Parameterized
Algorithms

Cowvry

brvte
BASRGH

Fiitvre
b8P

@ Springer

Marek Cygan - Fedor V. Fomin
Lukasz Kowalik - Daniel Lokshtanov
Daniel Marx - Marcin Pilipczuk
Michat Pilipczuk - Saket Saurabh

Parameterized Algorithms

@ Springer

Marek Cygan

Institute of Informatics
University of Warsaw
Warsaw

Poland

Fedor V. Fomin
Department of Informatics
University of Bergen
Bergen

Norway

Lukasz Kowalik
Institute of Informatics
University of Warsaw
Warsaw

Poland

Daniel Lokshtanov
Department of Informatics
University of Bergen
Bergen

Norway

Daniel Marx

Institute for Computer Science and Control
Hungarian Academy of Sciences

Budapest

Hungary

Marcin Pilipczuk
Institute of Informatics
University of Warsaw
Warsaw

Poland

Michat Pilipczuk
Institute of Informatics
University of Warsaw
Warsaw

Poland

Saket Saurabh

C.LT. Campus

The Institute of Mathematical Sciences
Chennai

India

ISBN 978-3-319-21274-6
DOI 10.1007/978-3-319-21275-3

ISBN 978-3-319-21275-3 (eBook)

Library of Congress Control Number: 201594608 1

Springer Cham Heidelberg New York Dordrecht London

© Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Contents

Part I Basic toolbox 1
1 Introduction 3
1.1 Formal definitions 12
2 Kernelization 17
2.1 Formal definitions 18
2.2 Some simple kernels 0 oL 20
221 VERTEX COVER v v v ittt i e o 21
2.2.2 FEEDBACK ARC SET IN TOURNAMENTS 22
2.2.3 EDGE CLIQUE COVER 25
2.3 Crown decomposition 26
231 VERTEX COVER o v i vttt 29
2.3.2 MAXIMUM SATISFIABILITY v o o o o .. 29
2.4 Expansion lemma 30
2.5 Kernels based on linear programming 33
2.6 Sunflower lemma, 38
2.6.1 d-HITTING SET i vt i o 39
3 Bounded search trees 51
3.1 VERTEX COVER v . v i i i e e e e s 53
3.2 How to solve recursive relations 55
3.3 FEEDBACK VERTEX SET 57
3.4 VERTEX COVER ABOVELP 60
3.5 CLOSEST STRING . .« v v v v v e et e e e e e e e e 67
4 Tterative compression 7T
4.1 Tlustration of the basic technique 78
4.1.1 A few generic steps 80
4.2 FEEDBACK VERTEX SET IN TOURNAMENTS 81
4.2.1 Solving D1sjoINT FEEDBACK VERTEX SET IN TOUR-
NAMENTS in polynomial time 83
4.3 FEEDBACK VERTEX SET+ v v v v e vt e e oo 86

4.3.1 First algorithm for D1sJOINT FEEDBACK VERTEX SET 87
*4,3.2 Faster algorithm for D1sJOoINT FEEDBACK VERTEX SET 88
4.4 OpD CYCLE TRANSVERSAL o oo v 91

xiii

xiv CONTENTS

5 Randomized methods in parameterized algorithms 99
5.1 A simple randomized algorithm for FEEDBACK VERTEX SET 101
5.2 Colorcoding 103
5.2.1 A color coding algorithm for LONGEST PATH 104
5.3 Random separation 106
*5.4 A divide and color algorithm for LONGEST PaTH 108
5.5 A chromatic coding algorithm for d-CLUSTERING 113
5.6 Derandomization 117
5.6.1 Basic pseudorandom objects 118
5.6.2 Derandomization of algorithms based on variants of
color coding, 120
6 Miscellaneous 129
6.1 Dynamic programming over subsets 130
6.1.1 SET COVER ittt 130
6.1.2 STEINER TREE 131
6.2 INTEGER LINEAR PROGRAMMING 135
6.2.1 The example of IMBALANCE 136
6.3 Graph minors and the Robertson-Seymour theorem 140
7 Treewidth 151
7.1 Trees, narrow grids, and dynamic programming 153
7.2 Path and tree decompositions 157
7.3 Dynamic programming on graphs of bounded treewidth . . . 162
7.3.1 WEIGHTED INDEPENDENT SET 162
7.3.2 DOMINATING SET oo it 168
7.3.3 STEINER TREE 172
7.4 Treewidth and monadic second-order logic 177
7.4.1 Monadic second-order logic on graphs 178
7.4.2 Courcelle’s theorem 183
7.5 Graph searching, interval and chordal graphs 185
7.6 Computing treewidth 190
7.6.1 Balanced separators and separations 192
7.6.2 An FPT approximation algorithm for treewidth . . . 195
7.7 Win/win approaches and planar problems 199
7.7.1 Grid theorems L. 200
7.7.2 Bidimensionality 0L 0L 203
7.7.3 Shifting techniqueo 211
*7.8 Trrelevant vertex techniqueo 216
7.9 Beyond treewidtho 228
Part II Advanced algorithmic techniques 245
8 Finding cuts and separators 247

81 Minimum cuts 249

CONTENTS xv

8.2 Important cuts o Lo 254
8.3 EDGE MuLTiwAY CUT 261
84 (p,q)-clustering 264
8.5 Directed graphs 272
8.6 DIRECTED FEEDBACK VERTEX SET 274
8.7 Vertex-deletion problems, 278
9 Advanced kernelization algorithms 285
9.1 A quadratic kernel for FEEDBACK VERTEX SET 287
9.1.1 Proof of Gallai’s theorem 290

9.1.2 Detecting flowers with Gallai’s theorem 295

9.1.3 Exploiting the blocker 296

*9.2 Moments and MAX-Er-SAT 299
9.2.1 Algebraic representation 301

9.2.2 Tools from probability theory 302

9.2.3 Analyzing moments of X(¥) 304

9.3 CONNECTED VERTEX COVER in planar graphs 307
9.3.1 Plane graphs and Euler’s formula 308

9.3.2 A lemma on planar bipartite graphs. 309

9.3.3 The case of CONNECTED VERTEX COVER 310

9.4 Turing kernelization 313

9.4.1 A polynomial Turing kernel for MAX LEAF SUBTREE 315

10 Algebraic techniques: sieves, convolutions, and polynomials 321

10.1 Inclusion—exclusion principle 322
10.1.1 HAMILTONIAN CYCLE 323
10.1.2 STEINER TREE 324
10.1.3 CHROMATIC NUMBER 326

10.2 Fast zeta and Mobius transforms 328

10.3 Fast subset convolution and cover product 331
10.3.1 Counting colorings via fast subset convolution 334
10.3.2 Convolutions and cover products in min-sum semirings 334

10.4 Multivariate polynomials 337
10.4.1 LONGEST PATH in time 289 0 . 0 . 340
10.4.2 LONGEST PATH in time 2¥/2n®(for undirected bi-

partite graphso 346
¥10.4.3 LONGEST PATH in time 23%/4n®M) for undirected
graphs 349
11 Improving dynamic programming on tree decompositions 357

11.1 Applying fast subset convolution 358
11.1.1 Counting perfect matchings 358
11.1.2 DOMINATING SET v vv e e 359

11.2 Connectivity problems 361
11.2.1 Cut & Count 361

*11.2.2 Deterministic algorithms by Gaussian elimination . . 365

xvi CONTENTS

12 Matroids 377
12.1 Classes of matroids 379
12.1.1 Linear matroids and matroid representation 379

12.1.2 Representation of uniform matroids 380

12.1.3 Graphic matroids 381

12.1.4 Transversal matroids 382

12.1.5 Direct sum and partition matroids 383

12.2 Algorithms for matroid problems 383
12.2.1 Matroid intersection and matroid parity 386

12.2.2 FEEDBACK VERTEX SET in subcubic graphs 389

12.3 Representative sets 392
12.3.1 Playing on a matroid 394

12.3.2 Kernel for d-HITTING SET 398

12.3.3 Kernel for d-SET PACKING 399

12.3.4 £-MATROID INTERSECTION 401

12.3.5 LONG DIRECTED CYCLE 403

12.4 Representative families for uniform matroids 409
12.5 Faster LONG DIRECTED CYCLE 410
12.6 LONGEST PATH 413
Part III Lower bounds 419
13 Fixed-parameter intractability 421
13.1 Parameterized reductions 424
13.2 Problems at least as hard as CLIQUE 426
13.3 The W-hierarchy, 435
*13.4 Turing machines L. 439
*13.5 Problems complete for W[1] and W[2] 443
13.6 Parameterized reductions: further examples 448
13.6.1 Reductions keeping the structure of the graph 448

13.6.2 Reductions with vertex representation 451

13.6.3 Reductions with vertex and edge representation . . . 453

14 Lower bounds based on the Exponential-Time Hypothesis 467
14.1 The Exponential-Time Hypothesis: motivation and basic

results 468
14.2 ETH and classical complexity 473
14.3 ETH and fixed-parameter tractable problems 475

14.3.1 Immediate consequences for parameterized complexity 476
*14.3.2 Slightly super-exponential parameterized complexity 477

*14.3.3 Double exponential parameterized complexity 484
14.4 ETH and W[l]-hard problems 485
14.4.1 Planar and geometric problems 489

*14.5 Lower bounds based on the Strong Exponential-Time
Hypothesiso oo 502

CONTENTS xvil

14.5.1 HITTING SET parameterized by the size of the

UNIVETSE . . v v v v e e e e e e e e e e 503
14.5.2 Dynamic programming on treewidth 508
14.5.3 A refined lower bound for DOMINATING SET 514
15 Lower bounds for kernelization 523
15.1 Compositionality 524
15.1.1 Distillation 525
15.1.2 Composition 529
15.1.3 AND-distillations and AND-compositions 533
152 Examples 534
15.2.1 Instance selector: SET SPLITTING 534
15.2.2 Polynomial parameter transformations: COLORFUL

GRAPH MOTIF and STEINER TREE 537
15.2.3 A more involved one: SET COVER 540

15.2.4 Structural parameters: CLIQUE parameterized by the
vertex cover number 544
15.3 Weak compositions 547
References 556
Appendix 577
Notation 577
Problem definitions 581
Index 599

Author index 609

Part 1
Basic toolbox

Chapter 1
Introduction

A squirrel, a platypus and a hamster walk into a bar...

Imagine that you are an exceptionally tech-savvy security guard of a bar
in an undisclosed small town on the west coast of Norway. Every Friday,
half of the inhabitants of the town go out, and the bar you work at is well
known for its nightly brawls. This of course results in an excessive amount
of work for you; having to throw out intoxicated guests is tedious and rather
unpleasant labor. Thus you decide to take preemptive measures. As the town
is small, you know everyone in it, and you also know who will be likely to
fight with whom if they are admitted to the bar. So you wish to plan ahead,
and only admit people if they will not be fighting with anyone else at the
bar. At the same time, the management wants to maximize profit and is not
too happy if you on any given night reject more than & people at the door.
Thus, you are left with the following optimization problem. You have a list
of all of the n people who will come to the bar, and for each pair of people
a prediction of whether or not they will fight if they both are admitted. You
need to figure out whether it is possible to admit everyone except for at most
k troublemakers, such that no fight breaks out among the admitted guests.
Let us call this problem the BAR FIGHT PREVENTION problem. Figure 1.1
shows an instance of the problem and a solution for & = 3. One can easily
check that this instance has no solution with k& = 2.

© Springer International Publishing Switzerland 2015 3
M. Cygan et al., Parameterized Algorithms,
DOI 10.1007/978-3-319-21275-3_1

4 1 Introduction

Christos

Daniel

Fig. 1.1: An instance of the BAR FIGHT PREVENTION problem with a solution
for £ = 3. An edge between two guests means that they will fight if both are
admitted

Efficient algorithms for BAR FIGHT PREVENTION

Unfortunately, BAR FIGHT PREVENTION is a classic NP-complete problem
(the reader might have heard of it under the name VERTEX COVER), and so
the best way to solve the problem is by trying all possibilities, right? If there
are n = 1000 people planning to come to the bar, then vou can quickly code up
the brute-force solution that tries each of the 2199 ~ 1.07-103"! possibilities.
Sadly, this program won't terminate before the guests arrive, probably not
even before the universe implodes on itself. Luckily, the number %k of guests
that should be rejected is not that large, & < 10. So now the program only
needs to try (1280) ~ 2.63 - 10%3 possibilities. This is much better, but still
quite infeasible to do in one day, even with access to supercomputers.

So should you give up at this point, and resign yourself to throwing guests
out after the fights break out? Well, at least you can easily identify some
peaceful souls to accept, and some troublemakers you need to refuse at the
door for sure. Anyone who does not have a potential conflict with anyone else
can be safely moved to the list of people to accept. On the other hand, if some
guy will fight with at least k + 1 other guests you have to reject him — as
otherwise you will have to reject all of his k + 1 opponents, thereby upsetting
the management. If you identify such a troublemaker (in the example of
Fig. 1.1, Daniel is such a troublemaker), you immediately strike him from
the guest list, and decrease the number k of people you can reject by one.’

If there is no one left to strike out in this manner, then we know that each
guest will fight with at most %k other guests. Thus, rejecting any single guest
will resolve at most k potential conflicts. And so, if there are more than k?

! The astute reader may observe that in Fig. 1.1, after eliminating Daniel and setting k = 2,
Fedor still has three opponents, making it possible to eliminate him and set k = 1. Then
Bob, who is in conflict with Alice and Christos, can be eliminated, resolving all conflicts.

1 Introduction 5

potential conflicts, you know that there is no way to ensure a peaceful night
at the bar by rejecting only %k guests at the door. As each guest who has not
vet been moved to the accept or reject list participates in at least one and at
most k potential conflicts, and there are at most k2 potential conflicts, there
are at most 2k° guests whose fate is yet undecided. Trying all possibilities
for these will need approximately (2:2) < (%)) = 2.24 - 10" checks, which
is feasible to do in less than a day on a modern supercomputer, but quite
hopeless on a laptop.

If it is safe to admit anyone who does not participate in any potential
conflict, what about those who participate in exactly one? If Alice has a
conflict with Bob, but with no one else, then it is always a good idea to admit
Alice. Indeed, you cannot accept both Alice and Bob, and admitting Alice
cannot be any worse than admitting Bob: if Bob is in the bar, then Alice has
to be rejected for sure and potentially some other guests as well. Therefore,
it is safe to accept Alice, reject Bob, and decrease k by one in this case. This
way, you can always decide the fate of any guest with only one potential
conflict. At this point, each guest you have not yet moved to the accept or
reject list participates in at least two and at most & potential conflicts. It is
easy to see that with this assumption, having at most k% unresolved conflicts
implies that there are only at most k% guests whose fate is yet undecided,
instead of the previous upper bound of 2k%. Trying all possibilities for which

of those to refuse at the door requires (k:) < (11000) a2 1.73 - 10'3 checks.
With a clever implementation, this takes less than half a day on a laptop,
so if you start the program in the morning you’ll know who to refuse at the
door by the time the bar opens. Therefore, instead of using brute force to
go through an enormous search space, we used simple observations to reduce
the search space to a manageable size. This algorithmic technique, using
reduction rules to decrease the size of the instance, is called kernelization,
and will be the subject of Chapter 2 (with some more advanced examples
appearing in Chapter 9).

