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Introduction

A Growing Interest

Origami is the art of paper folding, as is likely known by anyone picking up this book.
Less known is how diverse origami is as an art form. Most people who have practiced
origami have folded paper cranes, fishes, and frogs, or perhaps some of the many
“playground” origami models that children teach to each other, like paper airplanes,
fortune-tellers, and ninja throwing stars. Those who catch the paper-folding bug, how-
ever, learn how to fold dragons, insects, and octopi, each from an uncut square. Those
who go further might see pictures like those in Figure 1, where two origami models,
one rather simple and the other very complex, are shown with their respective crease
patterns (the pattern of creases you would see if you were to unfold the model). Oth-
ers might explore origami tessellations, which are origami models where the crease
pattern forms a regular tiling of the plane. Others might become addicted to modular
origami, where multiple, sometimes hundreds, of pieces of paper are all folded in the
same way and then locked together to form beautiful polyhedral objects.

After staring at crease patterns and folding intricate geometric and representational
origami models, one may start to suspect that there are mathematical rules at play in
origami. Is there any inherent geometry to these crease patterns? Is there a way to
predict into what shape they fold? Is there a limit to the complexity of shapes that can
be folded? How would we make the previous question into a precise conjecture that
could be proven?

On a somewhat different note, anyone interested in paper folding might have
noticed a pronounced increase in the number of scientific news reports, viral web
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Figure 1 The classic flapping bird (crane) with its crease pattern, and Maekawa’s Devil
(Kasahara and Maekawa, 1983) with its crease pattern.
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2 Introduction
Number of articles with key word “origami” Number of papers presented with “origami”
(not DNA) in Nature Comm. and Science intitle, ASP March Meeting
3 35 34
12 I Nature Communications 4

Figure 2 The rise of papers featuring origami applications in Nature Communnications, in
Science, and at the American Physics Society’s March Meeting.

videos, and research articles on the use of origami in science and engineering since
the year 2013. The National Science Foundation (of the United States of America)
offered about 12 large grants in each of the years 2012 and 2013 in their Emerging
Frontiers in Research and Innovation program on “Origami Design for Integration
of Self-assembling Systems for Engineering Innovation (ODISSEI).” Each of these
four-year, approximately $2 million grants spurred a bevy of research in physics and
engineering university departments across the country. Evidence of this growth in
interest can be seen in the number of papers relating to origami applications in high-
profile journals like Science and Nature Communications. (See Figure 2, where the
numbers indicate papers with keyword “origami” excluding papers on DNA-origami,
which has nothing to do with the folding of 2-dimensional sheets.)

At the same time, more and more sessions and papers at physics and engineering
conferences have been devoted to origami applications since 2013 — far more than the
NSF ODISSEI grants would generate on their own. See Figure 2 again for the number
of papers with “origami” in their title from the American Physics Society’s annual
March Meeting over a period of ten years. Similar increases in origami applications in
physics can be seen at engineering conferences. For example, at the ASME (Ameri-
can Society of Mechanical Engineers) 2019 Conference on Smart Materials, Adaptive
Structures, and Intelligent Systems, there was one short course on origami mechanics,
one keynote speaker with expertise in origami mechanics, one symposium of talks on
“bioinspired adaptive origami systems,” a best paper award given to Jakob Faber for
the paper “Bioinspired spring origami,” and 23 papers presented on origami research
in mechanical engineering.

Why are so many scientists, including the National Science Foundation, excited
about origami? Origami enthusiasts are not surprised; one very well-known origami
model is called the Miura-ori, also known as the Miura map fold. It was invented by
a Japanese astrophysicist named Koryo Miura who was searching for a way to send
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As I continued to find mathematics papers that dealt with paper folding, I noticed
two patterns emerging. One was that over and over again it seemed that researchers
were reinventing the wheel, without knowledge of work in the area of mathematical
paper folding that had come before. This is not too surprising. Before the days of the
Internet, it was very hard (as I was learning while in graduate school!) to find each and
every paper that had been published on a rather obscure topic, such as paper folding.
But seeing this did make me think that someone needed to gather all these papers and
unify the disparate work that had been done.

The second realization was cause for amazement. I was continually stunned by
the number of different areas of mathematics — calculus, geometry, number theory,
abstract algebra, differential topology, analysis — that had been applied to origami.
Being a physical activity, it made sense that there would be many ways to model paper
folding. But the sheer variety of different approaches one could take was surprising,
exciting, and rather intimidating to a graduate student. As such, I found myself locat-
ing some papers on origami mathematics and thinking to myself, “I'm not ready to
read this one, but perhaps in a few years I will be.” For some papers, “a few years,”
turned out to be over a decade as the need to graduate, find a job, and learn how to be
a professor took priority.

Yet the need was clear to me: a book needed to be written on the many mathematical
methods that may be applied to the assorted aspects of origami. The diverse research
that had been done needed to be unified, and the far-ranging approaches needed to be
gathered in one place.

For me this became a labor of love. Discovering a paper like Stewart A. Robert-
son’s “Isometric folding of Riemannian manifolds” (1977-1978) meant many joyous
months of learning new results and connecting them with previously known (to me)
work. Then, years later, stumbling upon a paper like Lawrence and Spingarn’s “An
intrinsic characterization of foldings of Euclidean space” (1989), which has so many
similarities to Robertson’s paper, meant more months of head-scratching as [ tried to
discern, reconcile, and then combine their two approaches.

Outline of the Book

The book you now hold in your hands is the result of such efforts. It took a long time
to write. Much of Part I, on Geometric Constructions in origami, was first written
in 2006 while on sabbatical leave from Merrimack College. Of course, in the inter-
vening 14 years new research was done on this topic, and I've tried to keep those
chapters updated. Still, in 2006 it was possible for me to contain most of every-
thing known about origami geometric constructions in less then 100 pages. Now, if
I wanted to include full proofs of all the important results in just this one aspect of
origami mathematics, it would probably have to be a book of its own. Therefore I have
had to cut some corners and refer readers to the literature for some of the more cur-
rent results (such as Nishimura’s proof (2013) that 2-fold origami can solve arbitrary
quintic equations).
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Part I1 is where I try to solidify an area of origami mathematics that I like to call
the Combinatorial Geometry of Flat Origami. This concerns only origami models that
lie in a flat plane when all the creases are folded. The previously mentioned theorems
of Maeakawa and Kawasaki exemplify this area. Maekawa’s Theorem states that the
difference between the mountain and valley creases that meet at a vertex in a flat
origami crease pattern must always be two. This is a combinatorics result, but its proof
must at some level rely on the geometry (or, if viewed the right way, the topology)
of the folded paper. Kawasaki’s Theorem is a necessary and sufficient condition that
determines if a collection of creases meeting at a vertex can fold flat, and this condition
relies solely on the angles between the creases. Thus, this is a purely geometric result.
However, Maekawa’s and Kawasaki’s Theorems are actually intertwined. We first see
this in Chapter 5 when expanding our flat-folding perspective from planar paper to
folding cones, and we see it again in Chapter 6 when looking through the lens of
Justin’s Theorem, a result on flat-foldable crease patterns with multiple vertices. The
interplay of combinatorics and geometry is present in many aspects of mathematics,
but origami provides a lovely example with enough results and depth to make it a
separate sub-genre in origami mathematics.

