the original recurrence relation.?

n

'Typically when considering a biological process whose current state depends on its past, such as
evolution, and brain development.

21t requires quite sophisticated ideas to decide whether a given complicated formula like (0.1.1) is
an integer or not. Learn more about this in appendix OF on symmetric polynomials.

—_



2 Preliminary Chapter on Induction

Exercise 0.1.1. (a) Use the recurrence relation for the Fibonacci numbers, and induction to
prove that every Fibonacei number is an integer.
(b) Prove that (0.1.1) is correct by verifying that it holds for n = 0,1 and then, for all larger
integers n, by induction.

Exercise 0.1.2. Use induction on n > 1 to prove that
(a) Fi+ F3+ -+ Fop_1 = Fa,, and
(b) 1+ F+Fi+---+ Fapn :F2n+1-

The number ¢ = 1%@ is called the golden ratio; one can show that F), is the
nearest integer to ¢™/v/5.

Exercise 0.1.3. (a) Prove that ¢ satisfies ¢% = ¢ + 1.
(b) Prove that ¢™ = Fn¢ + F,,—1 for all integers n > 1, by induction.

Any sequence xg, Ty, Za2,..., for which the terms x,, with n > 2, are defined
by the equation

(0.1.2) T, =ar,_1+br,_ o foralln>2, |

where a,b, g, 7 are given, is called a second-order linear recurrence sequence.
Although this is a vast generalization of the Fibonacci numbers one can still prove
a formula for the general term, x,,, analogous to (0.1.1): We begin by factoring the
polynomial

@ —ar—b=(z—a)lz—pB)

for the appropriate a, 3 € C (we had 2° — 2 — 1 = (z — %@)(z — #) for the
Fibonacel numbers). If o # 5, then there exist coeflicients ¢,, ¢g for which

(0.1.3) Tp =coa” +e3B" foralln > 0.

(In the case of the Fibonacci numbers, we have ¢, = 1/v/5 and ¢ = —1/1/5.)
Moreover one can determine the values of ¢, and c¢g by solving the simultaneous
equations obtained by evaluating the formula (0.1.3) at n = 0 and n = 1, that is,

o +cg =9 and coa+cgf =1,

Exercise 0.1.4. (a) Prove (0.1.3) is correct by verifying that it holds for n = 0,1 (with xo and
x1 as in the last displayed equation) and then by induction for n > 2.
(b) Show that ¢o and cg are uniquely determined by xzq and xq, provided a # 3.
(c) Show that if & # 8 with g = 0 and =1 = 1, then x,, = o‘;—:%” for all integers n > 0.
(d) Show that if & # 3 with yg = 2,1 = a with y, = ayn—_1 + byn_2 for all n > 2, then
yn = a”™ + 3" for all integers n > 0.

The {xn}n>o in (c) is a Lucas sequence, and the {yn}n>o in (d) its companion sequence

Exercise 0.1.5.> (a) Prove that o = 3 if and only if a® + 4b = 0.
(b)T Show that if aZ 4+ 4b = 0, then @ = a/2 and z, = (en + d)a™ for all integers n > 0, for
some constants ¢ and d.
(c) Deduce that if & = 8 with xg = 0 and =1 = 1, then z,, = na™~! for all n > 0.

Exercise 0.1.6. Prove that if zg = 0 and 1 = 1, if (0.1.2) holds, and if & is a root of 2% —ax — b,
then o™ = ax,, + bz, 1 for alln > 1.

*In this question, and from here on, induction should be used at the reader’s discretion.
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0.2. Formulas for sums of powers of integers

When Gauss was ten years old, his mathematics teacher aimed to keep his class
quiet by asking them to add together the integers from 1 to 100. Gauss did this in
a few moments, by noting if one adds that list of numbers to itself, but with the
second list in reverse order, then one has

1+100=2+99=3+98=---=99+2=100+1 = 101.

That is, twice the asked-for sum equals 100 times 101, and so
1+24---4+100 = % » 100 x 101.

This argument generalizes to adding up the natural numbers less than any given
N, yielding the formula®

(0.2.1) Son o= W-HN

The sum on the left-hand side of this equation varies in length with N, whereas
the right-hand side does not. The right-hand side is a formula whose value varies
but has a relatively simple structure, so we call it a closed form expression. (In the
prerequisite section, we gave a less interesting proof of this formula, by induction.)

Exercise 0.2.1. (a) Provethat 14+3+5+4+ -+ (2N - 1) = N2 for all N > 1 by induction.
(b) Prove the formula in part (a) by the young Gauss’s method.
(c) Start with a single dot, thought of as a 1-by-1 array of dots, and extend it to a 2-by-2 array
of dots by adding an appropriate row and column. You have added 3 dots to the original
dot and so 1 + 3 = 22.

o o o
1+ 3 + 5 + -

In general, draw an N-by-N array of dots, and add an additional row and column of dots
to obtain an (N + 1)-by-(N + 1) array of dots. By determining how many dots were added
to the number of dots that were already in the array, deduce the formula in (a).

Let § = Zn 1 I n2. Using exercise 0.2.1 we can write each square, n?, as the
sum of the odd positive integers < 2n. Therefore 2m — 1 appears N — m times in

the sum for S, and so

N-1 N-1 N-1
S=> @m-1)(N-m)=-N> 1+@N+1) Y m-28.
m=1 m=1 m=1

4This same idea appears in the work of Archimedes, from the third century B.C. in ancient Greece.
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Using our closed formula for Y~ m, we deduce, after some rearrangement, that
N-1

(N —-1)N(2N —-1)
Zn2= 6 ’

n=1
a closed formula for the sum of the squares up to a given point. There is also a
closed formula for the sum of the cubes:

N-1 2
_((N-1N
022 EMCETY
N-1

This is the square of the closed formula (0.2.1) that we obtained for >~ '~/ n. Is
this a coincidence or the first hint of some surprising connection?

Exercise 0.2.2. Prove these last two formulas by induction.

These three examples suggest that there are closed formulas for the sums of the
kth powers of the integers, for every k& > 1, but it is difficult to guess exactly what
those formulas might look like. Moreover, to hope to prove a formula by induction,
we need to have the formula at hand.

We will next find a closed formula in a simpler but related question and use this
to find a closed formula for the sums of the kth powers of the integers in appendix
0A. We will go on to investigate, in section 7.34 of appendix 71, whether there are
other amazing identities for sums of different powers, like
N-1 N-1 2

s — (z n) |

n=1 n=1

0.3. The binomial theorem, Pascal’s triangle, and the binomial
coefficients

The binomial coefficient (:1) is defined to be the number of different ways of choos-
ing m objects from n. (Therefore (:1) = 0 whenever m < 0 or m > n.) From this
definition we see that the binomial coefficients are all integers. To determine (g) we
note that there are 5 choices for the first object and 4 for the second, but then we
have counted each pair of objects twice (since we can select them in either order),
5) _ 5x4 5x4x3x2x1 __ 5! so that

and so (2 25=. It is arguably nicer to write 5 X 4 as 257577 = 3

(;) = 3?—;, One can develop this proof to show that, for any integers 0 < m < n,
one has the very neat formula®
|
(0.3.1) ") = L,whcrer!:r-(r—l)---?-l.
m m!(n —m)! "’

From this formula alone it is not obvious that the binomial coefficients are integers.

Exercise 0.3.1. (a) Prove that ("'') = (")+(,",) for all integers m, and all integers n > 0.
(b) Deduce from (a) that each () is an integer.

5We prefer to work with the closed formula 27!/(15!12!) rather than to evaluate it as 17383860, since
the three factorials are easier to appreciate and to manipulate in subsequent calculations, particularly
when looking for patterns.
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Pascal’s triangle is a triangular array in which the (n + 1)st row contains the
binomial coefficients (::l), with m increasing from 0 to n, as one goes from left to
right:

16 15 20 15 6 1

. ete.

The addition formula in exercise 0.3.1(a) yields a rule for obtaining a row from the
previous one, by adding any two neighboring entries to give the entry immediately
below. For example the third entry in the bottom row is immediately below 5 and
10 (to either side) and so equals 5 + 10 = 15. The next entry is 10 + 10 = 20, etc.

The binomial theorem states that if n is an integer > 1, then

T
n —m, m
($+y)”=2( )3:” Y.
m=0 m

Exercise 0.3.2.7 Using exercise 0.3.1(a) and induction on n > 1, prove the binomial theorem.

Notice that one can read off the coefficients of (z 4 )™ from the (n + 1)st row
of Pascal’s triangle; for example, reading off the bottom row above (which is the
7th row down of Pascal’s triangle), we obtain

(x+1)°% = 2% + 62°y + 15279 + 202%y® + 152%y" + 621° + 4/5.

In the previous section we raised the question of finding a closed formula for
the sum of n*, over all positive integers n < N. We can make headway in a related
question in which we replace n* with a different polynomial in n of degree k, namely
the binomial coefficient

(:) B n(n—l)‘-;;:!(n—k—l—l}

This is a polynomial of degree k in n. For example, we have (2) = % - ”2—2 +3,a

polynomial in n of degree 3. We can identify a closed formula for the sum of these
binomial coefficients, over all positive integers n < N, namely:

(0.3.2) Ni:l (:) - (kfl)

n=0
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for all N and k > 0. For k =2, N = 6, this can be seen in the following diagram:
1
11

) 21

1(3)31
14(6)41
15 10 (10) 5 1
16151561

so that 1 4+ 3 + 6 + 10 equals 20.

Exercise 0.3.3. Prove (0.3.2) for each fixed k > 1, for each N > k + 1, using induction and
exercise 0.3.1. You might also try to prove it by induction using the idea behind the illustration
in the last diagram.

If we instead display Pascal’s triangle by lining up the initial 1’s and then
summing the diagonals,

1
11

12 1

1 3 3
14 @C?
1 (5) 10 10
L 6 15 ..

thesumsare 1,1, 1 +1, 1 +2, 1 +3+1,14+4+4+3,1+5+ 6+ 1,... which equal
1,1, 2, 3, 5, 8 13,..., the Fibonacci numbers. It therefore seems likely that

(n—l )forallnzl.

Exercise 0.3.4. Prove (0.3.3) for each integer n > 1, by induction using exercise 0.3.1(a).

(0.3.3)

M

k=0

Articles with further thoughts on factorials and binomial coefficients

[1] Manjul Bhargava, The factorial function and generalizations, Amer. Math. Monthly 107 (2000),
783-799 (preprint).

[2] John J. Watkins, chapter 5 of Number theory. A historical approach, Princeton University Press,
2014.
Additional exercises
Exercise 0.4.1. (a) Prove that for all n > 1 we have
1 N\"  [(F.y1 Fa
1 0 - F, Fn1 '
(b) Deduce that Fy, 1 F, 1 — F2 = (=1)" for all n > 1.
(c) Deduce that F2, | — Fyy1Fp — F2 = (—1)" for all n > 0.



Induction applied to questions about recurrence sequences T

Exercise 0.4.2.7 Deduce from (0.1.1) that the Fibonacci number F,, is the nearest integer to

"/ V5, for each integer n > 0, where the constant ¢ = 5?5 This golden ratio appears in art
and architecture when attempting to describe “perfect proportions”.

Exercise 0.4.3. Prove that F2 + 2, , =2(F2, 4+ F2 ) for all n > 0.

Exercise 0.4.4. Prove that for all n > 1 we have
Fon_1 =F2_|+F? and Fp,=F2 | —F2_|.

Exercise 0.4.5. Use (0.1.1) to prove the following:
(a) For every r we have F2 — Fy i Fp_r = (=1)"""F2 for all n > r.
(b) For all m > n >0 we have FrnFrug1 — Fnt1Fn = (—1)" Frn—n.

Exercise 0.4.6. Let ug = b and un4+1 = auy, for all n > 0. Give a formula for all u,, with n > 0.