It turns out that a simple observation yields an even faster algorithm for
BAR FigHT PREVENTION. The crucial point is that every conflict has to
be resolved, and that the only way to resolve a conflict is to refuse at least
one of the two participants. Thus, as long as there is at least one unresolved
conflict, say between Alice and Bob, we proceed as follows. Try moving Alice
to the reject list and run the algorithm recursively to check whether the
remaining conflicts can be resolved by rejecting at most & — 1 guests. If this
succeeds you already have a solution. If it fails, then move Alice back onto the
undecided list, move Bob to the reject list and run the algorithm recursively
to check whether the remaining conflicts can be resolved by rejecting at most
k — 1 additional guests (see Fig. 1.2). If this recursive call also fails to find
a solution, then you can be sure that there is no way to avoid a fight by
rejecting at most k guests.

What is the running time of this algorithm? All it does is to check whether
all conflicts have been resolved, and if not, it makes two recursive calls. In

6 1 Introduction

Alice vs. Bob

@hristos Vs, Da.nie) (Bob vs. Da.niel) (Daniel vs. Erikj [Christos vs. Fedoa
2,

@
& ¢, SAR g e ; ¢
'Q‘” S eq) “ kS 7 5 S
O - > S 9
OK

Fail Fail Fail Fail Fail Fail Fail

A
&
sz,

Fig. 1.2: The search tree for BAR FIGHT PREVENTION with k& = 3. In the
leaves marked with “Fail”, the parameter &k is decreased to zero, but there
are still unresolved conflicts. The rightmost branch of the search tree finds a
solution: after rejecting Bob, Daniel, and Fedor, no more conflicts remain

both of the recursive calls the value of k& decreases by 1, and when k reaches
0 all the algorithm has to do is to check whether there are any unresolved
conflicts left. Hence there is a total of 2% recursive calls, and it is easy to
implement each recursive call to run in linear time O(n + m), where m is
the total number of possible conflicts. Let us recall that we already achieved
the situation where every undecided guest has at most k conflicts with other
guests, so m < nk/2. Hence the total number of operations is approximately
2k .k < 2'9.10,000 = 10,240,000, which takes a fraction of a second
on today’s laptops. Or cell phones, for that matter. You can now make the
BAR FIGHT PREVENTION app, and celebrate with a root beer. This simple
algorithm is an example of another algorithmic paradigm: the technique of
bounded search trees. In Chapter 3, we will see several applications of this
technique to various problems.

The algorithm above runs in time O (2% - k - n), while the naive algorithm
that tries every possible subset of k people to reject runs in time O(n*).
Observe that if & is considered to be a constant (say k& = 10), then both
algorithms run in polynomial time. However, as we have seen, there is a quite
dramatic difference between the running times of the two algorithms. The
reason is that even though the naive algorithm is a polynomial-time algorithm
for every fixed value of k, the exponent of the polynomial depends on k.
On the other hand, the final algorithm we designed runs in linear time for
every fixed value of k! This difference is what parameterized algorithms and
complexity is all about. In the @(2* - k- n)-time algorithm, the combinatorial
explosion is restricted to the parameter k: the running time is exponential

1 Introduction 7

in k, but depends only polynomially (actually, linearly) on n. Our goal is to
find algorithms of this form.

Algorithms with running time f(k) - n®, for a constant ¢ independent of
both n and k, are called fized-parameter algorithms, or FPT algorithms.
Typically the goal in parameterized algorithmics is to design FPT al-
gorithms, trying to make both the f(k) factor and the constant ¢ in
the bound on the running time as small as possible. FPT algorithms
can be put in contrast with less efficient XP algorithms (for slice-wise
polynomial), where the running time is of the form f(k)-n?®), for some
functions f,g. There is a tremendous difference in the running times

f(k) - n9*) and f(k) - n°.

In parameterized algorithmics, k is simply a relevant secondary mea-
surement that encapsulates some aspect of the input instance, be it the
size of the solution sought after, or a number describing how “struc-
tured” the input instance is.

A negative example: vertex coloring

Not every choice for what & measures leads to FPT algorithms. Let us have
a look at an example where it does not. Suppose the management of the
hypothetical bar you work at doesn’t want to refuse anyone at the door, but
still doesn’t want any fights. To achieve this, they buy k& — 1 more bars across
the street, and come up with the following brilliant plan. Every night they
will compile a list of the guests coming, and a list of potential conflicts. Then
vou are to split the guest list into & groups, such that no two guests with
a potential conflict between them end up in the same group. Then each of
the groups can be sent to one bar, keeping everyone happy. For example,
in Fig. 1.1, we may put Alice and Christos in the first bar, Bob, Erik, and
Gerhard in the second bar, and Daniel and Fedor in the third bar.

We model this problem as a graph problem, representing each person as
a vertex, and each conflict as an edge between two vertices. A partition of
the guest list into & groups can be represented by a function that assigns
to each vertex an integer between 1 and k. The objective is to find such a
function that, for every edge, assigns different numbers to its two endpoints.
A function that satisfies these constraints is called a proper k-coloring of the
graph. Not every graph has a proper k-coloring. For example, if there are
k + 1 vertices with an edge between every pair of them, then each of these
vertices needs to be assigned a unique integer. Hence such a graph does not
have a proper k-coloring. This gives rise to a computational problem, called
VERTEX COLORING. Here we are given as input a graph G and an integer k,
and we need to decide whether G has a proper k-coloring.

8 1 Introduction

It is well known that VERTEX COLORING is NP-complete, so we do not
hope for a polynomial-time algorithm that works in all cases. However, it is
fair to assume that the management does not want to own more than k = 5
bars on the same street, so we will gladly settle for a @ (2% -n¢)-time algorithm
for some constant ¢, mimicking the success we had with our first problem.
Unfortunately, deciding whether a graph G has a proper 5-coloring is NP-
complete, so any f(k) - n°~time algorithm for VERTEX COLORING for any
function f and constant ¢ would imply that P = NP ; indeed, suppose such
an algorithm existed. Then, given a graph G, we can decide whether G has a
proper 5-coloring in time f(5)-n® = O(n). But then we have a polynomial-
time algorithm for an NP-hard problem, implying P = NP . Observe that
even an XP algorithm with running time f(k)-n9*) for any functions f and
g would imply that P = NP by an identical argument.

A hard parameterized problem: finding cliques

The example of VERTEX COLORING illustrates that parameterized algorithms
are not all-powerful: there are parameterized problems that do not seem to
admit FPT algorithms. But very importantly, in this specific example, we
could explain very precisely why we are not able to design efficient algorithms,
even when the number of bars is small. From the perspective of an algorithm
designer such insight is very useful; she can now stop wasting time trying to
design eflicient algorithms based only on the fact that the number of bars is
small, and start searching for other ways to attack the problem instances. If
we are trying to make a polynomial-time algorithm for a problem and failing,
it is quite likely that this is because the problem is NP-hard. Is the theory
of NP-hardness the right tool also for giving negative evidence for fixed-
parameter tractability? In particular, if we are trying to make an f(k) - n°-
time algorithm and fail to do so, is it because the problem is NP-hard for
some fixed constant value of &, say k = 1007 Let us look at another example
problem.

Now that you have a program that helps you decide who to refuse at the
door and who to admit, you are faced with a different problem. The people in
the town you live in have friends who might get upset if their friend is refused
at the door. You are quite skilled at martial arts, and you can handle at most
k — 1 angry guys coming at you, but probably not k. What you are most
worried about are groups of at least k people where everyone in the group is
friends with everyone else. These groups tend to have an “all for one and one
for all” mentality — if one of them gets mad at you, they all do. Small as the
town is, you know exactly who is friends with whom, and you want to figure
out whether there is a group of at least k& people where everyone is friends
with everyone else. You model this as a graph problem where every person
is a vertex and two vertices are connected by an edge if the corresponding
persons are friends. What you are looking for is a cligue on k vertices, that

1 Introduction 9

is, a set of k vertices with an edge between every pair of them. This problem
is known as the CLIQUE problem. For example, if we interpret now the edges
of Fig. 1.1 as showing friendships between people, then Bob, Christos, and
Daniel form a clique of size 3.

There is a simple O (n*)-time algorithm to check whether a clique on at

least k vertices exists; for each of the (T,: = O(:—:) subsets of vertices of

size k, we check in time ©(k?) whether every pair of vertices in the subset
is adjacent. Unfortunately, this XP algorithm is quite hopeless to run for
n = 1000 and k& = 10. Can we design an FPT algorithm for this problem?
So far, no one has managed to find one. Could it be that this is because
finding a k-clique is NP-hard for some fixed value of £7 Suppose the problem
was NP-hard for & = 100. We just gave an algorithm for finding a clique of
size 100 in time O(n!'"Y), which is polynomial time. We would then have a
polynomial-time algorithm for an NP-hard problem, implying that P = NP.
So we cannot expect to be able to use NP-hardness in this way in order to
rule out an FPT algorithm for CLIQUE. More generally, it seems very difficult
to use NP-hardness in order to explain why a problem that does have an XP
algorithm does not admit an FPT algorithm.

Since NP-hardness is insufficient to differentiate between problems with
f(k) - n9*)_time algorithms and problems with f(k) - n~time algorithms, we
resort to stronger complexity theoretical assumptions. The theory of W([l1]-
hardness (see Chapter 13) allows us to prove (under certain complexity as-
sumptions) that even though a problem is polynomial-time solvable for every
fixed k, the parameter k& has to appear in the exponent of n in the running
time, that is, the problem is not FPT. This theory has been quite successful
for identifying which parameterized problems are FPT and which are unlikely
to be. Besides this qualitative classification of FPT versus W[1]-hard, more
recent developments give us also (an often surprisingly tight) quantitative
understanding of the time needed to solve a parameterized problem. Under
reasonable assumptions about the hardness of CNF-SAT (see Chapter 14),
it is possible to show that there is no f(k) - n, or even a f(k) - n°®)-time
algorithm for finding a clique on % vertices. Thus, up to constant factors
in the exponent, the naive O(n*)-time algorithm is optimal! Over the past
few years, it has become a rule, rather than an exception, that whenever
we are unable to significantly improve the running time of a parameterized
algorithm, we are able to show that the existing algorithms are asymptoti-
cally optimal, under reasonable assumptions. For example, under the same
assumptions that we used to rule out an f(k) - n°*)-time algorithm for solv-
ing CLIQUE, we can also rule out a 2°®) . n8M)_time algorithm for the BAR
FIGHT PREVENTION problem from the beginning of this chapter.

Any algorithmic theory is incomplete without an accompanying com-
plexity theory that establishes intractability of certain problems. There

10 1 Introduction

Problem Good news Bad news

Bar Ficur PrEVENTION O(2F . k. n)-time algorithm NP-hard
(probably not in P)

CLIQUE with A O(24 . A? . n)-time algorithm NP-hard
(probably not in P)

CLIQUE with k n®*)_time algorithm W/1]-hard
(probably not FPT)

VERTEX COLORING NP-hard for k = 3
(probably not XP)

Fig. 1.3: Overview of the problems in this chapter

is such a complexity theory providing lower bounds on the running time
required to solve parameterized problems.

Finding cliques — with a different parameter

OK, so there probably is no algorithm for solving CLIQUE with running time
f(k) -n°*) But what about those scary groups of people that might come for
you if you refuse the wrong person at the door? They do not care at all about
the computational hardness of CLIQUE, and neither do their fists. What can
you do? Well, in Norway most people do not have too many friends. In fact,
it is quite unheard of that someone has more than A = 20 friends. That
means that we are trying to find a k-clique in a graph of maximum degree
A. This can be done quite efficiently: if we guess one vertex v in the clique,
then the remaining vertices in the clique must be among the A neighbors of
v. Thus we can try all of the 22 subsets of the neighbors of v, and return
the largest clique that we found. The total running time of this algorithm
is ©(24 - A? . n), which is quite feasible for A = 20. Again it is possible to
use complexity theoretic assumptions on the hardness of CNF-SAT to show
that this algorithm is asymptotically optimal, up to multiplicative constants
in the exponent.

What the algorithm above shows is that the CLIQUE problem is FPT when
the parameter is the maximum degree A of the input graph. At the same time
CLIQUE is probably not FPT when the parameter is the solution size k. Thus,
the classification of the problem into “tractable” or “intractable” crucially
depends on the choice of parameter. This makes a lot of sense; the more we
know about our input instances, the more we can exploit algorithmically!

1 Introduction 11

The art of parameterization

For typical optimization problems, one can immediately find a relevant pa-
rameter: the size of the solution we are looking for. In some cases, however,
it is not completely obvious what we mean by the size of the solution. For
example, consider the variant of BAR FIGHT PREVENTION where we want
to reject at most k guests such that the number of conflicts is reduced to at
most ¢ (as we believe that the bouncers at the bar can handle ¢ conflicts,
but not more). Then we can parameterize either by k or by . We may even
parameterize by both: then the goal is to find an FPT algorithm with running
time f(k,£) - n° for some computable function f depending only on % and ¢.
Thus the theory of parameterization and FPT algorithms can be extended to
considering a set of parameters at the same time. Formally, however, one can
express parameterization by k and ¢ simply by defining the value k + ¢ to be
the parameter: an f(k, £) - n® algorithm exists if and only if an f(k + €) - n®
algorithm exists.

The parameters k and ¢ in the extended BAR FIGHT PREVENTION exam-
ple of the previous paragraph are related to the objective of the problem: they
are parameters explicitly given in the input, defining the properties of the so-
lution we are looking for. We get more examples of this type of parameter if
we define variants of BAR FIGHT PREVENTION where we need to reject at
most k guests such that, say, the number of conflicts decreases by p, or such
that each accepted guest has conflicts with at most d other accepted guests,
or such that the average number of conflicts per guest is at most a. Then
the parameters p, d, and a are again explicitly given in the input, telling us
what kind of solution we need to find. The parameter A (maximum degree
of the graph) in the CLIQUE example is a parameter of a very different type:
it is not given explicitly in the input, but it is a measure of some property of
the input instance. We defined and explored this particular measure because
we believed that it is typically small in the input instances we care about:
this parameter expresses some structural property of typical instances. We
can identify and investigate any number of such parameters. For example,
in problems involving graphs, we may parameterize by any structural pa-
rameter of the graph at hand. Say, if we believe that the problem is easy on
planar graphs and the instances are “almost planar”, then we may explore the
parameterization by the genus of the graph (roughly speaking, a graph has
genus g if it can be drawn without edge crossings on a sphere with g holes in
it). A large part of Chapter 7 (and also Chapter 11) is devoted to parame-
terization by treewidth, which is a very important parameter measuring the
“tree-likeness” of the graph. For problems involving satisfiability of Boolean
formulas, we can have such parameters as the number of variables, or clauses,
or the number of clauses that need to be satisfied, or that are allowed not
to be satisfied. For problems involving a set of strings, one can parameter-
ize by the maximum length of the strings, by the size of the alphabet, by
the maximum number of distinct symbols appearing in each string, etc. In

12 1 Introduction

a problem involving a set of geometric objects (say, points in space, disks,
or polygons), one may parameterize by the maximum number of vertices of
each polygon or the dimension of the space where the problem is defined. For
each problem, with a bit of creativity, one can come up with a large number
of (combinations of) parameters worth studying.

For the same problem there can be multiple choices of parameters. Se-
lecting the right parameter(s) for a particular problem is an art.

Parameterized complexity allows us to study how different parameters in-
fluence the complexity of the problem. A successful parameterization of a
problem needs to satisfy two properties. First, we should have some rea-
son to believe that the selected parameter (or combination of parameters)
is typically small on input instances in some application. Second, we need
efficient algorithms where the combinatorial explosion is restricted to the
parameter(s), that is, we want the problem to be FPT with this parameter-
ization. Finding good parameterizations is an art on its own and one may
spend quite some time on analyzing different parameterizations of the same
problem. However, in this book we focus more on explaining algorithmic tech-
niques via carefully chosen illustrative examples, rather than discussing every
possible aspect of a particular problem. Therefore, even though different pa-
rameters and parameterizations will appear throughout the book, we will not
try to give a complete account of all known parameterizations and results for
any concrete problem.