In Part IIT I chose to gather three aspects of origami mathematics that correspond to
three mathematical fields that all students learn in graduate school: algebra, analysis,
and topology. For algebra we find a delightful origami homomorphism that relates,
using only the geometry of a flat-foldable crease pattern, the symmetry group of a
crease pattern with the symmetry group of the flat-folded model. For topology we dive
deeply into the work of Stewart Robertson (and Lawrence and Spingarn) on the folding
of Riemannian manifolds, in which we find surprising and elegant generalizations of
Kawasaki’s and Maekawa’s Theorems. For analysis we describe more recent work
of Dacorognna, Marcelini, and Paolini that uses high-dimensional isometric foldings
(the n-dimensional analog to flat origami) to solve certain Dirichlet partial differential
equations.

Part IV turns to Non-flat Folding, in particular rigid origami. This is the natural set-
ting for many applications of origami in physics and engineering. The mathematical
models needed to prove that the Miura-ori fold can open and close with the crease pat-
tern’s faces remaining rigid are found here, as are many, many results on rigid origami
folding angle relationships, complexity, and configuration spaces. Rigid origami is a
very active research area, and this part of the book only represents my take on the sub-
ject, as a mathematician. Luckily, one of the world experts on rigid origami, professor
Tomohiro Tachi of the University of Tokyo, is writing a full monograph on the subject
(Tachi, 2020).

Features of the Book

Throughout the book I have tried to provide a thorough set of useful references,
although as applied origami has grown more and more popular, including a complete
bibliography of all the current literature has become impossible. When applicable, I



Introduction 7

have included historical notes as a way to provide context to the many, and sometimes
confusing, reference points in the literature.

Diversions There are many places in this book where details of a certain aspect
or problem of origami mathematics are omitted. This was done because if absolutely
all details of every proof or idea were included, then this book would have been twice
as long and rejected by the publisher. In addition, there are many delightful examples
and excursions in the various approaches to mathematical origami. It really is a shame
that I could not include them all. Instead, I sprinkled many diversions throughout the
book. Some of these are interesting, fun exercises left for the reader to explore. Others
are meant to be parts of proofs that are fairly straightforward and therefore can be left
to the reader (often with references to the literature for full details).

This book is a monograph, not a textbook (although it could be used as a text for a
graduate-level or reading course), and therefore it didn’t seem appropriate to end each
chapter with a list of exercises (nor would this be appropriate for many parts of the
book). Spreading diversions through the chapters seemed to be a good compromise
for including many of the juicy tidbits of origami mathematics without overburdening
the exposition.

Open Problems 1 have also provided, at the end of all appropriate chapters, a list
of some of the open problems in the related fields of origami mathematics. This, of
course, runs the risk of dating the book in a few years, as many of the topics covered
in this text are currently areas of active research. But hopefully these problems will
encourage readers to join the fun that is origami mathematics.

I also need to point out that not all aspects of origami mathematics are covered in
this book. The field has simply grown too large for one monograph to cover. The
largest omission is the topic of origami using curved creases. While this topic is
touched on very briefly in Section 4.5, it is only done in the context of origami geo-
metric constructions. Modeling folded structures made from curved creases is possible
using differential geometry. This is a very interesting subject and very much an active
area of research. In fact, new work on curved crease origami is being developed so
quickly as to make planning a monograph-level exposition on the topic somewhat
impossible, as it could become painfully dated before the book saw print. Indeed, work
is being done at the time of this writing by several leading researchers on mathematical
and computational origami toward writing a stand-alone text on curved creases.
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Examples and Basic Folds

Diversion 1.1  Starting with a square sheet of paper, fold it to produce a square having
three-fourths its area. Only five folds are allowed.

The puzzle is referenced as coming from a book called Mathematical Brain Ben-
ders by Stephen Barr (1982). This puzzle is especially fun for origami practicioners
who immediately conjecture that they can do it in fewer than five folds.

This challenge is similar to the following: Starting with a square piece of paper, fold
it into a perfect equilateral triangle. To accomplish this, one would need to construct
a 60° angle, which could be done by folding the sides of a 30°-60°-90° triangle in the
square. In other words, we would need to construct line segments of length 1, 2, and
/3 in our paper. It is standard, however, to always assume that our starting square has
side length 1, so it would be more feasible to create a 30°-60°-90° triangle with side
lengths 1/2, 1, and ﬁ/Z. Constructing ./5/2 is exactly what we would need for the
3/4-area puzzle as well.

There are many ways to fold a 30°-60°-90° triangle in a square. In fact, it is not
hard to find explicit methods for doing this in origami instruction books, especially
books on modular origami (like (Fuse, 1990)), although such books usually do not
mention that they are performing such a construction.

Figure 1.1 shows a standard method for producing such a 30°-60°-90° triangle.
This can be shown synthetically, or we can merely note that if the square has side
length 1, then PB must also have length 1, since it is the image of a side of the square
under the fold. By symmetry, AP must also have length 1, and thus we have that the
points APB form an equilateral triangle. (This immediately gives us that the fold made
in Figure 1.1 produced the desired angles.)

A variation on this challenge is to fold an equilateral triangle of maximum area
within our square piece of paper. Utilizing analytic techniques to discover what trian-
gle orientation gives the maximal area can be a good exercise for calculus students
(see (Hull, 2012)), but developing a folding method is another matter. Figure 1.2
shows the standard method of doing this as presented by Emily Gingras (Merri-
mack College class of 2003). The first picture is her “proof without words™ that the
angle ¢ shown is 15°, which proves that the other pictures give the proper equilateral
triangle.

A — B

Figure 1.1 Producing a 30°-60°-90° triangle: First fold the square in half and unfold. Then fold
the lower left corner up to the crease line, while making the crease go through the lower right
corner.
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1.2

Figure 1.2 A “proof without words” for constructing the maximal equilateral triangle.

Both of these methods involve constructing a line segment whose length is an
expression involving square roots, /3/2 in the first case and 2/v/2 + +/3 in the sec-
ond. What kind of folding operation produced these lengths? In both cases we had a
point being folded to a line (point A being folded to the half-way crease in Figure 1.1)
where we also make sure that the crease passes through a second point (point B in
Figure 1.1). This operation will be explored further in Chapter 2.

As an extra challenge, readers can try to use the method from Figure 1.2 to discover
the classic method that paper folders use to fold a square into a regular hexagon with
maximal area.

Dividing a Segment into 1/nths

The problem of dividing the side of a piece of paper into n equal lengths is one which
has been a favorite of origami geometry enthusiasts. References to it and various solu-
tions for the cases where n = 3, 5, or 7 can be found in some origami books (see
(Kasahara and Takahama, 1987; Kasahara, 1988)), on origami email lists, and on a
variety of webpages. The challenge, of course, are the cases when » is odd, since fold-
ing lengths in half is simple and can generate all even numbers once the odds have
been handled.

Such division methods have practical applications in origami as well. Many origami
models start off by asking the folder to first divide the square into thirds orinto a5 x 5
grid. Interestingly, the most common method used by origamists to fold thirds is to
use the method shown in Figure 1.3. The idea is to “eyeball” it by curving the paper
into an S shape and easing the creases into their proper places. With practice this can

T 1~
\-L
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Figure 1.3 Folding thirds, the multifold method.
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)]

Figure 1.4 Folding thirds exactly. (1) Crease a diagonal and the 1/2 vertical crease. (2) Make a
crease that connects the midpoint of the top edge and the lower right corner. Let this crease
intersect the diagonal at P. (3) Make a crease at P perpendicular to the bottom and top sides.
Then this last crease will be 1/3 from the right side.

be done very quickly and accurately, but it violates our rule of one fold at a time since
it requires making two creases simultaneously (which is called a 2-fold or a multifold;
these will be discussed in Chapter 4).

