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PART ONE

MATTER, MOTION, AND
FORCE
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“Give me matter and motion, and I will construct the
universe.” —Rent: DescarTes (1640)

“. .. from the phenomena of motions to investigate the
forces of nature, and then from these forces to demon-
strate the other phenomena; . . . the motions of the
planets, the comets, the moon and the sea. . ..”

—Isaac Newron (1686)

“No one must think that Newton’s great creation can
be overthrown by [Relativity] or any other theory.
His clear and wide ideas will forever retain their
significance as the foundation on which our modern
conceptions of physics have been built.”

—ArBerT EINsTEIN (1948)



PRELIMINARY PROBLEMS LEADING TO CHAPTER 1
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A wise explorer reviews his maps before he starts on the expedition. You would be
wise to review your present knowledge and prejudices before this chapter offers you
new knowledge. The problems below are not intended to discomfort you by asking
for answers before you are prepared. They are only intended to clear the ground for
discussion. Some ask you to check minor matters of vocabulary. Others raise major
questions that will appear again and again through the course.
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1. (@) 'l shall try an experiment. . . .” Suppose you have just
made such a remark with your present knowledge and
views. Write a note of a few lines to show what you
would mean by it.

(b) Write a similar note for, ”’| have a theory that. . . ."”
(e) Write a similar note for, ‘'l shall treat this scientifi-
cally.”

(At this stage, before you begin the course, we do not expect
you to know all the answers to questions like this. Here you
are asked to describe your present views. Later you may
change them.)

2, Look up the word “logical’ in a good dictionary; then
write short answers to the following:

(a) State in your own words the proper meaning of the
word “logical.”’

(b) State in your own words the colloquial or slang use
of the word.

(e) What word(s) could be used aptly for the meaning
in (b), leaving “logical’ for its important use in sci-
ence, philosophy, etc.?

(d) Do you consider algebra logical? Give reason(s) for
your answer,

3. Look up the word “‘data.’” Then write short answers to the
following:

(a) What is its origin?

(b) Which of the following statements do you consider
correct language and which incorrect? (Where incor-
rect, mention reason.)

(i) These data were obtained by my partner.
(ii) This data was obtained by my partner.
(iii) This set of data was obtained by my partner.

4. (a) What is the plural of the word ""apparatus’’?
(b) What does "“phenomenon’’ mean?
(c) What is the plural of phenomenon?

5. (The following questions ask for written answers. Try to
make them short. Some may require considerable thought.
Consult dictionaries if you like. It is hoped that you will
enjoy finding answers to these questions. If you have
fun puzzling these out, your education will gain; if you
do them with a feeling of headache, it will lose. So you
are advised to treat these rather lightly, yet fairly
seriously.)

“The sun rose in the east this morning, yesterday
morning, the morning before that, and for many mornings
before that.” This is a statement of observations. Scientists
and others make statements like the following: *'I expect
the sun will rise in the east tomorrow morning."

A number of other statements with some differences in
wording may be made, and eight of these are shown
below. With each of the statements:

(a) Write a short explanation of its meaning, paying spe-
cial attention to the part played by the words in
italics. (For example, in the version above, where the
word ‘expect’ is used, your answer might run thus:
“Because the sun has risen in the east so regularly in
the past, | look for the same thing tomorrow with some
confidence, and | shall make my everyday plans on
this basis, because | have noticed that most such
natural events continue to repeat themselves uni-
formly.” Note, however, the dangers of this last view
for an insect, hatched in the summer, anticipating an
endless series of warm mornings, and completely
ignorant of the snowstorm which will end its life.)

For each case say whether or not you consider the
statement a wise or safe one for a scientist to use. (In
other words, do you consider the statement scientific
or superstitious, safe or risky, “right’ or “wrong’’?)
(c) Give a brief reason for each answer in (b).

(b

—

Statements:

A. | predict the sun will rise in the east tomorrow morning.

B. | deduce the sun will rise in the east tomorrow morning.

C. | conclude from inductive reasoning that the sun will rise
in the east tomorrow morning.

D. | believe the sun will rise in the east tomorrow morning.

E. | know that the sun will rise in the east tomorrow morning.

F. | consider it highly probable that the sun will rise in the
east tomorrow morning.

G. These observations lead to a law which proves that the
sun will rise in the east tomorrow morning.

H. Investigations show that the world is a solid spinning body
and the Principle of Conservation of Angular Momentum
proves that it will continue to spin thus, and therefore
proves that sunrise, which is due to this spin, will continue
to occur in this same way each day.

6. Look up the verb “infer.”

(a) What is the proper meaning? (This is the one to use
in science.)

(b) What is the colloquial use? Give a better verb to
replace it.

(c) The word "'infer’’ is used correctly in one of the state-
ments below and incorrectly, or poorly, in the other.
Explain what you think “infer’” is intended to mean
in each of the passages. Say which passage has the
correct use and suggest a substitute for “‘infer’’ in the
other one.

(i) "Are you trying to infer, by your remarks, that
my uncle is a fool?"’

(ii) “From his behavior, | infer that your uncle is a
fool.”



CHAPTER 1 - GRAVITY, A FIELD OF PHYSICS
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“What distinguishes the language of science from language as we ordinarily understand the
word? How is it that scientific language is international? . . . The super-national character
of scientific concepts and scientific language is due to the fact that they have been set up
by the best brains of all countries and all times. In solitude and yet in cooperative effort
as regards the final effect, they created the spiritual tools for the technical revolutions
which have transformed the life of mankind in the last centuries. Their system of concepts
has served as a guide in the bewildering chaos of perceptions, so that we learned to grasp

general truths from particular observations.”

—A. EmnstEN, Out of My Later Years
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Introduction

In this book, and the course that goes with it, we
shall study the nature and methods of physical
science. We shall do that by studying some parts of
physics thoroughly and leaving out other parts to
gain time for discussion. In the samples we study,
you will learn many scientific facts and principles,
some useful for life in general, others important
groundwork for discussions in the course. To gain
much from the course, you need to learn this “sub-
ject matter” thoroughly. In itself it may seem unim-
portant—such factual knowledge is easily forgotten,?
and we are concerned with a more general under-
standing which will be of lasting value to you as an
educated person—but we shall use the factual
knowledge as a means to more important ends. The
better your grasp of that factual knowledge, the
greater your insight into the science behind it. And
this course is concerned with the ways and work of
science and scientists.

To begin by discussing scientific methods or the
structure of science would be like arguing about a
foreign country before you have visited it. So we
shall plunge at once into a sample of physics—
gravity and falling bodies—and later discuss the
general ideas involved.

What to Do about Footnotes

You are advised to read a chapter straight through
first, omitting the footnotes. Then reread carefully,
studying both text and footnotes. Some of the foot-
notes are trivial, but many contain important com-
ments relevant to the work of the course. They are
not minor details put there with a twinge of con-
science to avoid their being omitted altogether. They

1 Once learned, it is easily relearned if needed later. Much
of the difficulty of learning a piece of physics lies in under-
standing its background. When you understand what physics
is driving at, the rules or calculations will seem sensible
and easy.

are moved out to make the text more continuous for
a first reading. Often the footnotes wander off on a
side issue and would distract attention if placed in
the main text. Yet this developing of new threads
itself shows the complex texture of scientific work;

so at a second reading you should include the
footnotes.

Falling Bodies

Watch a falling stone and reflect on man’s knowl-
edge of falling objects. What knowledge have we?
How did we obtain it? How is it codified into laws
that are clearly remembered and easily used? What
use is it? Why do we value scientific knowledge in
the form of laws? Try the following experiment be-
fore you read further. Take two stones (or books or
coins) of different sizes. Feel how much heavier the
larger one is. Imagine how much faster it will fall
if the two are released together. You might well
expect them to fall with speeds proportional to their
weights: a two-ounce stone twice as fast as a one-
ounce stone. Now hold them high and release them
together. . . . Which are you going to believe: what
you saw, what you expected, or “what the book
says P

People must have noticed thousands of years ago
that most things fall faster and faster—and that some
do not. Yet they did not bother to find out carefully
just how things fall. Why should primitive people
want to find out how or why? If they speculated at
all about causes or explanations, they were easily led
by superstitious fear to ideas of good and evil spirits.
We can imagine how such people living a dangerous
life would classify most normal occurrences as
“good” and many unusual ones as “bad’—today we
use “natural” as a term of praise and “unnatural”
with a flavor of dislike.

This liking for the usual seems wise: a haphazard
unregulated world would be an insecure one to live
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in. Children emerge from the sheltered life of a baby
into a hard unrelenting world where brick walls
make bruises, hot stoves make blisters. They want
a secure well-ordered world, bound by definite rules,
so they are glad to have its quirky behavior “ex-
plained” by reassuring statements. The pattern of
seeking security in order, which we find in growing
children today, probably applied to the slower
growing-up of primitive savages into civilized men.
As civilization developed, the great thinkers codified
the world—inanimate nature and living things and
even the thoughts of man—into sets of rules and
reasons. Why they did this is a difficult question.
Perhaps some were acting as priests and teachers
for their simpler brethren. Perhaps others were
driven by childish curiosity—again a need to know
definitely, born of a sense of insecurity. Still others
may have been inspired by some deeper senses of
curiosity and enjoyment of thinking—senses rooted
in intellectual delight rather than fear—and these
men might be called true philosophers and scientists.

You yourself in growing up run through many
stages of knowledge, from superstitious nonsense to
scientific sense. What stage have you reached in the
simple matter of knowledge of falling objects? Check
your present knowledge by actually watching some
things fall. Take two different stones (or coins)
and let them fall, starting together. Then start them
again together, this time throwing both outward
horizontally (Fig. 1-1). Then throw one outward

Fic. 1-1.

and at the same instant release the other to fall
vertically. Watch these motions again and again.
See how much information about nature you can
extract from such trials. If this seems a childish
waste of time, consider the following comments:

(i) This is experimenting. All science is built with
information from direct experiments like yours.

(ii) To physicists the experiment of dropping light
and heavy stones together is not just a fable of
history; it shows an amazing simple fact that is a
delight to see again and again. The physicist who
does not enjoy watching a dime and a quarter drop
together has no heart.

(iii) In the observed behavior of falling objects
and projectiles lies the germ of a great scientific
notion: the idea of fields of force, which plays an

essential part in the development of modern me-
chanics in the theory of relativity.

(iv) And here is the practical taunt: if you use
all your ingenuity and only household apparatus to
try every relevant experiment you can think of, you
will still miss some of the possible discoveries; this
field of investigation is so wide and so rich that a
neighbor with similar apparatus will find out some-
thing you have missed.

Mankind, of course, did not gather knowledge
this way. Men did not say, “We will go into the
laboratory and do experiments.” The experimenting
was done in daily life as they learned trades or de-
veloped new machines. You have been doing experi-
ments of a sort all your life. When you were a baby,
your bathtub and toys were the apparatus of your
first physics laboratory. You made good use of them
in learning about the real world; but rather poor
use in extracting organized scientific knowledge.
For instance, did your toys teach you what you have
now learned by experimenting on falling objects?

Out of man’s growing-up came some knowledge
and some prejudices. Out of the secret traditions of
craftsmen came organized knowledge of nature,
taught with authority and preserved in prized books.
That was the beginning of reliable science. If you
experimented on falling objects you should have
extracted some scientific knowledge. You found that
the small stone and the big one, released together,
fall together.? So do lumps of lead, gold, iron, glass,
etc., of many sizes. From such experiments we infer
a simple general rule: the motion of free fall is uni-
versally the same, independent of size and material.
This is a remarkable, simple fact which people find
surprising—in fact, some will not believe it when
they are told it,® but yet are reluctant to try a simple
experiment.*

2 Yes; if you did not try the experiment, you now know
the result of at least part of it. This is true of a book like
this: by reading ahead you can find the answers to questions
you are asked to solve. When you work on a crossword
puzzle you would feel foolish to solve it by looking at the
answers. In reading a detective story, is it much fun to turn
to the end at once? Here you lose more still if you skip: you
not only spoil the puzzle, but you lose a sense of the reality
of science; you damage your own education. It is still not
too late, If you have not tried the experiments, try them now.
Drop a dime and a quarter together, and watch them fall.
You are watching a great piece of simplicity in the structure
of nature.

3 Notice your own reaction to this statement: “A heavy
boy and a light boy start coasting down a hill together on
equal bicycles. In a short run they will reach the bottom
together.” The statement is based on the same general be-
havior of nature. See a demonstration. In a long run they
gain high speeds and air resistance makes a difference.
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cussion into components that have an absolute yes
or no.

Aristotle’s logic was safe as far as it went; modern
logicians regard it as restricted and unfruitful but
“true.” The damage to your thinking and mine
comes from centuries of medieval scholarship draw-
ing blindly and insistently on his writings—"the in-
grown, argumentative, book-learned, world-ignorant
atmosphere of medieval university learning.” That
medieval Aristotelian tradition is built into today’s
language and thought, and people often mistakenly
require an absolute yes or no. For example, people
trained to think they must choose between complete
success and complete failure are heartbroken when
they find they cannot attain the impossible goal of
complete success. We are all in danger: students in
college, athletes in contests, men and women in their
careers, older people reviewing their life—all face
terrible discouragement or worse if they demand
absolute success as the only alternative to failure.
Fortunately, many of us achieve a wiser balance;
we stop judging ourselves by an absolute yes or no
and enjoy our own measure of success. We then
find the conflicting mixture of our record easier to
live with.”

In science, where simple logic- once seemed so
safe, we are now more careful. Asked whether a
beam of light is a wave, we no longer assume there
is an absolute yes or no. We have to say that in some
respects it is a wave and in others it is not. We are
more cautious about our wording. Remembering
that our modern scientific theory is more a way of
regarding and understanding nature than a true
portrait of it, we change our question, “Is it a
wave?” to “Does it behave as a wave?” And then

6 Roughly speaking, Aristotelian logic deals with classes
of things, and its arguments can be carried out by machines,
e.g., “electronic brains” in which “yes” or “no” is signified
by an electron stream being switched “on” or “off.” Modern
logic deals with relations (such as “. . . larger than . . .)”
“. . . better than . . .”) as well as classes (such as “dogs,”
“mammals”) and, nowadays, with implicational relations
between complete propositions. Its arguments, too, can
probably be carried out by machines, though that may be
more difficult to arrange. But a machine cannot criticize the
system of logic that it is asked to administer. Only man still
thinks he can do that, making judgments of value,

For descriptions of machines see the following numbers
of Scientific American:

Vol. 183, No. 5, “Simple Simon” (a small mechanical
brain); Vol. 180, No. 4, “Mathematical Machines” (a de-
tailed account of electronic calculators); Vol. 182, No. 5,
“An Imitation of Life” (mechanical animals that learn);
Vol. 185, No. 3, “Logic Machines”; Vol. 192, No. 4, “Man
Viewed as a Machine” (excellent article by a philosopher);
Vol. 197, No. 3, a complete issue on self-regulating machines.