The expression 011010 is a string of 0’s and 1’s. There are 2™ strings of 0°s and
1’s of length n as there are two possibilities for each entry. Let A,, be the set of
strings of 0’s and 1’s of length n which contain no two consecutive 1’s. Our example
011010 does not belong to Ag as the second and third characters are consecutive
1’s, whereas 01001010 is in Ag. Calculations reveal that |A;| = 2, |45] = 3, and
|Az| = 5, data which suggests that perhaps |A,| = F,, 12, the Fibonacci number.
Exercise 0.4.7.7  (a) If Ow is a string of 0’s and 1’s of length n, prove that 0w € A, if and

only if w e Ap—-1.

(b) If 10w is a string of 0’s and 1’s of length n, prove that 10w € A, if and only if w € Ap_2.
(c) Prove that |A;,| = Fi,4+2 for all n > 1, by induction on n.

Exercise 0.4.8.7 Prove that every positive integer other than the powers of 2 can be written as
the sum of two or more consecutive integers.

Exercise 0.4.9. Prove that () (17") = (%) (") for any integers n > a > m > 0.

a
m

Exercise 0.4.10." Suppose that a and b are integers and {z,, : n > 0} is the second-order linear
recurrence sequence given by (0.1.2) with xp = 0 and =, = 1.
(a) Prove that for all non-negative integers m we have

Ttk = 1&g + bemay_y for all integers k > 1.
(b) Deduce that

Tan4l = J:?.H_l + l:l.ir:?1 and @2, = Tnt1&n + brprp—1  for all natural numbers n.

Exercise 0.4.11. Suppose that the sequences {z, : n > 0} and {y, : n > 0} both satisfy (0.1.2)
and that xp = 0 and x; = 1, whereas yp and y; might be anything. Prove that

Yn = Y1&n + byoxn— for all n > 1.
Exercise 0.4.12. Suppose that zg = 0, 1 = 1, and Zp42 = axn41 + bax,. Prove that for all
n > 1 we have
(a) (a+b—-1)37 q2; =znp1 +bzn — L
(b) a(b"a:g + b"fla:f 44 bmi_l — 5‘73:) = TnTnil;
(¢) 22 —zp_12per = (=b)" L

Exercise 0.4.13. Suppose that 2,42 = axp4+1 + bz, for alln = 0.

(a) Show that
n
(a:n+z rn+1) _ (a b) (” “‘") for all n > 0.
Tnt1 friy 1 0 r1 ITo

(b) Deduce that xni22n — I:?;+1 = ¢(—b)™ for all n > 0 where ¢ := zazy — x7.
(c) Deduce that :C?H_l — aTpi1Tn — bzl = —c(—b)".
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Other number-theoretic sequences can be obtained from linear recurrences or
other types of recurrences. Besides the Fibonacci numbers, there is another se-
quence of integers that is traditionally denoted by (#,),>0: These are the Fermat
numbers, F,, =22" + 1 for alln > 0 (see sections 3.11 of appendix 3A, 5.1, 5.25 of
appendix 5H, etc.).

Exercise 0.4.14. Show that if Fy = 3 and Fpi1 = F2 — 2F, + 2, then F,, = 22" 4+ 1 for all
n > 0.

Exercise 0.4.15. (a) Show that if My =0, M1 = 1, and My42 = 3Mp41—2M, for all integers
n = 0, then M, = 2" —1 for all integers n > 0. The integer M, is the nth Mersenne number
(see exercise 2.5.16 and sections 4.2, 5.1, ete.).

b) Show that if Mg =0 with M, = 2M,, + 1 for all n > 0, then M, = 2™ — 1.
(b) o + >0,

Exercise 0.4.16.7 We can reinterpret exercise 0.4.3 as giving a recurrence relation for the se-
quence {F,%},,Eg, where F}, is the nth Fibonacci number; that is,

F2 o, =2F  +2F - F2foraln>0.
Here F,,%Jra is described in terms of the last three terms of the sequence; this is called a linear

recurrence of order 3. Prove that for any integer k > 1, the sequence {F}}, > satisfies a linear
recurrence of order k4 1.

How to proceed through this book. It can be challenging to decide what
proof technique to try on a given question. There is no simple guide—practice is
what best helps decide how to proceed. Some students find Zeitz’s book [Zeil7]
helpful as it exhibits all of the important techniques in context. I like Conway and
Guy’s [CG96] since it has lots of great questions, beautifully discussed with great
illustrations, and introduces quite a few of the topics from this book.

A paper that questions one’s assumptions is

[1] Richard K. Guy The strong law of small numbers, Amer. Math. Monthly, 95 (1988), 697-712.



Appendix 0A. A closed
formula for sums of powers

In chapter 0, we discussed closed form expressions for sums of powers. We will
prove here that there is such a formula for the sum of the kth power of the integers
up to a given point, developing themes from earlier in this chapter.

0.5. Formulas for sums of powers of integers, Il

Our goal in this section is to use our formula (0.3.2) for summing binomial coeffi-
cients, to find a formula for summing powers of integers. For example, since

o) o))

we can use (0.3.2) with & = 3, 2, and 1, respectively, to obtain

N-1 N-1 n N—-1 n N-1 n
3 _
Yr=oX (5)+e X (5)+ X ()

() (3)- ()

Summing these three multiples of binomial coefficients gives the formula for the
sum of the cubes of the integers up to N — 1, which we encountered in section
0.2. To make this same technique work to sum n*, for arbitrary integer k > 1, we
need to show that z* can be expressed as a sum of fixed multiples of the binomial

coeflicients (f) . (’1’:) where by (i) we mean the polynomial
r\ z(z—1)---(x—(k—-1))
k) k! '

Notice that if we substitute & = n into this expression, we obtain the binomial
coefficient (}/).

9



10 Appendix 0A. A closed formula for sums of powers

Proposition 0.5.1. Any polynomial f(z) € Z[x] of degree k > 0 can be written as
a sum of integer multiples of the binomial coefficients (i)..... (7). (5)-

Proof. By induction on k. The result is immediate for k = 0. Otherwise, suppose
that f(x) has leading coefficient az*; then subtract a-k!-({), which also has leading
coefficient az*. The resulting polynomial, g(z) = f(x) —a-k!- (). has degree k — 1
so can be written as ¢o({)) + -+ cx—1(,”,) by the induction hypothesis. But then
f(z)=co (g) + ot (“;), with ¢ = a - k!, as desired. O

In particular, there are integers ¢y, ¢q,...,¢; for which

(0.5.1) ok = ck( ) to (‘1”) +c0( )

One can then 1mmcd1atcly deduce, from (0.3.2), that

IS AR +CINZ() NZ()

Expanding out the binomial coefficients, this gives the desired closed form expres-
sion for Zf::ol n*, a polynomial in N of degree k + 1.

There is a difficulty. We proved that the ¢; exist but did not show how to
determine them. We can do this by successively substituting in z = 0, then & = 1,
then ...,z =k — 1 into (0.5.1), since one obtains

0" =cr- 04 +e1-0+co,
and so ¢g = 0; then
1¥ = ¢t 044 cp-04c¢1 + 0o,
and so ¢; = 1; and then ¢y = 28 — 2, ¢3 = 3% —3-2F 4+ 3, etc. We end this appendix
with a particularly challenging exercise.
Exercise 0.5.1.}  (a) Establish that (0.5.1) holds with
e (T (Dm0 A

for all m > 1 and for all k > 1. The integers ¢, /m! are the Stirling numbers of the second
kind, usually denoted by S2(k,m). They arise in several interesting combinatorial settings;
for example, S2(k, m) is the number of ways to partition a set of k objects into m non-empty

subsets.
(b) Deduce tha.t for any given integer k > 0, there exist rational numbers ap, a1, ..., a4 for
which Lok —ag+ a1l N+ + ak+1N}“+1 for all integers N > 1.

Exercise 0.5.2. Prove that ¢;/j!is an integer for all 7 > 0 in (0.5.1).
Exercise 0.5.3.7 Let f(z) € Clz]. Prove that f(n) is an integer for all integers n if and only if
flz) =3, am (;) where the a,, are all integers.

We will return to this topic, finding an elegant description of the rational num-
bers a; by introducing the Bernoulli numbers in the next appendix, appendix 0B.



Appendix 0B. Generating
functions

The generating function (or generating series) of a given sequence of numbers
ag,ay, ... is the power series

2
ag + a1+ axx” + -

involving a variable x, where the nth term is a,z". We now see how generating

functions allow us to provide alternative, elegant proofs of the results of this chapter.
We begin with an alternative proof of (0.3.2) that exhibits the power of constructing
generating functions.

Exercise 0.6.1. (a) Prove that for every integer k > 0 one has

1 (K k+1 k+2y o k+my .,
(1,,{)&:+1 - (k)+( k )t+( k )t +“'+( k )t o
(b) Prove that (0.3.1) follows by equating the coefficient of ¢V =*—1 on either side of
1 1 1

(L=t (1—t)  (1—t)k+2’

(¢) Multiply this identity through by 1 — ¢t and reprove the formula in exercise 0.3.1.(a) by
equating the coefficients on each side.

0.6. Formulas for sums of powers of integers, Il|

The Bernoulli numbers, B, are the coefficients in the power series:
X Xn
Xi = E Bﬂ. -
er —1 n!
n>0

They are a sequence of numbers that occur in all sorts of interesting contexts in

number theory. The first few Bernoulli numbers are By = 1, By = —%= By = %,
By =0, B4=—%,~ Bs =0, Bg = é'} Br =0, By = —%= By =0, Bio = g5,----

11



12 Appendix 0B. Generating functions

From this data we can make a few guesses as to what they look like in general:

e If nis odd and > 1, then Bn = 0. This is casily provcd since

Xﬂ
ZQB,LF= ZB ZB

n>0 ’ n>0 n>0

n odd n odd n odd
X X)X (e
T eX 1 e X1 X1 X1 '

Comparing the coefficients of X™ on either side of this equation, we conclude
that By = —% and B,, = 0 for all odd n > 3.

e The B, are rational. We expand the power series

X r s
et —1 X X X
1= —_— = —_— Bé_
X eX —1 Z('r+l)! Z s!

=0 520

- 1l ¢ |
=\ = (r+ 1)!s! (n+1)!
r+s=n

and compare the coefficients of X™ on either side to obtain that By = 1 and
S, ("M B, = 0 for each n > 1. This can be rewritten as

S

n—1

1 1

B, = - E n B, for each n > 1.
n+1 = s

We can then deduce by induction on n > 1 that the I3, are rational, since we
have given B, as a finite sum of rational numbers times Bernoullli numbers
B, with s < n.

Next we define the Bernoulli polynomials, B, (t), as the coefficients in the power

series: N
X E’t
= Ba

n>0

and therefore B,(0) = B,,. To vcrify that these are really polynomials, note that
Xm+n

k
ZB’“(“% = ZZB t" mlnl

k=0 m>0 n=>0 m=>0n>0

Here we change variable, writing k = m + n, and then the coefficient of X*/k! is
k

(0.6.1) Bi(t) = > % B,t™ = Z(:) Bpth .

m,n=0 n=0
m+n=k

We have done all this preliminary work so as to prove the following extraordinary
formula for the sum of the mth powers of the positive integers < N.

Theorem 0.1. For any integers k>1and N > 1 we have

PR

By (N) — Bg).