1.1 Formal definitions

We finish this chapter by leaving the realm of pub jokes and moving to more
serious matters. Before we start explaining the techniques for designing pa-
rameterized algorithms, we need to introduce formal foundations of param-
eterized complexity. That is, we need to have rigorous definitions of what a
parameterized problem is, and what it means that a parameterized problem
belongs to a specific complexity class.

Definition 1.1. A parameterized problem is a language L C X* x N, where
X is a fixed, finite alphabet. For an instance (z, k) € 2 x N, k is called the
parameter.

For example, an instance of CLIQUE parameterized by the solution size is
a pair (G, k), where we expect G to be an undirected graph encoded as a
string over X, and k is a positive integer. That is, a pair (G, k) belongs to the
CLIQUE parameterized language if and only if the string G correctly encodes
an undirected graph, which we will also denote by G, and moreover the graph

1.1 Formal definitions 13

G contains a clique on k vertices. Similarly, an instance of the CNF-SAT
problem (satisfiability of propositional formulas in CNF), parameterized by
the number of variables, is a pair (¢, n), where we expect ¢ to be the input
formula encoded as a string over X and n to be the number of variables of
. That is, a pair (¢, n) belongs to the CNF-SAT parameterized language
if and only if the string ¢ correctly encodes a CNF formula with n variables,
and the formula is satisfiable.

We define the size of an instance (r, k) of a parameterized problem as
|z| + k. One interpretation of this convention is that, when given to the
algorithm on the input, the parameter k is encoded in unary.

Definition 1.2. A parameterized problem L C X¥* x N is called fired-
parameter tractable (FPT) if there exists an algorithm A (called a fized-
parameter algorithm), a computable function f: N — N, and a constant
¢ such that, given (x,k) € ¥* x N, the algorithm A correctly decides
whether (z, k) € L in time bounded by f(k) - [(z, k)|°. The complexity
class containing all fixed-parameter tractable problems is called FPT.

Before we go further, let us make some remarks about the function f in
this definition. Observe that we assume f to be computable, as otherwise we
would quickly run into trouble when developing complexity theory for fixed-
parameter tractability. For technical reasons, it will be convenient to assume,
from now on, that f is also nondecreasing. Observe that this assumption
has no influence on the definition of fixed-parameter tractability as stated in
Definition 1.2, since for every computable function f: N — N there exists a
computable nondecreasing function f that is never smaller than f: we can
simply take f(k) = max;—g1, x f(i). Also, for standard algorithmic results
it is always the case that the bound on the running time is a nondecreasing
function of the complexity measure, so this assumption is indeed satisfied in
practice. However, the assumption about f being nondecreasing is formally
needed in various situations, for example when performing reductions.

We now define the complexity class XP.

Definition 1.3. A parameterized problem L C X* x N is called slice-wise
polynomial (XP) if there exists an algorithm 4 and two computable functions
f.g: N — N such that, given (z,k) € X* x N, the algorithm A correctly de-
cides whether (z, k) € L in time bounded by f(k)-|(x, k)[?**). The complexity
class containing all slice-wise polynomial problems is called XP.

Again, we shall assume that the functions f, ¢ in this definition are nonde-
creasing.

The definition of a parameterized problem, as well as the definitions of
the classes FPT and XP, can easily be generalized to encompass multiple
parameters. In this setting we simply allow & to be not just one nonnegative

14 1 Introduction

integer, but a vector of d nonnegative integers, for some fixed constant d.
Then the functions f and g in the definitions of the complexity classes FPT
and XP can depend on all these parameters.

Just as “polynomial time” and “polynomial-time algorithm” usually refer
to time polynomial in the input size, the terms “FPT time” and “FPT algo-
rithms” refer to time f(k) times a polynomial in the input size. Here f is a
computable function of k& and the degree of the polynomial is independent of
both n and %. The same holds for “XP time” and “XP algorithms”, except
that here the degree of the polynomial is allowed to depend on the parameter
k, as long as it is upper bounded by g(k) for some computable function g.

Observe that, given some parameterized problem L, the algorithm de-
signer has essentially two different optimization goals when designing FPT
algorithms for L. Since the running time has to be of the form f(k) - n®, one
can:

e optimize the parametric dependence of the running time, i.e., try to design
an algorithm where function f grows as slowly as possible; or

e optimize the polynomial factor in the running time, i.e., try to design an
algorithm where constant ¢ is as small as possible.

Both these goals are equally important, from both a theoretical and a practi-
cal point of view. Unfortunately, keeping track of and optimizing both factors
of the running time can be a very difficult task. For this reason, most research
on parameterized algorithms concentrates on optimizing one of the factors,
and putting more focus on each of them constitutes one of the two dominant
trends in parameterized complexity. Sometimes, when we are not interested in
the exact value of the polynomial factor, we use the O@*-notation, which sup-
presses factors polynomial in the input size. More precisely, a running time
O*(f(k)) means that the running time is upper bounded by f(k) - n®W),
where n is the input size.

The theory of parameterized complexity has been pioneered by Downey
and Fellows over the last two decades [148, 149, 150, 151, 153]. The main
achievement of their work is a comprehensive complexity theory for param-
eterized problems, with appropriate notions of reduction and completeness.
The primary goal is to understand the qualitative difference between fixed-
parameter tractable problems, and problems that do not admit such effi-
cient algorithms. The theory contains a rich “positive” toolkit of techniques
for developing efficient parameterized algorithms, as well as a correspond-
ing “negative” toolkit that supports a theory of parameterized intractability.
This textbook is mostly devoted to a presentation of the positive toolkit: in
Chapters 2 through 12 we present various algorithmic techniques for design-
ing fixed-parameter tractable algorithms. As we have argued, the process of
algorithm design has to use both toolkits in order to be able to conclude that
certain research directions are pointless. Therefore, in Part 1II we give an
introduction to lower bounds for parameterized problems.

1.1 Formal definitions 15

Bibliographic notes

Downey and Fellows laid the foundation of parameterized complexity in the series of pa-
pers [1, 149, 150, 151]. The classic reference on parameterized complexity is the book of
Downey and Fellows [153|. The new edition of this book [154] is a comprehensive overview
of the state of the art in many areas of parameterized complexity. The book of Flum
and Grohe [189] is an extensive introduction to the area with a strong emphasis on the
complexity viewpoint. An introduction to basic algorithmic techniques in parameterized
complexity up to 2006 is given in the book of Niedermeier [376]. The recent book [51]
contains a collection of surveys on different areas of parameterized complexity.

Chapter 2
Kernelization

Kernelization 1s a systematic approach to study
polynomial-time preprocessing algorithms. It is an
important tool in the design of parameterized algo-
rithms. In this chapter we explain basic kernelization
techniques such as crown decomposition, the expan-
ston lemma, the sunflower lemma, and linear pro-
gramming. We illustrate these techniques by obtain-
ing kernels for VErTEX COVER, FEEDBACK ARC SET
IN TourRNAMENTS, EDGE CLIQUE CoOVER, MAXIMUM
SATISFIABILITY, and d-HiTTING SET.

Preprocessing (data reduction or kernelization) is used universally in al-
most every practical computer implementation that aims to deal with an NP-
hard problem. The goal of a preprocessing subroutine is to solve efficiently
the “easy parts” of a problem instance and reduce it (shrink it) to its com-
putationally difficult “core” structure (the problem kernel of the instance). In
other words, the idea of this method is to reduce (but not necessarily solve)
the given problem instance to an equivalent “smaller sized” instance in time
polynomial in the input size. A slower exact algorithm can then be run on
this smaller instance.

How can we measure the effectiveness of such a preprocessing subrou-
tine? Suppose we define a useful preprocessing algorithm as one that runs
in polynomial time and replaces an instance I with an equivalent instance
that is at least one bit smaller. Then the existence of such an algorithm for
an NP-hard problem would imply P= NP, making it unlikely that such an
algorithm can be found. For a long time, there was no other suggestion for
a formal definition of useful preprocessing, leaving the mathematical analy-
sis of polynomial-time preprocessing algorithms largely neglected. But in the
language of parameterized complexity, we can formulate a definition of use-
ful preprocessing by demanding that large instances with a small parameter
should be shrunk, while instances that are small compared to their parameter

© Springer International Publishing Switzerland 2015 17
M. Cygan et al., Parameterized Algorithms,
DOI 10.1007/978-3-319-21275-3_2

18 2 Kernelization

do not have to be processed further. These ideas open up the “lost continent”
of polynomial-time algorithms called kernelization.

In this chapter we illustrate some commonly used techniques to design
kernelization algorithms through concrete examples. The next section, Sec-
tion 2.1, provides formal definitions. In Section 2.2 we give kernelization algo-
rithms based on so-called natural reduction rules. Section 2.3 introduces the
concepts of crown decomposition and the expansion lemma, and illustrates
it on MAXIMUM SATISFIABILITY. Section 2.5 studies tools based on linear
programming and gives a kernel for VERTEX COVER. Finally, we study the
sunflower lemma in Section 2.6 and use it to obtain a polynomial kernel for
d-HITTING SET.

2.1 Formal definitions

We now turn to the formal definition that captures the notion of kerneliza-
tion. A data reduction rule, or simply, reduction rule, for a parameterized
problem @ is a function ¢: ¥* x N — ¥ x N that maps an instance (I, k)
of @ to an equivalent instance (I’, k") of @ such that ¢ is computable in
time polynomial in |7| and k. We say that two instances of Q are equivalent
if (I, k) € Q if and only if (I', k") € Q; this property of the reduction rule ¢,
that it translates an instance to an equivalent one, is sometimes referred to
as the safeness or soundness of the reduction rule. In this book, we stick to
the phrases: a rule is safe and the safeness of a reduction rule.

The general idea is to design a preprocessing algorithm that consecutively
applies various data reduction rules in order to shrink the instance size as
much as possible. Thus, such a preprocessing algorithm takes as input an
instance (I,k) € X* x N of @, works in polynomial time, and returns an
equivalent instance (I', k') of @Q. In order to formalize the requirement that
the output instance has to be small, we apply the main principle of Parame-
terized Complexity: The complexity is measured in terms of the parameter.
Consequently, the oulput size of a preprocessing algorithm A is a function
size 41 N — N U {oc} defined as follows:

size g(k) = sup{|I'| + &' : (I',K') = A(L, k), T € X"}

In other words, we look at all possible instances of @ with a fixed parameter k,
and measure the supremum of the sizes of the output of A on these instances.
Note that this supremum may be infinite; this happens when we do not have
any bound on the size of A(I, k) in terms of the input parameter k only.
Kernelization algorithms are exactly these preprocessing algorithms whose
output size is finite and bounded by a computable function of the parameter.

Definition 2.1 (Kernelization, kernel). A kernelization algorithm, or
simply a kernel, for a parameterized problem @ is an algorithm A that, given

2.1 Formal definitions 19

an instance (I, k) of @, works in polynomial time and returns an equivalent
instance (I', k') of Q. Moreover, we require that size 4(k) < g(k) for some
computable function g: N — N.

The size requirement in this definition can be reformulated as follows:
There exists a computable function g(-) such that whenever (I’ k") is the
output for an instance (7, k), then it holds that |I'| + & < g(k). If the upper
bound ¢(-) is a polynomial (linear) function of the parameter, then we say
that @ admits a polynomial (linear) kernel. We often abuse the notation and
call the output of a kernelization algorithm the “reduced” equivalent instance,
also a kernel.

In the course of this chapter, we will often encounter a situation when
in some boundary cases we are able to completely resolve the considered
problem instance, that is, correctly decide whether it is a yes-instance or a
no-instance. Hence, for clarity, we allow the reductions (and, consequently,
the kernelization algorithm) to return a yes/no answer instead of a reduced
instance. Formally, to fit into the introduced definition of a kernel, in such
cases the kernelization algorithm should instead return a constant-size trivial
ves-instance or no-instance. Note that such instances exist for every param-
eterized language except for the empty one and its complement, and can be
therefore hardcoded into the kernelization algorithm.

Recall that, given an instance (I, %) of @, the size of the kernel is defined
as the number of bits needed to encode the reduced equivalent instance I’
plus the parameter value &’. However, when dealing with problems on graphs,
hypergraphs, or formulas, often we would like to emphasize other aspects of
output instances. For example, for a graph problem @, we could say that @
admits a kernel with O (k%) vertices and O(k®) edges to emphasize the upper
bound on the number of vertices and edges in the output instances. Similarly,
for a problem defined on formulas, we could say that the problem admits a
kernel with O (k) variables.

It is important to mention here that the early definitions of kernelization
required that & < k. On an intuitive level this makes sense, as the parame-
ter k measures the complexity of the problem — thus the larger the k, the
harder the problem. This requirement was subsequently relaxed, notably in
the context of lower bounds. An advantage of the more liberal notion of ker-
nelization is that it is robust with respect to polynomial transformations of
the kernel. However, it limits the connection with practical preprocessing.
All the kernels mentioned in this chapter respect the fact that the output
parameter is at most the input parameter, that is, k' < k.

While usually in Computer Science we measure the efficiency of an
algorithm by estimating its running time, the central measure of the
efficiency of a kernelization algorithm is a bound on its output size.
Although the actual running time of a kernelization algorithm is of-

20 2 Kernelization

ten very important for practical applications, in theory a kernelization
algorithm is only required to run in polynomial time.

If we have a kernelization algorithm for a problem for which there is some
algorithm (with any running time) to decide whether (I, k) is a yes-instance,
then clearly the problem is FPT, as the size of the reduced instance [is
simply a function of & (and independent of the input size n). However, a
surprising result is that the converse is also true.

Lemma 2.2. If a parameterized problem @ is FPT then it admits a kernel-
ization algorithm.

Proof. Since @Q is FPT, there is an algorithin A deciding if (I, k) € Q in time
Sf(k)-|I]° for some computable function f and a constant ¢. We obtain a ker-
nelization algorithm for) as follows. Given an input (7, k), the kernelization
algorithm runs A on (I, k), for at most |I|°*t! steps. If it terminates with an
answer, use that answer to return either that (I, %) is a yes-instance or that
it is a no-instance. If A does not terminate within |I|°t! steps, then return
(I, k) itself as the output of the kernelization algorithm. Observe that since
A did not terminate in |I|°"! steps, we have that f(k) - |I|° > |I|°t!, and
thus |I| < f(k). Consequently, we have |I| + & < f(k) + k, and we obtain a
kernel of size at most f(k) + k; note that this upper bound is computable as
f(k) is a computable function. O

Lemma 2.2 implies that a decidable problem admits a kernel if and only
if it is fixed-parameter tractable. Thus, in a sense, kernelization can be
another way of defining fixed-parameter tractability.

However, kernels obtained by this theoretical result are usually of expo-
nential (or even worse) size, while problem-specific data reduction rules often
achieve quadratic (g(k) = ©@(k?)) or even linear-size (g(k) = O(k)) kernels.
So a natural question for any concrete FPT problem is whether it admits
a problem kernel that is bounded by a polynomial function of the param-
eter (g(k) = k°(1)). In this chapter we give polynomial kernels for several
problems using some elementary methods. In Chapter 9, we give more ad-
vanced methods for obtaining kernels.

2.2 Some simple kernels

In this section we give kernelization algorithms for VERTEX COVER and
FEEDBACK ARC SET IN TOURNAMENTS (FAST) based on a few natural
reduction rules.

2.2 Some simple kernels 21

2.2.1 VERTEX COVER

Let G be a graph and § C V(G). The set S is called a vertex cover if for
every edge of G at least one of its endpoints is in S. In other words, the
graph G — S contains no edges and thus V(G) \ S is an independent set. In
the VERTEX COVER problem, we are given a graph G and a positive integer
k as input, and the objective is to check whether there exists a vertex cover
of size at most k.