7 For a fuller discussion, see Ch. I of People in Quandaries
by Wendell Johnson (Harper and Bros., New York, 1946).
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we can answer, “In some circumstances it does, in
other circumstances it does not.” Where an Aristo-
telian would say an electron must be either inside
a certain box or not inside it, we have to say we
would rather regard it as both! If you find such
cautiousness irritating and paradoxical, remember
two things: first, you have been brought up in the
Aristotelian tradition (and perhaps you would be
wise to question its strong authority ); second, physi-
cists themselves shared your dismay when experi-
ments first forced some changes of view on them,
but they would rather be true to experiment than
loyal to a formality of logic.

Aristotle and Authority

Aristotle’s chief interests lay in philosophy and
logic, but he also wrote scientific treatises, summing
up the knowledge available in his day, some 2000
years ago. His works on Biology were good because
they were primarily descriptive. In his works on
Physics he was too much concerned with laying
down the law and then arguing “logically” from it.
He and his followers wanted to explain why things
happen and they did not always bother to observe
what happens or how things happen. Aristotle ex-
plained why things fall quite simply: they seek their
natural place, on the ground. In describing how
things fall, he made statements such as these: “
just as the downward movement of a mass of lead
or gold or of any other body endowed with weight
is quicker in proportion to its size. . ..” “. . . a body
is heavier than another which in equal bulk moves
down more quickly. . . .” He was a very able man,
discussing as a philosopher the why of falling, and
he probably had in mind a more general survey of
falling bodies, knowing that stones do fall faster
than feathers, blocks of wood faster than sawdust.
In the course of a long fall air-friction brings a fall-
ing body to a steady speed, and he probably referred
to that.® But later generations of thinkers and teach-
ers who used his books took his statements baldly
and taught that “bodies fall with speeds propor-
tional to their weights.”

The philosophers of the Middle Ages grew more
and more concerned with argument and disdained
experimental tests. Most of the earlier writings
on geometry and algebra had been lost and experi-
mental physics had to wait until they were found
and translated. For centuries, right on through the
“dark ages,” the authority of Aristotle’s writings

8 A denser body (or a bigger one) has to fall farther before

approaching its limiting speed; and then that speed is much
greater.
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remained supreme, in a misinterpreted form at that.
Simple people, like children, love security more
than freedom; they will worship authority blindly,
and swallow its teaching whole. You may smile at
this and say, “We are civilized. We don’t behave
like that.” But you may presently ask, “Why doesn’t
this book give us the facts and tell us the right laws,
so that we can learn reliable science quickly?”; and
that would be your demand for simple authority
and easy security! We now condemn “Aristotelian
dogmatism” as unscientific, yet there are still people
who would rather argue from a book than go out
and find what really does happen. The modern
scientist is realistic; he tries experiments and abides
by what he gets, even if it is not what he expected.

Logic and Modern Science

Wholesale appeal to Aristotle’s logic may restrict
our intellectual outlook, and medieval wrangling
with it certainly hampered science; but logic itself
is an essential tool of all good science. We have to
reason inductively, as Aristotle did, from experi-
ments to simple rules. Then we often assume such
rules hold generally and reason deductively from
them to predictions and explanations. Some of our
reasoning is done in the shorthand logic of algebra,
some of it follows the rules of formal logic, and some
of it is argued more loosely.

In extracting scientific rules from old laws we
trust the “Uniformity of Nature”: we trust that what
happens on Friday and Saturday will also happen on
Sunday; or that a simple rule which holds for several
different spiral springs will hold for other springs.®
Above all, we rely on the agreement of other ob-
servers. That is what makes the difference between
dreams and hallucinations on one hand and science
on the other. Dreams belong to each of us alone,
but scientific observations are common to many
observers. In fact, scientists often refuse to accept
a discovery until other experimenters have con-
firmed it.

Scientists do more than assurie that nature is
simple, that there are rules to be found; they also
assume that they can apply logic to nature’s ways.
There lies the essential distinction that enabled sci-
ence to emerge from superstition: a growing belief
that nature is reasonable. As science grows, mathe-
matics and simple logic play an essential part as

9 The obvious condition, “all other circumstances remain
the same,” is often difficult to maintain, and we blame many
an exception to the Uniformity of Nature on some failure in
that respect. Magnetic experiments in towns that have street-

cars may give different results on Sundays, when fewer cars
are running.

MATTER, MOTION, AND FORCE

faithful servants. The modern scientist puts them
to more use than ever, but he goes back to nature
for experimental checks. In a sense, the ideal scien-
tist has his head in the clouds of speculation, his
arms wielding the tools of mathematics and logic,
and his feet on the ground of experimental fact.

Greeks to Galileo

“In studying the science of the past, students
very easily make the mistake of thinking that
people who lived in earlier times were rather
more stupid than they are now.”—i1. BERNARD
COHEN

Aristotle’s authority grew and lasted until the 17th
century when the Italian scientist Galileo attacked
it with open ridicule. Meanwhile, many people must
have privately doubted the Aristotelian views on
gravity and motion. In the 14th century a group of
philosophers in Paris revolted against traditional
mechanics and devised a much more sensible scheme
which was handed down and spread to Italy and
influenced Galileo two centuries later. They talked
of accelerated motion, and even of uniform accelera-
tion (under archaic nmames), and they endowed
moving objects with “impetus,” meaning motion or
momentum of their own, to carry them along with-
out needing a force.

Galileo ( ~ 1600) was a great scientist. He started
science advancing to a new level where critical
thinking and imagination join with an experimental
attitude—a partnership of theory and experiment.
He gathered the available knowledge and ideas,
subjected them to ruthless examination by thinking,
experimenting, and arguing; and then taught and
wrote what he believed to be true. He lost his
temper with the Aristotelians when they disliked his
teaching and disdained his telescope; and he wrote
a scathing attack on their whole system of science,
setting forth his own realistic mechanics instead. He
cleared away cobwebs of muddled thinking and
built his scheme on real experiment—not always his
own experiments, more often those of earlier work-
ers whose results he collected.

Thought-Experiments

In his books and lectures, Galileo often reasoned
by drawing on common sense, quoting “thought-
experiments.” For example, he discussed the break-
ing-strength of ropes in this manner: suppose a rope
1 inch in diameter can just support 3 tons. Then a
rope of double diameter, 2 inches, has four times
the cross-section area (#r?) and therefore four times
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as many fibers. Therefore, the rope of double diame-
ter has four times the strength—it should support
12 tons. In general, STRENGTH must increase as
piaMETER?, Galileo gave this argument and extended
it to wooden beams, pillars, and bones of animals.*®
Some thought-experiments deal with simplified or
idealized conditions, such as an object falling in
a vacuum.™

Ideal Rules for Free Fall

Galileo realized that air resistance had entangled
the Aristotelians. He pointed out that dense objects
for which air resistance is relatively unimportant
fall almost together. He wrote: “ . . the variation of
speed in air between balls of gold, lead, copper,
porphyry, and other heavy materials is so slight that
in a fall of one hundred cubits a ball of gold would
surely not outstrip one of copper by as much as four
fingers. Having observed this, I came to the con-
clusion that, in a medium totally devoid of all re-
sistance, all bodies would fall with the same
speed.”? By guessing what would happen in the
imaginary case of objects falling freely in a vacuum,
Galileo extracted ideal rules:

(1) All falling bodies fall with the same motion;
started together, they fall together.

(2) The motion is one “with constant accelera-
tion”: the body gains speed at a steady rate; it gains
the same addition of speed in each successive
second.

Having guessed the rules for the ideal case, he
could test them in real experiments by making
allowances for the complications of friction.

Galileo’s P Experiment: Myth and Symbol

There is a fable that Galileo gave a great demon-
stration of dropping a light object and a heavy one
from the top of the leaning tower of Pisa.’* (Some
say he dropped a steel ball and a wooden one, others

say a 1-pound iron ball and a 100-pound iron ball.)

10 See problems in Chapter 5.

11 The Aristotelians had argued themselves into believing
a vacuum to be impossible, so they cut themselves off from
Galileo’s satisfying simplification.

12 From Dialogues Concerning Two New Sciences, by
Galileo Galilei, English translation by H. Crew and H.
de Salvio, Northwestern University Press, p. 72.

13 Pisa. The leaning tower is a charming little building in
a friendly Italian town. It is a round tower of white marble,
built beside the cathedral. It began to lean as it was built,
and it now has a remarkable tilt, about 5° from the vertical.
The visitor who climbs its winding stair or walks around one
of its open slanting balconies has strange sensations of shift-
ing gravity. The tower was built long before Galileo’s day,
and he must have tried using it for some experiments. In his
lifetime a pro-Aristotelian used the tower, to demonstrate
unequal fall.

There is no record of such a public performance,
and Galileo certainly would not have used it to
show his ideal rule. He knew that the wooden ball
would be left far behind the iron one, but he said
that a taller tower would be needed to show a differ-
ence for two unequal iron balls. He certainly tried
rough experiments as a youth and knew as you do
what does happen, but he did not suddenly turn the
course of science with one fabulous experiment. He
did accelerate the growth of real physics by refuting
the Aristotelians’ silly dogmatic statements. And he
did start science on a new kind of growth by apply-
ing his simplifying imagination to experimental
knowledge. These, and not the leaning tower, made
him a landmark in scientific history. Many a myth
is attached to great figures in history—stories about
cherry trees, burning cakes, etc. Though scholars
delight in debunking these anecdotes, they also use
some of them to show how the people of the great
man’s day thought of him. The leaning tower story
is not even credited with that advantage. Yet we
might use it, quite apart from Galileo and the
growth of science, as a symbol of a simple experi-
ment. In your own experiment with unequal stones,
they fell almost together, and not, as some people

MYTH
&
SYMBOL

T

Fic. 1-3.

expect, the heavy one much faster. We shall use
this Myth & Symbol in our course as a reminder of
two things: the need for direct experiment, and a
surprising, simple, important fact about gravity.

Honest Experimenting vs. Authority

Your own experiments did not show that all things
fall together; they did not even show that large and
small stones fall exactly together; and if in obedience
to book or teacher you said, “They fall exactly to-
gether,” you were cheating yourself of honest sci-
ence. Small stones lag slightly behind big ones—the
difference growing more noticeable the farther they
fall. Nor is it simply a matter of different sizes: a
wooden ball and a steel ball of the same size do not
fall exactly together.

Once you accept Galileo’s view that air resistance
obscures a simple story, you can interpret your own
observations easily—though that still leaves air re-
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sistance to be investigated. Or you might pretend
you had never heard Galileo’s view, and proceed
towards it yourself through a series of experiments
with denser and denser objects. Finding the motion
more and more nearly the same for larger or denser
bodies, you might guess the rule for the ideal case.
To examine the blame against air resistance, you
might try streamlining, or reducing, using some ob-
ject such as a sheet of paper.

Galileo’s Guess: Newton’s Crucial Experiment

Galileo could only decrease air resistance. He
could not remove it completely, so he had to argue
from real observations with less and less resistance
to an ideal case with none. This intellectual jump,
from real observations to an ideal case, was his
great contribution. Then, looking back, he could
“explain” the differences in real experiments by
blaming air resistance. He could even study air
resistance, codify its behavior, and learn how to
make allowances for it. Not long after his time, air
pumps were developed which enabled people to try
free-fall experiments in a vacuum. Newton pumped
the air out of a tall glass pipe and released a feather
and a gold coin at the top. Even this extreme pair
fell together. There was a crucial test of Galileo’s
guess.

Scientific Explanations

When we “explain” the differences of fall by air
resistance, the term “explain” means, as so often in
science, to point out a likeness between the thing
under investigation and something else already
known. We are saying essentially, “You know about
wind resistance, when you move a thing along in
the air. Well, the falling bodies experience wind
resistance which depends in some way on their
bulkiness. A wooden ball and a lead ball of the same
size moving at the same speed would suffer the
same air resistance—how could the air know or
mind what is insideP—Dbut the lead ball weighs more,
is pulled harder by gravity, so the air resistance
matters less to it in comparison with the pull of the
Earth.+

Further Investigation

The explanation leads to a whole new line of
enquiry: wind resistance, fluid friction, streamlin-
ing—with applications to ballistics and airplane
design—new science from more accurate study of

14 At this stage, the explanation ends in unsupported

dogmatism that might be “straight out of Aristotle.” Wait
for studies of mass, force, and motion to make it good science.

MATTER, MOTION, AND FORCE

some simple rule of behavior, from a study of its
failures.

You could extend your series of experiments
in the other direction, making more and more re-
sistance, first with air, then with water, and find
things of importance in the design of ships and
planes. For simple experiments with fluid friction,
try dropping small balls in water instead of in air.
Balls of different sizes do not fall together. Moreover
they fail to move any faster after a while in a long
fall. Each ball seems to reach a fixed speed and then
move steadily down at that speed. What is happen-
ing then? Investigations might lead you to Stokes’
Law for fluid friction on a moving ball, a law which
plays a vital part in measuring the electric charge
of a single electron. If you investigated still smaller
falling bodies, specks of dust or drops of mist, you
would discover surprising irregularities in their fall,
and these in turn could lead to useful information in
atomic physics.

Galileo’s experimenting and thinking, which you
have been repeating, led to a simple rule that ap-
plies accurately to objects falling in a vacuum. For
things falling in air, it applies with limited pre-
cision. In other words, the simple statement “all
freely falling bodies fall together” is an artificial ex-
tract distilled by scientists out of the real happenings
of nature. This is a good scientific procedure: first
to extract a general rule, under simplified or re-
stricted conditions, secondly to look for modifica-
tions or exceptions and then to use them to polish
up the rule and to extend our knowledge to new
things. In the case of falling bodies we can now test
the extracted rule by dropping things in a vacuum.
Ask to see Newton’s “guinea and feather” experi-
ment. In many cases in physics, however, we have
to be content with knowing that our rule is an ex-
tracted simplification, believing in it as a sort of
ideal statement, with only indirect evidence to
justify our full belief.