A mathematically precise, one-fold-at-a-time way to fold a square of paper into
thirds is shown in Figure 1.4. While the origins of this method are unclear, Lang
(1988) refers to it as the crossing diagonals method. The correctness of this method
can be proven by similar triangles or by noticing that the point P is at the intersection
of the lines y = x and y = —2x + 2, where we assume that the square has side length
1 and lower left corner is at the origin. Thus P = (2/3,2/3).

This method can be generalized for arbitrary odd values of n = 2k + 1. Instead of
making a vertical crease at the line x = 1/2, make it at x = (2k — 1)/(2k). This is
feasible because any odd factor of 2k is a smaller odd number than n. Thus, by induc-
tion, we can assume that dividing the side of our square into 1/(2k)ths can be done.
Then, using the same method as the 1/3 case, our point P would be at the intersection
of the lines y = x and y = —2kx + 2k, so P = (2k/(2k + 1), 2k/(2k + 1)), giving us a
landmark for dividing the side into 1/nths.

The crossing diagonals method is sometimes used by origami designers; see John
Montroll’s Chess Board (Montroll, 1993), for example. However, since the method
requires several crease lines to be made across the paper, it isn’t viewed as ideal. A
better method in this regard is based on Haga’s Theorem (Kasahara and Takahama,
1987), which states that if we fold a corner of a square (or rectangular) sheet of paper
to a point on a nonadjacent side, then several similar triangles can be found and the
resulting crease can mark the sides of the paper at interesting lengths.

In particular, if we mark a point at (1/(2k), 1) on the square and fold the lower
left corner (the origin) to this point, as seen in Figure 1.5, then triangles A and B are
similar. Also, triangle A is a right triangle and one leg, x, and the hypothenuse make
up a side of the square, so the hypothenuse is 1 — x. The Pythagorean Theorem then
gives us that x = (2k + 1)(2k — 1)/(8k%). Letting the short leg of triangle B be y, the
similarity relation gives us

y o 1 —1/(2k)
1/2k) ~ (2k + 1)(2k — 1)/(8k2)’
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Figure 1.5 Haga’s Theorem applied to the odd division problem.

Figure 1.6 Noma’s method.

which simplifies, amazingly enough, to vy = 2/(2k + 1). Thus if divisions of 1/n =
1/(2k 4 1) are desired, constructing 1/(2k) and the one fold of Haga’s Theorem will
do the trick.

Diversion 1.2 (Geretschlidger, 2002, 2008) Prove that the perimeter of triangle B in
Figure 1.5 is always half the perimeter of the original square.

Haga’s Theorem contains many other geometric morsels. See (Husimi and Husimi,
1979; Haga, 2002; Geretschliger, 2002) for more information.

However, it is possible to make any l/n divisions along the side of a square
without folding any creases all the way across the paper. The idea is to perform
folds that only require making pinch marks on the perimeter of the paper. This
would clearly be attractive for origami designers, making it possible to create any
a/b mark on the perimeter without marring the paper’s interior with extraneous
creases.

Masamichi Noma (1992) developed such a method, and it is summarized in Figure
1.6. The idea is, if divisions of 1/n = 1/(2k — 1) are the goal, to make pinch marks
at length 1/(2k) on the left side of the top edge of the square and at the bottom side
of the left edge. This gives us two marked points on the paper’s perimeter. If we fold
these two points together, we can pinch the paper only on the left side, so as to avoid
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2+l

2J+1

Figure 1.7 Noma’s method used to construct a/b.

making a crease all the way across the square. This crease will intersect the left edge
(k — 1)/(2k — 1) from the top corner.

Diversion 1.3 Prove that Noma’s method works.

Robert J. Lang has synthesized Noma’s method, among others, to generate algo-
rithms for producing folding sequences of pinch marks to create any rational length
divisions. In (Lang, 2003) he suggests the following to apply Noma’s method to create
an arbitrary rational length a/b for integers a < b:

(1) Let 2 be the largest power of 2 smaller than b.

(2) Construct lengths b/2/*! along the top and left sides of the square, as shown in
Figure 1.7. (This is easy since the denomenators are just powers of 2.)

(3) Bring these two points together to make a crease pinch along the left side at point
P.

(4) Then length OP (O being the lower left corner) will be 2//b. (The same work
needed in Figure 1.6 shows this.)

(5) Divide segment OP into 1/2ths (which is easy). Taking a of these from O gives a
length (2 /b)(a/2) = a/b.

In all three of these division methods, none of the basic folding operations used
are very complex. Each case involved only the “moves™ of folding a crease between
two existing points or folding one point onto another point. This is hardly surprising
because only rational lengths were being constructed. But the variety and ingenuity of
these methods are nonetheless a marvel.

Trisecting an Angle

The hallmark of origami geometric constructions has been the fact that paper folding
can, fairly easily, trisect angles. The first known method for doing this was created by
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(1) Let @ be an angle at a point Q. Let P be a point on one side of #, and extend the
line PO so that we can find a point P> on this line but on the other side of O so
that P1O = P, 0.

(2) Extend the other side of the angle & to become the line L. Fold line L, to be
perpendicular to L; at the point O. (This is a move we haven’t seen before; it
involves folding L, onto itself making the crease go through O.)

(3) Now fold Py onto L and P> onto L, simultaneously to create line Ls.

(4) Finally, fold a crease perpendicular to Ly that goes through point O. This line will
make an angle of 6/3 with one side of angle 6.

Diversion 1.4 Prove that Justin’s trisection method works.

There is a lot of interesting mathematics to be explored in this “two points to two
lines” origami move. Questions to ponder might include: Given any two points and
two lines, can this operation always be performed? Does it always result in a unique
crease? What kinds of numbers (segment lengths) is it constructing for us? We will
address these questions in Chapters 2 and 3.

Folding a Regular Heptagon

The easiest regular polygons to fold from a square are, well, the square, regular
octagon, 16-gon, and other 2"-gons. We saw earlier that equilateral triangles are not
too hard to fold from a square, and this admits regular hexagons and dodecagons
relatively easily.

Diversion 1.5 Devise a way to fold a regular pentagon from a square piece of paper.
(See (Morassi, 1989) for an analysis of approximate and exact methods for this.)

However, the smallest regular n-gon that origami can produce that SE&C cannot is
the heptagon.

The first published instructions for folding a regular heptagon appears to be those of
Scimemi (1989) and, independently, Geretschliger (1997b) (although Justin (1986b)
also provides the basic ingredients for such a construction). Both of these methods
are nearly identical, however, which is not surprising because both follow a classic
algebraic approach to the heptagon problem, as can also be seen in the non-folding
heptagon construction given by Gleason (1988). Gleason’s construction assumes the
tools of straightedge, compass, and an angle trisector. Since we know origami can tri-
sect angles, Gleason’s method could be used, as is, to fold a regular heptagon. Alperin
(2002) did just this, but such a strategy produces a lengthy and inelegant folding
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Figure 1.11 Folding a regular heptagon.

procedure. (We should note that mathematical purity demands that we find a folding
procedure that is mathematically exact. However, when one physically makes a fold
there will always be error present. So for practicality’s sake it is always better to find
folding sequences that help minimize error, either by being short or by encompassing
folds that are easy to perform.)

Figure 1.11 shows a more cleaned-up way to fold a regular heptagon than those
previously given. (Scimemi (1989) doesn’t give an explicit folding sequence, and
Geretschldger (1997b) has more folds than are necessary.) Our procedure is as
follows:

(1) First, crease the paper in half from top to bottom and left to right. Then fold the
top 1/4 behind and then the left 1/4 behind.

(2) Make a pinch crease on the left side by bringing points A and B together.

