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Topic 1

A POINT OPENS THE DOOR TO
ORIGAMICS

Haga’s First Theorem and its Extensions

1.1 Simple Questions About Origami

Whenever an origami activity is brought up in the classroom the stu-
dents show great interest and enthusiasm. And even as the colored
pieces of origami paper are distributed, the students are in a hurry
to start some folding process. This burst of eagerness of the students
allows for a smooth introduction to the subject matter of this topic.

As the students make their first fold, call their attention to all the
first folds. The objects the students plan to make may vary - flower,
animal or whatever. But no matter what they are trying to make, their
first fold is invariably one of these types: a book fold (or side-bisector
fold) made by placing one side on the opposite side and making a crease
as in Fig.1.1(a), or a diagonal fold made by placing a vertex on the
opposite vertex and making a crease as in Fig.1.1(b). In the book fold
two opposite sides are bisected, hence the alternate name.

Why are there only two types? We explain this. In origami all ac-
ceptable folds must have the property of reproducibility - the result of
a folding procedure must always be the same. The basic origami folds
involve point-to-point or line-to-line. Using only the four edges and the
four vertices, the possible ways of folding are placing an edge onto an-
other edge or placing a vertex onto another vertex. By considering all
such manipulations one sees that the only possible outcomes are the
two folds mentioned above.
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(a)

—

(b)

Fig. 1.1 The first folds with the property of reproducibility.

While musing over the above observations one might ask: what
other folds are possible if, in addition to the four vertices, another point
on the square piece of paper were specified? This question plants the
seed for the discussions in this book and opens the door to origamics -
classroom mathematics through origami.

1.2 Constructing a Pythagorean Triangle

When we are told to select a particular point on the square paper other
than the vertices without using any tool (that is, no ruler or pencil), the
simplest to be selected is the midpoint of a side. To mark a midpoint
start bending the paper as for a book fold, but do not make a full crease.
Just make a short crease on the edge of the square or make a short
mark with one’s fingernails. It is not necessary to make a crease the
whole length of the paper; too many crease marks are likely to be an
obstacle to further study. We shall call a small mark like this a scratch
mark or simply a mark.

Now we make a fold on the paper with this midpoint as reference or
starting point. Several methods of folding can be devised. One folding
method is to place a vertex on the mark, another folding method is to
make a crease through the mark. The method should be such that a
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J— [— @ .......... [— .

Fig. 1.2 Make a small mark on the midpoint of the upper edge.

Fig. 1.3 Place the lower right vertex onto the midpoint mark.

unique fold is obtained, no matter how often or by whom it is made.

In this topic we shall discuss one folding procedure and some prop-
erties related to it. Other ways of folding shall be discussed in other
topics.

To facilitate discussion let us set the standard position of the square
piece of paper to be that where the sides are horizontal (that is, left to
right) or vertical (that is, upwards or downwards). Therefore we shall
designate the edges as left, right, upper, or lower; and the vertices as
upper left, lower left, lower right, or upper right.
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Select the midpoint of the upper edge as starting point (Fig.1.2).
Place the lower right vertex on the starting point and make a firm
crease (Fig.1.2). Either the right or left lower vertex may be used, it
does not make any difference for analysis purposes. But to follow the
diagrams we shall use the lower right vertex.

By this folding process a non-symmetrical flap is made. A number
of interesting things can be found about it. To facilitate discussion, in
Fig.1.4 points were named.

I R — S
AfF . D
F
@,
H
I
G J
C

Fig. 1.4 There are three similar right angled triangles.

Let the length of one side of the square be 1.
First, in right ADEF we can find the lengths of the sides. Let DF =
a. Then FC = 1 — a. By the folding process FE = FC, so FE = 1 — a.
1
Since E is a midpoint, DE = 3 Applying the Pythagorean relation,

2
. 1 3 3
(1—-a)?=a®+ (5) . From this we obtain « = 3 Therefore DF = 3

5
and FE=1-a= 3 In other words by the above folding procedure the
right side of the square is divided in the ratio 3 : 5. And further, the
ratio of the three sides of AEDF is

3 1 5

FD.DE.EF—§.§.§—3.4.5.