?rlv—‘
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Proof. If N is an integer > 1, then

k NX N-1
S (BN - B = 2D xS e

X _
= k! e 1 s
N-1 . N—1 .
_ (nX)? )Xot
Yy s (Y
n=0 j>0 320 \n=0

Therefore for any integer N > 1 we obtain

Xk ) xk
S B - B - z(k Xt )?

k>0 k>1

by letting & = j + 1. The result follows by comparing the coefficients on both
sides. (]

Negative powers. A key quantity in number theory is the infinite sum

1 1 1

g(k):1+ﬁ+¥+4_k

which we define for each integer & > 2. This is called the Riemann zeta-function

even though it was first explored by Euler more than a hundred years earlier. Each

of these sums is convergent, as each 1/m* < 1/m? for all m > 1,k > 2, and
1/m? < f;n_l dt/t?, so that

SIS E LIRS T,
=722 32 1 -

1
L+ 56+ 3 5

2’ch

We will make a few observations about the values of these sums:

Exercise 0.6.2. (a) Prove that > -, m =1.

(b) Prove that 37, 2= m

mh

(¢) Deduce that 37, 5,(C(k) — 1) = 1.

Exercise 0.6.3. Let P be the set of perfect powers > 1. Let N be the set of integers > 1 that
are not perfect powers (so that P U AN is a partition of the integers > 1).
(a) Prove that P = {n* :n € N and k > 2} and {n* : n € N and k > 1} = {m > 2}.
1 1
(b) Prove that > pep P_7i =3 k>2 2 oneN 2031 TIE-
(c) Deduce that 3 p.p p—5 = 1.

This result was communicated by Goldbach to Euler in 1744.

0.7. The power series view on the Fibonacci numbers

An alternate view on Fibonacci numbers, and indeed all second-order linear recur-
rence sequences, is via their generating functions. For Fibonacci numbers we study
the generating function

E Fpz™,

n>0
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which is a power series in #. Remembering that F, — I, 1 —F, o =0foralln > 2
we then have

(1—x—2?) Z F,x" = Fy+ (F, — Fo)x + (Fy — Fy — Fy)z?

n=0
o (B~ Fyoy — Fpo)x™ + -+
=0+(1-0x+0-2°+--+0-2"+-- = z.
Hence if o = 1+2‘/3 and 3 = 1_2‘/3, then

ZF&:”— x B 1 ar Bx
" l—-z—22 a-pB\l—ax 1-p3x

n=>0
1 m_m m_m m_ﬂm m
:a—ﬁ Zam 7Zﬁ$ :Zaa_ﬁm’

m>1 m>1 m=>1

and the result (0.1.1) follows, again. Note that if z,, = ax,_1 + bz, _a, then
(1 — at — bt?) Z Tat" = x0 + (21 — axg)t.
n=0
The sequence {z,},>0 is again determined by the values of a, b, 2o, and z;.

Exercise 0.7.1.7 Use this to deduce (0.1.3) when a?44b # 0, and exercise 0.1.5(c) when a®+4b =
0.

Both of these methods generalize to arbitrary linear recurrences of degree n, as
follows.

Theorem 0.2. Suppose that ay,as,...,aq and xo,T1,...,2q_1 are given and that
Ly = Q1 Tp_1 + A2Tp_o+ -+ agty,_gq foralln = d.

Factor the following polynomial into linear factors as
k
Xd_ale—] —ang_2+"'—ﬂd—1X—ad= H(X_aj)ﬁj_
i=1
Then there exist polynomials Py, ..., Py, each P; of degree < e; — 1, such that

k
(0.7.1) v, = Y Pi(n)a} foralln>0.
J=1

The coefficients of the P; (and the polynomials P; themselves) can be determined
by solving the linear equations obtained by taking this forn =0,1,2,...,d — 1.

Exercise 0.7.2.7 Prove that (0.7.1) holds.

Exercise 0.7.3.} Let (2n)n>0 be the sequence which begins xp = 0,21 = 1 and then z, =
arnp_1 + brn_2 for all n > 2. Its companion sequence, (yn ), >p. begins yo = 2,1 = x2 and then
Yn = AYpn—1 + by, o for all n > 2. For example, x, = 2" —1 has companion sequence y, = 2™+ 1.

(a) Prove that yn, = a™ + 8" for all n > 0 and also that yn = x2,/Tn.

(b) Let zo = —1 and 2z, = —bz,; for all n > 1. Give an explicit formula for z,.

(c) Prove that m42n = YnTm+n + 2nxm for all m,n > 0.

(d) Deduce that Fy46 = 4F,43 + I, for alln > 0.



Appendix 0C. Finding roots
of polynomials

In the remaining appendices of this preliminary chapter (chapter 0) we introduce
several important themes in number theory that do not often appear in a first course
but will be of interest to some readers. We also take some time to introduce some
basic notions of algebra that appear (sometimes in disguise) throughout this and
subsequent number theory courses. To begin with we discuss the famous question
of techniques for factoring polynomials into their linear factors.

The reader knows that the roots of a quadratic polynomial az? + bx +¢ = 0
are

b+ VA

2a

is called the discriminant of our polynomial, az? + bz + c¢. The easy way to prove
this is to put the equation into a form that is easy to solve: Divide through by a,
to get 22 + (b/a)x + ¢/a = 0, so that the leading coefficient is 1. Next make the
change of variable, y = x + b/2a, to obtain

where A :=b? — dac,

y? — A/da® = 0.

Having removed the y' term, we can simply take square roots to obtain the pos-
sibilities, +v/A/2a, for y, and hence we obtain the possible values for x (since
x =y — b/2a). Can one similarly find the roots of a cubic?

0.8. Solving the general cubic

We can certainly begin solving cubics in the same way as we approached quadratics.

Exercise 0.8.1. Show that the roots of any given cubic polynomial, Az® 4+ Bz? + Cz + D with
A # 0, can be obtained from the roots of some cubic polynomial of the form x* +ax +b, by adding
B/3A to each root. Moreover write a and b explicitly as functions of A, B, and C.

HI
o



16 Appendix 0C. Finding roots of polynomials

We wish to find the roots of 2* + az + b = 0 for arbitrary @ and b (which then
allows us to determine the roots of an arbitrary cubic polynomial, by exercise 0.8.1).
This does not look so easy since we cannot simply take cube roots unless a = 0.
Cardano’s trick (1545) is a little surprising: Write z = u + v so that

2 tar+b=(ut+v)®+alutv)+b=(u>+0>+b)+ (ut+2)(3uww + a).
This equals 0 when
u?+ 13 = —b and 3uv = —a.
These conditions imply the simultaneous equations
u? +v* = —b and v*v® = —a®/27,
so that, as a polynomial in X we have
(X —u®)(X —v*) = X? 40X —a®/27.

Using the formula for the roots of a quadratic polynomial yields

(0.8.1) s _ —hEVPHAERT  —bx VAI(-2T)
N 2 = 5 )

where A := —4a® — 27b% is the discriminant of our polynomial, 2% + ax + b. (The
definition and some uses of discriminants are discussed in detail in section 2.11 of
appendix 2B.)

All real numbers have a unique real cube root, call it ¢, and then the other
cube roots are wt and w?t, where w is a cube root of 1; for instance we may
take w = e2/3 = *1%‘/7_3 Therefore if U and V are the real cube roots in
(0.8.1), so that —3UV is real and therefore equal to a, then the possible solutions
to u® + v3 = —b together with 3uv = —a are

(u,v) = (U, V), (wU,w?V), and (w?U,wV).
This implies that the roots of 2° + az + b are given by
U+V, wlU+w?V, and U+ wV.

The roots of a quadratic polynomial were obtained in terms of integers and
square roots of integers. We have just seen that the roots of a cubic polynomial can
be obtained in terms of integers, square roots, and finally cube roots. How about
the roots of a quartic polynomial? Can these be found in terms of integers, square
roots, cube roots, and fourth roots? And are there analogous expressions for the
roots of quintics and higher degree polynomials?

0.9. Solving the general quartic

This is bound to be technically complicated, so much so that it is arguably more
interesting to know that it can be done rather than actually doing it, so we just
sketch the proofs:

We begin, as above, by rewriting the equation in the form z? 4 az?+ bz +¢ = 0.
Following Ferrari (1550s) we add an extra variable y to obtain the equation

(0.9.1) (22 +a+y)? = (a+2y)2* —ba + ((a+y)* - ¢)
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and then select y so as to make the right-hand side the square of a linear polynomial
rz+ s € Clz], in which case (2% +a + y)? = (rz + 5)?, so that z is a root of one of
the quadratic polynomials

(@2 +a+y) =+ (rz+s).

A quadratic polynomial is the square of a linear polynomial in z if and only if its
discriminant equals 0. The right side of (0.9.1) has discriminant

b* —4(a+2y)((a+y)* - o),

a cubic polynomial in y. We can find the roots, y, of this cubic polynomial by the
method explained in the previous section. Given these roots, we can determine the
possible values of r and s, and then we can solve for x to find the roots of the
original equation.

Example. The roots of X4 +4X% — 37X2% — 100X + 300. Letting r = X + 1
yields x* — 4322 — 18z + 360. Proceeding as above leads to the cubic equation
2y% — 215y + 6676y — 64108 = 0. Dividing through by 2 and then changing
variable y = t 4+ 215/6 gives the cubic t3 — (6169/12)t — (482147/108) = 0. This
has discriminant —4(6169/12)% + 27(482147/108)? = —(2310)%2. Hence u®,v% =
(482147 + 277201/=3)/216. Unusually this has an exact cube root in terms of
V—3; that is, u,v = w*(—37 £+ 40\/—_3)/6, where w* denotes w to some power.
Now —3(—37 + 40/=3)/6 - (=37 — 40v/=3)/6 = —6169/12 = a. Therefore we
can take u,v = (—37 4+ 40,/-3)/6, and the roots of our cubic are t = u + v =
—37/3, wu+w?v = 157/6, w?u+wv = —83/6 so that y = 47/2,62,22. From these,
Ferrari’s equation becomes (7% — 39/2) = +(2x + 9/2) for y = 47/2 and so the
possible roots —5,3; —4, 6; or (2% +19) = £(92 + 1) for y = 62 and so the possible
roots —5, —4:3,6; or (z2 — 21) = £(z + 9) for y = 22 and so the possible roots
—5,6:3,—4. For each such y we get the same roots x = 3, —4, —5, 6, yielding the
roots X = 2,—5,—6,5 of the original quartic.

Example. A fun example is to find the fifth roots of unity, other than 1. That is
those z satisfying % =a2' + 2%+ 2% + 2+ 1 = 0. Proceeding as above we find
the four roots

VE—14+vV-2V5-10 —/5-14++/2V5-10
4 ’ 4

0.10. Surds

A surd is a square root or a cube root or a higher root, that is, an nth root for
some number n > 2. We have shown above that the roots of degree 2, 3, and 4
polynomials can be determined by taking a combination of surds. We would like to
show something similar for polynomials of degree 5 and higher, which is the focus
of a course on Galois theory.

Gauss’s favorite example of surds was the expression for cos g—:, which we denote
by c(k). A double angle formula states that cos20 = 2cos®* — 1, and so taking
8 = 2w /2F we have

e(k —1) = 2¢(k)* — 1,
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which may be rewritten as e(k) = /2 + 2c(k — 1). Note that ¢(k) > 0 for k > 2
and ¢(2) = 0. Hence

c(3)=%\/§, c(4)=%\/2+\/§, c(5)=%\f2+ 2+ 2

and so we deduce by induction that

COS(Z—:):% 2+\/2+\/2+V2+---+\/§ for each k > 3.

k—2 times

Why does expressing the roots of polynomials in terms of surds seem like a
good idea? Are the roots, given explicitly as in the second example above, any
more enlightening than simply saying that one has a root of the original equation?
We can give arbitrarily good approximations to the value of any given irrational
(and rather rapidly using the right software), so what is really the advantage of
expressing the roots of polynomials in terms of surds? The answer is more to do with
our comfort with certain concepts, and aesthetics, than any intrinsic notion. In the
rather sophisticated Galois theory there are identifiable differences between these
different types of expressions, but such concepts are best left to a more advanced
course.