The first reduction rule is based on the following simple observation. For
a given instance (G, k) of VERTEX COVER, if the graph G has an isolated
vertex, then this vertex does not cover any edge and thus its removal does
not change the solution. This shows that the following rule is safe.

Reduction VC.1. If G contains an isolated vertex v, delete v from G. The
new instance is (G — v, k).

The second rule is based on the following natural observation:

If G contains a vertex v of degree more than k, then v should be in
every vertex cover of size at most k.

Indeed, this is because if v is not in a vertex cover, then we need at
least k + 1 vertices to cover edges incident to v. Thus our second rule is the
following.

Reduction VC.2. If there is a vertex v of degree at least &k + 1, then delete
v (and its incident edges) from G and decrement the parameter k by 1. The
new instance is (G — v, k — 1).

Observe that exhaustive application of reductions VC.1 and VC.2 completely
removes the vertices of degree 0 and degree at least k + 1. The next step is
the following observation.

If a graph has maximum degree d, then a set of k vertices can cover at
most kd edges.

This leads us to the following lemma.

Lemma 2.3. If (G, k) is a yes-instance and none of the reduction rules VC.1,
VC.2 is applicable to G, then |V (G)| < k* + k and |E(G)| < k2.

Proof. Because we cannot apply Reductions VC.1 anymore on G, G has
no isolated vertices. Thus for every vertex cover S of G, every vertex of
G — S should be adjacent to some vertex from S. Since we cannot apply
Reductions VC.2, every vertex of G has degree at most k. It follows that

22 2 Kernelization

V(G — S)| < k|S| and hence |V(G)| < (k + 1)|S|. Since (G, k) is a yes-
instance, there is a vertex cover S of size at most k, so |V(G)| < (k + 1)k.
Also every edge of G is covered by some vertex from a vertex cover and every
vertex can cover at most k edges. Hence if G has more than k? edges, this is
again a no-instance. O

Lemma 2.3 allows us to claim the final reduction rule that explicitly bounds
the size of the kernel.

Reduction VC.3. Let (G, k) be an input instance such that Reductions VC.1
and VC.2 are not applicable to (G, k). If ¥ < 0 and G has more than k* + k
vertices, or more than k? edges, then conclude that we are dealing with a
no-instance.

Finally, we remark that all reduction rules are trivially applicable in linear
time. Thus, we obtain the following theorem.

Theorem 2.4. VERTEX COVER admits a kernel with O(k?) vertices and
O(k*) edges.

2.2.2 FEEDBACK ARC SET IN TOURNAMENTS

In this section we discuss a kernel for the FEEDBACK ARC SET IN TOURNA-
MENTS problem. A tournament is a directed graph T such that for every pair
of vertices u,v € V(T'), exactly one of (u,v) or (v,u) is a directed edge (also
often called an arc) of T. A set of edges A of a directed graph G is called a
feedback arc set if every directed cycle of G contains an edge from A. In other
words, the removal of A from G turns it into a directed acyclic graph. Very
often, acyclic tournaments are called transitive (note that then FE(G) is a
transitive relation). In the FEEDBACK ARC SET IN TOURNAMENTS problem
we are given a tournament 7" and a nonnegative integer k. The objective is
to decide whether T has a feedback arc set of size at most k.

For tournaments, the deletion of edges results in directed graphs which
are not tournaments anymore. Because of that, it is much more convenient
to use the characterization of a feedback arc set in terms of “reversing edges”.
We start with the following well-known result about fopological orderings of
directed acyclic graphs.

Lemma 2.5. A directed graph G is acyclic if and only if it is possible to
order its vertices in such a way such that for every directed edge (u,v), we
have u < v.

We leave the proof of Lemma 2.5 as an exercise; see Exercise 2.1. Given
a directed graph G and a subset F' C E(G) of edges, we define G ® F to be
the directed graph obtained from G by reversing all the edges of F. That is,
if rev(F) = {(u,v) : (v,u) € F}, then for G ® F the vertex set is V(G)

2.2 Some simple kernels 23

and the edge set F(G ® F) = (E(G) Urev(F))\ F. Lemma 2.5 implies the
following.

Observation 2.6. Let GG be a directed graph and let F' be a subset of edges
of G. If G ® F is a directed acyclic graph then F'is a feedback arc set of G.

The following lemma shows that, in some sense, the opposite direction
of the statement in Observation 2.6 is also true. However, the minimality
condition in Lemma 2.7 is essential, see Exercise 2.2.

Lemma 2.7, Let G be a directed graph and F be a subset of E(G). Then
F is an inclusion-wise minimal feedback arc sel of G if and only if F is an
inclusion-wise minimal set of edges such that G ® F is an acyclic directed
graph.

Proof. We first prove the forward direction of the lemma. Let F' be an
inclusion-wise minimal feedback arc set of G. Assume to the contrary that
G®F has a directed cycle C. Then C cannot contain only edges of E(G)\ I, as
that would contradict the fact that F is a feedback arc set. Let fi, fo, -, fe
be the edges of C' Nrev(F) in the order of their appearance on the cycle C,
and let ¢; € F be the edge f; reversed. Since F' is inclusion-wise minimal,
for every e;, there exists a directed cycle C; in G such that F N C; = {e;}.
Now consider the following closed walk W in G: we follow the cycle C, but
whenever we are to traverse an edge f; € rev(F') (which is not present in
(), we instead traverse the path C; — ¢;. By definition, W is a closed walk
in G and, furthermore, note that W does not contain any edge of F'. This
contradicts the fact that F'is a feedback arc set of G.

The minimality follows from Observation 2.6. That is, every set of edges
F such that G ® F is acyclic is also a feedback arc set of G, and thus, if F is
not a minimal set such that G ® F is acyclic, then it will contradict the fact
that F is a minimal feedback arc set.

For the other direction, let F' be an inclusion-wise minimal set of edges
such that G ® F' is an acyclic directed graph. By Observation 2.6, F is a
feedback arc set of G. Moreover, F' is an inclusion-wise minimal feedback arc
set, because if a proper subset F’ of F'is an inclusion-wise minimal feedback
arc set of G, then by the already proved implication of the lemma, G ® F' is
an acyclic directed graph, a contradiction with the minimality of F'. O

We are ready to give a kernel for FEEDBACK ARC SET IN TOURNAMENTS.

Theorem 2.8. FEEDBACK ARC SET IN TOURNAMENTS admits a kernel with
at most k> + 2k vertices.

Proof. Lemma 2.7 implies that a tournament 7' has a feedback arc set of
size at most k if and only if it can be turned into an acyclic tournament by
reversing directions of at most k edges. We will use this characterization for
the kernel.

In what follows by a triangle we mean a directed cycle of length three. We
give two simple reduction rules.

24 2 Kernelization

Reduction FAST.1. If an edge e is contained in at least k + 1 triangles,
then reverse e and reduce k by 1.

Reduction FAST.2. If a vertex v is not contained in any triangle, then
delete v from T.

The rules follow similar guidelines as in the case of VERTEX COVER. In
Reduction FAST.1, we greedily take into a solution an edge that partic-
ipates in k + 1 otherwise disjoint forbidden structures (here, triangles).
In Reduction FAST.2, we discard vertices that do not participate in any
forbidden structure, and should be irrelevant to the problem.

However, a formal proof of the safeness of Reduction FAST.2 is not
immediate: we need to verify that deleting v and its incident edges does
not make make a yes-instance out of a no-instance.

Note that after applying any of the two rules, the resulting graph is again
a tournament. The first rule is safe because if we do not reverse e, we have
to reverse at least one edge from each of &k + 1 triangles containing e. Thus e
belongs to every feedback arc set of size at most k.

Let us now prove the safeness of the second rule. Let X = N1 (») be the
set of heads of directed edges with tail v and let Y = N~ (v) be the set of
tails of directed edges with head v. Because T is a tournament, X and YV is a
partition of V(T')\ {v}. Since v is not a part of any triangle in 7', we have that
there is no edge from X to Y (with head in ¥ and tail in X). Consequently,
for any feedback arc set A; of tournament T[X]| and any feedback arc set
A, of tournament T'[Y], the set A; U A, is a feedback arc set of T. As the
reverse implication is trivial (for any feedback arc set A in T, AN E(T[X]) is
a feedback arc set of T[X], and AN E(T[Y]) is a feedback arc set of T[Y]),
we have that (T, k) is a yes-instance if and only if (T — v, k) is.

Finally, we show that every reduced yes-instance T', an instance on which
none of the presented reduction rules are applicable, has at most k(k + 2)
vertices. Let A be a feedback arc set of a reduced instance T of size at most
k. For every edge e € A, aside from the two endpoints of e, there are at most
k vertices that are in triangles containing e — otherwise we would be able
to apply Reduction FAST.1. Since every triangle in T contains an edge of A
and every vertex of T is in a triangle, we have that T has at most k(k + 2)
vertices.

Thus, given (T, k) we apply our reduction rules exhaustively and obtain
an equivalent instance (77, k'). If T’ has more than k'2 + k&’ vertices, then the
algorithm returns that (7, k) is a no-instance, otherwise we get the desired
kernel. This completes the proof of the theorem. 0O

2.2 Some simple kernels 25

2.2.3 EDGE CLIQUE COVER

Not all FPT problems admit polynomial kernels. In the Epce CLIQUE
COVER problem, we are given a graph G and a nonnegative integer k, and
the goal is to decide whether the edges of G can be covered by at most
k cliques. In this section we give an exponential kernel for EDGE CLIQUE
CoveER. In Theorem 14.20 of Section *14.3.3, we remark that this simple
kernel is essentially optimal.

Let us recall the reader that we use N(v) = {u : wv € E(G)} to denote
the neighborhood of vertex v in G, and N[v] = N(v) U {v} to denote the
closed neighborhood of v. We apply the following data reduction rules in the
given order (i.e., we always use the lowest-numbered rule that modifies the
instance).

Reduction ECC.1. Remove isolated vertices.

Reduction ECC.2. If there is an isolated edge uv (a connected component
that is just an edge), delete it and decrease k by 1. The new instance is
(G —{u,v}, k—1).

Reduction ECC.3. If there is an edge uv whose endpoints have exactly the
same closed neighborhood, that is, Nfu| = N[v], then delete v. The new
instance is (G — v, k).

The crux of the presented kernel for EDGE CLIQUE COVER is an obser-
vation that two true twins (vertices w and v with N[u] = N|[v]) can be
treated in exactly the same way in some optimum solution, and hence
we can reduce them. Meanwhile, the vertices that are contained in ex-
actly the same set of cliques in a feasible solution have to be true twins.
This observation bounds the size of the kernel.

The safeness of the first two reductions is trivial, while the safeness of
Reduction ECC.3 follows from the observation that a solution in G — v can
be extended to a solution in G by adding v to all the cliques containing
(see Exercise 2.3).

Theorem 2.9. EncE CLIQUE COVER admits a kernel with at most 2% ver-
tices.

Proof. We start with the following claim.

Claim. If (G, k) is a reduced yes-instance, on which none of the presented
reduction rules can be applied, then |V(G)| < 2.

Proof. Let C1q,...,C} be an edge clique cover of G. We claim that G has at
most 2* vertices. Targeting a contradiction, let us assume that G has more

28 2 Kernelization

Hence, we assume that |M| < k, and let Vs be the endpoints of M. We have
[Vas| < 2k. Because M is a maximal matching, the remaining set of vertices
I = V(G)\ Vi is an independent set.

Consider the bipartite graph Gy y,, formed by edges of G between Vi
and 7. We compute a minimum-sized vertex cover X and a maximum sized
matching M’ of the bipartite graph Gy y,, in polynomial time using Theo-
rem 2.13. We can assume that |M’'| < k, for otherwise we are done. Since
|X| = |M’| by Kénig's theorem (Theorem 2.11), we infer that |X| < k.

If no vertex of X is in Vj;, then X C I. We claim that X = I. For
a contradiction assume that there is a vertex w € I\ X. Because G has no
isolated vertices there is an edge, say wz, incident to w in Gy v,,. Since G v,,
is bipartite, we have that z € Vj;. However, X is a vertex cover of G v,,
such that X N V,; = @, which implies that w € X. This is contrary to our
assumption that w ¢ X, thus proving that X = I. But then |I]| < |X| £ k,
and G has at most

|| + [Va| < k+ 2k = 3k

vertices, which is a contradiction.

Hence, X NV # (. We obtain a crown decomposition (C, H, R) as follows.
Since |X| = |M'|, every edge of the matching M’ has exactly one endpoint
in X. Let M* denote the subset of M’ such that every edge from M* has
exactly one endpoint in X N Vy; and let V.« denote the set of endpoints of
edges in M*. We define head H = X NV = X N Vi, crown C' = Vo NI,
and the remaining part R = V(G)\ (C U H) = V(G) \ Vs-. In other words,
H is the set of endpoints of edges of M* that are present in Vy; and C is
the set of endpoints of edges of M* that are present in I. Obviously, C is
an independent set and by construction, M™ is a matching of H into C.
Furthermore, since X is a vertex cover of Gpyv,,, every vertex of C' can be
adjacent only to vertices of H and thus H separates C' and R. This completes
the proof. 0

The crown lemma gives a relatively strong structural property of graphs
with a small vertex cover (equivalently, a small maximum matching). If
in a studied problem the parameter upper bounds the size of a vertex
cover (maximum matching), then there is a big chance that the struc-
tural insight given by the crown lemma would help in developing a small
kernel — quite often with number of vertices bounded linearly in the
parameter.

We demonstrate the application of crown decompositions on kernelization
for VERTEX COVER and MAXIMUM SATISFIABILITY.

2.3 Crown decomposition 29

2.3.1 VERTEX COVER

Counsider a VERTEX COVER instance (G, k). By an exhaustive application of
Reduction VC.1, we may assume that G has no isolated vertices. If |V (G)| >
3k, we may apply the crown lemma to the graph G and integer k, obtaining
either a matching of size k+ 1, or a crown decomposition V(G) = CUHUR.
In the first case, the algorithm concludes that (G, k) is a no-instance.

In the latter case, let M be a matching of H into C. Observe that the
matching M witnesses that, for every vertex cover X of the graph G, X
contains at least |M| = |H| vertices of H U C to cover the edges of M. On
the other hand, the set H covers all edges of G that are incident to H U C.
Consequently, there exists a minimum vertex cover of GG that contains I, and
we may reduce (G, k) to (G—H, k—|H|). Note that in the instance (G—H, k—
|H|), the vertices of C are isolated and will be reduced by Reduction VC.1.

As the crown lemma promises us that [# (), we can always reduce the
graph as long as |V(G)| > 3k. Thus, we obtain the following.

Theorem 2.15. VERTEX COVER admits a kernel with at most 3k vertices.

2.3.2 MAXIMUM SATISFIABILITY

For a second application of the crown decomposition, we look at the following
parameterized version of MAXIMUM SATISFIABILITY. Given a CNF formula
F, and a nonnegative integer k, decide whether I’ has a truth assignment
satisfying at least k& clauses.

Theorem 2.16. MAXIMUM SATISFIABILITY admits a kernel with at most k
variables and 2k clauses.

Proof. Let ¢ be a CNF formula with n variables and m clauses. Let ¢ be an
arbitrary assignment to the variables and let =1 be the assignment obtained
by complementing the assignment of 1. That is, if ©) assigns 6 € {T, L} to
some variable = then —1) assigns = to x. Observe that either 1) or =) satisfies
at least m/2 clauses, since every clause is satisfied by v or =) (or by both).
This means that, if m > 2k, then (p, k) is a yes-instance. In what follows we
give a kernel with n < k variables.