(3) Now we're ready for the fold that does the “magic.” Fold point P onto line L
and point P; onto line L> at the same time.
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(4) Notice where Pj went after step (3). Mountain fold a vertical crease, perpendicu-
lar to the bottom edge, on the underneath layer of paper, creating line 3. Crease
sharply and then unfold everything.

(5) Notice where L3 is on the unfolded sheet. Fold C, the midpoint on the right side,
to line L3 so that the crease goes through the center O of the paper.

(6) Step (5) created the folded edge L. Fold the right flap of paper behind, making
the crease go through C while being perpendicular to Ly.

(7) Now fold and untold line OC. (This crease already exists, but you want it to be
made through all layers of paper.) Then unfold everything.

(8) Line CC’ is one side of our heptagon. (C” is the image of C under the fold in step
(5).) Repeat steps (5)—(7) on the bottom half of the paper, creating point C”.

(9) Fold CC’ and CC” behind. Then valley fold OC’, extending it across the paper.

(10) Use the images of CC’ and CC” to fold two more sides of our heptagon. Then
unfold OC".

(11) Repeat steps (9)—(10) on the bottom half.

(12) Fold the left side behind with crease EF to complete the heptagon.

To see why this works, let us set up a coordinate system for the paper as follows: let
O, the center of the paper, be the origin, and let the side of the square be of length 4.
(We choose these coordinates to more easily illustrate the connection with Gleason’s
analysis in (Gleason, 1988).) Our goal is to show that the point C" in Figure 1.11
has coordinates (2 cos(27/7), 2 sin(27 /7)), and thus points C, C’, and C” form three
vertices of a heptagon of radius 2. Since these points are used to generate the other
vertices in a logical way, this would prove the folded heptagon’s validity.

The points in step (3) of Figure 1.11 are P = (0,1) and P> = (—1,—1/2), where
Ly is the x-axis and L is the y-axis. Suppose that P gets folded to the point P| = (1,0)
on L and P> gets folded to the point P, = (0,s) on Lo.

The segment PP has slope —1/t, and the crease line in step (3) must be the
perpendicular bisector to this segment. So the slope of the crease line must be ¢ and
pass through the midpoint of PP/, which is (z/2,1/2). Thus one formula for the
crease line in step (3) is

t t2+l
yV=1IX—-—— —.
i 2 2

On the other hand, segment P2P'2 has slope (25s+4-1)/2 and midpoint (—1/2,(2s—1)/4).
Thus, another formula for our crease line is

-2 1 25 — 1
I T R P S
Qur aim is to find the value of ¢ (the x-coordinate of P’l), since this determines the
location of line L3 in step (5) and thus the location of C’. Equating the slopes of our
two line equations gives s = —(f + 2)/(2r). This can then be substituted into the
equation we get by equating the constant terms of our two line equations, resulting in
a single equation in t. After simplifying, this becomes

y

P+ —20—1=0. (1.1)
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Sure enough, r = 2 cos(2/7) satisfies this equation, proving that L3 is in the proper
place. (The other roots of Equation (1.1) are real and negative, and thus are not values
of t that would make the fold in step (3) of Figure 1.11 work.) For readers who do not
immediately believe our claims as to the solutions of Equation (1.1), we present an
argument from (Gleason, 1988).

Consider the vertices of a regular heptagon as the seventh roots of unity in the
complex plane, that is, the complex solutions of z” — 1 = 0. Factoring out the obvious
z — 1 term for the z = 1 corner, we get the equation for the remaining six corners:
S+ 4+ +2+2+24+1=0. LetA = cos(27/7) + isin(2w/7) (the principle
seventh root of 1). Since the reciprocals of complex numbers on the unit circle are the
same as the complex conjugates, we have that 1/A = A%, 1/A% = A and 1/A% = A%,
Plugging these into our factored heptagon equation, we see that A satisfies

s o 111
A+ AT +A+ T+ -+ 5+

At /F=O' (1.2)

But we also have that A + 1/A = A + A = 2 cos(27 /7). Furthermore, notice that

A2+1—A+12 2 d A3+1—A+13 3A+1
Az A an A A a)

Substituting these into Equation (1.2), we get

(143) +(s+3) 2(a+5) 10
A A A o

Therefore, A + 1/A = 2cos(2/7) is a solution to Equation (1.1). Similar machina-
tions show that other two roots of Equation (1.1) are 2 cos(4x/7) and 2 cos(6x/7).

Figure 1.12 provides a geometric interpretation of what’s going on. If A is the prin-
ciple root of (z7 — 1)/(z — 1), then 1/A is just A reflected about the real axis, and
(A + 1/A)/2 is the midpoint of the segment connecting these two points. Since this
midpoint is on the real axis, it’s just the real part of A, which is cos(2sr /7). The same
thing holds for the other roots AZ and A3. Therefore the roots of (z7 — 1) /(z — 1) after
the substitution z = A + 1/A will just be twice the real parts of the seventh roots of
unity, excluding z = 1. There are only three such numbers, and the equation after
substitution simply becomes Equation (1.1).

In fact, Equation (1.1) is the standard equation one tries to solve when confronting
the regular heptagon construction problem. (See (Martin, 1998), for example.) In a
very real sense, this equation is being solved in step (3) of the folding sequence.
It is interesting to note that both the folding methods of Scimemi (1989) and
of Geretschlidger (1997b) incorporate basically the same fold seen in step (3) of
Figure 1.11 to create a crease with the proper slope for the heptagon construction.
That two independent researchers came upon the same fold to solve Equation (1.1)
is not a coincidence — they were both trying to solve the same equation via folding.
We will see in Chapter 2 how to go about solving general cubic equations with such
folding operations.
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Figure 1.12 Geometric interpretation of A + 1/A and the like.

The Basic Origami Operations

Now that we have seen several examples of origami constructions, we are in a better
position to consider classifying the basic origami operations, or BOOs for short.
This turns out to be more problematic than one might expect.

As seen at the beginning of this chapter, it is easy to classify what operations are
possible under SE&C because we know exactly what our tools can do. The examples
we’ve seen show that origami admits many different types of operations. When try-
ing to make a list of them, it is not clear if one is really a special case of another,
or whether we have found them all. For example, in the 1980s Huzita and Scimemi
(1989) developed the following list of operations for origami:

O1: Given two points P and P, we can fold a crease line connecting them.

02: Given two lines, we can locate their point of intersection, if it exists.

03: Given two points P; and P>, we can fold the point P onto P> (perpendicular
bisector).

04: Given two lines L and L,, we can fold the line L onto the line L, (angle
bisector).

05: Given a point P and a line L, we can make a fold line perpendicular to L passing
through the point P (perpendicular through a point).

06: Given two points P and P> and a line L, we can, whenever possible, make a fold
that places P onto the line L and passes through the point P>.

0O7: Given two points P| and P; and two lines L and L, we can, whenever possible,
make a fold that places P onto L and also places P, onto Ls.
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impossible one degree of freedom
Case 5a Case 5b Case 5c¢

Figure 1.16 The subcases of folding a line L to itself.

Case 3c: Also fold another point P> to another line L. This is operation O7.

We can now see that we’ve covered all seven of our BOOs. To make sure
there are no more, however, we need to look at the last case.

Case 5: Fold a line Ly to itself. Folding a line L to itself is really just folding a
crease perpendicular to L;. But since this crease could intersect L at any
point, this gives us a degree of freedom. Combining with other operations
gives the following (as shown in Figure 1.16):

Case 5a: Also fold a point P to itself. This gives us operation OS5 again.

Case 5b: Also fold a point P to another line L. This gives us O8 again.