One can learn much more about these beautiful classical themes by studying
the first six chapters of [Tigl6].

References discussing solvability of polynomials

1

Raymond G. Ayoub, On the nonsolvability of the general polynomial, Amer. Math. Monthly 89
(1982), 397-401.

[2] Harold M. Edwards, The construction of solvable polynomials, Bull. Amer. Math. Soc. 46 (2009),
no. 3, 397-411.

[3] Blair K. Spearman and Kenneth S. Williams, Characterization of solvable quintics 2° + ax + b,
Amer. Math., Monthly 101 (1994), 986-992.



Appendix 0D. What is
a group?

Mathematical objects are often structured into groups. 1t is easiest to prove results
for arbitrary groups, so that these results apply for all examples of groups that
arise.® Many of the main theorems about groups were first proved in a number
theory context and then found to apply elsewhere.

0.11. Examples and definitions

The main examples of groups that you have encountered so far are additive groups
such as the integers, the rationals, the complex numbers, polynomials of a given
degree, and matrices of given dimensions; and multiplicative groups such as the
non-zero rationals, the non-zero complex numbers, and invertible square matrices
of given dimension. (The integers mod p, a notion we will introduce in chapter 2,
also give rise to both an additive and a multiplicative group.)

We will now give the definition of a group— keep in mind the objects named in
the last paragraph and the usual operations of addition and multiplication:

A group is defined to be a set of objects G and an operation, call it %, such
that:

(i) If a,b € G, then a « b € G. We say that G is closed under *.

(ii) If a,b,c € G, then (a *b) *c = a* (b* c¢); that is, when multiplying three
elements of G together it does not matter which pair we multiply first. We say that
G is associative.

(iii) There exists an element e € GG such that for every a € G we have a * e =

th

exa = a. We call e the identity element of G for . (For a group in which “x” is

80One can waste a lot of energy giving the same proof, with minor variations, in each situation
where a group arises. Gauss wrote Disquisitiones before the abstract notion of a group was formulated
and therefore does give very similar proofs in different places when dealing with different examples of
groups.

19
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much like addition we typically denote the identity by 0; for a group in which “x”
is much like multiplication we typically denote the identity by 1.)

(iv) For every a € G there exists b € G such that axb=bxa =e. We call b
the inverse of a. (For a group in which “+” is much like addition we write —a for
the inverse of a; for a group in which “*” is much like multiplication we write a~!
for the inverse of a.)

One can check that the examples of groups given above satisfy these criteria.
We have given examples of both finite and infinite groups. Notice that neither the
integers nor the polynomials form multiplicative groups, because there is no inverse
to 2 in the integers and no inverse to x amongst the polynomials.

There is one familiar property of numbers and polynomials that is not used in
the definition of a group, and that is that a x b = b * a, that a and b commute.
Although this often holds, there are some simple counterexamples, for instance
most pairs of 2-by-2 matrices do not commute: For example,

G 1) (8= (5 ) e (19) (0 1) (1)

We develop the full theory for 2-by-2 matrices in the next section. If all pairs
of elements of a group commute, then we call the group commutative or abelian.
Typically we use multiplicative notation for groups that are non-commutative. It
will be useful to develop a theory that works for non-commutative, as well as
commutative, groups

A given group G can contain other, usually smaller, groups H, which are called
subgroups. Every group G contains the subgroup given by the identity element, {0}
(the trivial subgroup), and also the subgroup G itself. It can also contain others;
any subgroup other than G itself is a proper subgroup. For example the additive
group of integers mod 6 with elements {0,1,2,3,4,5} contains the four subgroups

{0}, {0,3}, {0,2,4}, {0,1,2,3,4,5}.

The middle two are non-trivial, proper subgroups. Note that every group, and so
subgroup, contains the identity element. Infinite groups can also contain subgroups;
indeed

CoRDQDZ.
Exercise 0.11.1. Prove that if G a subgroup of Z under addition, then either G = {0} or

G = mZ:= {mn:n € Z} for some integer m > 1.

0.12. Matrices usually don’t commute

Let M2(C) be the set of 2-by-2 matrices with entries in C, and then define
Comm(M) :={A e Ms(C): AM = MA}

for each M € M5(C). 1t is evident that if M is a multiple of the identity matrix 1,

then M commutes with all of M3(C). Otherwise Comm (M) forms a 2-dimensional

subspace of (the 4-dimensional) M5 (C), as we now prove:

Proposition 0.12.1. If M is not a multiple of the identity matriz, then

Comm(M) = {rl +sM: r,s € C}.
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Exercise 0.12.1. Let M be an n-by-n matrix.
(a) Prove that if A and B commute with M, then so does rA + sB for any complex numbers r
and s. (We call rA + sB a linear combination of A and B.)
(b) Prove that M* commutes with M, for all k.
(¢) Deduce that all linear combinations of I, M,..., M™~! belong to Comm(M).

d

(a) Prove that M is not a multiple of I if and only if at least one of a # d, b # 0, ¢ # 0 holds.

(b) Prove that if a # d, then for any matrix A there exists r, s € C such that A — rI — sM has
zeros down the diagonal.

(c) Prove that if b # 0, then for any matrix A there exists r,s € C such that A —rI — sM has
zeros throughout the top row.

(d) Prove that if ¢ # 0, then for any matrix A there exists r, s € C such that A —rI — sM has
zeros throughout the first column

Exercise 0.12.2. Let M = (i b).

Proof of Proposition 0.12.1. It is evident that I and M commute with M, and
hence M commutes with any linear combination of I and M by exercise 0.12.1. We
now show that these are the only matrices that commute with M.

a b

Let M = (
c d
any r and s € C, by exercise 0.12.1.

. If A€ Comm(M), then B=A—rl—sM € Comm(M) for

If a # d, then we select r and s as in exercise 0.12.2(a) so that B = (2 g)

for some x,y € C. As B € Comm(M), we have

ce dx\ (0 x\{a DY ., _fa b\ [0 z\ fby ax
(a:v by)_(y 0) (c d)_BM_MB_(C d) (?J 0)_(6@ CT)

Comparing the off-diagonal terms on the left- and right-hand ends of the equation
forces © = y = 0 (as a # d), so that B = 0, and therefore A = rI + sM.

Ifa=d, b#0,and M # al, then B may be written in the form B = (2 g)

for some x,y € C, by exercise 0.12.2(b), so that

0 0 0 0\ /(a b
(aercy b$+dy)_(:v y) (c d)_BM_lMB

(G-

Comparing the terms in the top row on the left- and right-hand ends of the equation
forces ¢ =y = 0 (as b # 0), so that B = 0, and therefore A = rI + sM.

Ifa=d b=0,c# 0, and M # al, then we may proceed analogously to
the previous paragraph. Alternatively we may note that the result for M7 (the
transpose of M) is given by the previous paragraph and then follows for M since
BM = MB if and only if BT MT = MT BT,

Finally if a = d and b = ¢ =0, then M is a multiple of 1. O

=]



Appendix OE. Rings and fields

In section 0.11 of appendix 0D we introduced the notion of a group and gave
various examples. The real numbers are a set of objects that remarkably support
two different groups: There is both the additive group and the multiplicative group
acting on the non-zero real numbers, and this partly explains why they play such a
fundamental role in mathematics. In this appendix, we formalize these notions and
the key differences between the structure of the real numbers and of the integers.
This will allow us to better identify the properties of many important types of
numbers that arise in number theory.

0.13. Mixing addition and multiplication together: Rings and fields

A set of numbers A which, like the reals, has an additive group on A with identity
element 0 and a commutative multiplicative group on A\ {0} and for which the
two groups interact according the distributive properties,

ax(b+e)=(axb)+(axec) and (a+b) xc=(axec)+ (bxc),

is called a field. The reals R are an example, as are C and Q. A field provides the
most convenient situation in which to do arithmetic.

Exercise 0.13.1. Prove that a x 0 =0 for all o € A, when A is a field.

However the integers, Z, which are also vital to arithmetic, do not form a field:
Although they form a group under addition, they do not form a group under mul-
tiplication, since not every integer has a multiplicative inverse within the integers
(for example, the multiplicative inverse of 2 is 1/2 which is not an integer). But you
can multiply integers together, and the integers possess a multiplicative identity,
1, so they have some of the properties of a multiplicative group, but not all. The
integers are an example of a ring, which is a set of objects that form an additive

22
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group, are closed under multiplication, and have a multiplicative identity, 1, as well
as satisfying the above distributive properties.” Thus 7 is a commutative ring.

The set of even integers, 2Z, narrowly fails being a ring; it simply lacks the
multiplicative identity. The polynomials with integer coefficients, Z[z], form a ring.
Indeed if A is a commutative ring, then A[x] is also a commutative ring.

For a given ring or field A and object « that is not in A, we are often interested
in what type of mathematical object is created by adjoining « to A. This may be
done in more than one way:

e Ala], which denotes polynomials in a with coefficients in A, that is, expressions
of the form ag + ajov + - - - + aga? for any d > 0 where each a; € A.

e A(a), which denotes rational functions in « with coefficients in A, or, more
simply, quotients u/v with u,v € Afa] and v # 0.

For example we will prove in section 3.4 that /2 is irrational (that is, v/2 € Q, and
s0 V2 € Z), so we would like to understand the sets Q(v/2) and Z[v/2].

Exercise 0.13.2. (a) Prove that Z[v2] = {a +bv2: a,b € Z} and that Z[/2] is a ring.
(b) Prove that Q(v/2) = Qv2] = {a + bv/2: a,b € Q} and that Q(+/2) is a field.

0.14. Algebraic numbers, integers, and units, |

If f(z) = Zj:u fjx? where fg # 0, then f(z) has degree d and leading coefficient
fa- We say that f(z) is monic if f; = 1. If all of the coefficients, f;, of f(x) are
integers, then we write f(x) € Z[x]. The content of f(x) € Z[x] is the largest integer
that divides all of its coefficients. If m is the content of f(x), then f(z) = mg(zx)
for some g(z) € Z[x] of content 1. Obviously m divides every value f(n) with
n € Z but there could be other integers that also have this property. For example,
f(x) = 2? + 2 + 2 has content 1, but 2 divides f(n) for every integer n.

We call a € C an algebraic number if it is a root of a polynomial f(z) € Z[z],
with integer coefficients. If f is monic, then « is an algebraic integer. We call
f(z) the minimal polynomial for « if f is the polynomial with integer coefficients,
of smallest degree, with positive leading coefficient and of content 1, for which
f(a@) = 0. Minimal polynomials are irreducible in Z[z], for if f(z) = g(x)h(z) with
g(z), h(z) € Z[z], then g(a)h(a) = f(a) = 0 so that either g(a) = 0 or h(a) = 0;
and therefore a is a root of a polynomial of lower degree than f. contradicting
minimality.

Exercise 0.14.1. Let f(x) be the minimal polynomial of an algebraic number o.
(a) Prove that if g(x) is a polynomial with integer coefficients for which g(a) = 0, then f(x)
divides g(z). (You may use Proposition 2.10.1 of appendix 2B in your proof.)
(b) Prove that if f(x) divides g(x) € Z[z] and g is monic, then f is monic. Deduce that if
g(e) = 0, then « is an algebraic integer.
(c) Prove that if g(a) = 0 and g is irreducible, then g = kf for some constant « # 0.
) Prove that f(z) is the only minimal polynomial of a.
(e) Prove that (z — a)? does not divide f(z).

"For the sake of comparison, a ring does not necessarily have two of the properties of a field: The
numbers in a ring do not necessarily have a multiplicative inverse, and they do not necessarily commute
when multiplyving them together.
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Exercise 0.14.2. Prove that if « is an algebraic number and a root of f(x) € Z[z] where f has
leading coefficient a, then ac is an algebraic integer.