AEDF turns out to be a Pythagorean Triangle!
Such triangles were used by the Babylonians, the ancients Egyp-

tians such as for land surveying along the lower Nile River and the an-
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cients Chinese. History tells us that several thousand years ago there
was repeated yearly flooding of the river, so land boundaries were con-
tinually erased. For resurveying these boundaries they made use of the
Pythagorean triangle. The 3 : 4 : 5 triangle is often mentioned as the
origin of geometry.

Constructing the Pythagorean triangle by Euclidean methods - that
is, with the use of straight edge and compass - requires a lot of time.
By contrast, as you have seen, this can be done in origamics with just
one fold on the square piece of paper.

1.3 Dividing a Line Segment into Three Equal Parts Us-
ing no Tools

Still other triangles emerge from the folding procedure. The lengths of
their sides reveal some interesting things.

We determine the lengths of the sides of AEAH in Fig.1.4. As before,
let the length of the side of the square be 1. Since vertex C of the square
was folded onto point E and C is a right angle, then also HEF is a right
angle. Therefore the angles adjacent to ZHEF are complementary and
AEAH and AFDE are similar. Therefore AAEH is also an Egyptian
triangle.

Now we look for AH. By the proportionality of the sides

301

DF  AE T 3

—_— 2 then 8--2

DE A % T AW
3

Therefore AH = %

This value of AH is another useful surprise. It indicates that by
1 1
locating the point H one can find 3 of the side - BH is 3 of the side.
That is, H is a trisection point.
Dividing a strip of paper into three equal parts is often done by
lightly bending the strip into three parts and shifting these parts in

a trial-and-error fashion until they appear equal. Because trial-and-
error is involved this method is imprecise and therefore is not mathe-
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matically acceptable. Other trisecting methods by origami have been
reported, but the method above described is one of the simplest and
neatest. In fact, it is possible to carry out the procedure of marking the
trisection point with almost no creases.

We continue to look for the other sides of AAEH. We look for side
HE.

DF AE

EF ~mE then

| ofoo| w
|
|
Do | =
=1

Therefore HE = %

This value of HE is also useful in that it enables us to find % of the
side. By returning the flap to the original position EH falls on side CB,
so that H separates é of the side. That is, H is a hexasection point of
the side.

There is still another triangle to study in Fig.1.4, right angled
AGIH. Since Z/GHI and ZEHA are vertical angles and are therefore

equal, then AGIH and AEAH are similar. So AGIH is still another
Egyptian triangle with

GI:ITH:HG=3:4:5.

Also, since EI =CB = 1, then HI = EI - EH =1 — g = é As for the
other sides of AGIH, it is easy to obtain GI = é and GH = 25—4

Finally, to complete our study of the segments in Fig.1.4, we look
for the length of FG. Imagine a line (or fold) through G parallel to the
lower edge BC and intersecting side CD at point J. This line forms a

right AFJG with hypotenuse FG. Since by folding GB = GI, then GI

1 D 1 1
=JC = 3 and JF = CF — CJ = I5° 73 Therefore by applying the

Pythagorean Theorem to AFJG, FG = ?

The main ideas just discussed are summarized in the following the-
orem.
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Haga’s First Theorem By the simple folding procedure of plac-
ing the lower right vertex of a square onto the midpoint of the upper
side, each edge of the square is divided in a fixed ratio, as follows (see
Fig.1.5).

(a) The right edge is divided by the point F in the ratio 3 : 5.
(b) The left edge is divided by the point H in the ratio 2 : 1.
(c¢) The left edge is divided by the point G in the ratio 7 : 1.
(d) The lower edge is divided by the point H in the ratio 1 : 5.

| [

|
i
o

Fig. 1.5 Various lengths appears by folding only once.

And the fold used in the theorem is called Haga’s First Theorem
Fold.

In (a) and (c) the ratios may be obtained by dividing a side in half,
then again in half, then still again in half (that is, dividing the side into
8 equal parts). But the ratios in (b) and (d) cannot be so obtained. For
this reason this one-time folding method is a useful, simple and precise
dividing procedure.

Comment. The discoveries described in this topic were first reported
as “Haga’s Theorem” by Dr. Koji Fushimi in the journal Mathematics
Seminar volume 18 number 1 (January 1979, in Japanese). Other fold-
ing methods have since been explored by Haga, hence the change in
name in 1984 to “Haga’s First Theorem”.
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Dr. Fushimi is a past chairman of the Science Council of Japan.
He is author of “Geometrics of Origami” (in Japanese) published by the
Nippon Hyoronsha.