Restricting the Number of Variables

Apart from ignoring air resistance, we have re-
stricted our study of falling bodies in another way:
we have concentrated attention on just one aspect
of them, their comparative rate of fall. We have not
observed what noise they make as they fall, or
watched how they spin, or looked for temperature
changes, ete. By narrowing our interests, tempo-
rarily, we have better hopes of finding a simple
guiding rule. Again this is good scientific procedure.
In many investigations we not only concentrate on a
few aspects but even arrange to hold other aspects
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constant so that they do not muddle the investiga-
tion. In physics we nearly always try to limit our
investigation to one pair of variables at a time. For
example, we compress a sample of air and measure
its VOLUME at various PRESSURES, while we keep the
temperature constant. Or we warm up the gas and
measure the PRESSURE at various TEMPERATURES,
while we keep the volume constant. From these ex-
periments we can extract two useful “gas laws” that
can be combined into one grand law. If we did not
make restrictions but let TEMPERATURE and PRESSURE
and voLuME change during our experiments, we
could still discover the grand law but our measure-
ments would seem mixed and complicated—it
would be harder to see the simple relationship con-
necting them. But other sciences such as biology
and psychology, following the successful example
of physics, have found this method very dangerous.
While restricting attention to one aspect of growth
or behavior, the investigator may lose sight of the
body or mind as a whole. In attempts to apply the
methods of natural sciences to social sciences such
as economics this danger is even more severe.

Why Do Things Fall?

Aristotle was concerned with the answer to
“Why?” Why do things fall? What is your answer
to the question? If you say, “because of gravitation
or gravity,” are you not just taking refuge behind a
long word? These words come from the Latin for
heavy or weighty. You are saying, “things fall be-
cause they are heavy.” Why, then, are things heavy?
If you reply “because of gravity,” you are talking
in a circle. If you answer, “because the Earth pulls
them,” the next question is, “How do you know the
Earth goes on pulling them when they are falling?”
Any attempt to demonstrate this with a weighing
machine during fall leads to disaster. You may have
to answer, “I know the Earth pulls them because
they fall"—and there you are back at the beginning.
Argument like this can reduce a young physicist to
tears. In fact, physics does not explain gravitation;
it cannot state a cause for it, though it can tell you
some useful things about it. The Theory of General
Relativity offers to let you look at gravitation in a
new light but still states no ultimate cause. We may
say that things fall because the Earth pulls them,
but when we wish to explain why the Earth pulls
things all we can really say is, “Well it just does.
Nature is like that.”*® This is disappointing to people

15 Parents often give answers such as, “Well it just is” or

“because it is” to children’s questions. Such answers are not
so foolish as they sound. For a child they provide the reply
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who hope that science will explain everything, but
we now consider such questions of ultimate cause
outside the scope of science. They are in the prov-
ince of philosophy and religion. Modern science
asks what? and how? not the primary why? Scien-
tists often explain why an event occurs, and you
will be asked “why . .. ?” in this course; but that
does not mean giving a first cause or ultimate expla-
nation. It only means relating the event to other
behavior already agreed to in our scientific knowl-
edge. Science can give considerable reassurance and
understanding by linking together seemingly differ-
ent things. For example, while science can never
tell us what electricity is, it can tell us that the boom
of thunder and the crack of a man-made electric
spark are much the same, thus removing one piece
of fearful superstition.

Aristotle’s explanation of falling was: “The natural
place of things is on the ground, therefore they try
to seek that place.” People today call that a silly
explanation. Yet it is in a way similar to our present
attitude. He was just saying, “Things do fall. That’s
natural.” He carried his scheme too far however. He
explained why clouds float upward by saying that
their natural place is up in the sky and thus he
missed some simple discoveries of buoyancy.1®
Aristotle was much concerned with stating the
“natural place” and “natural path” for things, and
he distinguished between “natural motion” (of fall-
ing bodies) and “violent motion” (of projectiles).
He might have produced good science of force and
motion except for a mistake of applying common
knowledge of horses pulling carts to all motion. If
the horse exerts a constant pull, the cart keeps going
with constant speed. This probably suggested Aris-
totle’s general view that a constant force is needed
to keep a body moving steadily; a larger force main-
tains larger speed in proportion. This is a sensible
explanation for pulling things against an adjustable
resisting force, but it is misleading for falling bodies
and projectiles. In all cases it forgets the resisting
force is there and prevents our seeing what happens
when there is no resistance.

To explain the motion of projectiles, the Greeks

that is really needed at that stage, an assurance that every-
thing is normal, that the matter asked about is a part of a
consistent world. When a child asks “Why is the grass
green?” he does not want to have a lecture on chlorophyll.
He merely wants to be reassured that it is o.k. for the grass
to be green.

16 Buoyancy affects falling objects. When a thing falls in
water its effective weight is lessened by buoyancy, and this
makes falling in water quite different for different objects.
Even air buoyancy has some effect, trivial for cannon balls,
overwhelming for balloons.
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vant information piece by piece. The other follows
a hunch, like Newton, and, like Newton, abandons
it at once when it comes into conflict with ob-
served facts. From time to time the philosophers
of science emphasize the merits of one or the
other, and write as if one or the other were the
true method of science. There is no one method of
science. The unity of science resides in the nature
of the result, the unity of theory with practice.
Each type of detection has its use, and the best
detective is one who combines both methods,
letting his hunch lead him to test hypotheses and
keeping alert to new facts while doing so0.”*°

And here is an overall view, from a leading Amer-
ican physicist, P. W. Bridgman:

“I like to say that there is no scientific method as
such, but that the most vital feature of the scien-
tist's procedure has been merely to do his utmost
with his mind, no holds barred.”*

Accelerated Motion: Inductive and
Deductive Treatment

Much of the early growth of science was made
by induction; general laws were inferred from the
knowledge gained in crafts and trades. In a simple
way we have treated falling bodies inductively, in-
ferring from many observations a general statement
that all bodies falling freely in a vacuum fall to-
gether. When Galileo studied the details of this
falling motion, he probably used a mixture of two
approaches. He was good at making guesses, and
he used geometry and reasoning powerfully.

We shall now follow the second method, deduc-
tion, in our study. We shall start by assuming a
likely rule, and then we shall make a test comparing
its consequences with real falling motion.

We choose guess (3) above and assume that a
falling body gains speed steadily, gaining equal
amounts of speed in equal stretches of time. We can
express this more conveniently if we give a definite
meaning to the word acceleration, so that we can
say “the acceleration is constant.” Therefore, we
give the name ACCELERATION to

GAIN OF SPEED
———————— Or RATE-OF-CHANGE OF SPEED
TIME TAKEN
In making this definition of acceleration, we are
really choosing the thing (GAIN OF sPEED)/(TIME

20 Science for the Citizen (Allen and Unwin, London,
1938), p. 747.

21 “New Vistas for Intelligence” in Physical Science and
Human Values, ed. E. P. Wigner (Princeton, 1947), p. 144,
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TAKEN ) to work with, and then giving it a name. We
are not discovering some true meaning which the
word acceleration possessed all along! We make this
choice and assign it a name because it turns out to
be useful in describing nature easily.

We shall start using the grander word velocity
instead of speed, and presently we shall make a
distinction between their meanings. Since we shall
often deal with changing things, we want a short
way of writing “change of .. .” or “gain of . ...” We
choose the symbol A, a capital Greek letter D, pro-
nounced “delta.” It was originally used to stand for
the d of “difference.” Then our definition?? of accel-
eration states that:

GAIN OF VELOCITY

ACCELERATION —
TIME TAKEN
CHANGE OF VELOCITY
- CHANGE OF TIME-OF-DAY
Av
a—

T At

where @, v, and ¢ are obvious shorthand.

Deductive Treatment of Motion with
Constant Acceleration

Now we express our assumption about falling
bodies in this new terminology. We are assuming
that:

-iTU is constant, for bodies freely falling (in

vacuum ). This states a huge assumption regarding
real nature. Is it true? Is Av/At constant? To test
this directly we should need an accelerometer to
measure the acceleration of a body, Av/At, at each
stage of its fall. Such instruments are manufactured,
but they are complicated gadgets which would not
provide convincing proofs at this stage. Instead, we
follow Galileo’s example and ask mathematics, the
logical machine, to grind out a consequence of our
assumption, and then we test the consequence by
experiment. The machine tells us that:

IF the acceleration @ (= Av/At) is constant, and
s is the distance travelled in time ¢ with this constant
acceleration, THEN

s = Y% at®, if the motion starts from rest

s = v,t + % at?, if the motion starts with velocity
v, at the instant ¢ = 0, when the
clock is started.

(The logical argument of this IF ... THEN ...

22 In calculus, veLociTY, v, at an instant, is defined by

ds . .do  ds
= —- and ACCELERATION, 4, at an instant, is — or —.
dt dt de
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is given in Appendix A of this chapter.) In these
relations, % a is a constant number, since we are

assuming a is constant; so, for motion starting
from rest,

DISTANCE = (constant number) (TIME)?
or DISTANCE increases in direct proportion to TiME?
or DISTANCE varies directly as TrME?
Or DISTANCE & TIME?, this being shorthand for any of
the versions above.

For example, if a body moving with fixed accelera-
tion falls so far in one second from rest, then it will
fall four times as far in two seconds from rest, nine
times in three seconds, and so on.

% PROBLEM 7. A CHART OF ACCELERATED MOTION

(a) Suppose a beetle crawls home with a motion for which
it is true that distance o« time2. Starting from rest he
travels & of an inch in the first second. How far will he
travel in 2 seconds from his start? in 3 secs? in 4, 5,
6 secs?

(b) Draw a line across a sheet of paper; mark a starting-point
near one end, and mark a rough scale of inches on it.
Make marks to show the beetle’s position at the end of
each second.

% PROBLEM 8. A SIMPLER RULE

Galileo announced the relation s o« 12 for uniformly ac-
celerated motion, (where s is the total distance travelled in
total time t from rest); but he stated another simple rule for
such motion, relating the distances d, ds, . . . covered during
1 second, in successive one-second intervals: (that is, the dis-
tance travelled in the first second, the distance travelled
during the next period of one second, &c.) Look for such
a rule in the example of Problem 7, and state it. (Hint:
Calculate di = 51 — 0, d: = s: — s, .. . and look for some
rule relating these one-second distances.)

% PROBLEM 9. SCIENTIFIC THINKING

(a) You might have foreseen the rule of Problem 8, by com-
mon-sense thinking about accelerated motion, without
using special algebra or studying an actual example.
Why? (Hint: the distance travelled in any period of one
second is a measure of . . 2 . . in that period.)

(b) Is the rule of Problem 8 restricted (like s o t2) to motion
starting from rest when t = 0, or does it apply to any
motion with constant acceleration?

% PROBLEM 10. ANALYZING MOTIONS

Here are the records of four cyclists, moving with different
motions. They all passed a post P at the instant the clock
was started. Their distances from P after | second, 2, 3, 4,
5 seconds were as follows:

Time from ] sec 2sec 3sec 4sec 5 sec
Start

Cyclist A 1.8 7.2 162 28.8 45.0 feet

Cyclist B 1.8 36 54 7.2 9.0 feet

Cyclist C 1.8 52 102 16.8 25.0 feet

Cyclist D 1.8 14.4 486 1152* 225.0* feet

* These are distances Cyclist D would have travelled if he could
have continued his motion.

{a) Try analyzing each of these motions, looking for constant
acceleration, not by asking if s o« t2 but in the light of
answers to Problems 8 and 9 above.

(b) Where the motion does not have constant acceleration
describe its general nature if you can.

GRAVITY 15
Experimental Investigations

The converse can be shown to be true. IF the
distance s varies directly as #?, THEN the accelera-
tion is constant.?® That gives us a relation to test in
investigating real motions. We can arrange a clock
to beat equal intervals of time, and measure the
distances travelled from rest by a falling body, in
total times with proportions 1:2:3: . .. If the total
distances run in the proportions 1:4:9: . . . and so
on, we may infer a fixed acceleration. Or, as in one
form of laboratory experiment, we can measure the
time t for various total distances s, and test the
relation s = (constant number) (¢*) by arithmetic,
or by graph-plotting.

Over three centuries ago Galileo used this method,
though he had neither a modern clock nor graph-
plotting analysis. Galileo was one of the first to sug-
gest an accurate pendulum clock, but he probably
never made one. All he used to measure time was a
large tank of water with a spout from which water
ran into a cup. He estimated times by weighing the
water that ran out—a crude method yet accurate
enough to test his law. However, free fall from
reasonable heights takes very little time—the experi-
ment was too difficult with Galileo’s apparatus.®
So he “diluted” gravity by using a ball rolling down
a sloping plank. He measured the times taken to roll
distances such as 1 foot, 2 feet, etc., from rest.

On the basis of rough experimenting and sturdy
guessing, Galileo decided that a ball rolls down a
sloping plank with constant acceleration. Believing
that this would be true for any slope, and arguing
from one slope to greater slopes and greater still,
he expected it to hold for a vertical plank, that is
for free fall.?s The idea of constant acceleration had

23 By calculus: if s = kt*, then velocity j—: = 2 kt;

ds
and acceleration i? = i (—) = 2k, which is constant.
dt dt dt

2¢ Galileo’s apparatus was rough. He used it to illustrate
his argument rather than to measure acceleration.

25 He convinced himself that the speed acquired by a
body sliding down a frictionless incline depends only on the
height, h, not on the length of slope, L. If so, a bOdt{ falling
freely through a vertical height, h, would acquire the same
speed, since this would be like a vertical incline. Then he
could argue safely from his experiments to vertical fall.

Fic. 1-5.
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been suggested by earlier scientists—who were
scorned for it. Galileo did his best to minimize fric-
tion, which threatened to complicate matters—
though we now know that constant friction would
not spoil the simple relationship. His results were
rough, but seemed to convince him that his guess
was right. It was the simplest kind of accelerated
motion he could imagine, and he was probably in-
fluenced by the general faith, which has inspired
scientists from the Greeks to Einstein, that nature
is simple.

Later experiments, with improved apparatus, con-
firmed Galileo’s conclusion: the motion is one with
constant acceleration, i.e.,, with Av/Af — constant,
in all the following cases:

for a ball or wheel rolling down a straight inclined
plank;
for a body sliding down a smooth inclined plank,

or a truck with wheels running down it;
for free fall.

Yet each such test has only shown that the accelera-
tion is constant for that one set of apparatus, on that
one occasion and within the limits of accuracy of
that experiment. If as scientists we want to believe
in a general rule inferred from these experiments,
if we want to codify nature’s behavior in a simple
“law” as a starting point for new deductions, then
we need a great body of consistent testimony as a
foundation for our inference. The more the better,
in quantity and variety, and no witness is unwel-
come. If any experiment contradicts this general
story—and some do—it thereby offers a searching
test. “The exception proves the rule” is a fine scien-
tific proverb—though often misunderstood—if
“proves” means “tests” (as in “proving-grounds” for
artillery, the “proving” of bank accounts). If
“proves” had the modern common meaning of
“shows it to be right” the proverb would be non-
sense.”® Exceptions do not show that the rule is
correct. Exceptions do put a rule to fine tests and
show its limitations. They raise the question “What
is to blame?” and they lead either to limitations of
the rule or to greater care in experimenting. Either
way, the rule emerges more clearly established.