Case 5c¢: Also fold another line Ly to itself. If these two lines intersect, then this is
impossible, since the resulting crease would have to be perpendicular to
both. Thus the two lines would have to be parallel, but this still results in
one degree of freedom. Thus this combination is redundant—we would still
need another operation to specify a unique crease, bringing us back to Case
Sa or 5b.

This exhausts all the possibilities of folding points and lines to points and lines,
completing the proof. O

Operations O1-0O8 encompass everything that straight-crease, single-fold origami
can do. This list does contain redundancies, however, and to eliminate them we need
to be more specific about what is given to us at the start of our constructions.

For example, Alperin (2000) assumes the paper to be the entire complex plane with
the given constructed points 0 and 1. He then chooses operations O1-04, 06, and O7
to be his list of construction operations. (Actually, Alperin and several other writers
use the word “axiom” to refer to allowed folds. But since O6 and O7 are not always
possible, “operations” seems a more appropriate term.) One could equivalently assume
that the four points (41, &-1) are given, which, when the lines y = &1 and x = 1 are
folded using O1, simulate the boundary of a square piece of paper.

Certainly the given points we start with and the operations O1-O8 guarantee
that every crease line that is constructed will have a constructed point on it some-
where, as well as every point having a constructed line passing through it. This
observation has led several people, including Martin (1998) and Hatori (2003) to
prove that all we really need to characterize origami constructions are operations
02 and O7.
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Figure 1.17 Generating O3 and O4 from O7.

Theorem 1.2  Assuming that we are given at least two constructed points contained
in nonparallel constructed lines (which may be identical), then any straight-crease,
single-fold origami construction from this starting set can be completely described by
combinations of operations O2 and O7.

Proof By Theorem 1.1, we know that operations O1-08 are all we need to consider.
We obviously need to keep O2, but the others can be shown to be special cases of O7
where either we have L) = L, or some of the points Py, P, lie on the lines Ly, L,. This
needs to be done carefully.

For the operations O3 and O4, let P be on L; and P> be on L;. (We know that
all constructed lines contain constructed points and vice versa, so we can assume
this from the premises of O3 and O4.) Then there will be at most three ways in
which P; and P> can be folded onto L and La, respectively, as shown in Figure
1.17. The first two cases will amount to folding L; onto L», or bisecting one of
the angles made at their intersection, producing O4. (If L and L, are parallel, then
there will be only one way to do this.) The other case folds Py onto P>, giving
us O3.

In 06, we are given points Py, P> and line L. Let Ly be any line through P>. So
long as O6 is possible, we can have O7 fold P to itself on line L, and fold P; onto
L. (Note that we are not concerned here with when O6 is possible — we will take that
up in the next chapter.)

For O1 and OS5, let L; and L> be lines containing P; and P, respectively. Then,
assuming L and Ly are not parallel, there are at most three different folds we could
make that will leave P; on Lj and P> on L;: (a) making the crease pass through P
and P>, (b) making the crease pass through P; and be perpendicular to L;, and (c)
making the crease through P> and perpendicular to L. While some of these may be
identical, case (a) is operation O1. Cases (b) and (c) would give us O5. If L; and L»
do happen to be parallel, then Py and P> could not have been the original two points
in the construction, so there exist other points and lines that we can use to construct a
different line through one of Py or P.

For O8 we can take an arbitrary point P> on Ly and use O7 to fold P| onto L| while
folding P> to a (probably) different place on L; to ensure that the crease line will be
perpendicular to L. This covers all the operations O1-O8. O
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Figure 1.18 Constructing the reflection of P about L.

Remark 1.3 A common concern regarding the list of BOOs O1-08 is whether or
not we unfold the paper after each operation. Geometrically, all we care about is
that each BOO creates a new line in the plane and that the intersection of lines
creates new points. From this view, it does seem that every time we perform a
BOO, we unfold the paper immediately to consider the new line formed in the paper
(plane).

However, in practice origamists often leave the paper folded in order to perform
an operation using the folded layers of paper as a guide. This was done several times
in the heptagon construction in Section 1.4, for example. It seems conceivable that
repeated applications of a BOO, especially O7, on a piece of paper without unfolding
it might lead to a construction that could not be achieved by performing one BOO at
a time, unfolding after each.

Yet this is not the case. The locations of any points or lines that are moved in the
process of folding the paper flat with a BOO can be reconstructed if we immediately
unfold the paper. (And therefore there is no need to keep the paper folded.) To prove
this, suppose that L is a crease line constructed by some BOO. All we need to do is
show that for any point P or other line L', we can construct the reflections of P and L'
about L.

One method for constructing the reflection of P about L is shown in Figure
1.18. First use O5 to crease a line (1) perpendicular to L passing through P.
Then use O4 to fold this crease line onto L. bisecting the angle between them
to make the crease (2). Then use O5 again with P and the crease (2), label-
ing A as the point where this crease (3) intersects L. Finally, perform O35 again
with the crease line (3) and the point A to make the crease (4). Where this
crease intersects the crease line (1), called B in Figure 1.18, is the reflection of P
about L.

Constructing the reflection of a line L’ about L can be handled similarly. All we
need is a point or two constructed on L'; by reflecting these about L, we can then
create the reflection of L’ by using O1.
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1.6

This does, of course, use the convention that we can think of our sheet of paper as
being as large as we wish and that the boundary lines of the paper are just constructed
lines like any other. In any case, we conclude that while in practice it is often much
more efficient to leave the paper folded after performing an origami operation, we can
keep our list of BOOs simply to O1-08 (or O2 and O7, if we want to be really effi-
cient) by unfolding the paper after each step without losing any origami construction
power.

Some of the subtleties in the work of this section, especially Theorem 1.1, seem
to be ignored by much of the literature in this area. Several researchers (see (Alperin,
2000), for example) create definitions of what it means to be origami constructible (as
we will in Chapter 3) referring to the basic origami operations mentioned here, but they
do so with no argument as to whether more operations might be possible. Other papers,
for example (Auckly and Cleveland, 1995) and parts of (Alperin, 2000), ask what
can be constructed by a deliberately reduced set of origami operations. Investigators
in the origami community were very concerned with the question of whether more
operations existed (see (Hull, 1996)), whereby Lang’s proof of Theorem 1.1 is viewed
as a breakthrough.

In some sense it doesn’t matter which of the moves O1-08 we choose for an offi-
cial list of basic origami operations. As we will see in the next chapter, it is O7 that
separates origami from SE&C constructions, and being able to reference the other
operations makes for very convenient notation.

Historical Remarks

The first person to seriously analyze origami geometric constructions seems to have
been T. Sundara Row (1901). The first person to introduce operation O7 seems to have
been Margherita Beloch (1936). (See the remarks in Section 2.5 for more information.)
However, none of these early researchers made a formal list of possible origami con-
struction operations. The first such list to see print seems to have been in Jacques
Justin’s 1986 paper (Justin, 1986b). Justin states that his list was inspired by an
unpublished list created by Peter Messer (1984). Messer’s list contains the operations
O1-07, but not O8. Justin’s list contains all O1-O8. It appears that Scimemi indepen-
dently developed a list of origami construction operations, which became those listed
in (Huzita and Scimemi, 1989) and only included O1-0O7.

Complicating things further, George Martin published a paper in 1985 (Martin,
1985) that defines origami constructions using only operations O2 and O7, and he
seems to have developed this without any knowledge of Beloch’s work. Martin cites
Row and a publication of Yates, but he also cites (Dayoub and Lott, 1977), which
describes how one can use a Mira, a geometric construction tool that allows one to
reflect points about a line in the same way origami does, to trisect an arbitrary angle.
In doing so Dayoub and Lott use the Mira to perform an operation very similar to O7
in origami. Martin then refines this method for the Mira, publishing his own paper
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on Mira constructions that contains exactly the form of operation O7 where the two
given lines are perpendicular, whereupon Martin proves that the Mira can be used to
construct cube roots (Martin, 1979). So it could be that Martin was inspired by the
Mira to devise his version of operation O7 for origami.