Exercise 0.14.3. What are the algebraic integers in (J7

Exercise 0.14.4. (a) Prove that Z[v/d] is a subset of the algebraic integers.
(b) Prove that Z[/2] is the set of algebraic integers in Q(+/2).

(¢) Prove that H’jﬁ is an algebraic integer.

If « is an algebraic integer, then so is ma+n for any integers m, n, for if f(x) is
the minimal polynomial of a and has degree d, then F(z) := m?f(*-") is a monic
polynomial in Z[x] with root ma + n.

If « is a non-zero algebraic number, with minimal polynomial f(z) of degree
d, then 1/a is a root of 27 f(1/x).

Exercise 0.14.5. (a) Prove that 1/« has minimal polynomial z¢f(1/x).
(b) Prove that o and 1/« are both algebraic integers if and only if f is monic and f(0) =1 or
—1. In this case o and 1/« are called units.

Another way to view this is that « is a unit if and only if « divides 1, for if 3 = 1/, then
aff =1 and o and 3 are both algebraic integers.

Exercise 0.14.6. Suppose that a and S are algebraic integers such that a divides 3, and 3
divides . Prove that there exists a unit u for which 8 = ua

In the section 0.17 of appendix OF we will prove that if « and 8 are algebraic
numbers, then so are o +  and af. Moreover if o and 3 are algebraic integers,
then so are a + 3 and «/3.

Exercise 0.14.7. (a) Prove that if « is an algebraic number, then Q(a) is a field.
(b) Prove that if o is an algebraic integer, then Z[a] is a ring.

Do there exist numbers « that are irrational (that is, that are not rational), so
that, for instance, @(«) is not the same thing as Q7 To determine what numbers
are irrational we should first classify, in a useful way, the rational numbers. The
minimal polynomial of a rational number p/q with (p,q) = 1 is gz — p € Z[z].
Therefore one way to show that an algebraic number is irrational is to show that
its minimal polynomial has degree > 1. Therefore given a polynomial, say 2% —2, we
have to decide whether it is the minimal polynomial for some number, or perhaps
prove that it is irreducible (so that it cannot have a rational root). We will develop
number-theoretic tools to do this. Another way to find irrational numbers is to
perhaps show that there are numbers that are not the roots of any polynomial in
Zlz]. Such numbers are not only irrational but are not even algebraic numbers
and so are called transcendental. It is not too difficult to prove that transcendental
numbers exist (by the “diagonalization argument” given in section 11.16 of appendix
11D), but it is rather more subtle to determine an actual transcendental number
(though we will do so, using number-theoretic ideas in chapter 11).

For much much more on university level algebra, much of which stems from
number theory, the reader might care to look at the excellent textbook [DF04] by
Dummit and Foote or the more advanced but number theoretic [IR90].



Appendix OF. Symmetric
polynomials

It is difficult to work with algebraic numbers since one cannot necessarily eval-
. . 5 .

uate them precisely. For example the golden ratio, l+2\£7 can casily be well-

approximated, but how can you determine its precise value (since it is irrational)?

We can often avoid working with the actual algebraic numbers themselves, but
rather work with the set of all of the roots of the minimal polynomial. For example,
the formula (0.1.1) for the nth Fibonacci number involves both the golden ratio and
the other root of its minimum polynomial 2 — 2 — 1. It was Sir Isaac Newton who
recognized that a function that is symmetric in all of the roots of a given polynomial
is a rational number.

0.15. The theory of symmetric polynomials

We say that P(xq,z9,...,x,) is a symmetric polynomial if
Py, xa, .. 21,71, T i1, ..., Tn) = Py, 22,...,2,) for each k.
Here we swapped x; and x; and kept everything else the same.

Exercise 0.15.1. Show that for any permutation o of 1,2,...,n and any symmetric polynomial
P we have P(mﬂ(l}: To(2)r -+ 'vicn'('n.)) = P(:L—b L2,---, x?&)-

Theorem 0.3 (The fundamental theorem of symmetric polynomials). For a given
monic polynomial f(x) = Zf:o a;z" with integer coefficients, each symmetric poly-
nomial in the roots of f, with integer coefficients, can be expressed as a polynomial
in the a; with rational coefficients.

Proof. Let f(z) = Hd (r — «;). We begin by proving the claim for the

i=1

S 1= Zof‘ for each k > 0.

t\DI
o
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Multiplying out f(z) = Hle(:r — ;) we have

E ; = —ap, E ity = a2, E Qe = —agz, ..., QO2...0y = :l:ﬁ',n
i

<] i<j<k

Then, since J}’((:)) = Zf - la we have

Yiodazt™ 2ttt f(1/a - :
e T S = Y Y ) = Yt

d d— e
i=0 BT (1/2) i=1 i=1 k>0 E>0

This implies that

Comparing the coefficients of 2V, we obtain (as ag = 1

min{d,N} .
(di)ad,N if N <d,

SN = — Z ad—iSN—i + { .
. 0 if N > d.

Hence, by induction on N, we see that the sy are polynomials in the a;.

We now sketch a proof of Newton’s result for arbitrary symmetric polynomi-
als, by showing that every symmetric polynomial in the roots of f, with integer
coefficients, can be written as a polynomial in the s, with integer coeflicients. We
proceed by induction on the number r of variables in the monomials of the sym-
metric polynomial; that is, we select the monomials cafll a,’f; e af: in f, with each
k; > 1, for which r is maximal. In the r = 1 case, our polynomial is simply a
linear combination of the s;. Suppose that » > 1. If the k; are distinct in such a
monomial, we subtract esg, si, ... s;, and we are left with various cross terms but,
in all of which, two or more of the variables «; are equal. If the k; are not all dis-
tinct, then we subtract sg, sk, ... sk, /], mi! where m; := #{j : k; =i}, to obtain
various cross terms, with the same property. Hence, in the remaining expression,
each monomial contains fewer variables and the result follows by induction. O

Exercise 0 15 2. If f is not monic, develop analogous results by working with g(x) defined by
9(aqx) = af ' f().

Example. Look at 37, ;| ooy, Subtract s1sys3 and we have to account for the
cases where i = j or ¢ = k or j = k. Hence what remains is

E 3.3 E 4 2 E 5
- a0 — o Oij - Ctvj,(lj =+ 285,
ik i,] L2V

where in the first sum we have i = j, in the second ¢ = k, in the third 7 = k, and in
the last i = j = k (the coefficients being chosen by inclusion-exclusion). Proceeding
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the same way again we have
4.2 5 33 2
Zaiaj = 5482 — Sg, E o;a] = 8185 — g, and Zai ap = (s5 — s6)/2,
L i ik
the last since in s the cross term alaj appears also as aja?. Collecting this all
together yields

Z am?ai = 515253 — 8155 — 5254 — 33/2 + 9s/2.

i,k
Throughout these calculations, the sum of the indices in each term is 6, the degree
of the original polynomial.

0.16. Some special symmetric polynomials

If o and 3 are the two roots of a monic quadratic polynomial with integer coeffi-
cients, then z,, = (o™ — 8")/(x — ) is a symmetric function in « and §# and hence
must be an integer by the fundamental theorem of symmetric polynomials. (We
saw in exercise 0.1.4(c) that this is the nth term of the general second-order linear
recurrence sequence that starts 0,1.)

If & is a root of an irreducible polynomial f(x) = a]_[le(:v — «;), then there
are two symmetric polynomials of particular interest:

The trace of o is @y + a9 + - -+ + g, the sum of the roots of f.
The norm of « is ajas . .. g, the product of the roots of f.

By the fundamental theorem of symmetric polynomials, the trace and the norm of
an irreducible polynomial are rational numbers.

Exercise 0.16.1. Show that if f(t) = Hi;l(t — ;) € Z[t], then ]_[;Ll f'(e;) is an integer, by
using the theory of symmetric polynomials.

Using the product rule we see that

k
i) = az H (t — ) and so f'(e;) = a H (o — a5).

j=11<i<k 1<i<k
i#£] i#]
We deduce that
d
[[7 @) =a" ] (~(ci—0a;).
j=1 1<i<j<d

This is a symmetric polynomial in the roots «;, and so by Newton’s fundamental
theorem of symmetric polynomials it must be a rational number.

Let’s evaluate this product for the quadratic polynomial ax? + bz + c. If this
has roots o and (3, then ax? + bz + ¢ = a(x — a)(x — 3) and so

ala+ )= —b and aaf=rc.

Therefore
a*(a—pB)* = (a(a+ f))* —da(anf) = b* - dac,

the discriminant of the polynomial, axz? + bx + c.
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For the cubic polynomial 23 + ax + b = (z — a)(z — 3)(z — 7) we have
a+B+v=0, af+ay+Fy=a, and afy= —bh
But then v = —(a + ) so that a® + a8 + 32 = —a and af(a + 3) = b. Therefore
(“1*((a=B)(v = Bla—7)? = —((a-B)a+28)2a+p)* = da® + 2707,

which is the diseriminant of the polynomial @* + az + b.

A beautifully symmetric function is given by the Vandermonde matrix. The
3-by-3 version is

1 1 1
roy 2,
2?2 22

which has determinant (z —y)(y —z)(z —z). This is not quite a symmetric function
since swapping any two variables multiplies the determinant by —1. (This is also
apparent when swapping any two columns of the matrix.) One intuitive way to
see that (x — y)(y — z)(z — x) is the determinant is by showing that each factor
separately and together divides the determinant. To begin with, if x = y, then the
determinant equals 0 as the first two columns are now equal, which implies that
x —y must be a factor of the determinant. Similarly x — 2 and z — y also divide the
determinant. If x, y, and z are variables, then these expressions do not have any
common factors, and so their product divides the determinant. This product has
degree three (adding the degrees of the variables), as does the determinant, so they
can differ by at most a constant factor. The constant factor can be determined by
checking the coefficient of a particular monomial on both sides. For example x%y! 22
only arises in the determinant from multiplying out the terms of the main diagonal
and therefore has coefficient 1, and one can equally look for how this monomial
arises in the product.®

Exercise 0.16.2. Use the same argument to explain that the determinant of Vandermonde matrix
V, where V; j =a? 7!, 1 <4,j < d, is Misicyzalo = eq)

Exercise 0.16.3. Prove Theorem 0.2 when each e; = 1 (assuming exercise 0.16.2).

Now
d d d
(VIV)ix = Z(VT)MV},A: = ZV]zlfjk = Z (1;_104_?_1 = Sitk-2
J=1 Jj=1

j=1
for 1 < i,k < d. Hence (det V)? is the determinant of the matrix with (i, k)th entry
Sitk—2-

Exercise 0.16.4.F (This question requires some knowledge of linear algebra.) Suppose that M
is an n-by-n matrix.
(a) Prove that if M is a diagonal matrix in which all the diagonal entries are distinct, then
Comm(M) equals the set of diagonal matrices.
(b) Use exercise 0.16.2 to show that the set of diagonal matrices is then given by {aol +a1 M +
coedap_ 1 M™ 1 each a; € C}.

SDiehard algebraists might be uncomfortable with this discussion since we ignore ideals that arise
from the geds of the polynomial factors, but these details can all be justified.
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(c) Now let M, N, and T be n-by-n matrices with T" invertible. Prove that M and N commute
if and only if 7" MT and T~!NT commute.

(d) Prove that if M is an n-by-n matrix with n distinct eigenvalues, then Comm(M) = {apl +
aiM + - +ap—1M"!: cach a; € C}.

0.17. Algebraic numbers, integers, and units, |1

We are now in a position to prove some of the claims of section 0.14 of appendix
OE. Suppose that o and 3 are algebraic integers with minimal polynomials f and

g. Then
I[I G-tw+ry= ] glz-w.
wu: f(u):(] u: f(u):O
v g(v)=0

by exercise 0.14.1(d). This is a symmetric polynomial in the roots u of f and so,
by the fundamental theorem of symmetric polynomials, this is a monic polynomial
with integer coefficients having root o + 3, and so « + /3 is an algebraic integer.