E:\:per-imental Tests in Lecture and Laboratory

Therefore you should see and make some tests of
accelerated motion yourself. Not only will these
make you feel that the experimental basis of science

26 The original legal meaning is amusing, but irrelevant
here: “the quoting of an exception makes it clear that the
rule exists.”

is more real, but they will enable you to add your
assurance to the accumulated body of testimony.
Galileo made little more than wise guesses; others
have added careful measurements, and you should
add your measurements and judgment.

Demonstration Experiment

We let a small truck run down a long sloping
track, and make measurements to estimate its accel-
eration. It is not easy to measure speeds in a lecture
experiment but rough estimates will suffice to show
how the acceleration is derived.

We measure the truck’s speed at some station, A,
early in the run, and again at B farther down the
track. The difference between these speeds gives us
the gain of speed Av. The time taken for this gain,
At, is the time taken by the truck to travel from A
to B. Then the acceleration is Av/At. To measure
At we equip the truck with a thin mast, M, and
measure with a stopclock the time taken for M to
travel from A to B.

To estimate the truck’s speed at A we have to time
it over a short run in the region of A. We might
install a short billboard there, with its mid-point at

Fic. 1-6.

A, as in Fig. 1-6, and measure the time taken by the
mast to run the length of the billboard. But human
errors are inconveniently big for such short timings,
so it is better to install the billboard on the moving
truck and time its transit past A with the help of an
electric eye (photocell). Fig. 1-7 shows a good
arrangement. A lamp sends a beam of light across
the track into the electric eye, where it produces a
tiny electric current. The current is amplified and
used to run an electromagnet. The electromagnet
keeps an electric clock switched off. When the light
is obstructed, the electromagnet releases the clock
and lets it run. The truck carries a long strip of
cardboard which obstructs the light while the truck
carries it past. Thus the clock runs while the truck
is passing the electric eye at A, and records the time
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Efectrical scheme for clock
amfege A same as for B o —-o

- ——————

clock for A
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Lankern

Fic. 1-7. EXPERIMENTAL ARRANGEMENT: measuring acceleration of model truck running down hill, with two electric
eyes and three electric clocks. (Clock C for total travel-time not shown, operated by hand.)

taken for the card-length to travel past. In this time,
the truck must travel the card-length. Then

CARD LENGTH,/OBSTRUCTION TIME

gives the truck’s speed.

We need three clocks, one to measure the total
time between the two stations A and B where the
speeds are estimated, one to measure obstruction
time for the card passing A, and another for similar
measurements at B. The following problem illus-
trates the calculation of the acceleration.

PROBLEM 11

Suppose the card on the truck is 2 feet long, and the ob-
struction at A takes 0.30 seconds. What is the truck’s speed
when running past A? If the obstruction at B takes 0.10 sec-
onds, what is the truck's speed there? What is the gain of
speed, Av? If the truck takes 2.0 seconds to travel from
A to B, what is its acceleration?

Nothing is said in Problem 11 about starting from
rest. The truck is already moving when it passes A,
and we can start it with any shove we like before
that. So we can repeat the experiment with a variety
of starting speeds. We can even start the car with
an uphill shove so that it is moving backwards when
it first passes A; but then we must be careful about
-+ and — signs. The measurements tell us the ac-
celeration whatever the starting speed. Whether the
acceleration is the same for different starting speeds
is a question about nature. To answer that you must
see the real experiment.

In laboratory, you may experiment with a wheel
rolling down sloping rails. You cannot easily meas-
ure the acceleration directly, or the (increasing)

velocity. Instead you should measure pIsSTANCE TRAV-
ELLED and TIME TAKEN, from rest, and then test
whether they fit with the relation

DISTANCE varies directly as (TIME)®.

When you have collected reliable measurements,
you should make the test both by arithmetic and by
graph plotting.

Example of an Accelerated Motion Experiment

Meanwhile we shall proceed with a fictitious case
of constant acceleration. Suppose measurements on
a moving body gave the following results:

TABLE 1

DISTANCE TRAVELLED

from starting point TIME TAKEN FOR TRAVEL

(feet) (seconds)
0 0
2 5.1 54 50 5.3
8 101 103 96 104
18 156 150 159 155

These measurements are too few and too poorly
spaced for a good test, but will suffice for illustra-
tion. The four measurements 5.1, 5.4, 5.0, 5.3 are the
result of four attempts to time the motion for 2 ft
from start. Averaging is likely to remove some
chance errors—though some errors may remain,
such as the effect of impatient stopping of the watch
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too early. So we average these; we add them, and
divide by 4:

(5.1 + 54 + 5.0 4 5.3)

average time = =
4

20.8
—— = 5.2 secs

Treating the other timings similarly we can make
this table.*”

TABLE 2

DISTANCE TRAVELLED AVERAGE OF TIMINGS

from starting point TIME OF TRAVEL
(feet) (secs)
0 0
2 5.2
8 10.1
18 15.5

A glance at these numbers tells us that the times do
not increase in proportion to the distances. Plotting
the values on Graph (a) tells us the same thing. The
graph shows clearly that the body is covering
ground faster and faster, i.e., accelerating. It does
not tell us whether the acceleration is constant.?®
To test that we plot a different graph, which will
give a straight line if the acceleration is constant.
We get a hint of what to plot by assuming constant
acceleration and deducing DISTANCE « TIME?, which
suggests we should plot pISTANCE against (TIME)®.
We make Table (3).

27 A sensible experimenter in a real laboratory would save
trouble by combining the two tables. He would leave a spare
column for “average time” in his first table. If he foresaw the
need for Table 3 he would leave another column for TIMEZ.
Even if he foresaw no need, an experienced experimenter
would leave some blank columns, and blank lines below 18,
for possible later use.

28 We can make an indirect test by drawing tangents to
the graph. See next section.
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TABLE 3
DISTANCE
TRAVELLED AVERAGE OF
from starting TIMINGS,
point, TIME OF TRAVEL  ( TIME OF TRAVEL )?
s t t
(feet) (secs) (secs)*
0 0 0
2 5.2 27
8 10.1 102
18 15.5 240

Then we plot Graph (b). To see whether the ac-
celeration is constant, we draw a “best” straight line
through the origin. We deliberately draw it straight,
as a test, but we try to make it pass “as near as pos-
sible to as many as possible” of the plotted points.
In this example, the points lie close to a straight line.
If we think their displacements from the line are
genuinely accountable by the incompetence of our
apparatus, then we say that so far as we can tell
from our measurements, the motion may well have
constant acceleration.

Very Honest Graphing: Showing
Likely Experimental Errors

If we wish to be more outspoken about our experi-
mental uncertainties, we may spread each plotted
point out into a patch to exhibit uncertainties of
timing and distance measurement. Graph (c) in
Fig. 1-10 shows this, with black points given by
measurements surrounded by grey uncertainty
patches. The timing is more risky than the distance
measurement, so each patch is wider than it is tall.

Since we do not know how big our errors are but
only how big they are likely to be, each patch should
extend an indefinite distance out from its point; but
we should show that the outer regions represent
very unlikely errors. This might be done by shading

A
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Units for Acceleration

Return to the definition of acceleration to look for
its units directly;

Av, measured in velocity-units, e.g., feet/second

a =
At, measured in time-units, eg, seconds

— acceleration measured in acceleration-units,

ft/sec
7 sec
Thus we expect to measure

ft/sec

acceleration in units such as , which we write

sec
ft/sec/sec or ft/sec?,

The Use of “per” in Science

The word “per” is of great use in science. We
started using it above to mean “divided by” or “for
each . . .,” as it does in ordinary arithmetic. Later
we shall concentrate on a different aspect of its
meaning, when it is used for ratio or proportion.

In arithmetic we divide 10 cents by 5 and get
2 cents. Or we divide 10 sheep by 5 sheep, and get
2 flocks. We feel doubtful about dividing 10 sheep
by 5 cents—we object that they are different kinds
of thing. But sometimes we do divide one kind of
thing by another; such as 10 cents divided by 5 boys,
which gives a pocket-money proportion of 2 cents
per boy. Again, 60 cents divided by a dozen oranges
gives a PRICE of 5 cents per orange. In science we
often make divisions like these, and we preserve
the truth by preserving the units as well as the
number in the answer. If a beetle crawls steadily
10 feet in 2 hours, we can say “10 feet divided by 2
hours, or 10 feet/2 hours gives 5 feet per hour.” The
answer shows the distance it crawls in each hour,
but the statement does not restrict the beetle to one
hour’s travel. It applies to % hour, % hour, 1% hours,
perhaps 2% hours. But it also applies to very short
time intervals; the beetle can still have a speed of
5 feet per hour during a few seconds. We can, in
imagination, shorten the time interval more and
more, and still picture the beetle moving 5 feet per
hour. In the limit, we speak of the beetle having a
speed of 5 feet per hour at some particular instant.
This is a new idea, speed at an instant of time, at a
certain mark on the clock. We can no longer divide
a distance by a time—zero divided by zero is mean-
ingless—yet a speedometer can register 5 feet per
hour at an instant. True, a real beetle moves un-
evenly, but we can easily imagine an ideal one
moving smoothly. Then the unit “one foot per hour”
is no longer the result of division, but a thing-of-
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itself, a unit of rate; and the speed, 5 feet per hour,
is a rate, a limiting value, glimpsed at an instant.

Mathematical limits appear in physics as well as
calculus—which is the algebra of calculating limits.
To understand the essential idea of a limit look at
the sum to many terms of the series: 1, %, %, %,
%6, . . .. The sum of the first two terms is 1%; of
three terms 134; of ten terms 15'%12; &c. However
far you go, the sum is never quite 2, but you can
get as near as you like to 2 by taking enough terms.
(Notice that the sum always falls short of 2 by just
the last term that is included; so you can make that
failure as small as you like.) So we say 2 is the limit
of the sum of many terms. You met a limit in
tangent-slope, the limit of the slope of a chord
through two points on a graph.

Until this century, physics dealt with many smooth
ratios, such as speed, density, illumination. But now,
much as we find a real beetle’s speed uneven, we
find many physical quantities jumpy or chunky; we
cannot reduce them smoothly to limiting values. As
an obvious example consider the ratio mass/volume,
which we call density. We can divide the mass of a
large chunk of aluminum by its volume, or the mass
of a small chunk by its volume, obtaining the same
density. But if we try to push our determination of
density to the limit of smaller and smaller samples
we are stopped when we meet a single atom. What
ratios in physics can be pushed to the mathematical
limit? What things are not “atomic™ This is a ques-
tion worth watching, to which we shall return at the
very end of the course.

At present, you should take “per,” or the sign /
used for it, to mean “divided by” or “for each,” but
you should think about letting it take its place in
the idea of a ratio.

Scientific Units

In ordinary life, we measure speeds in feet per
second or in miles per hour, and engineers often use
these units. We express accelerations in feet/second
per second, or sometimes in stranger units such as
miles/hour per second. But scientists all over the
world have agreed to use the metric system of units
in their measurements, and we shall use one version
of this, the Meter-Kilogram-Second system. In this
“MKS” system, lengths and distances are measured
in meters instead of feet, masses of stuff in kilograms
instead of pounds, and times in seconds. A meter is
almost 10% longer than a yard, its exact length being
defined by a bar of fireproof metal which is carefully
preserved, with copies in standardizing laboratories
throughout the world. A kilogram is roughly 2.2
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TABLE oF UNITS AND ABBREVIATIONS

Ordinary system

Metric system used by scientists

used by householders ~ MKS system  CGS system (in
and engineers used in this  common scientific
(FPS system) course use; not used in
this course)
Length foot (ft) meter (m.) centimeter (cm)
Mass pound (Ib) kilogram (kg) gram (gm)
Time second (sec) second (sec) second (sec)

ConversioNn FAcToRs

1 foot = 12 inches

1 meter —= 100 centimeters
= 1000 millimeters

1 inch = 2.540 centimeters — 0.02540 meters

1 foot = 0.3048 meter

1 pound = 454 grams = 0.454 kilogram

pounds, 10% more than 2 pounds. It is defined by a
standard lump of fireproof metal. A meter is sub-
divided into 100 centimeters, each about a finger-
breadth, and a kilogram is subdivided into 1000
grams, each about %s ounce. Though many science
courses use centimeters and grams, we shall follow
the new fashion and use meters and kilograms, to
make it easier to understand electrical units such as
amps and volts. Scientists write m. as an abbrevi-
ation for meter or meters, but as this is easily con-
fused with an algebra symbol m for mass, it is better
to write it in full as meter(s). We write kg as an
abbreviation for kilograms.

The gram was originally made of such size that
one cubic centimeter of water weighs one gram.
This gives the density of water, mass/volume, the
useful value 1.00 gram per cubic centimeter (useful,
but misleading because it can be left out so harm-
lessly). The density of water is not 1.00 kilogram
per cubic meter. Nor is it 1 pound per cubic foot.
If you make a hollow box with internal dimensions
1ft X 1t X 1ft, you will find it holds 62.4 pounds
of water. The density of water is therefore:

62.4 pounds per cubic foot,
or 1.00 grams per cubic centimeter,
or..?..kilograms per cubic meter.

In our scientific MKS system we measure speeds
in meters/second, accelerations in meters/second
per second. The acceleration in the example above,

1 meter = 39.37 inches
~ 1.1 yards

1 kilogram ~ 2.2 pounds

0.076 feet/sec per sec, is the same as about
0.076 X 0.3 meters/sec per sec
since each foot is about 0.3 meter.

Acceleration of Free Fall

For free fall, the acceleration can be measured.
To show that the acceleration is constant as a body
falls faster and faster is difficult, though of course
it can be done with modern timing apparatus, some
of which can measure to one-millionth of a second.
If we assume the acceleration is constant, then it is
fairly easy to measure its value by timing free fall
for one known distance from rest and using the
relation s — %at®. This leads to a = 2s/t%. As a
reminder that we are dealing with a characteristic
constant acceleration “due to gravity,” we label this
particular acceleration “g” and write g = 2s/t%.
Using experimental values of s and ¢ we can com-
pute g. However, air friction limits the accuracy; it
is difficult to make sure that we start the timing just
when the falling body starts from rest, and the time
of fall itself is a very short one; so such measure-
ments do not give an accurate value of g. Yet we
need to know g accurately for a number of uses in
physics. Could we possibly eliminate the effects of
friction? And could we lump together many falls,
say several thousand, and measure the total time
for the whole bunch to obtain the time for one fall
with greater accuracy? These look like hopeless
ambitions. Yet they can be achieved in a simple,
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easy experiment which Galileo foreshadowed, and
which you will meet.

Measurements give a value about 9.8 meters/sec?
for g, or 32.2 ft/sec?. For ordinary calculations, 32
ft/sec? will suffice: accurate within 1%.

At the Equator, g is slightly smaller; and at the
North Pole g is slightly greater.