Let G, be the variable-clause incidence graph of . That is, G, is a bi-
partite graph with bipartition (X,Y’), where X is the set of the variables of
¢ and Y is the set of clauses of ¢. In G, there is an edge between a variable
xz € X and a clause ¢ € Y if and only if either 2, or its negation, is in c. If
there is a matching of X into Y in G, then there is a truth assignment sat-
isfying at least | X| clauses: we can set each variable in X in such a way that
the clause matched to it becomes satisfied. Thus at least | X | clauses are sat-
isfied. Hence, in this case, if & < |X|, then (g, k) is a yes-instance. Otherwise,

30 2 Kernelization

kE > |X| = n, and we get the desired kernel. We now show that, if ¢ has at
least n > k variables, then we can, in polynomial time, either reduce ¢ to an
equivalent smaller instance, or find an assignment to the variables satisfying
at least & clauses (and conclude that we are dealing with a yes-instance).

Suppose ¢ has at least k variables. Using Hall’s theorem and a polynomial-
time algorithm computing a maximum-size matching (Theorems 2.12 and 2.13),
we can in polynomial time find either a matching of X into Y or an inclusion-
wise minimal set C C X such that |[N(C)| < |C|. As discussed in the previous
paragraph, if we found a matching, then the instance is a yes-instance and
we are done. So suppose we found a set C' as described. Let H be N(C) and
R = V(G)\ (CUH). Clearly, N(C) C H, there are no edges between vertices
of €' and R and G[C] is an independent set. Select an arbitrary x € C. We
have that there is a matching of C'\ {z} into H since |[N(C")| = |C'| for every
' C C'\ {x}. Since |C| > |H|, we have that the matching from C\ {z} to H
is in fact a matching of H into C. Hence (C, H, R) is a crown decomposition
of G,.

We prove that all clauses in H are satisfied in every assignment satisfying
the maximum number of clauses. Indeed, consider any assignment 1 that does
not satisfy all clauses in H. Fix any variable 2z € C. For every variable y in
C'\ {x} set the value of y so that the clause in H matched to y is satisfied. Let
1" be the new assignment obtained from 1 in this manner. Since N(C) C H
and ¢ satisfies all clauses in H, more clauses are satisfied by 1)’ than by .
Hence 1 cannot be an assignment satisfying the maximum number of clauses.

The argument above shows that (¢, k) is a yes-instance to MAXIMUM SAT-
ISFIABILITY if and only if (¢ \ H, k — |H|) is. This gives rise to the following
simple reduction.

Reduction MSat.1. Let (¢, k) and H be as above. Then remove H from ¢
and decrease k by |H|. That is, (¢ \ H, k — |H|) is the new instance.

Repeated applications of Reduction MSat.1 and the arguments described
above give the desired kernel. This completes the proof of the theorem. O

2.4 Expansion lemma

In the previous subsection, we described crown decomposition techniques
based on the classical Hall’s theorem. In this section, we introduce a powerful
variation of Hall’s theorem, which is called the expansion lemma. This lemma
captures a certain property of neighborhood sets in graphs and can be used
to obtain polynomial kernels for many graph problems. We apply this result
to get an O(k?) kernel for FEEDBACK VERTEX SET in Chapter 9.

A g-star, g > 1, is a graph with g+ 1 vertices, one vertex of degree ¢, called
the center, and all other vertices of degree 1 adjacent to the center. Let G be

2.4 Expansion lemma 31

a bipartite graph with vertex bipartition (A, B). For a positive integer ¢, a
set of edges M C F(G) is called by a g-expansion of A into B if

e every vertex of A is incident to exactly g edges of M;
e M saturates exactly g|A| vertices in B.

Let us emphasize that a g-expansion saturates all vertices of A. Also, for
every u,v € A, u # v, the set of vertices I, adjacent to u by edges of M does
not intersect the set of vertices F, adjacent to v via edges of M, see Fig. 2.2.
Thus every vertex v € A could be thought of as the center of a star with
its g leaves in B, with all these |A| stars being vertex-disjoint. Furthermore,
a collection of these stars is also a family of ¢ edge-disjoint matchings, each
saturating A.

A

Fig. 2.2: Set A has a 2-expansion into B

Let us recall that, by Hall’s theorem (Theorem 2.12), a bipartite graph with
bipartition (A, B) has a matching of A into B if and only if |[N(X)| > |X|
for all X C A. The following lemma is an extension of this result.

Lemma 2.17. Let G be a bipartite graph with bipartition (A, B). Then there
is a g-expansion from A into B if and only if [N (X)| > q| X| for every X C A.
Furthermore, if there is no g-erpansion from A into B, then a set X C A
with |[N(X)| < q|X| can be found in polynomial time.

Proof. 1f A has a g-expansion into B, then trivially |N(X)| > ¢| X]| for every
X C A

For the opposite direction, we construct a new bipartite graph G’ with
bipartition (A, B) from G by adding (¢ — 1) copies of all the vertices in A.
For every vertex v € A all copies of v have the same neighborhood in B as v.
We would like to prove that there is a matching M from A" into B in G'. If we
prove this, then by identifying the endpoints of M corresponding to the copies
of vertices from A, we obtain a g-expansion in G. It suffices to check that
the assumptions of Hall’s theorem are satisfied in G’. Assume otherwise, that
there is a set X C A’ such that |Ng/ (X)| < |X|. Without loss of generality,
we can assume that if X contains some copy of a vertex v, then it contains
all the copies of v, since including all the remaining copies increases |X| but

32 2 Kernelization

does not change |Ng/(X)|. Hence, the set X in A’ naturally corresponds to
the set X4 of size | X|/q in A, the set of vertices whose copies are in X. But
then |[Ng(X4)| = |No(X)| < |X| = ¢q|Xal, which is a contradiction. Hence
A" has a matching into B and thus A has a g-expansion into B.

For the algorithmic claim, note that, if there is no g-expansion from A
into B, then we can use Theorem 2.13 to find a set X C A’ such that
[N (X)| < | X|, and the corresponding set X 4 satisfies |[Ng(Xa)| < q|Xal.

O

Finally, we are ready to prove a lemma analogous to Lemma 2.14.

Lemma 2.18. (Expansion lemma) Let g > 1 be a positive integer and G
be a bipartite graph with vertex bipartition (A, B) such that

(i) |B| = q|Al, and

(it) there are no isolated vertices in B.
Then there exist nonempty vertex sets X C A and Y C B such that

e there is a g-expansion of X into Y, and
e no vertex in Y has a neighbor outside X, that is, N(Y) C X.

Furthermore, the sets X and Y can be found in time polynomial in the size

of G.

Note that the sets X, ¥ and V(G)\ (X UY) form a crown decomposition
of G with a stronger property — every vertex of X is not only matched into
Y, but there is a g-expansion of X into Y. We proceed with the proof of
expansion lemma.

Proof. We proceed recursively, at every step decreasing the cardinality of A.
When |A] = 1, the claim holds trivially by taking X = A and Y = B.

We apply Lemma 2.17 to G. If A has a g-expansion into B, then we
are done as we may again take X = A and Y = B. Otherwise, we can in
polynomial time find a (nonempty) set Z C A such that |[N(Z)| < ¢|Z|. We
construct the graph G’ by removing Z and N(Z) from G. We claim that G’
satisfies the assumptions of the lemma. Indeed, because we removed less than
¢ times more vertices from B than from A, we have that (i) holds for G'.
Moreover, every vertex from B\ N(Z) has no neighbor in Z, and thus (i)
also holds for G'. Note that Z # A, because otherwise N(A) = B (there are
no isolated vertices in B) and |B| > g|A|. Hence, we recurse on the graph G’
with bipartition (A \ Z, B\ N(Z)), obtaining nonempty sets X C A\ Z and
Y € B\ N(Z) such that there is a g-expansion of X into Y and such that
Ne:(Y) € X. Because Y € B\ N(Z), we have that no vertex in Y has a
neighbor in Z. Hence, Ng/(Y) = Ng(Y) € X and the pair (X,Y) satisfies
all the required properties. 0O

2.5 Kernels based on linear programming 35

By the constraints of (2.2), every vertex of V; can have a neighbor only in
Vi and thus S is also a vertex cover of G. Moreover, Vi € S C VU V1. It
suffices to show that S is a minimum vertex cover. Assume the contrary, i.e.,
|S| > |S*]. Since |S| = |S*| — |[Vo N S*| + |V1 \ S*| we infer that

Von sl < [Vi\ 8. (2.3)

Let us define
e =minf{|z, — 1| : veVyUW}

We decrease the fractional values of vertices from V; \ 5% by ¢ and increase
the values of vertices from V3 N S* by . In other words, we define a vector
(yo)vev(a) as
x,—e ifveVp\S%,
Yp = { Ly +& ifveVypns”,
T, otherwise.

Note that & > 0, because otherwise Vi = V; = (), a contradiction with (2.3).
This, together with (2.3), implies that

Z Yo < Z Ty, (2.4)

veV(G) veV (@)

Now we show that (yv)vev(g} is a feasible solution, i.e., it satisfies the con-
straints of LPVC(G). Since (xy),cv(q) is a feasible solution, by the defi-
nition of £ we get 0 < y, < 1 for every v € V(G). Consider an arbitrary
edge uv € E(G). If none of the endpoints of uv belong to V; \ S§*, then both
Yu = Ty a0d Yy = Ty, SO Yy + Yy = Ty + 2, > 1. Otherwise, by symmetry we

can assume that v € V} \ S™, and hence y, = x, — . Because S* is a vertex
cover, we have that v € §*. If v € V;, N 5%, then

Yot Yy =Ty — €+ xy te=ay +xy 2 1.

Otherwise, v € (V1 UV)nS* Then y, = x, =
by the deﬁmtlon of &. Tt follows that

%. Note also that =, — ¢ > %

1 1
Uu+y1.*$u_€+(y172+§:1

Thus (y.)vev(a) is a feasible solution of LPVC(G) and hence (2.4) contra-
dicts the optimality of (zy).cv(a)- O

Theorem 2.19 allows us to use the following reduction rule.
Reduction VC.4. Let (z,),cv () be an optimum solution to LPVC(&) in

a VERTEX COVER instance (G, k) and let V5, V1 and V1 be defined as above.

If > cv(g)T» > k, then conclude that we are dealmg with a no-instance.
Otherwise, greedily take into the vertex cover the vertices of V. That is,
delete all vertices of V;, UV}, and decrease k by |V7].

36 2 Kernelization

Let us now formally verify the safeness of Reduction VC.4.
Lemma 2.20. Reduction VC.J is safe.

Proof. Clearly, if (G,k) is a yes-instance, then an optimum solution to
LPVC(G) is of cost at most k. This proves the correctness of the step if
we conclude that (G, k) is a no-instance.

Let G' = G—(VWUVy) = G[V1] and k' = k—[V1|. We claim that (G, k) is a
yes-instance of VERTEX COVER if and only if (G', k') is. By Theorem 2.19, we
know that G has a vertex cover S of size at most ksuch that V; C S C V; U‘V%.
Then S = SN V% is a vertex cover in ¢ and the size of & is at most
k—|Vi| =K.

For the opposite direction, let S” be a vertex cover in G’. For every solution
of LPVC(G), every edge with an endpoint from ¥ should have an endpoint
in V7. Hence, S = S’ U V] is a vertex cover in G and the size of this vertex
cover is at most k' + |Vi| = k. O

Reduction VC.4 leads to the following kernel for VERTEX COVER.
Theorem 2.21. VERTEX COVER admits a kernel with at most 2k vertices.

Proof. Let (G, k) be an instance of VERTEX COVER. We solve LPVC(G)
in polynomial time, and apply Reduction VC.4 to the obtained solution
(v)vev(a), either concluding that we are dealing with a no-instance or ob-
taining an instance (G',k’). Lemma 2.20 guarantees the safeness of the re-
duction. For the size bound, observe that

V(@) =Vi|= > 20, <2 > o <2k
*UEV% veV(G)

O

While it is possible to solve linear programs in polynomial time, usually
such solutions are less efficient than combinatorial algorithms. The specific
structure of the LP-relaxation of the vertex cover problem (2.2) allows us to
solve it by reducing to the problem of finding a maximum-size matching in a
bipartite graph.

Lemma 2.22. For a graph G with n vertices and m edges, the optimal
(fractional) solution to the linear program LPVC(G) can be found in time

O(m/n).

Proof. We reduce the problem of solving LPVC(G) to a problem of finding
a minimumn-size vertex cover in the following bipartite graph H. Its vertex
set consists of two copies V] and Vi of the vertex set of G. Thus, every
vertex v € V(G) has two copies v1 € V] and vy € Vs in H. For every edge
uv € E(H), we have edges wyvy and vyug in H.

2.5 Kernels based on linear programming 37

Using the Hopcroft-Karp algorithm (Theorem 2.13), we can find a mini-
mum vertex cover S of H in time O(my/n). We define a vector (z,),cv(a)
as follows: if both vertices v; and vy are in S, then x,, = 1. If exactly one of
the vertices vq and vy is in S, we put =, = % We put x,, = 0 if none of the
vertices v] and vy are in S. Thus

Since S is a vertex cover in H, we have that for every edge uv € E(G) at
least two vertices from {wy, us,v1,v2} should be in S. Thus z, + 2, > 1 and
vector (z,).cv () satisfies the constraints of LPVC(G).

To show that (x,),cv(q) is an optimal solution of LPVC(G), we argue
as follows. Let (yy),ev(e) be an optimal solution of LPVC(G). For every
vertex v;, i € {1,2}, of H, we assign the weight w(v;) = y,. This weight
assignment is a fractional vertex cover of H, i.e., for every edge viuy € E(H),
w(v1) + w(ug) > 1. We have that

Y oy O (wle) +wl))

veV(G) veV(a)

On the other hand, the value 4 W(v) of any fractional solution of
LPVC(H) is at least the size of a maximum matching M in H. A reader
familiar with linear programming can see that this follows from weak duality;
we also ask you to verify this fact in Exercise 2.24.

By Kéuig’s theorem (Theorem 2.11), |[M| = |S|. Hence

Y ow=r Y e twe) =1 Y wey=Blo 3 o

veV(G) veV(G) veV(H) veV(G)
Thus (2,)vev () is an optimal solution of LPVC(G). 0O
We immediately obtain the following.

Corollary 2.23. For a graph G with n vertices and m edges, the kernel of
Theorem 2.21 can be found in time O(my/n).

The following proposition is another interesting consequence of the proof
of Lemma 2.22.

Proposition 2.24. Let G be a graph on n vertices and m edges. Then
LPVC(G) has a half-integral optimal solution, i.e., all variables have values
in the set {0, %, 1}. Furthermore, we can find a half-integral optimal solution
in time O(m+/n).

38 2 Kernelization

In short, we have proved properties of LPVC(G). There exists a half-
integral optimal solution (z,),cv(g) to LPVC(G), and it can be found
efficiently. We can look at this solution as a partition of V(&) into
parts Vp, V% , and V7 with the following message: greedily take 17 into a
solution, do not take any vertex of ¥ into a solution, and in V%, we do
not know what to do and that is the hard part of the problem. However,
as an optimum solution pays % for every vertex of V% , the hard part —
the kernel of the problem — cannot have more than 2k vertices.

2.6 Sunflower lemma

In this section we introduce a classical result of Erdds and Rado and show
some of its applications in kernelization. In the literature it is known as the
sunflower lemma or as the Erdés-Rado lemma. We first define the terminology
used in the statement of the lemma. A sunflower with k petals and a core Y
is a collection of sets Sq,..., Sk such that S; N S; =Y for all i # j; the sets
S;\ Y are petals and we require none of them to be empty. Note that a family
of pairwise disjoint sets is a sunflower (with an empty core).

