


























PROPERTIES OF ADDITION 17

implies x® < x®® < x, a contradiction, and the latter is prohibited by the
definition of number.

(ii) The inequality x  y implies either some x® < y or x < some -,
whence either x < x® < yorx < yr < y.

Summary. Numbers are totally ordered.

PROPERTIES OF ADDITION
Definition. 0 = {| }.
We recall that x + y = {x* + y,x + y*|x® + y,x + yR}.
THEOREM 3. For all x, y, z we have
x+0=x, X+y=y+x x+W+z=x++2)
Proof.
x4+0={xL+0|xF+0} = {x*|xF} =x
x+y=s{xt+yx+y|x"+yx+yf} =
={y+xbyt+x|y+ xRy +xl=y+x
x+N+z={x+y+z0x+y+]..}=
s{xt+p+zx+y)+z(x+y+ 25
X+ +2x+0 +2x++2]..)
L=x4+(y + 2).

In each case the middle identity follows from the inductive hypothesis.
Proofs like these we call I-line proofs even when as here the “line” is too long
for our page. We shall meet still longer 1-line proofs later on, but they do
not get harder—one simply transforms the left-hand side through the
definitions and inductive hypotheses until one gets the right hand side.

Summary. Addition is a commutative Semigroup operation with 0 as
zero, even when we demand identity rather than equality.

PROPERTIES OF NEGATION
Recall the definition —x = {—x®| —x%}.
THEOREM 4. (i) —(x + y) = —x + —y

i) —(—x)=x
(iii) x + —x =0
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Proof. (i) and (ii) have easy 1-line proofs. Note that (iii) is an equality rather
than an identity. If, say, x + —x 20, we should have some (x + —x)® < 0,
that is, x® + —x <0 or x + —x" < 0. But these are false, since we have by
induction xR + —xR >0, x* + —x¢* >0

Summary. With equality rather than identity, addition is a commutative
Group operation, with 0 for zero, and —x for the negative of x. All this is
true for general games.

PROPERTIES OF ADDITION AND ORDER

THEOREM 5. We have y = z iff x + y = x + .

Proof. If x + y = x + z, we cannot have
x +yR<x +zorx +y<x +2~

and so by induction we cannot have y® < zory <zl sothaty > z
Now supposing x + y $ x + z, we must have one of

Rey<x+z, x+y"<x+2z x+y<xt+4+z x+y<x+24
and if we further suppose y > z, we deduce one of
Rey<x+y x+y0<x+y x+z<xt+z, x+z<x+125

all of which imply contradictions by cancellation.
Theorem 5 implies in particular that we have y =z iff x + y = x + z,
justifying replacement by equals in addition.

THEOREM 6. (i) 0 is a number,
(1) if x is a number, so is— x,
(iii) if x and y are numbers, so is x + y.

Proofs. (i) we cannot have 0% > OR, since there exists neither a 0* nor a OX.

(11) From x! < x < xR and xE x® numbers, we inductively deduce
—xR < —x < —x* and —x®, —x* numbers.

(iii) We deduce mductwely that each of

x4+ y,x + y* < x +y <eachof xR + y,x + y&,
all of x* + y, etc., being numbers.

Summary. Numbers form a totally ordered Group under addition.

PROPERTIES OF MULTIPLICATION
Definition. 1 = {0}
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We recall the definition of multiplication
xy = {xky + xyt — xbyE, xRy + xpR — xFyR|
| xEy + xy® = xEyR xRy + xyb — xRyt

THEOREM 7. For all x, y, z we have the identities
xX0=0, xl=x, xy=yx, (=x)y=x(—y)= —x),

and the equalities
(x + y)z = xz + yz, (xy)z = x(yz).

Proof. The identities have easy l-line proofs. The equalities also have
1-line proofs, as follows:

(x+yz={x+yz+(x+yF—x+pt...|.. }=
= {(xE + y)z + (x + p)t — (x5 + )ty

(x +yHz +(x +yk —(x +yHE...].. .} =
= {(x*z + xz* — x*z%) + yz, xz + (y*z + yz* — yth),...| .. )
= xz + yz.

[This fails to yield an identity since the law x + —x = 0 is invoked.]
The central expression for xyz has four expressions like

xtyz + xytz + xyzt — xtyFz — xbyzh — xytzb + xbylet

(with perhaps some even number of x%, y, z- replaced by x%, y, z®) on the
left, and four similar expressions (with an odd number of such replacements)
on the right.

Note. We now have the more illuminating form

{xy —(x = xHly —yH xy —(xF = x) O® - y)|
[xy +(x — x90® —y), xy +x* = x)y -y}
for the product xy.

THEOREM 8. (i) If x and y are numbers, so is xy

(i) If x; = x,, then x,y = X,y

(i) If x, < x,, and y <y, then xy, + x,y, < x,y, + X,y,, the
conclusion being strict if both the premises are.

Proof. We shall refer to the inequality of (iii) as P(x,, x, : y,, ¥,). Note that
if x, < x, < x,, then we can deduce P(x,, x,:y,,y,) from the inequalities
P(x,,x,:y,,y,)and P(x,, x, : y,, ¥,) by adding these and cancelling common
terms from the two sides.
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Now to prove (i), we observe first that inductively, all options of xy are
numbers, so that we have only to prove a number of inequalities like

xbty + xyb — xbiyk < xlay 4 xyR — xl2yR
But if x < x™* we have
xMy + xy* — xbiyk < xPry + xpt — xlyk < xbry 4 xyR — xbayR

(these two inequalities reducing respectively to P(x“,x*yL ) and
P(x™2, x : y*, y®)), while if x** < x™ we have instead

xtiy + xyf — xbiyt < xbiy + xy® — xBpR < xfay 4 xpR — xPapR,
(these being P(x™, x : y*, y¥) and P(x%2, x% : y, y¥)).