Force and Acceleration

We think of a falling body as being pulled down
by a force which we call its weight. To hold a body
suspended we must support its full weight. If we
cut the suspending cord we imagine the weight
still acting, now unopposed by our supporting pull.
If we suppose the body’s weight remains constant
while the body is falling, we may picture this con-
stant force “causing” the constant acceleration of
free fall. Trucks running down a slope have a smaller
acceleration, a fraction of g; but only a fraction of
their weight is available to pull them down along
the slope. Later you will find what this fraction is.
It depends on the slope of the hill. If you knew this
fraction, you could follow Galileo in comparing
downhill Force and downhill acceLErRaTION. What
kind of relation would you expect®® to find between
the force and the acceleration? You can see how
early experimenters like Galileo could guess at it by
studying falling and rolling bodies. That relation,
to be discussed soon, is a very important piece of
physics, a basic relation governing the motion of
stars and the action of atoms, one of obvious im-
portance in engineering.

While looking forward to discussing force and
acceleration, we will end on a note of doubt. How do
you know the weight of a body pulls it while it is
falling freely? When you sit on a chair you feel the
supporting force of the chair, and you believe you
feel your own weight. But if you jump out of a
window, do you feel your weight while you are
falling? Suppose you jump out of a window with
a lump of metal in your hand and try to weigh the
lump as you fall. To make the temporary laboratory
more comfortable, for a time, suppose you and the
lump and the weighing apparatus are enclosed in a
vast box which has been dropped from a tower and
is falling freely. Suppose the box has no windows.
When you release the lead lump inside the box,
will it fall to the floor? If you think about this, you
will see that gravity will seem to have disappeared.
Can you possibly tell whether gravity has really

29 Do we mean “expect” or “hope”? If expect, on what
basis? If hope, is this scientific or not?
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disappeared or whether your laboratory is acceler-
ating downwards? If you cannot tell the difference,
is there any difference? Discussion of these questions
would lead you towards the Theory of Relativity.

PROBLEMS FOR CHAPTER 1

1-6. These are at the beginning of the chapter.
7-11. These are in the text of Chapter 1.

% 12. METHODS

Write a short note distinguishing between inductive and
deductive methods.

% 13. YOUR PRESENT VIEWS

Write a short note (1 page to 2 pages) saying what you
think are (or should be) the parts played by experiment and
theory in a science like Physics. (Note: At this stage of the
course we do not expect you to know all the answers to ques-
tions like this. Later you should know more of them. So we
ask you now just to write some general comments stating
your present views. Please do not extract some complicated
statements from a book.

14, EXPLANATIONS

(a) How would Aristotelians explain the rising of a helium
balloon?
(b) How would modern scientists explain it?

15. DENSITIES

(a

—

Look up the relative densities of gold, silver, aluminum,
brass, stone, iron, and wood in reference tables (often
at the end of physics books).

(b) Why did Newton use a gold guinea?

16. SCIENTIFIC WRITING

(a) Write a short essay, (half a page at most), giving your
answers to the following questions:

(i) Do you consider it good scientific writing to use long
words wherever possible?

(ii) Why do you suppose people who are trying to imitate
a scientist tend to use long words?

(iii) Do you consider it good scientific writing to avoid
long technical words?

(b) Rewrite the following passage, replacing long words by
suitable shorter ones wherever you can: ‘‘Henderson
conducted considerable experimentation concerning the
relationship between superficial area and electrical charge
of aqueous solutions atomized into numerous spherical
particles of microscopic dimensions. He theorized that
the phenomenon of electrification was attributable to
friction.”

(c) Rewrite the following passage replacing a word by its
technical equivalent wherever you feel that the change
would make the passage more scientific: ‘“When the
r.p.m. of the fan is pepped up, the atoms of air whiz
down the tube at a great rate of speed; and when they
hit the thermometer its mercury rises and registers more
degrees of heat.”

17. Do you agree with Bernard Cohen’s remark on page
82 Is it a mistake? Discuss briefly.

18. In the discussion of mass it is stated that ’. . . gravita-
tional pulls are exactly proportional to the amounts of
stuff being pulled.” On what piece of experimental
knowledge is this statement based?

19. Suppose on a certain (fictitious) island it is a custom
for each member of a family to give a small present to
every other member of his family, and a present to him-
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self as well, on New Year’s Day. Suppose this custom is
followed in every family, and that each present costs the
same amount of money.

(a) How will the total expenditure of any one family be
related to the number of members in it? (Find this
empirically, that is, by trial and error, if you like.)

(b) Sketch a graph showing total cost plotted upward
against number of members in the family.

() What graph do you suggest plotting, using these
things, to obtain a straight line?

% 20. IMPORTANT PUZZLE

When a ball is thrown vertically upward, it continues up
until it reaches a certain point, then falls down again. At
that highest point it stops momentarily and is not moving up
or down.

(a) Is it accelerating at that point?

(b) Give reasons for your answer to (a). (Hint: See Problem
21.)

(c) Devise an experiment (given any apparatus you need) to
find out whether it is accelerating at that point.

% 21. PROBLEM TO HELP SOLVE PUZZLE

A man leans out of a window high above the ground, and
throws a ball vertically up. The ball rises till it is about 30
feet above the man, then falls. (See Fig. 1-13.)
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(a) Give a short description of the motion of the ball, as seen
by the man, A.

(b) At the instant that the man throws the ball, an elevator
running up the outside of the building is passing the win-
dow with the same upward speed that the man gives the
ball. The elevator continues upward with constant speed,
carrying an observer, B, who watches the ball. Describe
the motion of the ball as seen by B (who forgets that he
is moving, and thinks that all the motion he observes be-
longs to the ball).

(c) Another elevator runs beside the first carrying an ob-
server, C, steadily upward, with smaller constant speed.
C is just passing the window when the man throws the
ball. Describe C’s observations of the motion of the ball.

(d) In the light of your answers to (a), (b), (c), comment on
the puzzle of Problem 20. (Note that A, B, C all agree
that the ball has the usual decelerated and accelerated
motions, but they disagree in one respect.)

% 22. DEMONSTRATING CONSTANT ACCELERATION

A lecturer wishing to demonstrate the constant accelera-
tion of free fall drops a chain of lead lumps down a stairwell
and asks his audience to listen to the sounds of them hitting
a metal tray at the bottom. He makes one such chain by
tying quarter-pound lumps of lead to a light string every foot
along the string. Then holding the string so that the lowest
lump is just on the ground, he has lumps 1 ft, 2, 3, 4 ft, and
so on, from the ground. When he releases the string the
lumps hit the ground with a tattoo of increasing frequency.

(a) What does this tell the audience about the motion of
falling bodies?

(b) The lecturer wishes to test for constant acceleration by
arranging the lumps unevenly on the string in such a
way that if the acceleration is constant the audience will
hear an evenly spaced tattoo. He ties one lump to the
bottom of the string on the ground, the next 1 ft above
the ground. Where should he tie the next five lumps?
(See Fig. 1-14.)

23. HISTORY

Read Galileo’s description of his own experiment on ac-
celerated motion (available in Magie's Source Book in Physics,
New York, 1935) and write a short account of it. Indicate
the apparatus he used and the results he got.

(a)

(b) (c)
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% 24, ERROR-BOXES ON GRAPH

A student, S, making an experimental investigation finds
when he plots a graph of his measurements that his points
do not lie on a straight line as he hoped. However, they are
fairly near a “’best straight line,” and he knows his measure-
ments are ligble to some small errors. So he draws lines as
""error-boxes” through each point on his graph. He finds that
even the error-boxes miss his best line in several cases. He
is, therefore, tempted to change his error-boxes (a) by mak-
ing all of them taller or (b) by making some of them taller
or (c) by sliding them up or down through each point until
they hit the line.

Is any of the changes (a) or (b) or (c) a wise one for a
scientist to make? Discuss with student S what he is really
saying about his experiment in each case, (a), (b), (c).
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% 25. MKS UNITS

(a) Make a rough estimate of your height in meters.

(b) What do you weigh in kilograms?

(c) What is the width of this page in meters?

(d) What is the thickness of a page of this book in meters?

(e) Explain how you made the estimate asked for in (d)
without using any special micrometer gauge.

(f) Atomic scientists find molecules and atoms so small that
they like to use a much smaller unit than a meter for
measuring them. They use an “’Angstrom Unit,” which
is one ten-billionth of a meter or 1071 meter. What is
the thickness of this page, in A.U.?

(g) Most atoms are a few A.U. in diameter, say 3 A.U. How
many atoms thick (roughly) is this page?

Y 26. DENSITIES IN MKS UNITS (Learn these values)

(a) What is the density of water in kilograms/cubic meter?

(b) Show the reasoning by which the answer to (a) can be
obtained from the data in Chapter 1.

(c) Lead has a "specific gravity’ of about 10. This means
its density is 10 times that of water. What is the density
of lead on the MKS system of units?

(d) Olive cil has a specific gravity of about 0.8. What does
this mean?

(e) What is the density of olive cil in the MKS system?

(f) The specific gravity of mercury is 13.6. The atmosphere
presses on each square inch of table, chair, our bodies,
walls, . . . etc. with a force that can balance a column
of mercury of cross-section 1 sq. inch and height about
30 inches. That is the “height of the barometer” in
which mercury with a vacuum above it inside balances
atmospheric pressure outside. What would be the height
of a water barometer?

% 27. A USEFUL CONVERSION FACTOR
Show that 60 miles/hour — 88 ft/sec.

28. A SPECIMEN ACCELERATED MOTION

The motor of a certain elevator gives it an upward ac-
celeration of 150 ft/min/sec. The elevator starts from rest,
accelerates thus for 2 secs, then continues steadily with
constant speed.

(a) Explain what this statement of acceleration means.

(b) What is the final speed after 2 secs?

(c) Calculate the speed after 0 sec, 0.5 sec, 1 sec, 1.5 secs,
2, 3, 4, 5 secs. Sketch a rough graph showing speed
(upward) against time from start (along), for the first
5 seconds.

(d) How far has the elevator risen 1 second from the start?
How far has it risen 2 secs, 3 secs, 4 secs, from the start?
Sketch a rough graph of distance against time.

% 29. CALCULUS STATEMENTS

In this question, v is a symbol for speed or velocity; a is a
symbol for acceleration, t for time.

(a) What does Av mean?

(b) What does the statement “"Av/At = constant”’ mean?

(c) What does the statement “Aa/At = constant’’ mean?
(Make an intelligent guess.)
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30. FORMAL LOGIC*

Here is an example of a syllogism, a type of perfect de-
duction—too restricted to be much use in science but an
important part of classical logic.

(1) All dogs have 4 legs.
zation)
(2) Fido is a dog. (the “‘minor premise’’)
(3) .". Fido has 4 legs. (the conclusion)
These three steps involve three "“terms’’:
(a) 4-legged creatures (the major term, a large class)
(b) dogs (the middle term, a smaller class)
(c) Fido (the minor term, a member of a class)

The argument holds true if:
(c) falls wholly within the class (b) and (b) falls wholly within
the class (a). Then, (c) must fall within the class (a). A cor-
responding argument can be carried out if (c) falls wholly
within (b) but (b) falls wholly outside (a). Then (c) must fall
outside (a).

(the ““major premise,”’ a generali-
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The inference or conclusion drawn in a 'syllogism’’ may
be untrue

(i) because the major or minor premise is not true,

(i) because the reasoning is untrue, e.g., (b) falls partly
within (a),

(iii) because there is confusion of language, e.g., ambiguous
terms.

In each of the following examples there is something that
makes the conclusion untrue or at least unjustified. Point out
the defect in each case.

(A) All plums are vegetables.
This is a plum,
.". This is a vegetable.
(B) All poisons are harmful.
Sugar is a poison.
.". Sugar is harmful.
(C) All dogs are animals.
An antelope is an animal.
.". An antelope is a dog.
(D) All salts dissolve in water.
George is an old salt.
.". George dissolves in water.
(E) Caesar Augustus was a Roman Emperor.
Julius Caesar was a Roman general.
.". Julius Caesar was the uncle of Augustus.

* Drawn from “Clear Thinking” by R. W. Jepson (Longmans, Green
and Co., London, 1936).
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ments on falling bodies that distances and timings
agreed closely with the relation s « ¢, then you
could say that they agree with the relation pre-
dicted for constant acceleration. You could say that
falling bodies seem to move with constant accelera-
tion. In experiments on balls rolling down a plank,

Galileo found that distances and timings fitted fairly

well with the relation s « 2. So they agreed with

his prediction for constant acceleration.

Notice that the experiments do not prove the
formula is the right one for constant acceleration.
The formula itself is necessarily, logically, true for
any motion which does have fixed acceleration.
Experiments only show that the rolling motion, in
agreeing with the formula (probably) has constant
acceleration. When we compare experimental data
with the formula we can discover something about
nature.

Arriving at the formula involved the following
stages:

Definition of acceleration: We invented it, chose a
name, then used it.

Decision to think about motion with constant ac-
celeration. This is one of the many choices we
might have to try for real falling bodies. But,
once made, the decision enables us to proceed
with algebra. In making this decision we are not
discovering anything about nature.

Algebra: A logical sausage-making machine. Mathe-
matics cannot manufacture scientific facts, though
it may help us to discover them.

Common-sense assumption that the proper © to use
is (v, + v)/2. The risk in this can be avoided by
Galileo’s geometry (Problem 1), or by a calculus
investigation, which would justify it for fixed
acceleration.

Algebra again

Result: A useful relationship, deduced from our
assumptions, useful in experimental tests.

(4) v*=v>+2as [This is a form which
we shall not need for
a long time yet. This
section may be post-
poned till it is needed.]
We can use further algebra, a few more turns of
the sausage machine, to change the formulas to
other forms. We already have three relations:

(1) involving v, v,, a, t, but not distance, s;

(2) involving s, v, v,, t, but not acceleration, a;

(3) involving s, v, a, t, but not final speed, v.
Later we shall want a relation expressing v in terms
of v,, a, s, but not involving the time ¢ explicitly.
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Since we want it without ¢, we obtain it from any
two of the earlier relations by eliminating . For ex-
ample, we can use (1) and (3). Then v = v, + at

(v—1,)

gives t = and we substitute this in

s = v,t - Y%at®
Then: S:vﬂ[u]_l_%a I:(i_-_?ﬁ];
a a

Will this lead to the formula (4) quoted above?
Yes, if you use courage and algebra. You will have
to square and cross-multiply and rearrange and
simplify. The work will be clumsy and messy, but
the final expression for v* will be v, 4 2 as. Try it,
if you like.