Exercise 0.17.1. (a)! Prove that if & # 0 and J are algebraic integers, then af is also an

algebraic integer.
(b) Prove that if & # 0 and 8 are algebraic numbers, then a + 3 and a3 are algebraic numbers.

Exercise 0.17.2. Prove that if ay,...,a are algebraic numbers, then Q(aq,...,a;) is a field.
These are the number fields.

Let @ denote the set of all algebraic numbers. Evidently if K is any number
field, then K C Q. It is not difficult to prove that Q is itself a field. Similarly if
A is the set of all algebraic integers, then A is a ring and the algebraic integers
inside a given number field K form a subring, which is precisely K N A. However
identifying the elements of K N A explicitly can be rather more challenging, as we
saw in exercise 0.14.4.

Rather more interestingly, the roots of any polynomial with coefficients in Q@
all belong to Q.

Proposition 0.17.1. Suppose that f(z) € Q[z] and that f(p) = 0. Then p € Q.
We say that Q is algebraically closed.

Proof. Suppose that f(z) = ap +ajz + -+ + agz? so that each a; is an algebraic
number. Suppose that a; has minimal polynomial g;(x): and let A; be the set of
roots of g;(z). Then f(x) divides the polynomial

F(x):= H H H (g + onz + - + aga?)
ag€EAg a1 €A ag€Aq

which is a symmetric polynomial in the elements of each A; with 0 < j < d and
therefore belongs to Q[z] by the law of symmetric polynomials. Any root of f(x)
is a root of F'(x) and therefore must be an algebraic number. O

For further development of these ideas see chapter 8 of [Tigl6].
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0.18. Constructible using only compass and ruler

The ancient Greeks were interested in what could be constructed using only a
straight edge (sometimes called an “unmarked ruler”, or just plain “ruler”) and a
compass. Three questions stumped them:

Quadrature of the circle:
Draw a square that has area equal to that of a given circle.

To draw a square whose area is 7 (the same area as a circle of radius 1), we need
to be able to draw a square with sides of length x, where

x is a root of the equation z2 — 7.

Duplication of the cube:
Construct a cube that has twice the volume of a given cube.

If the original cube has side length 1 (and so volume 1), we would need to be able
to construct a cube with sides of length z, where
x is a root of the equation z® — 2.

Trisection of the angle:
Construct an angle which is one third the size of a given angle.
Constructing an angle @ is as difficult as constructing a right-angled triangle con-
taining that angle, that is, the triangle with side lengths sin @, cos#, 1. Therefore
if we start with angle 36 and wish to determine the angle €, then we will need to be
able to determine cos @ from cos 3@ and sin 30. But these are linked by the formula
cos 36 = 4 cos® # — 3 cosB; that is, we need to find the root & = 2cos of 22 — 3z — A
where A = 2cos 36. For example, if # = 7/9, we will need to be able to construct
a right-angled triangle with a side of length x/2 where
x is a root of the equation a® — 3z — 1.

30
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We need to understand the algebra of points that are constructed from given
points and lengths by “ruler and compass”. Our tools are:

e An unmarked ruler, which allows us to draw the line between any two given
points and to extend that line as far as we like.

e A compass, which allows us to draw the circle centered on one given point,
of radius a given length, or the distance between two given points.

Proposition 0.18.1. Given a set of poinis on lines and a set of lengths, any new
points that can be constructed from these, using only ruler and compass, will have
coordinates that can be determined as the roots of degree-one or degree-two polyno-
mials, whose coefficients are rational functions of the already known coordinates.

Proof. The lines are defined by pairs of points: Given the points A = (a1, az2) and
B = (by, by) the line between them is (by — a1)(y — az) = (ba — az)(x — aq).

Exercise 0.18.1. Show that the coefficients of the equation of this line can be determined by a
degree-one equation in already known coordinates.

Exercise 0.18.2. Prove that any two (non-parallel) lines intersect in a point that can be deter-
mined by a degree-one equation in the coefficients of the equations of the lines.

Given a length r and a point C' = (e;,¢2), we can draw the circle (z — ¢;)? +
(y — 2)? = r? centered at C of radius r.

Exercise 0.18.3. Prove that the points of intersection of this circle with a given line can be given
by a degree-two equation in already known coordinates.

Exercise 0.18.4. Prove that the points of intersection of two circles can be given by a degree-two
equation in already known coordinates.

Combining all these exercises implies Proposition 0.18.1. U

We sketch here how one uses Proposition 0.18.1 to show that the Greeks were
stumped by their three questions for good reason—mnone of the three were possible.
Proposition 0.18.1 implies that we can draw a square that has area equal to that
of a given circle if and only if 7 can be obtained in terms of a (finite) succession of
roots of linear or quadratic polynomials whose coefficients are already constructed.
If this can be done, then m would be the root of some polynomial (perhaps of
high degree); in other words m would be an algebraic number. However Lindemann
proved, in 1882, that 7 is transcendental (as we will discuss in more detail in section
11.17 of appendix 11D).

If o is obtained from a (finite) succession of roots of linear or quadratic poly-
nomials whose coefficients are already constructed, then « is not only an algebraic
number but one can show that its minimal polynomial has degree which is a power
of 2. Both 2* —2 and z* — 3z —1 are irreducible (which can be shown using Theorem
3.4; see exercise 3.4.4), and so these are the minimum polynomials for their roots
(by exercise 0.14.1(c)). Therefore one cannot duplicate the cube, nor trisect the
angle 7/3, since the roots of these irreducible polynomials of degree three do not
have minimum polynomials that have degrees that are a power of 2.

For further development of these ideas see section 13.3 of [DF04] or section
9.11 of [IR90).
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Chapter 1

The Euclidean algorithm

1.1. Finding the gcd

Most readers will know the Euclidean algorithm, used to find the greatest common
divisor (ged) of two given integers. For example, to determine the greatest common
divisor of 85 and 48, we begin by subtracting the smaller from the larger, 48 from
85, to obtain 85 — 48 = 37. Now ged(85,48) = ged(48,37), because the common
divisors of 48 and 37 are precisely the same as those of 85 and 48, and so we apply
the algorithm again to the pair 48 and 37. So we subtract the smaller from the
larger to obtain 48 — 37 = 11, so that gcd(48,37) = ged(37,11). Next we should
subtract 11 from 37, but then we would only do so again, and a third time, so let’s
do all that in one go and take 37 — 3 x 11 = 4, to obtain ged(37,11) = ged(11,4).
Similarly we take 11 — 2 x 4 = 3, and then 4 — 3 = 1, so that the ged of 85 and 48
is 1. This is the Euclidean algorithm that you might already have seen,! but did
you ever prove that it really works?

To do so, we will first carefully define terms that we have implicitly used in the
above paragraph, perhaps mathematical terms that you have used for years (such
as “divides”, “quotient”, and “remainder”) without a formal definition. This may
seem pedantic but the goal is to make sure that the rules of basic arithmetic are
really established on a sound footing.

Let a and b be given integers. We say that a is divisible by b, or that b divides a,>
if there exists an integer ¢ such that a = ¢gb. For convenience we write “b | a”.%4
We now set an exercise for the reader to check that the definition allows one to
manipulate the notion of division in several familiar ways.

Exercise 1.1.1. In this question, and throughout, we assume that a, b, and ¢ are integers.
(a) Prove that if b divides a, then either a = 0 or |a| > |b|.

!There will be a formal discussion of the Euclidean algorithm in appendix 1A.

?One can also say a is a multiple of b or b is a divisor of a or b is a factor of a.

3 And if b does not divide a, we write “b fa”.

4One reason for giving a precise mathematical definition for division is that it allows us to better
decide how to interpret questions like, “What is 1 divided by 077 or “What is 0 divided by 077
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(b) Deduce that if alb and bla, then b = a or b = —a (which, in future, we will write as
“ = +a”).

(c) Prove that if a divides b and ¢, then a divides bz + ey for all integers z, y.

(d) Prove that a divides b if and only if a divides —b if and only if —a divides b.

(e) Prove that if a divides b, and b divides ¢, then a divides ¢.

(f) Prove that if a # 0 and ac divides ab, then ¢ divides b.

Next we formalize the notion of “dividing with remainder”.

Lemma 1.1.1. Ifa and b are integers, with b > 1, then there exist unique integers
q and r, with 0 <r < b— 1, such that a = qgb+r. We call q the “quotient”, and r
the “‘remainder”.

Proof by induction. We begin by proving the existence of g and r. For each
b > 1, we proceed by induction on a > 0. If 0 < a < b — 1, then the result follows
with ¢ = 0 and r = a. Otherwise assume that the result holds for 0,1,2,...,a — 1,
where @ > b. Then a —1 > a — b > 0 so, by the induction hypothesis, there exist
integers @ and r, with 0 < r < b—1, for which a —b = Qb+ r. Therefore a = ¢b+r
with ¢ = Q + 1.

If a < 0, then —a > 0 so we have —a = Qb + R, for some integers () and R,
with 0 < R < b — 1, by the previous paragraph. If R = 0, then a = ¢b where
g=—Q (and r = 0). Otherwise ] < R<b—1landsoa=gb+r withg=-Q — 1
and 1 <r=b— R < b-—1, as required.

Now we show that ¢ and r are unique. If a = ¢b + r = Qb + R. then b divides
(q—Q)b=R—r. However 0 <r,R<b—1sothat |[R—r|<b—1,and b| R—r.
Therefore R —r = 0 by exercise 1.1.1(a), and so @ — ¢ = 0. In other words ¢ = Q
and r = R; that is, the pair ¢, r is unique. O

An easier, but less intuitive, proof. We can add a multiple of b to a to get a
positive integer. That is, there exists an integer n such that a + nb > 0; any integer
n > —a/b will do. We now subtract multiples of b from this number, as long as it
remains positive, until subtracting b once more would make it negative. In other
words we now have an integer a —gb > 0, which we denote by r, such that r—b < 0;
in other words 0 < r <b— 1. O

Exercise 1.1.2. Suppose that a > 1 and b > 2 are integers. Show that we can write a in base b;
that is, show that there exist integers ap, aj,... € [0, b—1] for which a = agb®+ag_ 1691 +aib+ag.

We say that d is a common divisor of integers a and b if d divides both a and
b. We are mostly interested in the greatest common divisor of a and b, which we
denote by ged(a, b), or more simply as (a, b).>¢

We say that a is coprime with b, or that a and b are coprime integers, or that
a and b are relatively prime, if (a,b) = 1.

5In the UK this is known as the highest common factor of a and b and is written hcf(a, b).

SWhen a = b = 0, every integer is a divisor of 0, so there is no greatest divisor, and therefore
ged(0,0) is undefined. There are often one or two cases in which a generally useful mathematical
definition does not give a unique value. Another example is 0 divided by 0, which we explore in exercise
1.7.1. For aesthetic reasons, some authors choose to assign a value which is consistent with the theory
in one situation but perhaps not in another. This can lead to artificial inconsistencies which is why we
choose to leave such function-values undefined.
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Corollary 1.1.1. Ifa = gb+ r where a, b, q, and r are integers, then
ged(a, b) = ged(b, 7).

Proof. Let ¢ = ged(a,b) and h = ged(r,b). Now g divides both a and b, so g
divides a — gb = r (by exercise 1.1.1(c)). Therefore g is a common divisor of both r
and b, and therefore g < h. Similarly h divides both b and r, so h divides gh+r = a
and hence h is a common divisor of both a and b, and therefore h < g. We have
shown that g < h and h < g, which together imply that g = h. O

Corollary 1.1.1 justifies the method used to determine the ged of 85 and 48 in
the first paragraph of section 1.1 and indeed in general:
Exercise 1.1.3. Use Corollary 1.1.1 to prove that the Euclidean algorithm indeed yields the

greatest common divisor of two given integers. (You might prove this by induction on the smallest
of the two integers.)