Now to prove (ii). This implication follows immediately from the fact
that every Left option of either is strictly less than the other, and every
Right option strictly greater, the relevant inequalities all being easy.

If x;, = x, or y; = y, we can use (ii) to show that the terms on the Left of
(i11) are equal to those on the Right.

So we need only consider the case x; < x,, y, < y,. Since x; < x,,
we have either x, < x{ < x, or x, < x5 < x,, say the former. But then
P(x,,x,:y,,¥,) can be deduced from P(x,, x}:y,, y,) and P(x}, x,: y,, y,),
of which the latter is strictly simpler than the original. A similar argument
now reduces our problem to proving strict inequalities of the four forms

P(xEx:yhy), PR y:yy®), Plx,x®:yhy), and P(x,x®:y,y%)

which merely assert that xy has the right order relations with its options.

THEOREM 9. If x and y are positive numbers, so is xy.

Proof. This follows from P(0, x:0, y).

Summary. Numbers form a totally ordered Ring. Note that in view of
Theorem 8 and the distributive law, we can assert, for example, that x > 0,
¥ > z together imply xy > xz, and that if x # 0, we can deduce y = z from
Xy = xz.

PROPERTIES OF DIVISION

We have just shown that if there is any number y such that xy = ¢, then
y is uniquely determined by x and t provided that x # 0. We must now show
how to produce such a y. It suffices to show that for positive x there is a
number y such that xy = 1. We first put x into a sort of standard form.
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since we cannot have any inequality y* > y®. The typical form of an option
of xy is x'y + xy’ — x'y’, which can be written as 1 + x'(y — y”) with the
above definition of y”, and this suffices to prove (iii). For (iv), we observe
first that z = xy has a left option O (take x* = y* = 0), and that (iii) asserts
that z- < 1 < z® for all z%, ZR. Then

z = 1, since no z® < 1, and z < no 1% (since some z* = 0), and also

no z&,

<
1>zsinceno IR <z and1 <

so that indeed z = 1.
Summary. The Class No of all numbers forms a totally ordered Field.

Clive Bach has found a similar definition for the square root of a non-
negative number x. He defines

Jx=y \/Lx+yLy"\/Rx+yLy" x + yiy®
Yoty YRR R+
where x" and x® are non-negative options of x, and y*, y**, yR, y** are options
of y chosen so that no one of the three denominators is zero. We shall leave

to the reader the easy inductive proof that this is correct.
Martin Kruskal has pointed out that the options of 1/x can be written in

the form
1- l'l(l - i)
N %/

X

where the denominator x cancels formally, the x; denote positive options of x,
and the product may be empty. This is a Left option of 1/x just when an even
number of the x; are Left options of x. There is a similar closed form for
Bach'’s definition of /x.
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THEOREM 19. Each positive number is commensurate with some .

Proof. We can write x in the form {0, x* | x®}, where x* and x® now denote
positive numbers. Each x* is commensurate with some w”“ (say) and each
x® with @”®. If x is commensurate with one of its options, we are done. If
not, we can add all numbers rw’ as Left options and all rw*" as Right
options, and we then see that x = ’, where y is the number {y"| y*}.

THeorREM 20. 0° = 1, 0™ * = 1/o*, 0"’ = 0*. 0.

Proof. The first part is trivial, and the second follows from the first and
third. Let X = w*, Y = «”, and let X’ and Y’ be the typical options of X and
Y. Then the typical option of XY is X'Y 4+ XY’ — X'Y'. If Y’ is 0, this is
X'Y,and if X" is 0, it is X Y". Otherwise we can suppose X' = row*, Y’ = s”,
when the formula becomes

ro**? + so* Y — rsw* Y

by induction.

When this is positive, it lies between two positive real multiples of w?,
where z is the largest of the three indices, which is always one of x’ + y and
x + y'. We have said enough to show that

o*. @ = {0,ro*"*?, sw’””ﬂrco‘“’, sw* "} = @*

Summary. ©* does indeed behave like the xth power of w. Those familiar
with the normal arithmetic of ordinals will have no difficulty in showing
that w* is the ordinal usually so called.

THE NORMAL FORM OF x

Let x be an arbitrary positive number, and w™ the unique leader commen-
surate with x. Then we can divide the reals into two classes by putting ¢ iffto
L or R according as @ .t < x or @”.t > x. Then L and R are non-empty,
since for suitably large n we have —neL, neR, and so by the theory of
real numbers, one of L and R has an extremal point r,, say. Write

x=a".r, +x,.

It follows that x, is small compared to x, that is, that nx, is between x and

—x for all integers n. If x, is not zero, we can produce in a similar way num-

bers r, y, such that x, = @”.r, + x,, where x, is small compared to x,.
If again x, is non-zero, we can continue, producing an expansion

X=®.r,+o.r +... o+ + X,

which will terminate painlessly if any x_ is zero. But usually the expansion


