Theorem 2.25 (Sunflower lemma). Let A be a family of sets (without
duplicates) over a universe U, such thatl each set in A has cardinality exzactly
d. If |A| > d!(k — 1)%, then A contains a sunflower with k petals and such a
sunflower can be computed in time polynomial in |A|, |U|, and k.

Proof. We prove the theorem by induction on d. For d = 1, i.e., for a family
of singletons, the statement trivially holds. Let d > 2 and let .4 be a family
of sets of cardinality at most d over a universe U such that |A| > d!(k — 1),
Let G ={51,...,S¢} € A be an inclusion-wise maximal family of pairwise
disjoint sets in A. If £ > k then G is a sunflower with at least k petals. Thus
we assume that ¢ < k. Let § = Ule S;. Then |S| < d(k — 1). Because G is
maximal, every set A € A intersects at least one set from G, i.e., ANS # 0.
Therefore, there is an element u € U contained in at least
Al _ dl(k = 1)7 | d-1
5] > a1 (d—1)!(k-1)
sets from A. We take all sets of A containing such an element u, and construct
a family A’ of sets of cardinality d — 1 by removing from each set the element
u. Because |A'| > (d—1)!(k— 1)1, by the induction hypothesis, A’ contains
a sunflower {S7,..., S} with & petals. Then {S] U {u},..., S, U{u}} is a
sunflower in A with % petals.
The proof can be easily transformed into a polynomial-time algorithm, as
follows. Greedily select a maximal set of pairwise disjoint sets. If the size

2.6 Sunflower lemma 39

of this set is at least k, then return this set. Otherwise, find an element
u contained in the maximum number of sets in .4, and call the algorithm
recursively on sets of cardinality d — 1, obtained from deleting u from the
sets containing u. O

2.6.1 d-HITTING SET

As an application of the sunflower lemma, we give a kernel for d-HITTING
SET. In this problem, we are given a family A of sets over a universe U, where
each set in the family has cardinality at most d, and a positive integer k. The
objective is to decide whether there is a subset H C U of size at most k such
that H contains at least one element from each set in A.

Theorem 2.26. d-HITTING SET admits a kernel with at most dlk® sets and
at most d\k? - d? elements.

Proof. The crucial observation is that if A4 contains a sunflower
S={51,...,51}

of cardinality k& + 1, then every hitting set I of A of cardinality at most k
intersects the core Y of the sunflower S. Indeed, if H does not intersect Y,
it should intersect each of the k + 1 disjoint petals S; \ Y. This leads to the
following reduction rule.

Reduction HS.1. Let (U, A, k) be an instance of d-HITTING SET and as-
sume that A contains a sunflower S = {51,...,Sk4+1} of cardinality & + 1
with core Y. Then return (U’, A’, k), where A" = (A\ S) U {Y'} is obtained
from A by deleting all sets {571,...,5k+1} and by adding a new set Y and
U’ = UXE.A’ X.

Note that when deleting sets we do not delete the elements contained in
these sets but only those which do not belong to any set. Then the instances
(U, A, k) and (U', A', k) are equivalent, i.e. (U, A) contains a hitting set of
size k if and only if (U, A") does.

The kernelization algorithm is as follows. If for some d' € {1,...,d} the
number of sets in A of size exactly @ is more than d'!k%", then the kerneliza-
tion algorithm applies the sunflower lemma to find a sunflower of size k + 1,
and applies Reduction HS.1 on this sunflower. It applies this procedure ex-
haustively, and obtains a new family of sets A’ of size at most d!k? - d. If
0 € A’ (that is, at some point a sunflower with an empty core has been
discovered), then the algorithm concludes that there is no hitting set of size
at most k and returns that the given instance is a no-instance. Otherwise,
every set contains at most d elements, and thus the number of elements in
the kernel is at most d!k? - d°. O

42 2 Kernelization

2.21. Prove the second claim of Theorem 2.13.

2.22. In the DuAL-CoLORING problem, we are given an undirected graph G on n vertices
and a positive integer k, and the objective is to test whether there exists a proper coloring
of G with at most n — k colors. Obtain a kernel with O(k) vertices for this problem using
crown decomposition.

2.23 (;?;) In the MAX-INTERNAL SPANNING TREE problem, we are given an undirected
graph G and a positive integer k, and the objective is to test whether there exists a spanning
tree with at least k internal vertices. Obtain a kernel with O(k) vertices for MAX-INTERNAL
SpanNNING TREE.

2.24 (£%). Let G be an undirected graph, let (Ir)?,ev((}) be any feasible solution to
LPVC(G), and let M be a matching in . Prove that |M| < Z-vEV(GJ Ty

2.25 (). Let G be a graph and let (#v)yev(q) be an optimum solution to LPVC(G)
(not necessarily a half-integral one). Define a vector (y.),ev (q) as follows:

if z, <
if ¢, =
if z, >

Yo =

o= O
1] 13 [10

Show that (¥v),ecv (@) is also an optimum solution to LPVC(G).

2.26 (). In the MiN-ONES-2-SAT, we are given a CNF formula, where every clause has
exactly two literals, and an integer k, and the goal is to check if there exists a satisfying
assignment of the input formula with at most k variables set to true. Show a kernel for
this problem with at most 2k variables.

2.27 (£~). Consider a restriction of d-Hrrrineg SET, called Ed-HirriNeg SET, where we
require every set in the input family A to be of size exactly d. Show that this problem
is not easier than the original d-HiTTIiNG SET problem, by showing how to transform a
d-HiTTING SET instance into an equivalent Ed-HIiTTING SET instance without changing
the number of sets.

2.28. Show a kernel with at most f(d)k? sets (for some computable function f) for the
Ed-HiTTING SET problem, defined in the previous exercise.

2.29. In the d-SET PACKING problem, we are given a family A of sets over a universe
U, where each set in the family has cardinality at most d, and a positive integer k. The
objective is to decide whether there are sets Si,...,S5; € A that are pairwise disjoint.
Use the sunflower lemma to obtain a kernel for d-SET PACKING with f(d)k? sets, for some
computable function d.

2.80. Consider a restriction of d-SET PAcCKING, called Ed-SET PACKING, where we require
every set in the input family A to be of size ezactly d. Show that this problem is not easier
than the original d-SET PAcKING problem, by showing how to transform a d-SET PACKING
instance into an equivalent Ed-SET PACKING instance without changing the number of sets.

2.81. A split graph is a graph in which the vertices can be partitioned into a clique and
an independent set. In the VERTEX DisjoINT PATHS problem, we are given an undirected
graph G and k pairs of vertices (s;,1;),1 € {1,...,k}, and the objective is to decide whether
there exists paths FP; joining s; to f; such that these paths are pairwise vertex disjoint.
Show that VERTEX DiIsJOINT ParHs admits a polynomial kernel on split graphs (when
parameterized by k).

2.6 Sunflower lemma 43

2.32. Consider now the VERTEX Di1ssoINT PATHS problem, defined in the previous exercise,
restricted, for a fixed integer d > 3, to a class of graphs that does not contain a d-vertex
path as an induced subgraph. Show that in this class the VERTEX DI1sJOINT PATHS problem
admits a kernel with @(k?"!) vertices and edges.

2.33. In the CLUSTER VERTEX DELETION problem, we are given as input a graph G and
a positive integer k, and the objective is to check whether there exists a set S C V(&) of
size at most k such that G — S is a cluster graph. Show a kernel for CLUSTER VERTEX
DeLeTION With O(k?) vertices.

2.34. An undirected graph G is called perfect if for every induced subgraph H of G, the
size of the largest clique in H is same as the chromatic number of H. In the Opp CyCLE
TRANSVERSAL problem, we are given an undirected graph G and a positive integer k,
and the objective is to find at most k vertices whose removal makes the resulting graph
bipartite. Obtain a kernel with O(k?) vertices for Opp CycLE TRANSVERSAL on perfect
graphs.

2.35. In the SpLiT VERTEX DELETION problem, we are given an undirected graph G and
a positive integer k and the objective is to test whether there exists a set § C V(&) of size
at most k such that G — S is a split graph (see Exercise 2.31 for the definition).

1. Show that a graph is split if and only if it has no induced subgraph isomorphic to
one of the following three graphs: a cycle on four or five vertices, or a pair of disjoint
edges.

2. Give a kernel with O(k?) vertices for SPLIT VERTEX DELETION.

2.36 (,";) In the SPLIT EDGE DELETION problem, we are given an undirected graph G
and a positive integer k, and the objective is to test whether & can be transformed into
a split graph by deleting at most k edges. Obtain a polynomial kernel for this problem
(parameterized by k).

2.37 (;';‘) In the RaAMSEY problem, we are given as input a graph & and an integer k, and
the objective is to test whether there exists in G an independent set or a clique of size at
least k. Show that Ramsey is FPT.

2.38 (ﬁ‘} A directed graph D is called oriented if there is no directed cycle of length at
most 2. Show that the problem of testing whether an oriented digraph contains an induced
directed acyclic subgraph on at least k vertices is FPT.

Hints

2.4 Consider the following reduction rule: if there exists a line that contains more than k
input points, delete the points on this line and decrease k by 1.

2.5 Consider the following natural reduction rules:

1. delete a vertex that is not a part of any P3 (induced path on three vertices);
2. if an edge wv is contained in at least k 4+ 1 different Pss, then delete uwv;
3. if a non-edge uv is contained in at least k + 1 different Pss, then add uwv.

Show that, after exhaustive application of these rules, a yes-instance has O(kz) vertices.

2.6 First, observe that one can discard any set in F that is of size at most 1. Second,
observe that if every set in F is of size at least 2, then a random coloring of U has at least

44 2 Kernelization

|F|/2 nonmonochromatic sets on average, and an instance with |F| > 2k is a yes-instance.
Moreover, observe that if we are dealing with a yes-instance and I’ € F is of size at least
2k, then we can always tweak the solution coloring to color F nonmonochromatically: fix
two differently colored vertices for k — 1 nonmonochromatic sets in the solution, and color
some two uncolored vertices of F' with different colors. Use this observation to design a
reduction rule that handles large sets in F.

2.7 Observe that the endpoints of the matching in question form a vertex cover of the
input graph. In particular, every vertex of degree larger than 2k needs to be an endpoint
of a solution matching. Let X be the set of these large-degree vertices. Argue, similarly as
in the case of O(k?) kernel for VERTEX COVER, that in a yes-instance, G\ X has only few
edges. Design a reduction rule to reduce the number of isolated vertices of G'\ X.

2.8 Proceed similarly as in the Q(k?) kernel for VERTEX COVER.

2.9 Proceed similarly as in the case of VERTEX COVER. Argue that the vertices of degree
larger than d + k need to be included in the solution. Moreover, observe that you may
delete isolated vertices, as well as edges connecting two vertices of degree at most d. Argue
that, if no rule is applicable, then a yes-instance is of size bounded polynomially in d + k.

2.10 The important observation is that a matching of size k is a good subgraph. Hence,
we may restrict ourselves to the case where we are additionally given a vertex cover X of
the input graph of size at most 2k. Moreover, assume that X is inclusion-wise minimal. To
conclude, prove that, if a vertex v € X has at least k neighbors in V(@) \ X, then (G, k)
is a yes-instance.

2.11 The main observation is that, since there is no 3-cycle nor 4-cycle in the graph, if
z,y € N(v), then only v can dominate both = and y at once. In particular, every vertex of
degree larger than k needs to be included in the solution.

However, you cannot easily delete such a vertex. Instead, mark it as “obligatory” and
mark its neighbors as “dominated”. Note now that you can delete a “dominated” vertex,
as long as it has no unmarked neighbor and its deletion does not drop the degree of an
“obligatory” vertex to k.

Prove that, in a yes-instance, if no rule is applicable, then the size is bounded polyno-
mially in k. To this end, show that

1. any vertex can dominate at most k unmarked vertices, and, consequently, there are
at most k? unmarked vertices;
there are at most k “obligatory” vertices;

(o)

3. every remaining “dominated” vertex can be charged to one unmarked or obligatory
vertex in a manner that each unmarked or obligatory vertex is charged at most k + 1
times.

2.12 Let (G, k) be a FEEDBACK VERTEX SET instance and assume G is d-regular. If d < 2,
then solve (G, k) in polynomial time. Otherwise, observe that G has dn/2 edges and, if
(G k) is a yes-instance and X is a feedback vertex set of GG of size at most k, then at most
dk edges of G are incident to X and G — X contains less than n — k edges (since it is a
forest). Consequently, dn/2 < dk + n — k, which gives n = O(k) for d > 3.

2.13 Show, using greedy arguments, that if every vertex in a digraph & has indegree at
least d, then G contains d pairwise edge-disjoint cycles.

For the vertex-deletion variant, design a simple reduction that boosts up the indegree
of every vertex without actually changing anything in the solution space.

2.14 Let X be the set of vertices of G of degree larger than k. Clearly, any connected
vertex cover of GG of size at most k needs to contain X . Moreover, as in the case of VERTEX
COVER, in a yes-instance there are only OQ(k?) edges in G — X. However, we cannot easily
discard the isolated vertices of G — X, as they may be used to make the solution connected.

2.6 Sunflower lemma 45

To obtain an exponential kernel, note that in a yes-instance, |X| < k, and if we have
two vertices u, v that are isolated in G — X, and Ng(u) = Ng(v) (note that Ng(u) € X
for every u that is isolated in G — X), then we need only one of the vertices u,v in a
ConNNECTED VERTEX COVER solution. Hence, in a kernel, we need to keep:

1. G[X], and all edges and non-isolated vertices of G — X;

2. for every z € X, some k + 1 neighbors of z;

3. for every ¥ C X, one vertex u that is isolated in G — X and Ng(u) = Y (if there
exists any such vertex).

For the last part of the exercise, note that in the presence of this assumption, no two
vertices of X share more than one neighbor and, consequently, there are only O(\X]Q) sets

Y C X for which there exist u ¢ X with Ng(u) =Y.

2.15 We repeat the argument of the previous exercise, and bound the number of sets
Y C X for which we need to keep a vertex u € V(G) \ X with Ng(u) = Y. First, there
are O(d|X|?1) sets Y of size smaller than d. Second, charge every set Y of size at least d
to one of ifs subset of size d. Since GG does not contain Ky 4 as a subgraph, every subset X
of size d is charged less than d times. Consequently, there are at most (d —])(\)i\) vertices
u € V(G)\ X such that Ng(u) C X and |Ng(u)| > d.

2.16 The main observation is as follows: an induced cycle of length ¢ needs exactly ¢ — 3
edges to become chordal. In particular, if a graph contains an induced cycle of length
larger than k + 3, then the input instance is a no-instance, as we need more than k edges
to triangulate the cycle in question.

First, prove the safeness of the following two reduction rules:

1. Delete any vertex that is not contained in any induced cycle in G.

2. A vertex z is a friend of a non-edge uv, if u, , v are three consecutive vertices of some
induced cycle in G. If uwv ¢ E(G) has more than 2k friends, then add the edge uv and
decrease k by one.

Second, consider the following procedure. Initiate A to be the vertex set of any inclusion-
wise maximal family of pairwise vertex-disjoint induced cycles of length at most 4 in G.
Then, as long as there exists an induced cycle of length at most 4 in G that contains two
consecutive vertices in V(G) \ A, move these two vertices to A. Show, using a charging
argument, that, in a yes-instance, the size of A remains O(k). Conclude that the size of a
reduced yes-instance is bounded polynomially in k.