Exercise 1.1.4. Prove that (Fp, Fr.1+1) = 1 by induction on n > 0.

1.2. Linear combinations

The Euclidean algorithm can also be used to determine a linear combination” of

a and b, over the integers, which equals ged(a, b); that is, one can always use the
Euclidean algorithm to find integers u and v such that

(1.2.1) au + bv = ged(a, b).

Let us see how to do this in an example, by finding integers u and v such that
85u + 48v = 1; remember that we found the ged of 85 and 48 at the beginning of
section 1.1. We retrace the steps of the Euclidean algorithm, but in reverse: The
final step was that 1 =1-4 —1-3, a linear combination of 4 and 3. The second to
last step used that 3 = 11—2-4, and so substituting 11 —2-4for3inl1=1.-4—1-3,
we obtain

1=1-4-1-3=1-4-1-(11-2-4)=3-4—-1-11,
a linear combination of 11 and 4. This then implies, since we had 4 = 37 — 3 - 11,
that
1=3-(37-3-11)-1-11=3-37-10- 11,
a linear combination of 37 and 11. Continuing in this way, we successively deduce,
using that 11 = 48 — 37 and then that 37 = 85 — 48,

1= 3-37—10-(48—-37) =13-37—10-48
=13-(85—48) —10-48 =13-85 — 23 - 48;
that is, we have the desired linear combination of 85 and 48.

To prove that this method always works, we will use Lemma 1.1.1 again: Sup-
pose that a = gb + r so that ged(a, b) = ged(b,r) by Corollary 1.1.1, and that we
have bu — rv = ged(b, r) for some integers u and v. Then

(1.2.2) ged(a, b) = ged(b,r) = bu — v = bu — (a — gb)v = b(u+ qv) — av,

7A linear combination of two given integers a and b, over the integers, is a number of the form ax+by
where @ and y are integers. This can be generalized to yield a linear combination ayjz; + --- + apx,
of any finite set of integers, a;....,a,. Linear combinations are a key concept in linear algebra and
appear (without necessarily being called that) in many courses.
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the desired linear combination of a and b. This argument forms the basis of our
proof of (1.2.1), but to give a complete proof we proceed by induction on the smaller
of a and b:

Theorem 1.1. If a and b are positive integers, then there exist integers w and v
such that
au + bv = ged(a, b).

Proof. Interchanging a and b if necessary we may assume that a > b > 1. We shall
prove the result by induction on b. If b = 1, then b only has the divisor 1, so that

ged(a, 1) =1=0-a+1-1
We now prove the result for b > 1: If b divides a, then
ged(b,a) =b=0-a+1-b.

Otherwise b does not divide a and so Lemma 1.1.1 implies that there exist integers
q and r such that a = gb+r and 1 <r < b— 1. Since 1 <r < b we know, by the
induction hypothesis, that there exist integers v and v for which bu—rv = ged(b, 7).
The result then follows by (1.2.2). O

We now establish various useful properties of the ged:

Exercise 1.2.1. (a) Prove that if d divides both a and b, then d divides ged(a, b).
(b) Deduce that d divides both a and b if and only if d divides ged(a, b).
(c) Prove that 1 < ged(a,b) < |a| and |b].
(d) Prove that ged(a,b) = |a| if and only if a divides b.
Exercise 1.2.2. Suppose that a divides m, and b divides n.
(a) Deduce that ged(a, b) divides ged(m,n).
(b) Deduce that if ged(m,n) = 1, then ged(a,b) = 1.
Exercise 1.2.3. Show that Theorem 1.1 holds for any integers a and b that are not both 0. (It
is currently stated and proved only for positive integers a and b.)

Corollary 1.2.1. If a and b are integers for which ged(a.b) = 1, then there exist
integers uw and v such that

au+ bv = 1.

This is one of the most useful results in mathematics and has applications in
many areas, including in safeguarding today’s global communications. For example,
we will see in section 10.3 that to implement RSA, a key cryptographic protocol
that helps keep important messages safe in our electronic world, one uses Corollary
1.2.1 in an essential way. More on that later, after developing more basic number
theory.

Exercise 1.2.4. (a) Use exercise 1.1.1(c) to show that if au + bv = 1, then (a,b) = (u,v) = 1.
(b) Prove that ged(u,v) =1 in Theorem 1.1.

Corollary 1.2.2. [f ged(a,m) = ged(b,m) = 1, then ged(ab,m) = 1.

Proof. By Theorem 1.1 there exist integers r, s, u, v such that

at +mv = br +ms = 1.
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Therefore
ab(ur) + m(bvr + aus + msv) = (au + mv)(br +ms) = 1,

and the result follows from exercise 1.2.4(a). O

Corollary 1.2.3. We have ged(ma, mb) = m - ged(a, b) for all integers m > 1.

Proof. By Theorem 1.1 there exist integers u, v such that au+0bv = ged(a, b). Now
ged(ma, mb) divides ma and mb so it divides mau + mbv = m - ged(a, b). Similarly
ged(a, b) divides a and b, so that m - ged(a, b) divides ma and mb, and therefore
ged(ma, mb) by exercise 1.2.1(a). The result follows from exercise 1.1.1(b), since
the ged is always positive. O
Exercise 1.2.5. (a) Show that if A and B are given integers, not both 0, with g = ged(A, B),
then ged(A/g, B/g) = 1.
(b) Prove that any rational number u/v where u,v € Z with v # 0 may be written as r/s where
r and s are coprime integers with s > 0. This is called a reduced fraction.

1.3. The set of linear combinations of two integers

Theorem 1.1 states that the greatest common divisor of two integers is a linear
combination of those two integers. This suggests that it might be useful to study
the set of linear combinations

I(a,b) :={am +bn: m,necl}

of two given integers a and b.® We see that I(a,b) contains 0, a, b, a +b, a +
2b, 2b+a, a—b, b—a,... and any sum of integer multiples of a and b, so that
I(a,b) is closed under addition. Let I(a) := I(a,0) = {am : m € Z}, the set of
integer multiples of a. We now prove that I(a,b) can be described as the set of
integer multiples of ged(a, b), a set which is easier to understand:

Corollary 1.3.1. For any given non-zero integers a and b, we have
{am+bn: mneZ}={gk: keZ}

where g := ged(a,b); that is, I(a,b) = I(g). In other words, there exist integers m
and n with am + bn = ¢ if and only if ged(a, b) divides c.

Proof. By Theorem 1.1 we know that there exist u,v € Z for which au + bv = g.
Therefore a(uk)+b(vk) = gk so that gk € I(a,b) for all k € Z; that is, I(g) C I(a,b).
On the other hand, as g divides both a and b, there exist integers A, B such that
a=gA, b= gB, and so any am+bn = g(Am+ Bn) € I(g). That is, I'(a,b) C I(g).

The result now follows from the two inclusions. O

It is instructive to see how this result follows directly from the Euclidean algo-
rithm: In our example, we are interested in ged(85,48), so we will study I(85,48),
that is, the set of integers of the form

85m + 48n.

8This is usually called the ideal generated by a and b in Z and denoted by (a,b)z. The notion of
an ideal is one of the basic tools of modern algebra, as we will discuss in appendix 3D.
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The first step in the Euclidean algorithm was to write 85 = 1-48 4 37. Substituting
this in above yields

85m + 48n = (1 - 48 4+ 37)m + 48n = 48(m + n) + 37m,
and so 1(85,48) C 1(48,37). In the other direction, any integer in 1(48,37) can be
written as
48a + 37b = 48a + (85 — 48)b = 85b + 48(a — b),
and so belongs to 1(85,48). Combining these last two statements yields that
1(85,48) = 1(48,37).

Each step of the Euclidean algorithm leads to a similar equality, and so we get

1(85,48) = 1(48,37) = 1(37,11) = I(11,4) = 1(4,3) = I(3,1) = I(1,0) = I(1).
To truly justify this we need to establish an analogous result to Corollary 1.1.1:

Lemma 1.3.1. Ifa = gb+r where a, b, q, and r are integers, then I(a,b) = I(b,r).

Proof. We begin by noting that
am +bn = (gb+ rym+ bn = blgm +n) + rm
so that I(a,b) C I(b,r). In the other direction
bu+rv =bu+ (a — gb)v = av + b(u — qu)
so that I(b,r) C I(a,b). The result follows by combining the two inclusions. O

We have used the Euclidean algorithm to find the ged of any two given integers
a and b, as well as to determine integers v and v for which au + bv = ged(a,b).
The price for obtaining the actual values of u and v, rather than merely proving
the existence of w and v (which is all that was claimed in Theorem 1.1), was our
somewhat complicated analysis of the Euclidean algorithm. However, if we only
wish to prove that such integers u and v exist, then we can do so with a somewhat
casier proof: ?

Non-constructive proof of Theorem 1.1. Let i be the smallest positive inte-
ger that belongs to I(a,b), say h = au + bv. Then g := ged(a, b) divides h, as g
divides both a and b.

Nowa =a-1+b-0so that a € I{a,b), and 1 < h < a by the definition of h.
Therefore Lemma 1.1.1 implies that there exist integers g and r, with 0 <r < h—1,
for which a = gh 4 r. Therefore

r=a—qh=a—qg(au+bv) =a(l — qu) + b(—qu) € I(a,b),

which contradicts the minimality of h, unless r = 0; that is, h divides a. An
analogous argument reveals that h divides b, and so h divides g by exercise 1.2.1(a).

IWe will now prove the existence of 4 and v by showing that their non-existence would lead to a
contradiction. We will develop other instances, as we proceed, of both constructive and non-constructive
proofs of important theorems.

Which type of proof is preferable? This is somewhat a matter of taste. The non-constructive proof
is often shorter and more elegant. The constructive proof, on the other hand, is practical—that is, it
gives solutions. It is also “richer” in that it develops more than is (immediately) needed, though some
might say that these extras are irrelevant.

Which type of proof has the greatest clarity? That depends on the algorithm devised for the con-
structive proof. A compact algorithm will often cast light on the subject. But a cumbersome one may
obscure it. In this case, the Euclidean algorithm is remarkably simple and efficient ([Sha85, p. 11]).
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Hence g divides h, and h divides g, and g and h are both positive, so that g = h
as desired. O

We say that the integers a, b, and ¢ are relatively prime it ged(a,b,¢) = 1. We
say that they are pairwise coprime if ged(a,b) = ged(a,c) = ged(b,¢) = 1. For
example, 6,10,15 are relatively prime, but they are not pairwise coprime (since
each pair of integers has a common factor > 1).

Exercise 1.3.1. Suppose that a, b, and ¢ are non-zero integers for which a + b= c.
(a) Show that a, b, ¢ are relatively prime if and only if they are pairwise coprime.
(b) Show that (a,b) = (a,c) = (b,c).
(e¢) Show that the analogy to (a) is false for integer solutions a, b,c,d to a +b = ¢+ d (perhaps
by constructing a counterexample).

1.4. The least common multiple

The least common multiple!® of two given integers a and b is defined to be the
smallest positive integer that is a multiple of both a and b. We denote this by
lem(a, b] (or simply [a,b]). We now prove the counterpart to exercise 1.2.1(a):

Lemma 1.4.1. lem[a, b] divides integer m if and only if a and b both divide m.

Proof. Since a and b divide lem[a,b], if lem[a,b] divides m, then ¢ and b both
divide m, by exercise 1.1.1(e).