Both Justin’s paper (Justin, 1986b) and the Huzita-Scimemi paper (Huzita and
Scimemi, 1989) were published in hard-to-find publications, or at least in periodi-
cals that weren’t indexed in the standard mathematical abstracts. This is likely why
subsequent work, like (Auckly and Cleveland, 1995; Geretschliger, 1997a; Alperin,
2000; Hatori, 2003) make no mention of Messer, Justin, or Scimemi (or Beloch, for
that matter).
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This will not have a solution when the discriminant is less than zero: x*/4 — y < 0.
The boundary of this region is our parabola y = x*/4, and all points above this curve
are “bad” choices for Ps.

Seeing that operation O6 generates tangents to a parabola, one naturally wonders
if other conic section tangents can be folded. The answer is yes, but before describing
how, we’ll give an informal motivation.

One can obtain a parabola from an ellipse in the following way: Recall that an
ellipse is the set of all points P such that the sum of the distances between P and two
fixed foci equals a constant called the major axis of the ellipse. Fix a focus of the
ellipse as well as the vertex point closest to that focus and let the other focus slide
off to infinity. The result will be a parabola. This process is equivalent to altering
the angle at which a plane intersects a cone to go from an elliptical intersection to a
parabolic one. (This fact was known as far back as Kepler (1604). See also (Hilbert
and Cohn-Vossen, 1956, pp. 3-4).)

Now consider an ellipse with foci /| and F> determined by the constant distance
(major axis) r. Draw a circle C with center F» and radius r. This circle has some useful
properties, described in the following theorem.

Theorem 2.2 Using the ellipse and circle described previously, let P be a point on
the ellipse and Q be the point where the extended ray F2P meets the circle C. Then

(i) the shortest distance between P and a point on the circle C is given by the segment
PQ, and
(ii) the tangent line to the ellipse at P reflects F| onto the point Q.

Proof For (i), suppose that a different point Q" # Q on C has a length PQ’ less than
that of PQ. Then we would have |F2P| + |PQ'| < r = |F20Q)|, which violates the
triangle inequality.

For (ii), notice that since |F2Q| = |F2P| + |F1P| = r, we have |F{P| = |PQ]|.
Also, a property of tangents to an ellipse is that they form equal angles with the lines
from the point of tangency to the two foci (see (Hilbert and Cohn-Vossen, 1956, p.
4)). In the notation of Figure 2.2, this means that ZF\PT) = ZF>PT>. But ZF>PT>
and ZTPQ are vertical angles and thus are equal. Therefore ZF\PT, = ZT,PQ,

. P‘

Figure 22 An ellipse and its folding circle.
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Figure 2.3 Folding tangents to an ellipse and a hyperbola.

which means that the tangent at P bisects 2 F|PQ. This combined with |F|P| = |PQ|
settles (ii). |

We now ask what happens to the circle C as we drag the focus F? to infinity, leaving
the focus F as well as the ellipse vertex closest to F fixed. As the major axis of the
ellipse grows, so will the radius of the circle, but one point of the circle, the point
closest to F; where the circle intersects the line containing the major axis, will also
remain fixed. Thus as F» moves farther and farther away, the circle will appear more
and more like a straight line near the focus F|. In the limit, we’ll have that F| will
be the focus of a parabola and the circle C will have turned into the directrix of that
parabola.

In other words, and in light of Theorem 2.2, the circle C and focus F play that
same role for the ellipse as the directrix and focus play when folding tangents to a
parabola. Thus if we draw a circle C with center /7 on our paper, and pick a point F|
inside C, then repeatedly folding '; onto C will generate the tangents to the ellipse
with foci F| and F> and major axis constant equal to the radius of C, as shown in
Figure 2.3 on the left. (In practice this is easier to do if one starts with a circular piece
of paper, picks a point inside at random, and then folds the paper’s circular boundary
to the point over and over again.)

Similarly, the tangents to a hyperbola can be folded if we choose the focus £ to be
outside the circle C. See the right side of Figure 2.3. In fact, a hyperbolic version of
Theorem 2.2 can be proven using exactly the same argument as for the ellipse.

Diversion 2.1 Derive the equations for an ellipse or hyperbola generated by these
folding methods. For example, prove that if we fold the point (1,0) over and over
again to the circle (x + 1) 4+ y*> = 16, then the crease lines will be tangent to an
ellipse (and find the equation of this ellipse). Hint: Parameterize the circle and then
use the substitutions sinf = -2 and cosf = 1=

o 1+4% 1+
parameterlzatlon.

2 . .
:2 to obtain a trigonometry-less
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We have seen how folding a point to a line generates tangents whose envelope is a
parabola and folding a point to a circle generates tangents whose envelope is an ellipse
or hyperbola (or circle, if the point is the circle’s center). In general, we can let C be
a curve in the plane and ask what curve will be the envelope of the crease lines made
when folding a fixed point to C repeatedly. Rupp (1924) addressed this question and
showed that this process generates a copy of the negative pedal of the curve C scaled
down by a factor of 1/2.

The negative pedal of a curve C is determined as follows: Given a fixed point O
(called the pedal point) and a point P on the curve, let Lp be the line through P that is
perpendicular to OP. The envelope of the lines Lp over all P € C is the negative pedal
curve of C (Lockwood, 1967). To see why this relates to our operation of folding a
point O repeatedly to a curve C, notice that if P € C is the point to which we fold
0, the locus of the midpoints M of OP (over all P € C) forms a copy of the curve
C dilated toward the point O by a factor of 1/2. The crease lines we fold would be
perpendicular to the segments OM, and thus their envelope would form the negative
pedal curve of this smaller copy of C. Therefore all the classic results for negative
pedal curves would apply (Lockwood, 1967, pp. 156-159). For example, it C were
a cardioid and O the cusp point, then folding O to C repeatedly will create creases
tangent to a circle.

However, the major result from all this is that operation O6 is generating tangent
lines to a parabola. That is, when we fold a point P to a line L, the resulting crease
will be tangent to the parabola with focus P and directrix L. This hints at a connection
between operation 06 and solving quadratic equations, which will be discussed in
Section 2.2.

This also gives us a way to interpret origami operation O7, where we simultane-
ously fold two points to two lines. Each point folding to a line determines the focus
and directrix of a parabola, and the crease line made will be tangent to both. Thus
operation Q7 is finding a common tangent to two parabolas. The implications of this
will be explored in Section 2.3.

We end this section with some comments on the literature available for folding
conic tangents. T. Sundara Row (1901, Note 235) seems to be the first to call attention
to the fact that folding a point to a line produces a parabola tangent, although the proof
given there is not the most elegant. Virtually all of the later publications, however, cite
Row’s work as their key influence. Lotka (1907) expanded Row’s discovery to the case
of folding a point to a circle, providing a very nice analytical method that simultane-
ously proves that the resulting envelopes are ellipses and hyperbolas. (His approach
is similar to the one given here for the parabola, where we used the discriminant of a
well-chosen quadratic to determine which points will not be hit by any crease lines.)
Rupp (1924) seems to be the first to successfully analyze what happens when we fold a
point to a general curve. Yates (1943), citing Row’s and Lotka’s work, provides proofs
for the parabola, ellipse, and hyperbola that are the most concise and elegant that the
author has seen.