2.17 Design reduction rules that remove vertices of degree at most 2 (you may obtain a
multigraph in the process). Prove that every n-vertex multigraph of minimum degree at
least 3 has a cycle of length O(log). Use this to show a greedy argument that an n-vertex
multigraph of minimum degree 3 has 2(n°) pairwise edge-disjoint cycles for some £ > 0.

2.18 Consider the following argument. Let |V(G)| = 2n and pair the vertices of G arbi-
trarily: V(G) = {x1,v1,22,92,...,Tn,¥n }. Consider the bisection (Vi,V2) where, in each
pair (z;,¥;), one vertex goes to Vi and the other goes to Va2, where the decision is made
uniformly at random and independently of other pairs. Prove that, in expectation, the ob-
tained bisection is of size at least (m + £)/2, where { is the number of pairs (z;,y;) where
z;y; € B(G).

Use the arguments in the previous paragraph to show not only the first point of the
exercise, but also that the input instance is a yes-instance if it admits a matching of size
2k, If this is not the case, then let X be the set of endpoints of a maximal matching in G;
note that | X| < 4k.

First, using a variation of the argument of the first paragraph, prove that, if there exists
x € X that has at least 2k neighbors and at least 2k non-neighbors outside X, then the
input instance is a yes-instance. Second, show that in the absence of such a vertex, all but

46 2 Kernelization

O(k?) vertices of V(G) \ X have exactly the same neighborhood in X, and design a way
to reduce them.

2.19 Construct the following bipartite graph: on one side there are regions of Byteland, on
the second side there are military zones, and a region R is adjacent to a zone Z if RNZ # (.
Show that this graph satisfies the condition of Hall’s theorem and, consequently, contains
a perfect matching.

2.20 Consider the following bipartite graph: on one side there are all (552) sets of five cards

(possibly chosen by the volunteer), and on the other side there are all 52-51.50-49 tuples
of pairwise different four cards (possibly shown by the assistant). A set S is adjacent to a
tuple 7" if all cards of T belong to S. Using Hall’s theorem, show that this graph admits a
matching saturating the side with all sets of five cards. This matching induces a strategy
for the assistant and the magician.

‘We now show a relatively simple explicit strategy, so that you can impress your friends
and perform this trick at some party. In every set of five cards, there are two cards of the
same color, say a and b. Moreover, as there are 13 cards of the same color, the cards a and
b differ by at most 6, that is, a+1i = bor b+i = a for some 1 < i < 6, assuming some cyclic
order on the cards of the same color. Without loss of generality, assume a + 7 = b. The
assistant first shows the card a to the magician. Then, using the remaining three cards, and
some fixed total order on the whole deck of cards, the assistant shows the integer ¢ (there
are 3! = 6 permutations of remaining three cards). Consequently, the magician knows the
card b by knowing its color (the same as the first card show by the assistant) and the value
of the card @ and the number 4.

2.21 Let M be a maximum matching, which you can find using the Hoperoft-Karp algo-
rithm (the first part of Theorem 2.13). If M saturates V), then we are done. Otherwise,
pick any v € V1 \ V(M) (i.e., a vertex v € Vi that is not an endpoint of an edge of M) and
consider all vertices of G that are reachable from v using alternating paths. (A path P is
alternating if every second edge of P belongs to M.) Show that all vertices from Vi that
are reachable from v using alternating paths form an inclusion-wise minimal set X with
IN(X)| < [X].

2.22 Apply the crown lemma to G, the edge complement of G (G has vertex set V(G)
and uv € E(G) if and only if uv € E(G)) and the parameter k — 1. If it returns a matching
My of size k, then note that one can color the endpoints of each edge of My with the same
color, obtaining a coloring of G with n — k colors. Otherwise, design a way to greedily color
the head and the crown of the obtained crown decomposition.

2.23 Your main tool is the following variation of the crown lemma: if V(&) is sufficiently
large, then you can find either a matching of size k + 1, or a crown decomposition V (G) =
C'UHUR, such that G[H U C| admits a spanning tree where all vertices of H and [H| -1
vertices of C' are of degree at least two. Prove it, and use it for the problem in question.

2.24 Observe that for every wv € M we have z, + x, > 1 and, moreover, all these
inequalities for all edges of M contain different variables. In other words,

Z w(z,) > Z w(z,) = Z (w(zo) + w(z)) = Z 1 =|M].

vEV(G) veV (M) vuEM vu€M

2.25 Let V ={v e V(G) : 0 <a, < %} and Vi 5 = {v e V(GQ) : % < @y < 1}
For sufficiently small € > 0, consider two operations: first, an operation of adding = to all
variables x, for v € Vj and subtracting € from =, for v € V_;, and second, an operation of
adding ¢ to all variables z, for v € V] _j and subtracting £ from z, for v € Vi. Show that
both these operations lead to feasible solutions to LPVC((), as long as ¢ is small enough.
Conclude that |Vz| = |Vi_s|, and that both operations lead to other optimal solutions

2.6 Sunflower lemma 49

Bibliographic notes

The history of preprocessing, such as that of applying reduction rules to simplify truth
functions, can be traced back to the origins of computer science—the 1950 work of Quine
[391]. A modern example showing the striking power of efficient preprocessing is the com-
mercial integer linear program solver CPLEX. The name “lost continent of polynomial-time
preprocessing” is due to Mike Fellows [175].

Lemma 2.2 on equivalence of kernelization and fixed-parameter tractability is due to
Cai, Chen, Downey, and Fellows [66]. The reduction rules for VERTEX COVER discussed in
this chapter are attributed to Buss in [62] and are often referred to as Buss kernelization
in the literature. A more refined set of reduction rules for VErTEX COVER was introduced
in [24]. The kernelization algorithm for FAST in this chapter follows the lines provided
by Dom, Guo, Hiiffner, Niedermeier and Truf [140]. The improved kernel with (2 + &)k
vertices, for € > 0, is obtained by Bessy, Fomin, Gaspers, Paul, Perez, Saurabh, and
Thomassé in [32]. The exponential kernel for EpGeE CLIQUE COVER is taken from [234], see
also Gyarfas [253]. Cygan, Kratsch, Pilipczuk, Pilipczuk and Wahlstrém [114] showed that
EpceE CLiQUE CovER admits no kernel of polynomial size unless NP C coNP/ poly (see
Exercise 15.4, point 16). Actually, as we will see in Chapter 14 (Exercise 14.10), one can
prove a stronger result: no subexponential kernel exists for this problem unless P = NP.

Kénig's theorem (found also independently in a more general setting of weighted graphs
by Egervary) and Hall’s theorem [256, 303] are classic results from graph theory, see also
the book of Lovasz and Plummer [338] for a general overview of matching theory. The
crown rule was introduced by Chor, Fellows and Juedes in [94], see also [174]. Implemen-
tation issues of kernelization algorithms for vertex cover are discussed in [4]. The kernel
for MAXIMUM SATISFIABILITY (Theorem 2.16) is taken from [323|. Abu-Khzam used crown
decomposition to obtain a kernel for d-HiTTiNG SET with at most (2d — 1)k9—! + k ele-
ments [3] and for d-SET PAcKING with O(k?"1) elements [2]. Crown Decomposition and
its variations were used to obtain kernels for different problems by Wang, Ning, Feng
and Chen [431], Prieto and Sloper [388, 389|, Fellows, Heggernes, Rosamond, Sloper and
Telle [178], Moser [369], Chlebik and Chlebikova [93]. The expansion lemma, in a slightly
different form, appears in the PhD thesis of Prieto [387], see also Thomassé [420, Theo-
rem 2.3] and Halmos and Vaughan [257).

The Nemhauser-Trotter theorem is a classical result from combinatorial optimiza-
tion [375]. Our proof of this theorem mimics the proof of Khuller from [289]. The ap-
plication of the Nemhauser-Trotter theorem in kernelization was observed by Chen, Kanj
and Jia [81]. The sunflower lemma is due to Erdds and Rado [167]. Our kernelization for
d-Hrrring SET follows the lines of [189].

Exercise 2.11 is from [392], Exercise 2.15 is from [121, 383], Exercise 2.16 is from [281],
Exercise 2.18 is from [251] and Exercise 2.23 is from [190]. An improved kernel for the
above guarantee variant of Maximum BisecTION, discussed in Exercise 2.18, is obtained
by Mnich and Zenklusen [364]. A polynomial kernel for SpLiT EDGE DELETION (Exer-
cise 2.36) was first shown by Guo [240]. An improved kernel, as well as a smaller kernel for
SpLIT VERTEX DELETION, was shown by Ghosh, Kolay, Kumar, Misra, Panolan, Rai, and
Ramanujan [228]. It is worth noting that the very simple kernel of Exercise 2.4 is probably
optimal by the result of Kratsch, Philip, and Ray [308].

Chapter 3
Bounded search trees

In this chapter we introduce a variant of erhaustive
search, namely the method of bounded search trees.
This 1s one of the most commonly used tools in the de-
sign of fized-parameter algorithms. We illustrate this
technique with algorithms for two different parameter-
izations of VERTEX COVER, as well as for the prob-
lems (undirected) FEEDBACK VERTEX SET and CLOS-
EST STRING.

Bounded search trees, or simply branching, is one of the simplest and most
commonly used techniques in parameterized complexity that originates in the
general idea of backtracking. The algorithm tries to build a feasible solution to
the problem by making a sequence of decisions on its shape, such as whether
to include some vertex into the solution or not. Whenever considering one
such step, the algorithm investigates many possibilities for the decision, thus
effectively branching into a number of subproblems that are solved one by
one. In this manner the execution of a branching algorithm can be viewed
as a search tree, which is traversed by the algorithm up to the point when a
solution is discovered in one of the leaves. In order to justify the correctness of
a branching algorithm, one needs to argue that in case of a yes-instance some
sequence of decisions captured by the algorithm leads to a feasible solution.
If the total size of the search tree is bounded by a function of the parameter
alone, and every step takes polynomial time, then such a branching algorithm
runs in FPT time. This is indeed the case for many natural backtracking
algorithms.

More precisely, let I be an instance of a minimization problem (such as
VERTEX COVER). We associate a measure p([) with the instance I, which, in
the case of FPT algorithms, is usually a function of & alone. In a branch step
we generate from I simpler instances Iy, ..., Iy (€ > 2) of the same problem
such that the following hold.

© Springer International Publishing Switzerland 2015 51
M. Cygan et al., Parameterized Algorithms,
DOI 10.1007/978-3-319-21275-3_3

52 3 Bounded search trees

1. Every feasible solution S of I;, i € {1,...,{}, corresponds to a feasible
solution h;(S) of I. Moreover, the set

{hi(S) : 1 <i< fand S is a feasible solution of Ii}

contains at least one optimum solution for I. Informally speaking, a
branch step splits problem I into subproblems I4,..., Iy, possibly tak-
ing some (formally justified) greedy decisions.
2. The number ¢ is small, e.g., it is bounded by a function of (/) alone.
3. Furthermore, for every I;, i € {1,...,¢}, we have that p(l;) < p(I) — ¢
for some constant ¢ > 0. In other words, in every branch we substantially
simplify the instance at hand.

In a branching algorithm, we recursively apply branching steps to instances
I, 1o, ..., Iy, until they become simple or even trivial. Thus, we may see an
execution of the algorithm as a search tree, where each recursive call cor-
responds to a node: the calls on instances Iy, Is, ..., I, are children of the
call on instance I. The second and third conditions allow us to bound the
number of nodes in this search tree, assuming that the instances with non-
positive measure are simple. Indeed, the third condition allows us to bound
the depth of the search tree in terms of the measure of the original instance,
while the second condition controls the number of branches below every node.
Because of these properties, search trees of this kind are often called bounded
search trees. A branching algorithm with a cleverly chosen branching step
often offers a drastic improvement over a straightforward exhaustive search.

We now present a typical scheme of applying the idea of bounded search
trees in the design of parameterized algorithms. We first identify, in polyno-
mial time, a small (typically of size that is constant, or bounded by a function
of the parameter) subset S of elements of which at least one must be in some
or every feasible solution of the problem. Then we solve |S| subproblems:
for each element e of S, create one subproblem in which we include e in the
solution, and solve the remaining task with a reduced parameter value. We
also say that we branch on the element of S that belongs to the solution.
Such search trees are analyzed by measuring the drop of the parameter in
each branch. If we ensure that the parameter (or some measure bounded by
a function of the parameter) decreases in each branch by at least a constant
value, then we will be able to bound the depth of the search tree by a function
of the parameter, which results in an FPT algorithm.

It is often convenient to think of branching as of “guessing” the right
branch. That is, whenever performing a branching step, the algorithm guesses
the right part of an (unknown) solution in the graph, by trying all possibili-
ties. What we need to ensure is that there will be a sequence of guesses that
uncovers the whole solution, and that the total time spent on wrong guesses
is not too large.

We apply the idea of bounded search trees to VERTEX COVER in Sec-
tion 3.1. Section 3.2 briefly discusses methods of bounding the number of

3.1 VeErTEX COVER 53

nodes of a search tree. In Section 3.3 we give a branching algorithm for
FEEDBACK VERTEX SET in undirected graphs. Section 3.4 presents an al-
gorithm for a different parameterization of VERTEX COVER and shows how
this algorithm implies algorithms for other parameterized problems such as
ODpD CycLE TRANSVERSAL and ALMOST 2-SAT. Finally, in Section 3.5 we
apply this technique to a non-graph problem, namely CLOSEST STRING.

3.1 VERTEX COVER

As the first example of branching, we use the strategy on VERTEX COVER.
In Chapter 2 (Lemma 2.23), we gave a kernelization algorithm which in time
O(n+/m) constructs a kernel on at most 2k vertices. Kernelization can be
easily combined with a brute-force algorithm to solve VERTEX COVER in
time OQ(ny/m+45k°1)) . Indeed, there are at most 22% = 4% subsets of size at
most k in a 2k-vertex graph. Thus, by enumerating all vertex subsets of size at
most k in the kernel and checking whether any of these subsets forms a vertex
cover, we can solve the problem in time O(ny/m + 4¥k€()). We can easily
obtain a better algorithm by branching. Actually, this algorithm was already
presented in Chapter 1 under the cover of the BAR FIGHT PREVENTION
problem.

Let (G, k) be a VERTEX COVER instance. Our algorithm is based on the
following two simple observations.

e For a vertex v, any vertex cover must contain either v or all of its
neighbors N (v).

e VERTEX COVER becomes trivial (in particular, can be solved opti-
mally in polynomial time) when the maximum degree of a graph is
at most 1.

We now deseribe our recursive branching algorithm. Given an instance
(G, k), we first find a vertex v € V(G) of maximum degree in G. If v is of
degree 1, then every connected component of G is an isolated vertex or an
edge, and the instance has a trivial solution. Otherwise, |[N(v)| > 2 and we
recursively branch on two cases by considering

either v, or N(v) in the vertex cover.

In the branch where v is in the vertex cover, we can delete v and reduce
the parameter by 1. In the second branch, we add N (v) to the vertex cover,
delete N[v] from the graph and decrease k by |N(v)| > 2.

The running time of the algorithm is bounded by

54 3 Bounded search trees
(the number of nodes in the search tree) x (time taken at each node).

Clearly, the time taken at each node is bounded by n®(). Thus, if 7(k) is the
number of nodes in the search tree, then the total time used by the algorithm
is at most 7(k)n°),

In fact, in every search tree T that corresponds to a run of a branching
algorithm, every internal node of 7 has at least two children. Thus, if
T has ¢ leaves, then the number of nodes in the search tree is at most
2¢ — 1. Hence, to bound the running time of a branching algorithm, it
is sufficient to bound the number of leaves in the corresponding search
tree.