The professional mathematician has a strong
poetic sense of form in his own language of mathe-
matics and he would consider the method above
horribly clumsy. He would say, “Here is a more
elegant derivation . . .” and would produce the
answer quickly and neatly. Non-mathematicians
who see him do this are mystified by his superior
knowledge, and may be annoyed by the magical
atmosphere. The real story is a sordid one. The
mathematician is quite human, and feels his way in
several trials, like any other explorer—though in
simple problems his exploring may have all been
done before and stored in his mind as “mathe-
matical common sense.” When he has found the
answer by any method, clumsy or not, he may try
working backwards from it to find a neat method
of deriving it, like a mountaineer seeking a better
path. There is no sin in this, but then he often
forgets to tell the layman about the previous work,
and startles him by producing the elegant method
out of his hat. Let us try such an analytical search,
thinking aloud as we go. The answer we want is
v? =v,? + 2as, so far obtained by algebraic drudg-
ery. Try to undo it. Does it look as if it could be
twisted or changed easily by algebra? Does it sim-
plify or split up in any obvious way? No. Then we
must push it around. Try shifting something across
the —. Then we can have v — v,2 = 2as. Is this
easily attacked by algebra? Yes, the left hand side
is an old friend, with factors (v 4v,) (v —1v,).
We could manufacture it from those factors if we
could obtain them separately from somewhere.
Where have we seen (v -+ v,) before? In the rela-
tion (2), s = % (v 4+ v,)t. Then v + v, = 2s/t.
Where have we seen (v — v,)? In the definition of
acceleration, which we wrote a = (v—v,)/t.
Therefore, (v — v,) = at. Now we want v* — v,?%,
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which we can get by multiplying (v 4 v,) and
(v —1v,). We do this, using (v +v,) =25/t and
(v—v,) =at.

(04 0,) (0—10,) = (25/t) (at)

.. v®— v, = 2as, which leads to the form we
want. Now, having found the method by analysis,
we erase the details of our search and start afresh,
thus:

To derive v*=v,* 4 2as by an elegant method,
start with the definition of acceleration,

a= (v—uv,)/t,
and with the formula for distance travelled in
terms of average speed, s =% (v +uv,)¢t, and just
multiply these two equations together, obtaining
a-s="%(v*—uv,*) which reduces to

v2=10,2+ 2as

Here, then, are four relations between v, v,, a, s,
and £.

v=uv, + at s=¥% (v} uv,)t

v =10+ 2as
They provide a quick way of calculating the value

of any one of these quantities, given the values of
three others.

s = vyt + Y at®

Algebra Yields Net Distance

The numerical values must be given appropriate
+ and — signs. For example, if the initial velocity
is 6 ft/sec eastward and the acceleration 2 ft/
sec/sec eastward, we can say v, = +6 and a = +4-2.
However, if v, is 6 ft/sec eastward but the accelera-
tion is in the opposite direction, 2 ft/sec/sec west-
ward, then one of them must have a minus value.
If we say v, = +6 we must say a = —2, using +
signs for eastward velocities, accelerations and
travel-distances, and — signs for westward ones.
Then s is the net distance travelled in time #, not
the arithmetic sum of westward and eastward
travels. This is because in calculating each part of
the trip the algebra will give + sign to eastward
travels and — sign to westward ones and in adding
up these + and — parts to find s the algebra will
give the net difference. With v, = +6 and a = —2
the motion is decelerated: slower and slower for-
ward for 3 secs, then at rest, then faster and faster
backward. In 5 seconds it will show a path like
Fig. 1-17, with 9 ft forward travel, then 4 ft back-
ward, giving a net travel 5 ft.

Algebra gives:

s = ot + %at? = (+6)(5) + % (—2)(5)?
=30 — 25 =5 ft.
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Fic. 1-17. § 1s NET DISTANCE

Thus s always gives the net distance from start to
finish.

These useful relations are tools, not vital pieces
of science. They are absolutely true for motion with
constant acceleration, and they are not reliable for
other motions. Only experiment can tell us where
they apply in the real world.

PROBLEMS FOR APPENDIX A
% A-1. NON CALCULUS PROOF

Galileo, lacking the help of calculus and preferring geome-
try to algebra, dealt with uniformly accelerated motion as
follows: Imagine a graph with time plotted along and velocity
of a moving body plotted upwards. If the body has constant
acceleration, its velocity must increase steadily as time goes
on. The graph must be a straight line. It will not necessarily
pass through the origin, but will start at the initial velocity,
ve when time is zero, and run up to some value v at time t.

()

Fic. 1-18. GaLmeo’s Proor

Now consider what happens in some very short interval of
time At, when the velocity is, say, vi. (Of course v is increas-
ing, but we can take vi as the average during short At.) Then
the body moves a distance [(v1) * (At)] in that time. But on
the graph [(v1) * (At)] is the [height « width] of the small pillar
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resting on At and running up to the graph-line. It is the area
of that pillar, shaded in sketch (i),

Therefore, the total distance covered is given by the total
area of all such pillars—i.e., the shaded area in sketch (ii).

(a) If in sketch (ii) the heights of this patch at its edges are
vo and v as marked, and the base is time t, what expres-

sion gives the area? (Outline your geometrical argument
briefly.)

(b

—

If the heights at the edges are vo and v, 4+ at (which fol-
lows from the definition of acceleration), what expression
gives the area? (Outline your argument briefly.)

(c) Write the results of (a) and (b) as expressions for s the
distance covered by the body in time t.

(d

—

Now suppose the acceleration is not constant but starts
with a smaller value, rising to a greater one, so that the
velocity still changes from v; to v in time t, but not
steadily. (i) Sketch the new graph picture. (ii) Will the
expressions from (a) and (b) apply now? (iii) What weak-
ness in the earlier algebraic discussion in Appendix A
has now been removed?

% A-2. CALCULUS PROOF

In the limit, velocity, v, is rate-of-change of distance,
ds/dt, and acceleration, a, is rate-of-change of velocity
dv d [ds d*s
— or — | — J or — + Show that if a is constant, each
dt dt (dt dt’
of the following is true:

(i) dv/dt = a integrates to v = vo + at

(where v, is a constant, the value of v at time t = Q)
(i) v = vo 4+ at integrates to s = wt 4 tat*

(Hint: remember v = ds/dt.)
(i) dv/dt = a integrates to v’ = vo° + 2as

(Hint: try multiplying both sides by v.)

} r
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Fic. 1-19. ProBLEM A-3, parts a, b, and ¢

A-3. GRAPHS OF MOTION

Fig. 1-19 shows an arrangement of three time-graphs for
the motion of an object along a straight track. Graph |
shows distance plotted against time; graph |l velocity against
time; graph lll acceleration against time. They are drawn
with matching time-scales. The graphs sketched relate to an
object moving with constant acceleration, starting at s = 0
(shown by A) and velocity v = O (shown by B) at t = 0. In
graphs for more complicated motions, all three lines may be
curved.

(a) In the general case of any motion, one or more of the
graphs can be derived from another of the three by
tangent slopes. Which one(s)? Explain why.

(b) In the general case, one or more of the graphs can be
derived from another of the three by measuring areas
under the curve. Which one(s)? Explain why.

(c) A motorcycle policeman starts from rest, accelerates
15 ft/sec® for 6 secs; runs at constant velocity for 10
secs; then skids to a stop in 4 secs, with constant de-
celeration. Sketch a trio of graphs |, I, 1ll, for his motion.

szou'.bj

Tume

F1c. 1-20. ProBLEM A-3, part d

Acceleration

! Time

Fic. 1-21. ProBLEM A-3, part e

Distnnce

N\

Fic. 1-22. ProBLEM A-3, part f

(d) Fig. 1-20 shows graph Il for the motion of a car. Copy
it and add sketches of graphs | and Ill.

(e) Fig. 1-21 shows graph Ill for the motion of a truck. Copy
it and add sketches of graphs | and Il.

(f) Fig. 1-22 shows graph | for the motion of the bob of a
long pendulum along its almost-straight path. Copy it
and add sketches of graphs Il and lll. (Difficult: Deserves
careful guessing.)
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APPENDIX B - “g”

Measurement of “g”

We have glibly announced the value of “g” as
9.8 meters/sec? (or 32 ft/sec?), but this came from
laboratory measurements. You will use it for simple
calculations concerning falling bodies, and for
important calculations of forces when you treat “g”
as gravitational field-strength. “g” is such a useful
quantity that you should see its value measured
before you use it. You could make a very rough
estimate with a stone and a stopwatch and a meter-
stick.

PROBLEM B-1. ROUGH MEASUREMENT OF “g"

An experimenter drops a big stone from a 14th-story win-
dow and finds it takes “‘just over’” 3 seconds to reach the
ground. If the window is 150 ft from the ground,

(a) Make an estimate of “‘g.”’
(b) Taking 150 ft to be about 46 meters, estimate *'g" in
meters/sec’.

A better measurement can be made with an elec-
tric clock, as illustrated in Fig. 1-23, and you should
see some such demonstration. For very accurate
measurements you must wait for the promised

scheme which avoids friction and takes a group
of falls.

PROBLEM B-2. MORE ACCURATE MEASUREMENT
OF dlgfd'

A metal ball is allowed to fall from ceiling to floor. At the
ceiling it is held against two metal pins so that it makes an
electrical connection which prevents the electric clock from
starting. The ball is released abruptly, and the clock starts.

/ gl’egs

. Y Ball
clock

Lamp!

|
I
|
Suf’r%g e

Fic. 1-23. MEasuriNG “g

As it reaches the floor, the ball pushes two light metal plates

together, making another electrical connection which stops

the clock. In an actual experiment, the height of the fall was

7.00 meters from ceiling pegs to floor contacts, and the clock

recorded a time of 1.20 secs.

(a) Estimate the value of '‘g,” using these data.

(b) Say what assumptions you made in (a) concerning the
type of motion; the apparatus; the conduct of the experi-
ment. (Give details; avoid prim generalities such as “ap-
paratus accurate’ or “avoided personal error.”’)

[
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Values of “g” in various localities

&3

g” has been measured very precisely at a few
standard laboratories. Comparative measurements
have then provided accurate values of “g” at many
places all over the world.

New York Equator Pole

Value in meters/sec/sec 9.80267 9.780 9.832
Value in feet/sec/sec 32.16 32.09 32.26

For ordinary calculations, in problems or in experi-
ment-design, you should use the rough values
g = 9.8 meters/sec/sec, g = 32 ft/sec/sec.

Arithmetical Problems on Free Fall: Dissected
Problems

When you know the value of “g,” you can make
simple calculations about dropping stones, arrows
shot at monkeys, etc. Such calculations are occa-
sionally used by physicists in designing apparatus
or in dealing with some experiment, but they are
not important physics. Elementary textbooks and
examinations make much of them “because they
make accelerated motion clearer.” Students trained
to solve them mechanically may gain little but a
damaging prejudice that “physics consists of putting
numbers in the formulas.” We wish to avoid that
foolish picture of science, and we would not give
you such problems in this course except for two
reasons: (1) You may meet similar calculations,
that are important, in atomic physics; (2) They
will show you something important about the place
of mathematics in physics. For these two reasons
you should work through Problems B-3, 4, 5, and 6.
Even so, if earlier studies have made you a con-
vinced formula-monger you had better omit these
problems unless you are prepared to start with an
open mind.

Problems B-3 to B-6 have been dissected. You
should answer them step by step, on question
sheets reproduced from the small ones printed here.
This scheme—which you will meet several times in
the course—is intended to give you preliminary
help and teaching towards later problems to be
done on your own. Note that this insulting sim-
plicity is meant to help you with the mathematics
but not to save you from thinking out the physics
for yourself. As you work such problems you should
stop to notice that you are learning a method of
solving them, but you should then concentrate on
the physical results that emerge.
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CHAPTER

EASY PROBLEMS ON FREE FALL MOTION* (Neglect air
resistance)

* In working problems on acceler- v F)
ated motion, you will find it pays to
organize your information clearly, like Yo —5 ft/sec
a good engineer. A table like this is _© + 32 ft/sec/sec
worth making. Write your data in the s X
table, with ? where you seek informa- t 2 sec
tion, and X where you neither have v | X

it nor want it, (This specimen shows
the data and question in Problem B-10(a).) Then you can see which
algebraic relation will be useful. (In this example it must be the
one that does not contain s.)

B-8. A helicopter, remaining still above the ground, drops a
small mailbag. When the bag has fallen for 2 seconds:

(a) What is its speed?

(b) How far has it fallen?

% B-9. FREE FALL FROM MOVING OBJECT

A helicopter, falling steadily 5 ft/sec without acceleration,
releases a small mailbag. After 2 seconds:
(a) What is the speed of the bag?
(b) How far has it fallen?
{c) How far is it below the helicopter?

Y% B-10. A helicopter, rising steadily 5 ft/sec, releases a
small mailbag. After 2 seconds:

(a) What is the speed of the bag?

(b) How far has it fallen?

(c) How far is it below the helicopter?

Y B-11. FREE FALL FROM MOVING OBJECT
What common property is shown by the answers to Prob-
lems 8, 9, 10?

% B-12. IMPORTANT PROBLEM (Answer needed for later
problems)
A man standing on a shelf 4 ft above the floor steps off
and falls to the floor.
(a) How long does he take to fall?
(b) What is his speed just before landing?

% B-13. CAR BRAKES

A certain car with smooth tires on a wet road can have
an acceleration of 1/5 of ‘g’ but not more, (To accelerate,
the car must be pushed by some real, external, agent. The
agent is the road, pushing the car by friction. With these
tires, friction can provide up to g/5 acceleration but, if
asked to provide more, the wheels begin to slip and friction
falls to an even lower value, giving a smaller acceleration.)
(a) What speed will the car gain in 4 secs, with this maxi-

mum acceleration?
(b) How far can it travel from rest in 4 secs?

% B-14. CAR BRAKES AND SAFETY

A car with good brakes but smooth tires on a wet road can
have a deceleration of 1/5 of "’g’* but not more (see Problem
B-13). Discuss the stopping of this car by answering the fol-
lowing questions:

(a) Driving at 30 miles/hour (= 44 ft/sec) the driver takes
1 sec to react to danger, decide to stop and get the
brakes working; then he makes the brakes give maximum
deceleration.

(i) How far does he travel in the 1
braking?

How much time do the brakes then take to reduce

the speed from 30 miles/hour to zero?

How far does the car travel in the braking time?

How far does the car travel in the total time from

seeing the danger until stopped?

(b) If the car is travelling twice as fast, 60 miles/hour, how
far does it travel in the total time, as in (iv) above?

second before
(ii)

(iii)
(iv)

1

.
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(c) The car is travelling 30 miles/hour and the driver (after
1 second of thought, etc.) jams the brakes on so that the
tires skid, commanding less friction, giving a deceleration
of only g/8. How far does the car travel in coming to
rest? (Sliding friction in a skid is unable to provide such
a large maximum force as non-slip friction.)

With new tires on dry concrete, the car has maximum
deceleration g/2. (Friction of rubber on concrete can do
much better than that, but many a brake mechanism
can not.) Again calculate the total distance of stopping,
from 30 mi/hr.