On the other hand suppose a and b both divide m, and write m = glem[a, b] +r
where 0 < r < lem|e,b]. Now a and b both divide m and lem[a, b] so they both
divide m — glem|a, b] = r. However lem|a, b] is defined to be the smallest positive
integer that is divisible by both a and b, which implies that » must be 0. Therefore
lem[a, b] divides m. O

The analogies to exercise 1.2.1(d) and Corollary 1.2.3 for lems are given by the
following two exercises:

Exercise 1.4.1. Prove that lem[m,n] = n if and only if m divides n.

Exercise 1.4.2. Prove that lem[ma, mb] = m - lem[a, b] for any positive integer m.

1.5. Continued fractions

Another way to write Lemma 1.1.1 is that for any given integers a > b > 1 with
bt a, there exist integers ¢ and r, with b > r > 1, for which

a ro
b Ty T
This is admittedly a strange way to write things, but repeating this process with
the pair of integers b and r, and then again, will eventually lead us to an interesting
representation of the original fraction a/b. Working with our original example, in
which we found the ged of 85 and 48, we can represent 85 = 48 + 37 as

85 1

= =1+,
s tm

1
™

10Sometimes called the lowest common multiple.
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and the next step, 48 = 37 + 11, as

18 1—|—1 t}t85 1+1 1+ !
- = 37 S0 that — = a8 1 -
37 T 48 3 1+ i
The remaining steps of the Euclidean algorithm may be rewritten as
37 1 11 1 4 1
ﬁ—3+1413 I—z-'-g, and §—1+§,
so that
85 14 1
8 14—
2+ Lo

143

This is the continued fraction for % and is conveniently written as [1,1,3,2,1,3].

Notice that this is the sequence of quotients a; from the various divisions; that is,
a 1

- = l|ag, ay, az, ..., ap| = ag+ .
b [01 3 3 k] ] G1+ 1

The a;’s are called the partial quotients of the continued fraction.

Exercise 1.5.1. (a) Show that if a, > 1, then [ag, ai,..., ax] = [ao, a1,..., ap — 1,1].
(b) Prove that the set of positive rational numbers are in 1-1 correspondence with the finite
length continued fractions that do not end in 1.

We now list the rationals that correspond to the first few entries in our contin-
ued fraction [1,1,3,2,1,3]. We have [1] = 1,[1,1] = 2, and

PR S AU S (RN SRR
1+3 4 L+ 97 4 1~ 13

1
2 3+ 2+1

These yield increasingly good approximations to 85/48 = 1.770833. .., that is, in
decimal notation,
1, 2, 1.75, 1.777..., 1.7692. . ..

We call these p;/q;, j > 1, the convergents for the continued fraction, defined by

& = [(I(), ay, az, ..., aj}a

q;
since they converge to a/b = pi/gi for some k. Do you notice anything surprising
about the convergents for 85/487 In particular the previous one, namely 23/137
When we worked through the Euclidean algorithm we found that 13-85—23-48 = 1
— could it be a coincidence that these same numbers show up again in this new
context? In section 1.8 of appendix 1A we show that this is no coincidence; indeed
we always have

Pidj—1 — pj—1q; = (—1)"71,

*“1gr—1 and v = (—1)*pi_1, then

so, in general, if u = (—1)
au+bv = 1.

When one studies this in detail, one finds that the continued fraction is really
just a convenient reworking of the Euclidean algorithm (as we explained it above)



1.6. Tiling a rectangle with squares 41

for finding v and v. Bachet de Meziriac!! introduced this method to Renaissance
mathematicians in the second edition of his brilliantly named book Pleasant and
delectable problems which are made from numbers (1624). Such methods had been
known from ancient times, certainly to the Indian scholar Aryabhata in 499 A.D.,
probably to Archimedes in Syracuse (Greece) in 250 B.C., and possibly to the
Babylonians as far back as 1700 B.C.!2

1.6. Tiling a rectangle with squares

Given a 48-by-85 rectangle we will tile it, greedily, with squares. The largest square
that we can place inside a 48-by-85 rectangle is a 48-by-48 square. This 48-by-48
square goes from top to bottom of the rectangle, and if we place it at the far right,
then we are left with a 37-by-48 rectangle to tile, on the left.

85
37 18
37
48
4 11 11 11
4
4 11
1F13
13

Figure 1.1. Partitioning a rectangle into squares, using the Euclidean algorithm.

If we place a 37-by-37 square at the top of this rectangle, then we are left with an
11-by-37 rectangle in the bottom left-hand corner. We can now place three 11-by-11
squares inside this, leaving a 4-by-11 rectangle. We finish this off with two 4-by-4
squares, one 3-by-3 square, and finally three 1-by-1 squares.

' The celebrated editor and commentator on Diophantus, whom we will meet again in chapter 6.

2There are Cuneiform clay tablets from this era that contain related calculations. It is known
that after conquering Babylon in 331 B.C., Alexander the Great ordered his archivist Callisthenes and
his tutor Aristotle to supervise the translation of the Babylonian astronomical records into Greek. It is
therefore feasible that Archimedes was introduced to these ideas from this source. Indeed, Pythagoras’s
Theorem may be misnamed as the Babylonians knew of integer-sided right-angled triangles like 3,4,5
and 5,12, 13 more than one thousand years before Pythagoras (570-495 B.C.) was born.

13Thanks to Dusa MacDuff and Dylan Thurston for bringing my attention to this beautiful
application.
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The area of the rectangle can be computed in terms of the areas of each of the
squares; that is,

8548 =1-482 +1-372+3.11°+2-42+1-32 +3.12%.

What has this to do with the Euclidean algorithm? Hopefully the reader has
recognized the same sequence of numbers and quotients that appeared above, when
we computed the ged(85,48). This is no coincidence. At a given step we have an
a-by-b rectangle, with @ > b > 1, and then we can remove g b-by-b squares, where
a = qgb+r with 0 < r < a — 1 leaving an r-by-b rectangle, and so proceed hy
induction.

Exercise 1.6.1. Given an a-by-b rectangle show how to write a- b as a sum of squares, as above,
in terms of the partial quotients and convergents of the continued fraction for a/b.

Exercise 1.6.2. (a) Use this to show that F,.1F, = F,% + F371 + .-+ F2, where F, is
the nth Fibonacci number (see section 0.1 for the definition and a discussion of Fibonacci
numbers and exercise 0.4.12(b) for a generalization of this exercise).

(b)T Find the correct generalization to more general second-order linear recurrence sequences.

Additional exercises

Exercise 1.7.1. (a) Does 0 divide 07 (Use the definition of “divides”.)
(b) Show that there is no unique meaning to 0/0.
(¢) Prove that if b divides a and b # 0, then there is a unique meaning to a/b.

Exercise 1.7.2. Prove that if @ and b are not both 0, then ged(a,b) is a positive integer.

(m+n—1)!

] is an

Exercise 1.7.3.7 Prove that if m and n are coprime positive integers, then
integer.

Exercise 1.7.4. Suppose that a =gb+r with 0 <r <b— 1.
(a) Let [t] be the integer part of t, that is, the largest integer < t. Prove that g = [a/b].
(b) Let {t} to be the fractional part of t, that is, {t} =t — [t]. Prove that r = b{r/b} = b{a/b}.

(Beware of these functions applied to negative numbers: e.g., [—3.14] = —4 not —3, and {—3.14} =
.86 not .14.)

Exercise 1.7.5.7  (a) Show that if n is an integer, then {n + a} = {a} and [n + a] = n + [a]

for all a € RR.
(b) Prove that [a+ 5] — [a] — [8] = 0 or 1 for all v, 8 € R, and explain when each case occurs.
(c) Deduce that {a} + {8} — {& + 3} = 0 or 1 for all a, 8 € R, and explain when each case
oceurs.

(d) Show that {a} + {—a} = 1 unless « is an integer in which case it equals 0.
(e) Show that ifa € Z and r € R\ Z, then [r]+[a —7] =a — 1.

Exercise 1.7.6. Suppose that d is a positive integer and that N,z > 0.
(a) Show that there are exactly [z] positive integers < x.
(b) Show that kd is the largest multiple of d that is < N, where k = [N/d].
(c) Deduce that there are exactly [N/d| positive integers n < N which are divisible by d.

Exercise 1.7.7. Prove that 3.7~ [a + £] = [na] for any real number a and integer n > 1.

Exercise 1.7.8. Suppose that a + b = ¢ and let g = ged(a, b). Prove that we can write a = gA,
b= gB, and ¢ = gC where A+ B = C, where A, B, and C' are pairwise coprime integers.

Exercise 1.7.9. Prove that if (a,b) =1, then (a+b,a —b) =1 or 2.

Exercise 1.7.10.7 Prove that for any given integers b > a > 1 there exists an integer solution
u,w to au — bw = ged(a,b) with0 <u<b—land 0<w<a— 1.
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Exercise 1.7.11.1 Show that if ged(a.b) = 1, then ged(a®, bf) = 1 for all integers k, £ > 1.

m—1
m

Exercise 1.7.12. Let m and n be positive integers. What fractions do the two lists %, s
and %, s nT_] have in common (when the fractions are reduced)?

Exercise 1.7.13. Suppose m and n are coprime positive integers. When the fractions #, %, ceey

mTfl, %, . “T_l are put in increasing order, what is the shortest distance between two consecutive

fractions?

Given a 7-liter jug and a 5-liter jug one can measure 1 liter of water as follows:
Fill the 5-liter jug, and pour the contents into the 7-liter jug. Fill the 5-liter jug
again, use this to fill the 7-liter jug, so we are left with 3 liters in the 5-liter jug
and the 7-liter jug is full. Empty the 7-liter jug, pour the contents of the 5-liter jug
into the 7-liter jug, and refill the 5-liter jug. We now have 3 liters in the 7-liter jug,.
Fill the 7-liter jug using the 5-liter jug; we have poured 4 liters from the 5-liter jug
into the 7-liter jug, so that there is just 1 liter left in the 5-liter jug! Notice that
we filled the 5-liter jug 3 times and emptied the 7-liter jug twice, and so we used
here that 3 x 5 — 2 x 7 = 1. We have wasted 2 x 7 liters of water in this process.

Exercise 1.7.14. (a) Since 3 X 7—4 x 5 = 1 describe how we can proceed by filling the 7-liter
jug each time rather than filling the 5-liter jug.
(b) Can you measure 1 liter of water using a 25-liter jug and a 17-liter jug?
(c)! Prove that if m and n are positive coprime integers then you can measure one liter of water
using an m liter jug and an n liter jug?
(d) Prove that one can do this wasting less than mn liters of water.

Exercise 1.7.15. Can you weigh 1 lb of tea using scales with 25-1b and 17-1b weights?

The definition of a set of linear combinations can be extended to an arbitrary
set of integers (in place of the set {a, b}); that is,

Iay,...,a) == {a1ims + agma + -+ apmy : my,Ma,...,my € Z}.

Exercise 1.7.16. Show that I{a),...,ar) = I(g) for any non-zero integers ay,...,ar, where we
have g = ged(ay, ..., ak).

Exercise 1.7.17.7 Deduce that if we are given integers a1, as,...,ax, not all zero, then there
exist integers mj,mo,...,myg such that

mial +maasz + - + mpap = ged(ay, az, ..., ax).
We say that the integers ay,aa, ..., a are relatively prime if ged(ay, az,...,a;) = 1. We say that

they are pairwise coprime if ged(a;,a;) = 1 whenever i # j. Note that 6,10,15 are relatively
prime, but not pairwise coprime (since each pair of integers has a common factor > 1).

Exercise 1.7.18. Prove that if g = ged(ay,az2,...,ai), then ged(a1/g,a2/g,...,a;/g) = 1.
Exercise 1.7.19.1  (a) Prove that abe = [a, b, ¢] - ged (ab, be, ca).
(b)* Prove that if v + s = n, then

ay---ap = lem H”’i: rc{1,....,n}, [I|=r| -ged Haj: Jc{1,...,n}, |J|=s
iel jed