Other publications have emphasized the educational potential of the origami-
conic connection. The NCTM booklet Paper Folding for the Mathematics Class
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2.2

(Johnson, 1957) presents minimal details and incomplete proofs. (Fehlen, 1975)
presents the material through pedagogy in a style that leaves the proofs incom-
plete. (Bruckheimer and Hershkowitz, 1977) gives a very straightforward proof of the
parabola case. (Scher, 1996) gives incomplete proofs but calls attention to how these
folding activities can be dramatically modeled with computer software like Geome-
ter’s Sketchpad or GeoGebra. (Smith, 2003) offers alternate analytic proofs but doesn’t
cite any previous work. The author tried his hand at specifically framing this material
for the classroom (Hull, 2012, Activity 6).

There are undoubtedly other references on operation O6 (we chose to not mention
references that only state the folding exercise, without any attempt at a proof). In fact,
it seems that numerous times people have completely re-invented the wheel on this
topic. For example, during the years 1970-2000 there were at least four articles in
Mathematics Teacher on folding tangents to conics, none of which reference each
other or the previous work listed above. Despite the inherent simplicity and charm
of exploring conics via operation O6, this has been, as Yates puts it, “unfortunately
relegated to the limbo™ (Yates, 1943, p. 230).

Solving Second Degree Equations

At this point it is fairly evident that origami should be able to solve second degree
equations. The previous section provides good evidence for this. Also, the operations
of a straightedge and compass seem to be mimicked by origami. Origami operation
01 simulates a straightedge, and O6 can be thought of as doing the work of a compass
as follows: since the point P; lies on the crease line, it can be thought of as remaining
fixed, like the center of a circle. Then P is folded onto the line L, and in doing so
the length of the segment P P; is preserved as P; is moved to its new location. Thus
the image of P under folding operation O6 is the same as finding a point of intersec-
tion between the line L and a circle centered at P with radius |P;P;|. This provides
the intuition, at least, that origami constructions should be able to do everything that
SE&C can do, and since the field of numbers constructible under SE&C is precisely
those that are solutions to quadratic equations, origami should be able to find such
solutions as well.

Actually doing this is another matter. As we shall see in Chapter 3, where we con-
struct the field of origami constructible numbers, it is relatively easy to, given origami
constructible nonzero lengths a and b, construct any combination of these lengths
using the operations addition, subtraction, multiplication, division, and square roots.
Therefore the output of the quadratic formula can be constructed, giving us any real
solutions to quadratics with rational coefficients.

However, in light of our work in Section 2.1, the fact that we can fold tangents to
conics is too tempting to not apply to this problem.

Suppose that we want to find roots, if they exist, of y = x2 + ax + b, where a,b €
Q. By locating the focus and directrix of this parabola, we can try to pick a well-
chosen tangent to fold and solve our problem. After enacting a change of coordinates
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to translate the parabola’s vertex to the origin, we can use standard methods to see that
the focus will be at the point Py = (—a/2, b —a” /44 1/4) and the directrix line L will
be y = b —a?/4 — 1/4. By the same methods we used in Sections 1.4 and 2.1, we find
that if we fold P to an arbitrary point (7, b—a®/4—1/4) on L, then the resulting crease
line will have equation y = (2t + a)x — £* + b. If we take t = (—a + va® — 4b)/2,
then the crease will be tangent to the parabola at a root, and the intersection of the
crease and the x-axis (which we assume is a constructed line) will locate the root for
us. Substituting this value of ¢ into our line equation gives us the rather horrendous
line equation

2
y=\/a274bx+§\/a274b+2b7%.

But now we see that if we let x = —a/2 on this line, the square root terms will cancel
and give us y = 2b — a®/2. Therefore we can pick P» = (—a/2,2b — a*/2), which is
easy to construct from the coefficients of our original quadratic, and perform origami
operation O6 to fold P; onto L making the crease go through P»; then, the intersection
of the resulting crease and the x-axis will be a root.

The other root could have been found by taking t = (—a—+/a® — 4b)/2. Of course,
if the vertex of the parabola, (—a/2, b — a”/4), is above the x-axis, then no real roots
exist and the results of this origami method will be meaningless.

Figure 2.4 shows how this works to find a root of x> — x — 1 = 0. We pick P| =
(1/2,—1), P» =(1/2,—5/2), and L the line y = —3/2 and perform operation O6.

Diversion 2.2 Use the example in Figure 2.4 to solve Diversion 1.5 (constructing a
regular pentagon via origami). The fact that cos(27/5) = (1/2)/((1 + \/3)/2) might
help.

Many other folding methods for solving quadratics exist, and readers are
encouraged to discover their own. In fact, one way to develop origami constructions

2

Figure 2.4 Folding to find aroot of y = x= —x — 1.
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We then construct an (n — 1)-order path beginning at O and ending at 7" as follows:
Position our turtle back at O, and this time point it at a yet-to-be-determined angle
—90° < 0 < 90° from the previous a, line. Let the turtle march in this direction until
it comes to the infinite line containing the a,_| line segment. (Note that depending
on 4, the turtle might not hit the actual a,—) segment, so the extended line may be
needed.) Then rotate the turtle by £90° so that it faces the next a,_; line. Let it march
again until it hits the line containing @, —». Then rotate by a right angle again and repeat
this process. In the end the turtle will hit the line containing the ay segment, and now
we get to see what our choice of # should have been. Our aim is to choose a value
that makes the turtle arrive in the end at point 7. (This is illustrated by the dotted line
paths in Figure 2.6.) If such a value of 6 exists, then it will lead us to a solution of our
original polynomial (2.2).

Theorem 2.3 (Lill, 1867) In the above process, the value x = —tan 8 will be a root
of apx" + an_1x" 1 4 ... 4 a.

Proof Since the turtle turns 90° at each corner, the n-order path and the (n — 1)-order
path form a sequence of right triangles all of which have an angle 6 in common and
are thus similar. Label the corners of the n-order path P,,, P,,_1, ..., P and the corners
of the (n — 1)-order path Q,—1,Op—2,...,0;. An example where n = 5 is shown in
Figure 2.7.

Let x = —tan® and consider the length of the side opposite € in each of these
similar triangles, P;Q;—| fori =n,...,2 and P;7. We obtain
[PuQn_1| = —anx, |Pu_10n 2| = —x(an_1 — [PuQp_11) = —x(ap_1 + apx),

[Pr—20n-3| = —x(ap—2 — [Pn—10n—21) = —x(an—2 + x(an—1 + apx)),. ..
|[P1T| = —x(ay + x(a2 + x(a3 + - - - + x(@p—1 + apx) - -+ ))).
Since |P|T| = ag, we have that ay = —ajx — arxt —azxd — - —ay_ X7 — at,
Therefore x = —tan @ is a solution to Equation (2.2). O
Finding the proper angle € to make this work is certainly not something that nor-
mal construction tools (compass, marked straightedge, what-have-you) can handle in

general. As seen in Figure 2.5 in the previous section, the case where n = 2 can easily
be modified for SE&C, but Lill did offer another suggestion for handling the cases

as

Py J &-"Q] P
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Figure 2.7 Proving Lill’s method works in a case where n = 5.
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Figure 2.8 Lill's use of transparent graph paper to find a solution square for the (a) n = 2 and
(b) n = 3 cases.

where n = 2 or 3. He proposed, after drawing the initial 2- or 3-order path, overlaying
it with translucent graph paper (with a fine mesh) and rotating it until the points O and
T both lie on sides of a square (or on lines that contain a side of the square) and some
of this square’s corners lie on lines that contain a segment «;. For the n = 2 case, we
would want one corner of the square to lie on the a; segment (or a line that contains
ay); see Figure 2.8(a). In the cubic n = 3 case we would want one corner of the square
to lie on the a; line and an adjacent corner to lie on the a> line. We’d also want, for the
cubic case, the points @ and T to lie on lines containing opposite sides of the square.
See Figure 2.8(b) for an example. We call this square, in the proper position in the
plane, the solution square for Lill’s method in the n = 2 or n = 3 cases.