1.4 Extending Toward a Generalization

So far the folding procedures have been based on the midpoint of an
edge as starting point. We might ask ourselves: what results would we
obtain if the starting point were some other point on the edge?

In Fig.1.6 an arbitrary point was chosen and is indicated by an
arrow. In Fig.1.7 the vertices of the squares are named. Denote the
chosen point by E and the distance DE by xz. Denote the different
segments by y1 to ys as in Fig.1.7. Then the lengths of the segments
become functions of z as follows.

0

Fig. 1.6 Folding onto positions other than the midpoint.

[y11 By the Pythagorean relation on ADEF, 22 + y? = (1 — y1)?%. So
1—2? (1+a)(1-2)

Y1 =
2 2
[y Since AAHE is similar to ADEF, then 1y1 -2 So
—z y
_ 2x ’
Y2 = 1+a°
[ys] Also from similar triangles AAHE and ADEF, we obtain
Y2 x 14 22

= . So y3 = .
ys 11— BT
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Fig. 1.7 1y to ys indicates the other various lengths.

[y4] Since FG and EC are perpendicular, ACKF and ACDE
are similar. Therefore /DEC and /KFC are congru-
ent; so also ACDE and AGJF. So FJ = =z Therefore

1—x)?
'y4:JC:1—(yl+x):u_

. 2z (1—2)2
[ys1 Sinceyo+ys+ys=1,y5=1— + .
1+ 2
[ye] By the Pythagorean relation on AGJF, yg = VFJ? +JG? =
Va2 + 1.

It is difficult to feel excited over the above relations if described only
in terms of formal general expressions. To help us better appreciate
these relations let us find their values for particular values of x. Using

1
the square pieces of paper, locate the points corresponding to « = 1 and

r = § We fold as before, placing the lower vertex on each mark as in
Figs.1.8(a) and (b).

The values of the y’s for these two values of z, as well as those for

1
v =3, are given in the table below.

From the table we see that various fractional parts are produced,
the simpler ones being halves, thirds, fourths, fifths, sixths, sevenths
and eighths. We realize that by selecting suitable values of = we can
obtain segments of any fractional length or their integral multiples.
Therefore with no tools, by simply marking a specific dividing point
on an edge and making just one fold, any fractional part of the square
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© P o s

Case: z = i Case: z= -

Fig.1.8

piece of paper may be obtained. And to reduce the clutter of too many
folds, just fold in parts (i.e., small scratch marks instead of whole
creases) to obtain the important points.

. 1 1 3
9 4
3 15 7
. 8 5 | 32 17 | %2 95
1=y, 8 32 32
2 2 6
Yy 3 5 7
1 3 1
1-y, 3 5 7
Yy 5 17 25
6 REVERE
1-y, 6 20 28
Y, 1 9 1
8 32 32
7 23 a1
1-y, 8 32 32

Thus, in spite of the austere simplicity of this “one-fold” procedure,
many exciting revelations emerge. Clearly Haga’s First Theorem Fold
is highly worthwhile.



Topic 2

NEW FOLDS BRING OUT NEW
THEOREMS

Mathematical Principles Related to Haga’s Second and Third
Theorems

2.1 Trisecting a Line Segment Using Haga’s Second
Theorem Fold

In the previous topic, just by placing a lower vertex of a square piece of
paper on the midpoint of the upper edge and making a crease many in-
teresting ideas about the resulting segments and angles came to light.
One such idea was discussed in topic 1 as “Haga’s First Theorem”, and
the related fold was named “Haga’s First Theorem Fold” (Fig.2.1(a)).

In the present topic we shall discuss “Haga’s Second Theorem Fold”.
As before mark the midpoint of the upper edge of the paper. Then
make the fold linking this midpoint and a vertex of the bottom edge.
This is an unusual way of folding and you may find it a bit difficult;
so fold very carefully, especially when folding through the midpoint
(Fig.2.1(b)). Make a firm crease.

In Fig.2.2 points were named: E is the midpoint of side AD of the
square ABCD. EC is the resulting crease and right AEFC is the re-
sulting triangular flap. If the length of a side of the square is 1, then

5
the length of the crease EC is %, obtained by using the Pythagorean
theorem on right AEDC.

We shall study the folded part of the top edge, EF in Fig.2.2. This is
the new position of ED after folding. Suppose segment EF is extended
to the left edge at point G. Where does this extended line reach on the

11