B-15. “g” IN A MOVING LABORATORY

A portable timing apparatus can now be made to time free
fall of a few feet from rest accurately enough to give a value
of "'g"’ reliable within 19% or better. Suppose such an ap-
paratus gave g = 32 feet/sec’. What would you expect it
to give:

(a) If used in a railroad train running smoothly at fixed
speed along a level track? (Think what happens when
you drop something, say an orange, in a moving train.)
In an elevator moving downward at constant speed?
(Hint: Think . . .)

In an elevator falling freely after its cable has broken?
In elevator accelerating downward 16 ft/sec®? (Make
a bold guess.)

In an elevator accelerating up 16 ft/sec®?

(d)

(b)

(c)
(d)

(e)

MORE SIMPLE PROBLEMS ON FREE FALL

B-16. How long would it take a freely falling body to fall 400
feet from rest?

B-17. A ball is thrown upward with speed 80 ft/sec. How
high will it rise?

B-18. An explorer discovers a deep crevasse in a rocky
mountain. He drops a stone into it and 4 seconds later
he hears the sound of the stone hitting the bottom of
the crevasse.

(a) Estimate the depth.
(b) Comment on the accuracy of this method.
B-19. A stone thrown vertically upward with initial velocity

40 ft/sec takes 1 second to reach a bird.

(a) What is the vertical height of the bird above the
thrower?

(b) A time of 1.5 seconds gives the same answer for
the bird’s height. Give a physical reason for this
duplicity.

PROBLEMS ON APPARATUS OF PROBLEM B-2

B-20. Why is the lamp (or some other resistance) necessary
in the arrangement sketched in Problem B-2?

B-21. In the experiment of Problem B-2, the following
troubles may occur:
(a) The clock may lag a few tenths of a second in

starting.

(b) The clock may lag a few tenths of a second in
stopping.

(c) The pegs at the top, being compressed when the

ball is held there, may give the ball a small down-
ward shove when it is released.

Air friction may have an appreciable effect.

(i) For each of the troubles (a)-(d), say whether
it, operating alone, would make the estimated
value of “’g"* too big or too small; and give a
brief reason for your answer,

What would happen if (a) and (b} operated to-
gether, about equally?

Suggest experiments to test for each trouble,
(a)-(d). Describe them with sketches where
possible.

(d

=]

(ii)
(iii)



CHAPTER 2 - PROJECTILES: GEOMETRICAL ADDITION:
VECTORS
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“What hopes and fears does the scientific method imply for mankind? I do not think that
this is the right way to put that question. Whatever this tool in the hand of man will
produce depends entirely on the nature of the goals alive in this mankind. Once these
goals exist, the scientific method furnishes means to realize them. Yet it cannot furnish the
very goals. The scientific method itself would not have led anywhere, it would not even
have been born without a passionate striving for clear understanding.”

—A. EnstEIN, Out of My Later Years

B . T W e N e N A N e D T I T A N R A e A W N L W

Experiments

This chapter might start with crisp statements of
simple rules of projectile motion. Or you could
consult a modern textbook on “Ballistics, the science
of projectiles,” which would give you profuse infor-
mation and more abstruse rules. The text would
mention ancient prejudices only to sneer at them,
and tell you that Galileo’s simple rules are of little
use in modern gunnery. But with such a start you
would miss a share of the delight of the great
experimenters. Instead, please start with your own
experiments,

Throw stones or coins outwards and watch their
motion. Try this with a variety of objects ranging
from a heavy stone to a crumpled sheet of paper.
Try releasing two stones simultaneously, dropping
one to fall freely downward, projecting the other
horizontally. Make any other investigations and
comparisons that occur to you; and try to extract
simple rules or generalizations.

Watch a stone or baseball follow a curved path.
Labelling this curve a “parabola” is neither true nor
helpful at this stage. But it is good science to note
that the curve is almost symmetrical, like (a) in
Fig. 2-1, and unlike (b) or (c). This suggests that

o (a) (b) (c)

e = — e -

Fic. 2-1. PROJECTILE PATHS?

the motion in the downward half somehow matches
the motion in the upward half. Perhaps the upward
motion and downward motion take equal times—
a suggestion to be investigated directly.

A careful experimenter trying a series of materials
such as lead, stone, wood, cork, paper finds that
for the later members of that series (b) is nearer
the truth than (a).

As late as the 16th century, people believed the
traditional statement that heavier things fall faster
in proportion to their weight. And their beliefs
about the path of a projectile were stranger still.
It was said to be made up of three parts (see Fig.
2-2): (A) the violent motion (straight out un-
affected by gravity)'; (B) the “mixed motion™;
(C) the “natural motion” (where the bullet falls
splosh on the victim below ). You may see from your

Fic. 2-2. MepievaL IpeEa oF PrRoJECTILE PATH

own experiments with a ball of crumpled paper how
such an idea arose, and you can see why it was
foolish to apply it to dense and slow-moving cannon
balls. Air resistance and gravity were making a
confusing mixture. Galileo got rid of air resistance
by thinking out what would happen if it were
negligible. Cannon balls of his day moved so slowly
that air resistance did matter very little, and thus his
rules might have helped artillery men to hit their
mark. As usual, practical men took little notice of
scientists’ suggestions for a long time; and by the

1If you feel inclined to jeer at this ancient picture, you
should, as Lloyd Taylor suggested, ask your friends what
path the bullet from a modern rifle takes when it first leaves
the muzzle. Does it travel straight ahead, or does it begin
to fall at once?
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time Galileo’s theory was taken up by gunners it
had long been rendered useless by higher speeds.
Meanwhile Newton and others had produced more
useful theory which included air resistance. By now,
three centuries later, projectiles move so fast that
air resistance modifies their path tremendously.
Fig. 2-3 shows paths for a large high speed pro-
jectile, (a) the “ideal” path without air resistance,
as Galileo would have sketched it, (b) the actual
path in air for the same elevation and muzzle ve-

/
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Fic. 2-3. PatH oF A PROJECTILE

Curves (a) and (b) show paths of a projectile shot with
initial velocity 1 mile/second in a direction making
55.5° with horizontal. (From Science for the Citizen by
Lancelot Hogben; Allen and Unwin, London.)

locity. Modern ballistics involves much more mathe-
matics and even requires electronic-brain calcu-
lators to cope with the details of real problems.
These are matters of engineering or applied mathe-
matics which do not help our study of the growth
of mechanics. Here we shall keep to the simple case
of negligible air resistance.

Galileo tried to separate the up and down
(vertical) motion of a projectile from its horizontal
motion. Experiment vouches for this treatment by
showing that these two motions are independent.
Try this yourself. Throw one stone out horizontally
and at the same moment release another to fall

ss- o6

AB AB
[ L LN
} .
|
|
|
|

Fic. 2-4. ExpeRIMENTAL COMPARISON OF MOTIONS:

inferring the general result that falling stone
and projected stone keep level all the way.

vertically. They both hit the floor at the same in-
stant, Stone B moving in a curve has to fall the
same vertical distance to reach the floor as stone A
falling vertically. They take the same time. Do A
and B keep abreast at intermediate stages of their
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fall? You need not place special observers to sight
them at various levels. Instead, you can move the
floor up to catch them earlier and repeat the experi-
ment. Or, more easily, you can move the starting
point down nearer to the floor. If A and B arrive
at the same instant whatever height they start from,
you can say fairly that they keep abreast all the
way down. Notice how a series of experiments can
be used to replace a difficult complex of simul-
taneous observations. In trusting our inference from
such a set of experiments, we assume the “Uni-
formity of Nature.”

Demonstration Experiments

(1) Vertical and horizontal motions independent.
Fig. 2-5 shows a simple demonstration experiment
in which two metal balls are released by a small
spring gun to fall like A and B. You should watch
this experiment carefully, and ask to see it repeated
with a different height.

F1c. 2-5. DEMONSTRATION EXPERINENT.

The spring gun releases one ball to fall freely at the in-
stant that it projects another ball horizontally. A latch
releases the gun’s piston. The piston, driven by a com-
pressed spring, hits the second ball, which is restinl%
loosely on a support. The first ball has a hole in it whic
accommodates the other end of the piston until the
piston is released; then the first ball is left behind to
fall freely.

(2) Horizontal motion unchanging. A projectile
moves vertically with the acceleration of gravity
quite independently of its horizontal motion. How
does its horizontal motion behave? The symmetrical
path of a stone or ball suggests that it does not move
slower and slower horizontally, or the path would
be more like Fig. 2-1b. Galileo, revolting against
the medieval view that any motion needs a force
to keep it going—gravity, or demon or rush of air—
suggested that the horizontal motion just continues
unchanged, since there is no pull like gravity to
increase or decrease it. You will see in a later
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Fic. 2-6. ProjecTILE PATH: photographed with

regularly spaced flashes of light (after F. A. Saunders.)
Photo by A. Dockrill, University of Michigan.

chapter how he arrived at this by a theoretical
argument. For the moment, we can make a direct
test.? Fig. 2-6 shows a photograph of a ball thrown

2 You should see a demonstration of this. One beautiful
form uses a stream of water drops squirted from a pulsating
jet and illuminated by flashes of light which are repeated at
the same rate as the jet’s pulses. You may see this effect in
a movie film of a moving cart-wheel when the time between
one frame of the film and the next is just sufficient for the
wheel to turn through one spoke-angle; then the spokes “all
move on one” between frames and thus seem to be at rest in

L
Disc maerkes
W\ 20 revs/sec
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Fic. 2-7. StroBoscopiC ILLUMINATION OF A STREAM OF
WateR Drops. The drops emerge regularly, 120 a second,
from the pulsed water jet and are illuminated by flashes of
light, 120 a second.

MATTER, MOTION, AND FORCE

into the air and illuminated by a series of short
flashes of light, evenly spaced in time. Measure the
picture for yourself drawing in lines like A,B,, A,B,,
A,B,. You will find that the lines are evenly spaced:
AA, =A,A, =. .. etc. Therefore the ball moved
across steadily, moving neither faster nor slower
horizontally while it rose vertically slower and
slower then fell faster and faster. Once thrown, it
kept its horizontal motion unaltered.

Galileo recognized this property of moving things
and handed it on to Newton. For many centuries be-
fore him most scientists had insisted that steady mo-

the picture. The wheel then seems to skid along without
rotating. If the real wheel is made to move 10% faster (or the
camera is slowed) the wheel in the picture will seem to turn,
but only at about 1/10 of its true speed. Though this is a
nuisance in films, intermittent, or “stroboscopic,” illumina-
tion is often used in physics or engineering to “freeze” or
slow down the rapid motion of a series of similar things—
wheel spokes or water drops. Or it can be used to study a
single vibrating object which is repeating a motion rapidly
(e.g., a bell, or a violin string). Fig. 2-7 shows the arrange-
ment for water drops. Water is fed from a tank to a small
glass nozzle through a rubber pipe which is squeezed by an
electromagnet. The magnet, run by an alternating current,
squeezes the pipe 120 times a second (twice per cycle of
the A.C.) making the stream emerge in drops at a steady
rate, 120 a second. The stream is shadowed on a screen by
light from a small lantern. With steady illumination, the
stream looks continuous. But when a spinning shutter is inter-
posed, the flashes getting through show u% individual drops.
The shutter, a disc with a slit in it, can be spun by a syn-
chronous motor run on the same A.C. supply. Then the flashes
are synchronized with the drops and the pattern stays still.
A rectangular grid of wires can be shadowed as well, for
measurements.

As a simpler demonstration, balls or water drops can be
projected in front of a blackboard and the curve of their path
sketched and analyzed. Or you can try your own experiment,
rolling a ball with diluted gravity on a slanting table. See
Fig. 2-8.

Sloping plane on table

£%% o J\

Fic. 2-8. DEMONSTRATION AND ANALYSIS
of projectile motion with diluted gravity. A ball rolls across
and down a sloping plane, on carbon paper to mark its path,
Analysis: On the paper record, draw lines with x: = 2x,

xs = 313,

and so on.
Measure 1, 12, etc., and find out whether

12 = 2%y,

Ys = Szyl,

and so on.
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MEDIEVAL VIEW OF MOTION
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Fic. 2-9.

tion requires a force to keep it going. That ancient
idea appeals to common sense today. To keep a box
moving along the floor you have to shove; a car
running along the level uses gasoline for its engine
and the engine somehow provides a steady shoving
force. “If you leave a moving thing alone,” said the
ancients, “it will come to a stop.” But to Galileo
and Newton, a rough floor and blowing wind do
not leave a moving body alone; they exert forces
opposing the motion (what we call friction-forces
or air resistance). A massive cannon ball moving
slowly experiences only trivial resistance; it is al-
most being left alone, so far as horizontal motion is
concerned, and it keeps that motion. Hence the
new view of a moving body, that it possesses some-
thing intrinsic in its motion that keeps it going,
unless it is opposed. This something was called
“impetus” by some l4th-century thinkers in Paris

and Oxford. Their writings reached and influenced
Leonardo da Vinci by 1500 and Galileo by 1600—
if printing had been available, modern views on
motion might have spread three centuries before
Galileo. Impetus is a useful name for this quality
of a moving body, with a comfortable feeling of
“driving ahead” in our modern vocabulary. Later
we shall change the name to “momentum,” with a
more precise meaning. Note that neither word ex-
plains anything; at best they are suggestive labels,
reminders that a moving body carries its own mo-
tion with it and needs no maintaining push. Both
are Latin words meaning motion; a Latin dictionary
gives them different flavors.