Of course, Lill’s method won’t always work. If no real solutions exist for the poly-
nomial, then no angle # will work, and no turning or positioning of our translucent
graph paper will produce a solution square.

Diversion 2.4 Prove that the (n — 1)-order path generated by Lill’s method to solve
Equation (2.2) is a scalar multiple of the path made by the degree-(n — 1) polynomial
obtained by factoring (x 4 tan #) from Equation (2.2). In this way, Lill’s method rep-
resents geometrically the process of successively factoring out the real roots from a
polynomial.

It was the cubic case of Lill’s method that Beloch discovered could be performed by
paper folding. She states in (Beloch, 1936) that she developed this work while teaching
a course on geometry, where she no doubt presented Lill’s method, at the University
of Ferarra, Italy, in the 1933-34 academic year. Beloch’s technique is illustrated in
Figure 2.9 and proceeds as follows: Given a cubic a3x® +a2x* +ayx + ao with rational
coefficients, we construct the 3-order path according to Lill’s method, and our aim is
to find the proper angle 8, if it exists, to give us a 2-order path connecting O and 7.
First construct a line Dy at x = 2a3 and another line D; at y = a> + ayp.

Theorem 2.4 (Beloch, 1936) Using the above notation, if the origami operation 07,
folding the point O to the line D| and the point T to the line D», is possible, then the
line segment that the extended a; and ay lines cut out of the resulting crease will be
one side of the solution square for Lill’s method.
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Figure 2.9 Beloch’s use of operation O7 to solve a cubic.

Proof The proof is very simple once one understands the reasoning behind the loca-
tion of the lines D and D). Suppose that we wanted to consider a parabola with focus
0 = (0,0) and vertex P3 = (a3, 0). Then the directrix of this parabola would be the
line x = 2as, which is Dj. Therefore, any fold that places O onto D will be tangent
to this parabola. Furthermore, if @' is the image of O on D) after the folding, then the
midpoint X of 00" will be on the line containing the a» segment.

Similarly, consider the parabola with focus T = (a3 — aj,a2 — ap) and vertex
Py = (a3 — a1, a2). The directrix of this parabola will be the line y = a2 + agp, which
is D>. When we fold T onto a point 7" on line D>, the resulting crease will be tangent
to this second parabola, and the midpoint ¥ of TT” will lie on the line containing the
ay segment. See Figure 2.9.

When we fold O onto D and 7" onto D3 using operation O7, we have that the points
X and Y will be on this crease line. Thus the segment XV is perpendicular to OX and
TY, and thus XY is the side of a square with two adjacent corners (the points X and ¥)
on the @y and a; lines. Two (extended) opposite sides of this square contain the points
O and T, and therefore this is a solution square for Lill’s method. [}

Diversion 25 Determine the operation O7 fold needed, and the 3-order path it gener-
ates for Lill’s method, to find one of the three real solutions of x> — 7x — 6 = 0 using
Beloch’s approach. (Note that the lack of an a; term doesn’t change the procedure;
the a segment will merely have zero length and the “line containing a>” will still be
perpendicular to the a3 and a; lines. See (Riaz, 1962) or (Hull, 2012) for hints.)

It seems that Beloch’s work on origami constructions laid in obscurity for many
years. While attention was drawn to it in the early years of the origami mathematics
community (see (Huzita and Scimemi, 1989) in particular), the methods of trisect-
ing angles by Abe and Justin and Messer’s cube root of two construction (Messer,
1986) were done without knowledge of Beloch’s work. Furthermore, the reference
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(Huzita and Scimemi, 1989) was in a very hard-to-find publication, and the more
recent constructions of (Alperin, 2000) and (Hatori, 2003) for solving general cubics
were made without any knowledge of Beloch. It is fascinating, then, to learn that
both of these modern solutions are virtually identical to Beloch’s approach, although
without the reference to Lill.

In Hatori’s construction (Hatori, 2003) we begin with an arbitrary cubic X 4ax+
bx+ ¢ = 0 and consider the parabola with focus Py = (a, 1) and directrix Ly : y = —1
and the parabola with focus P; = (¢, b) and directrix Ly : x = —c.

Diversion2.6 Prove that in Hatori’s construction the slope of the crease line we obtain
(if it exists) by folding P onto L and P onto L; using origami operation O7 will be
a real solution to x> 4+ ax®> 4+ bx 4+ ¢ = 0.

Figure 2.10 shows how Hatori’s construction can be interpreted as equivalent to
Beloch’s. Indeed, if we reflect this picture about the line y = —x and translate P; to
the origin, it is exactly what Beloch’s application of Lill’s method would generate.

Alperin’s construction (Alperin, 2000) begins with the equivalent form of a gen-
eral cubic x> + ax + b = 0. (See (Hull, 2012, Activity 6) or (Weisstein, n.d.) for an
explanation.) He then asks us to consider the parabolas

Lo d LY 2b
= —X an — —da = X.
Y= )

The first one has focus P; = (0, 1/2) and directrix L;: y = —1/2. The second has
focus P» = (b/2,a/2) and directrix Lr: x = —a/2. These foci are the same that
Beloch’s method would give, except that they are rotated 90° and scaled down by 1/2,
which is the equivalent of multiplying the cubic equation by 1/2. Figure 2.11 illustrates
this, but the application of Lill’'s method can be hard to discern due to the lack of an
¥ term in the polynomial. One should think of the “line segment of length a>” as
being there, parallel to (actually, along) the x-axis but of zero length. (Thus the line
“containing” the a> segment is the x-axis.)

Ly x=~-c A
o P2 =1(c.h)
_,Z’I’
K Ji=@h
e /
R N I - T
Li:y=-1
1+-2
\J

Figure 2.10 Hatori’s cubic solution viewed through the lens of Beloch/Lill.
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Lix=-a/2 A
Py =1(a/2,b/2)

P =(0,1/2) Pl

A

Figure 2.11 Alperin’s cubic solution viewed through the lens of Beloch/Lill.
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Figure 212 Peter Messer’s cube root of two construction.

Diversion 2.7 Prove that in Alperin’s construction the slope of the crease line we
obtain (if it exists) by folding P onto L; and P> onto L, using origami operation O7
will be a real solution to x*> + ax 4+ b = 0.

Diversion 2.8 Use Beloch’s method to devise a paper-folding way to construct J2.
(You're likely to come up with a similar folding procedure to that of Hatori (2003).)

Given how all these methods of solving cubics via origami are really the same at
heart, it is surprising to then find one that is different. Peter Messer’s cube root of two
construction (Messer, 1986) does not fit as easily into the Beloch/Lill strategy; see
Figure 2.12. Messer does utilize two parabolas whose directrices are perpendicular,
as Beloch does. But if we were to use Beloch’s method to solve x> — 2 = 0, our
3-order path would start with a horizontal segment of length 1, then two segments
(vertical then horizontal) of length 0, and then a vertical segment of length 2. There is
no way the points O and T would share the same x- or y-coordinate, as do Messer’s
points P and P>. However, Messer’s method finds two lengths whose ratios give
/2, as opposed to a length obtained by a slope of the turtle path from Lill’s method.