In our case, the tree T is the search tree of the algorithm when run with
parameter k. Below its root, it has two subtrees: one for the same algorithm
run with parameter k — 1, and one recursive call with parameter at most
k — 2. The same pattern occurs deeper in 7. This means that if we define a
function T'(k) using the recursive formula

T(i) - {T(z‘—l)+T(i—2) if i > 2,

1 otherwise,

then the number of leaves of T is bounded by T'(k).
Using induction on k, we prove that T'(k) is bounded by 1.6181%. Clearly,
this is true for &k = 0 and k& = 1, so let us proceed for k£ > 2:

T(k) = T(k—1)+T(k—2) < 1618151 +1.6181% 2
< 1.6181%2(1.6181 + 1) < 1.6181%2(1.6181)* < 1.6181%.

This proves that the number of leaves is bounded by 1.6181%. Combined with
kernelization, we arrive at an algorithm solving VERTEX COVER in time
O (ny/m + 1.6181%Fk°M),

A natural question is how did we know that 1.6181*% is a solution to the
above recurrence. Suppose that we are looking for an upper bound on function
T (k) of the form T(k) < ¢-A¥, where ¢ > 0, A > 1 are some constants. Clearly,
we can set constant ¢ so that the initial conditions in the definition of T'(k)
are satisfied. Then, we are left with proving, using induction, that this bound
holds for every k. This boils down to proving that

c- A > A e AR (3.1)
since then we will have

T(h)=T(k—-1)+T(k-2)<c- AT 4e A2 <enab,

3.3 FEEDBACK VERTEX SET 57

The answer to the first question is “it is good™ up to a polynomial factor,
the estimation is tight. The second question is much more difficult, since the
actual way a branching procedure explores the search space may be more
complex than our estimation of its behavior using recursive formulas. If, say,
a branching algorithm uses several ways of branching into subproblems (so-
called branching rules) that correspond to different branching vectors, and/or
is combined with local reduction rules, then so far we do not know how
to estimate the running time better than by using the branching number
corresponding to the worst branching vector. However, the delicate interplay
between different branching rules and reduction rules may lead to a much
smaller tree than what follows from our imprecise estimations.

3.3 FEEDBACK VERTEX SET

For a given graph G and a set X C V(G), we say that X is a feedback vertex
set of G if G—X is an acyclic graph (i.e., a forest). In the FEEDBACK VERTEX
SET problem, we are given an undirected graph G and a nonnegative integer
k, and the objective is to determine whether there exists a feedback vertex
set of size at most k in G. In this section, we give a branching algorithm
solving FEEDBACK VERTEX SET in time k() . n@1),

It is more convenient for us to consider this problem in the more general
setting of multigraphs, where the input graph G may contain multiple edges
and loops. We note that both a double edge and a loop are cycles. We also
use the convention that a loop at a vertex v contributes 2 to the degree of v.

We start with some simple reduction rules that clean up the graph. At
any point, we use the lowest-numbered applicable rule. We first deal with
the multigraph parts of G. Observe that any vertex with a loop needs to be
contained in any solution set X.

Reduction FVS.1. If there is a loop at a vertex v, delete v from the graph
and decrease k by 1.

Moreover, notice that the multiplicity of a multiple edge does not influence
the set of feasible solutions to the instance (G, k).

Reduction FVS.2. If there is an edge of multiplicity larger than 2, reduce
its multiplicity to 2.

We now reduce vertices of low degree. Any vertex of degree at most 1 does
not participate in any cycle in G, so it can be deleted.

Reduction FVS.3. If there is a vertex v of degree at most 1, delete v.

Concerning vertices of degree 2, observe that, instead of including into the
solution any such vertex, we may as well include one of its neighbors. This
leads us to the following reduction.

58 3 Bounded search trees
Reduction FVS.4. If there is a vertex v of degree 2, delete v and connect
its two neighbors by a new edge.

Two remarks are in place. First, a vertex v in Reduction FVS.4 cannot have
a loop, as otherwise Reduction FVS.1 should be triggered on v instead. This
ensures that the neighbors of v are distinct from v, hence the rule may be ap-
plied and the safeness argument works. Second, it is possible that v is incident
to a double edge: in this case, the reduction rule deletes v and adds a loop
to a sole “double” neighbor of ». Observe that in this case Reduction FVS.1
will trigger subsequently on this neighbor.

We remark that after exhaustively applying these four reduction rules, the
resulting graph G

(P1) countains no loops,
(P2) has only single and double edges, and
(P3) has minimum vertex degree at least 3.

Moreover, all rules are trivially applicable in polynomial time. From now
on we assume that in the input instance (G, k), graph G satisfies properties
(P1)-(P3).

We remark that for the algorithm in this section, we do not need prop-
erties (P1) and (P2). However, we will need these properties later for the
kernelization algorithm in Section 9.1.

Finally, we need to add a rule that stops the algorithm if we already
exceeded our budget.

Reduction FVS.5. If k£ < 0, terminate the algorithm and conclude that
(G, k) is a no-instance.

The intuition behind the algorithm we are going to present is as follows.
Observe that if X is a feedback vertex set of GG, then G — X is a forest.
However, G — X has at most |V(G)| — | X| — 1 edges and thus G — X
cannot have “many” vertices of high degree. Thus, if we pick some f(k)
vertices with the highest degrees in the graph, then every solution of
size at most k must contain one of these high-degree vertices. In what
follows we make this intuition work.

Let (vi,v2,...,v,) be a descending ordering of V(G) according to vertex
degrees, ie., d(vy) > d(va) > -+ > d(vy,). Let V3 = {v1,...,vs;}. Let us
recall that the minimum vertex degree of G is at least 3. Our algorithm for
FEEDBACK VERTEX SET is based on the following lemma.

Lemma 3.3. Every feedback vertexr set in G of size at most k contains at
least one vertex of V3.

Proof. To prove this lemma we need the following simple claim.

3.3 FEEDBACK VERTEX SET 59

Claim 3.4. For every feedback vertex set X of G,

D (dv) = 1) = |E(@)| = [V(GQ)| + 1.

veX
Proof. Graph F' = G — X is a forest and thus the number of edges in F is at
most |V(G)| — | X| — 1. Every edge of E(G) \ E(F) is incident to a vertex of
X. Hence

D dw) + V(@) - |X| - 1> |B(G)].

veX

|

Targeting a contradiction, let us assume that there is a feedback vertex set
X of size at most k such that X N Vs, = (. By the choice of V3;, for every
v € X, d(v) is at most the minimum of vertex degrees from V3. Because
|X| < k, by Claim 3.4 we have that

3k

> — 1) =3+ (Y (dw) - 1) 2 3- (1BG)] - [V(G)| +1).

i=1 veX
In addition, we have that X C V(G \ V3, and hence
D () = 1) = Y (dw) - 1) = (|B(G)] = [V(G)] +1).
1>3k ve X
Therefore,
D (dw) — 1) = 4-(|B(@)| - V(@) +1).

i=1

However, observe that 3. | d(v;) = 2|E(G)|: every edge is counted twice,
once for each of its endpoints. Thus we obtain

4-(B@)] = V(@) +1) sZ (v:) = 1) = 2lE(&) - [V (@),
which implies that 2|E(G)| < 3|V(G)|. However, this contradicts the fact

that every vertex of G is of degree at least 3. O

We use Lemma 3.3 to obtain the following algorithm for FEEDBACK VER-
TEX SET.

Theorem 3.5. There exists an algorithm for FEEDBACK VERTEX SET run-
ning in time (3k)* - n®W,

Proof. Given an undirected graph G and an integer k& > 0, the algorithm
works as follows. It first applies Reductions FVS.1, FVS.2, FVS.3, FVS4,

60 3 Bounded search trees

and FVS.5 exhaustively. As the result, we either already conclude that we
are dealing with a no-instance, or obtain an equivalent instance (G, k') such
that G" has minimum degree at least 3 and &' < k. If G’ is empty, then we
conclude that we are dealing with a yes-instance, as &’ > 0 and an empty set
is a feasible solution. Otherwise, let Vi be the set of 3k" vertices of G' with
largest degrees. By Lemma 3.3, every solution X to the FEEDBACK VERTEX
SET instance (G, k") contains at least one vertex from Vipr. Therefore, we
branch on the choice of one of these vertices, and for every vertex v € Vyr,
we recursively apply the algorithm to solve the FEEDBACK VERTEX SET
instance (G’ — v, k' — 1). If one of these branches returns a solution X’, then
clearly X’ U {v} is a feedback vertex set of size at most k' for G'. Else, we
return that the given instance is a no-instance.

At every recursive call we decrease the parameter by 1, and thus the height
of the search tree does not exceed k’. At every step we branch in at most 3k’
subproblems. Hence the number of nodes in the search tree does not exceed
(3%')*" < (3k)*. This concludes the proof. O

3.4 VERTEX COVER ABOVE LP

Recall the integer linear programming formulation of VERTEX COVER and
its relaxation LPVC(G):

min 2 vevic) Tv
subject to x, + x, > 1 for every uwv € E(G),
0<x, <1 forevery v e V(G).

These programs were discussed in Section 2.2.1. If the minimum value of
LPVC(G) is ve*(G), then the size of a minimum vertex cover is at least
ve*(G). This leads to the following parameterization of VERTEX COVER,
which we call VERTEX COVER ABOVE LP: Given a graph G and an integer
k, we ask for a vertex cover of G of size at most k, but instead of seeking an
FPT algorithm parameterized by k as for VERTEX COVER, the parameter
now is k — vc¢* (). In other words, the goal of this section is to design an
algorithm for VERTEX COVER on an n-vertex graph G with running time
f(k = ve* (@) - n°® for some computable function f.

The parameterization by k — vc*(G) falls into a more general theme of
above guarantee parameterization, where, instead of parameterizing purely
by the solution size k, we look for some (computable in polynomial time)
lower bound ¢ for the solution size, and use a more refined parameter k — ¢,
the excess above the lower bound. Such a parameterization makes perfect
sense in problems where the solution size is often quite large and, conse-
quently, FPT algorithms in parameterization by & may not be very efficient.
In the VERTEX COVER problem, the result of Section 2.5 — a kernel with at

3.4 VERTEX CoOVER ABOVE LP 61

most 2k vertices — can be on one hand seen as a very good result, but on
the other hand can be an evidence that the solution size parameterization for
VERTEX COVER may not be the most meaningful one, as the parameter can
be quite large. A more striking example is the MAXIMUM SATISFIABILITY
problem, studied in Section 2.3.2: here an instance with at least 2k clauses is
trivially a yes-instance. In Section *9.2 we study an above guarantee parame-
terization of a variant of MAXIMUM SATISFIABILITY, namely MAX-Er-SAT.
In Exercise 9.3 we also ask for an FPT algorithm for MAXIMUM SATISFIA-
BILITY parameterized by k — m/2, where m is the number of clauses in the
input formula. The goal of this section is to study the above guarantee pa-
rameterization of VERTEX COVER, where the lower bound is the cost of an
optimum solution to an LP relaxation.

Before we describe the algorithm, we fix some notation. By optimum
solution X = (20),cy () to LPVC(G), we mean a feasible solution with
1 > x, = 0for all v € V(@) that minimizes the objective function (sometimes
called the cost) w(x) = ZEEV(G)E’U' By Proposition 2.24, for any graph &
there exists an optimum half-integral solution of LPVC(G), i.e., a solution
with z, € {0, 3,1} for all v € V(G), and such a solution can be found in
polynomial time.

Let ve(G') denote the size of a minimum vertex cover of G. Clearly, ve(G) >
ve®(G). For a half-integral solution x = (), and i € {0, 1,1}, we define
V¥={veV : xz, =i} Wealsosay that x = {x,},cv(q) is all-3-solution if
Ty = % for every v € V(). Because the all—%-s@luticn is a feasible solution,
we have that ve™(G) < w Furthermore, we define the measure of an
instance (G, k) to be our parameter of interest u(G, k) = k — ve™(G).

Recall that in Section 2.5 we have developed Reduction VC.4 for VERTEX
CovER. This reduction, if restricted to half-integral solutions, can be stated
as follows: for an optimum half-integral LPVC(G) solution x, we (a) conclude
that the input instance (G, k) is a no-instance if w(x) > k; and (b) delete
Vit U V* and decrease k by |V*| otherwise. As we are now dealing with
measure u(G, k) = k — ve™(G), we need to understand how this parameter
changes under Reduction VC.4.

Lemma 3.6. Assume an instance (G', k') is created from an instance (G, k)
by applying Reduction VC.4 to a half-integral optimum solution x. Then
ve* (G) — ve*(G') = ve(G) — ve(G") = |V¥| = k — k. In particular,
(G K) = p(G k).

We remark that, using Exercise 2.25, the statement of Lemma 3.6 is true
for any optimum solution x, not only a half-integral one (see Exercise 3.19).
However, the proof for a half-integral solution is slightly simpler, and, thanks
to Proposition 2.24, we may work only with half-integral solutions.

Proof (of Lemma 3.6). Observe that every edge of G incident to Vi has its
second endpoint in V¥, Hence, we have the following:

64 3 Bounded search trees

We have shown that the preprocessing rule does not increase the measure
(G, k), and that the branching step results in a (3, £) decrease in (G, k).
As a result, we obtain recurrence T'(p) < 2T (p — 3) for the number of leaves
in the search tree. This recurrence solves to 4* = 4¥=v¢" (%) and we obtain a

4k=ve™ (@) . pOMW) _time algorithm for VERTEX COVER ABOVE LP. o

Let us now consider a different lower bound on the size of a minimum
vertex cover in a graph, namely the size of a maximum matching. Observe
that, if graph G contains a matching M, then for k& < |M| the instance
(G, k) is a trivial no-instance of VERTEX COVER. Thus, for a graph G with
a large maximum matching (e.g., when G has a perfect matching) the FPT
algorithm for VERTEX COVER of Section 3.1 is not practical, as in this case
k has to be quite large.

This leads to a second above guarantee variant of the VERTEX COVER
problem, namely the VERTEX COVER ABOVE MATCHING problem. On input,
we are given an undirected graph G, a maximum matching M and a positive
integer k. As in VERTEX COVER, the objective is to decide whether G has
a vertex cover of size at most k; however, now the parameter is k — |M]|.
By the weak duality of linear programs, it follows that ve*(G) > |M| (see
Exercise 2.24 and the corresponding hint for a self-contained argument) and
thus we have that & — vc*(G) < k — |M|. Consequently, any parameterized
algorithm for VERTEX COVER ABOVE LP is also a parameterized algorithm
for VERTEX COVER ABOVE MATCHING, and Theorem 3.8 yields the following
interesting observation.

Theorem 3.9. VERTEX COVER ABOVE MATCHING can be solved in time
gk M| ,001)

The VERTEX COVER ABOVE MATCHING problem has been at the center
of many developments in parameterized algorithms. The reason is that faster
algorithms for this problem also yield faster algorithms for a host of other
problems. Just to show its importance, we design algorithms for Opp Cy-
CLE TRANSVERSAL and ALMOST 2-SAT by making use of the algorithm for
VERTEX COVER ABOVE MATCHING.

A subset X C V(G) is called an odd cycle transversal of G if G — X is a
bipartite graph. In OpD CyCLE TRANSVERSAL, we are given an undirected
graph G with a positive integer k, and the goal is to determine whether G
has an odd cycle transversal of size at most k.

For a given graph G, we define a new graph G as follows. Let V; = {u;

u € V(G)} fori € {1,2}. The vertex set V(G) consists of two copies of V(G),
ie. V(G) =V, UVy, and

E(G) = {uus : ue V(G)YU{uw; : w e BE(G),ic {1,2}}.

In other words, G is obtained by taking two disjoint copies of G and by adding
a perfect matching such that the endpoints of every matching edge are the