Watching the motion of a cannon ball, Galileo
said the gun gives it impetus which it retains. The
horizontal part of this impetus remains unaltered.
The vertical part is changed by the pull of gravity

GALILEAN AND NEWTONIAN VIEW OF MOTION
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Experiment soon shows us this will not work
unless the separate journeys to be added are straight
ahead in the same direction. Then we see 4 ft due
North and 3 ft due North do make a total trip of
7 ft due North as in Fig. 2-15. (And, therefore a
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Fic. 2-15. AppiNng MoTioN IN SAME DIRecTIiON

speed of 4 ft/sec and a speed of 3 ft/sec both due
North do make a total speed of 7 ft/sec due North.
And 4 miles/hr plus 3 miles/hr both in the same
direction do make a total speed of 7 miles/hr.)
However, if the directions are different simple
arithmetic does not work. A trip of 4 ft due East
added to 3 ft due North does not make a trip of
7 ft. Nor does a speed 4 miles/hr due East plus
a speed 3 miles/hr due North make a speed of
7 miles/hr in any direction. To fit the facts of the
world, we have to use another kind of addition,
which we call geometrical addition. Common
sense—in this case simple knowledge accumulated
in crawling, walking, driving, sailing, etc.—sug-
gests how geometrical adding should be done.
Suppose you wish to add trips of 4 ft to the East
and 3 ft Northward, to find the single trip that
would carry you from the starting point to the
destination. Though it seems childish, try this for
yourself. Stand facing North with your feet to-
gether. Then try to make both these trips, i.e., step
four paces to the right and three paces forward at
the same time. You could try this by doing one trip
with each foot; sideways with your right foot and
forward with your left foot, simultaneously; but

Fic. 2-16. TrymG To App Two MoTioNns
IN DIFFERENT DIRECTIONS

the result is uncomfortable (Fig. 2-16). Instead you
had better take one trip first, then the other, thus:
move 4 paces to the right then 3 paces forward
(Fig. 2-17). Or you can take them in the other

i

2z t;;jd these,

<= rst one,

= tﬁm%ox

o
—_—— Start -.g
Trip 4 ft. East First 4 ft East

Fic. 2-17. Appine MoTions

order, and arrive at the same destination. If you
could somehow make the two trips simultaneously
you should reach the same end-point. In fact this
can be done if you have a rug which can be drawn
across the floor by an electric motor. Then have
the motor drag the rug with you on it (or a toy, as
in Fig. 2-18) 4 paces to the right while you move

Fic. 2-18. Apping Motions. The toy crawls along the rug
while an electric motor pulls the rug across the floor.
The toy has a diagonal motion over the floor.

3 paces forward at the same time. On the rug—
relative to the rug—you only move 3 paces forward.
From a bird’s eye view you make both journeys
simultaneously and reach the same destination as if
you made first one journey then the other. What
single trip could replace these two, whether they are
taken simultaneously or separately, and get you to
the same destination? The simple single trip is along
the straight line from starting point to finish. This

Trip A 5 Start A

Fic. 2-19. Appmne PErPENDICULAR Trips

is called the resultant of the two trips. If the trips
are drawn to scale on paper, as in Fig. 2-19, then
the single trip which would replace them (if they
are taken separately) is trip R. If the trips are
not at right angles, a similar scale drawing will
work, as in Fig. 2-20. If the trips are taken simul-
taneously—as when a plane flies in a wind—we can
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Finish

‘]‘f{P A Start A

Fic. 2-20. AppiNG TRips

still pretend to take first one then the other, and
arrive at the resultant R, as in Fig. 2-21.

B R//, \?@
/
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Fic. 2-21. Apping Trips

We find the resultant by taking first one trip
then the other, as in Fig. 2-22a or Fig. 2-22b. Com-

Fic. 2-22. Aoping Trips

bining these figures in Fig. 2-22c, we see that the
resultant is given by the diagonal of the parallelo-
gram whose sides are the original trips.

This system is obviously right for adding trips:
we are assured by common sense, drawing on ex-

[ —— A
R _» R " R
B - B - ’
PR " [,f 7 B\, 7
A - A - A

This addition is WRONG
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A TR The proper diagonal for R
>~ must run through
A the start of A and B

Fic. 2-23. EXAMPLES OF PARALLELOGRAM ADDITION

perience ranging from nursery exploration to com-
plex navigation.

The system can be reversed, and the trip R split
into components A and B. They are one possible
pair that would combine to make R. There are an
infinite number of such pairs, each adding to the
same R.

PROBLEM 6

(i) Sketch (a) in Fig. 2-24 shows a trip R split into two com-
ponents, A; and B;; and (b) shows the same R split into a
different pair, A and B.. Copy these sketches, and add
several more, all showing the same R split into different
components, As, Bs; A, By etc.
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Fic. 2-24. ProsLEM 6. The vector R may be
split up into components A; and B,,
or into components A. and B., or into
other pairs of components. The components
need not make 90° with each other.

(i) Show that we can assign component A any direction and
any size, and still find a B to fit, so that A and B add up
to R. (This is equivalent to subtracting vectors, R—A,
useful in later physics.)

Velocity and Speed

The direction of a motion is just as important as
its size. We now need a name for the idea of a
definite speed associated with a definite direction.
We call this velocity.* Velocity then has two quali-
ties: size (= speed) and direction. Do velocities
add by the geometrical system? Or, as a scientist
would say, are velocities “vectors”?

Vectors: Definition

Vectors are those things which are added by the
geometrical system. They are called “vectors,” be-
cause we can draw® a line to represent them, show-

ing both their size (to some scale) and their
direction.

RULE FOR ADDING TWQ VECTORS

The following rule describes geometrical addi-
tion. Our definition of vectors makes it automati-
cally true for vectors.

Geometrical addition: To add two vectors, choose
a suitable scale, and draw them to scale starting
from the same point. Complete the parallelogram.
Then, on the same scale, their resultant is repre-
sented by the diagonal from the starting-point to
the opposite corner.

In this, the resultant of a set of vectors is defined
as that single vector which can replace, or has the
same physical effect as, the original vectors taken
together.

4 In ordinary language, speed and velocity mean the same
thing: how fast an object is moving. In physics, it is useful
to reserve the name velocity for speed-in-a-particular-direc-
tion, which is a vector. From now on, we shall use speed to
mean just rate of covering distance along some path whether
straight or crooked—a worm’s measure of progress. A speed
is specified by a number with a unit, such as 15 miles/hour.
A velocity needs a number with a unit and a direction to
specify it, e.g., 15 miles/hour Northward.

5 Vector and vehicle come from the Latin verb meaning
to carry or convey.
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FIG. 2-25a

R,=A+B

MATTER, MOTION, AND FORCE

P\J’A*'B"'C R4= A+B+C+D

Fic. 2-25. Appine VECTORS BY THE PARALLELOGRAM
CONSTRUCTION.
(a) the details of the process (b) the result

Fic. 2-26. AppiNG VECTORS
TaiL-to-HeAD

Just as vectors A and B add to give resultant R,
in Fig. 2-25 so we can add vectors A and B and C
by adding C to R, to get R, Further addition of
vector D would give R, and so on. Or, more simply,
any set of vectors can be added tail-to-head as in
Fig. 2-26 (which is only a simplification of Fig.
2-25b), and their resultant is shown by the single
vector joining start to finish.

What things are vectors? That is, which things in
science do add geometrically by the parallelogram
construction? Trips, or to give them a more official
name “directed distances” or “displacements,” are
vectors. If trips are vectors, we need only divide
by the time taken to travel them to see that veloci-
ties are vectors too. If we use as vectors the length
travelled in unit time, then these vectors, which
add geometrically as trips, themselves represent
velocities. As an extension of this, we see that
accelerations are vectors too.* We shall find other
vectors, other things that can be measured with
instruments and which obey geometrical addition.
At the moment an important question arises: are
forces vectors, i.e., do they obey geometrical addi-
tion? This cannot be answered by thinking about
it.” It is not obvious. It needs experimental investi-
gation. See Chapter 3.

8 Trips are vectors. Velocities are trips per hour, say.
Therefore velocities are vectors. Therefore changes of veloc-
ity (which are themselves each a velocity gained or lost) are
vectors. Accelerations are changes of velocity per hour, say.
Therefore accelerations are vectors.

7 Unless we are prepared to define forces as things which
add geometrically and then take the consequences of our
definition in our later development of mechanics!

Scalars

Things which are not vectors but have only size,
without any direction attached, are called scalars;
for example, volume, speed, temperature. There are
other things which are neither vectors nor scalars:
vague things such as kindness, and some definite
ones, some of them “super-vectors” called tensors.
The stresses in a strained solid provide an example
of tensors: pressure perpendicular to any sample
face and shearing forces along it. More complicated
examples appear in the mathematical theory of
Relativity. For example, we shall treat momentum,
myv, as a vector with three components, mvy, mvy,
mv,; and we shall treat kinetic energy as a scalar.
Einstein, taking an overall view of space-time,
would lump momentum and kinetic energy into a
“four-vector” with four components, three for mo-
mentum, one for kinetic energy.

Addition of Many Vectors

Two vectors are added by the parallelogram
method. At the top of Fig. 2-27, A 4 B = R (the
heavy 4 and = referring to geometrical addition).
We can work back from this definition to the
crude “first one trip then the other” method of add-
ing, as in Fig. 2-27. This tail-to-head method is
the easiest way of adding several vectors. If we
wish to add vectors A, B, C, D, we could add them
by applying the parallelogram construction again
and again—getting the resultant of A 4 B, adding
the latter to C, adding the new resultant to D. But
the drawing is tedious, and if we perform all the
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Fic. 2-27. “TamL-to-HEAD” ADDITION.
Adding two vectors by parallelogram
method is equivalent to “tail-to-head”
addition.

Starting with parallelogram addition,
we can omit part of the drawing and
still obtain R.

We can economize still further and
draw only a triangle, and we are back
to our first discussion of trips, where
we added them by taking first one trip
and then the other. This leads to an
easy rule for adding vectors:

DRAW ONE OF THEM FIRST.

THEN DRAW THE SECOND, STARTING IT
WHERE THE FIRST ONE ENDED—that is,
draw them one after the other, “tail-
to-head.”

THEN DRAW THE LINE JOINING START
TO FINISH, AND THAT REPRESENTS THE
RESULTANT, R.

Frc. 2-28. BEware of adding vectors A
“head-to-head.” That gives quite the Not R B
wrong answer, not their resultant. ]}N

RONC

stages on one diagram it is a gorgeous mess (Fig.
2-29,I). Instead, we add A and B by the tail-to-head
method, then add C to their resultant, tail to head,
then add D. We can omit the intermediate re-
sultants, and find the main resultant R by joining
the start of the first vector to the end of the last
(Fig. 229, 11).

FiG. 2-29. Apping A SET oF VECTORS:
(I) by the piecemeal parallelogram method.
(I1) by the tail-to-head polygon method.

Drawing Parallel Lines

To transfer a vector from one place on a sheet
of paper to another, we must draw a line in the
new place with the same length and the same direc-
tion as the old line; so it must be parallel to the old
line. There are geometrical methods and machines
for drawing a line parallel to another line. If you
are not familiar with at least one good method,
ask for instructions. Difficult drawing of angles is
quite unnecessary.
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Fig. 2-30 shows one easy method using a ruler
and a book cover (or any rectangle or triangle). To

|

Fic. 2-30. AN Easy Way To Draw PARALLELS.
To draw a line P’Q” through a given point A
and parallel to a given line PQ, set the edge

of a book along PQ; then slide the book

along the ruler until its edge passes through A;

then draw P’Q’ along the edge through A.

transfer from line PQ to a parallel line through
point A, place one edge of the book on PQ. Place
the ruler along the other edge of the book. Hold the
ruler fixed, and slide the book along it till its first
edge passes through A. Draw along that edge the
required line through A.

% PROBLEM 7. COMPOUNDING VELOCITIES

A ship surrounded by fog is pointed due North and sailing,
as the navigator thinks, 4 ft/sec due North in still water.
Actually it is in a current moving 4 ft/sec due East. If the
fog disperses and the navigator can observe nearby islands,
in what direction will he find he is really moving? How fast?

% PROBLEM 8. CALCULATING A RESULTANT

A ship sails “northward 4 ft/sec”” in a fog, as in Problem
7. It is really moving in water that is flowing eastward 3
ft/sec. What is its speed relative to land?

% PROBLEM 9. NAVIGATION

A navigator trying to follow a narrow channel through
reefs, has to sail in a fog.

(i} He knows the channel runs North-east, and that the
ocean current carries him eastward 10 ft/sec. His pro-
peller carries him ahead 10 ft/sec. In what direction
should he steer, by his compass? (Hint: Sketch the
known current-vector. From its starting point sketch the
direction of the resultant; and at its end point fit in the
engine-vector, Complete the parallelogram.)

(i) Suppose the channel runs due North, the current is
10 ft/sec eastward and his propeller speed 20 ft/sec.
Draw a diagram to show the direction in which he should
steer by the compass.

(i) Suppose the channel runs due North and the current is
10 ft/sec eastward. Prove that he cannot follow the
channel unless his propeller speed is greater than 10
ft/sec.
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Does the Order in Which the Vectors Are Added
Affect the Resultant?

In adding vectors tail-to-head one after another,
we might choose them in a different order—A, D,
C, B, ...instead of A, B, C, D, . .., say—making
quite a different pattern. Will this give the same re-
sultant? The problems below explore this question.

% PROBLEM 10

Y
+5

+4

=1

Fic. 2-31. Vectors For ProBLEM 10,
(Copy this diagram on a larger scale,
making each square 1 inch by 1 inch.)

Fig. 2-31 shows a set of vectors, A, B, C, D, E, all starting
from one point, O. Add vectors by the “'polygon method” of
drawing them tail-to-head following the instructions below.
The sketch shown here is too small for accurate drawing and
measurement, so you should first reproduce the sketch on a
larger scale on a sheet of graph paper. Expand the squares
ruled lightly on the sketch to one-inch squares. Then, starting
with A already drawn, add B, then C, then D, then E, tail-to-
head. For this you will have to transfer B, C, D, E, by some
parallel ruling method. (Either use the information given by
the graph grid of Fig. 2-31, or use the method of Fig. 2-30.)
Mark the result. Measure and record its size. To record the
direction of the resultant you could either measure some
angle or find its slope. Try both, as follows:

RESOLVING

VECTORS TO
BE ADDED

(a) Measure and record the angle between the resultant and
the original vector, A,

(b) Draw a pair of perpendicular axes, OX and OY, with OX
along vector A. Then drop a perpendicular h from the
end of the resultant on to OX (you need not draw this
carefully. Just measure h without drawing). Measure
height h, and the base b which the perpendicular cuts
off on OX. Then calculate the fraction

%ﬁ':’t'Th, which is called the slope of the line R.
This enables you to specify R as a vector of size . ? . and
direction having slope . ? .

% PROBLEM 11, UNIQUE RESULTANT

Is the resultant different if the vectors are added in a dif-
ferent order? Repeat Problem 10 on g new sheet of graph
paper, starting with vector A as before but then adding the
rest in a new order, B, E, D, C. Record the size of the re-
sultant and its direction.

PROBLEM 12: ARGUMENT CONCERNING VECTOR
ADDITION

Think of the vectors, A, B, C, D, E in Problem 10 as navi-
gated trips to be taken one after the other. Think of the
axes OX, OY, as compass directions, East, North. Then one
trip, say B, carries us a certain amount Northward and a

Fic. 2-32a. ResoLvinG A VECTOR.
A vector B may be resolved into a pair of perpen-
dicular “components,” X, and Y5, which can
replace it. In Problem 12 the two directions
x and y are taken to be East and North,

certain amount Eastward. We may say that trip B gives us so
much ‘“‘northing” and so much “‘easting.” In fact we are

thinking of B as split into components, a northward one and
an eastward. This is called
East components,

i

resolving’”” B into North and

ADDING
I

Fi1c. 2-32b, ILLusTRATION OF ProBLEM 12.
A set of vectors, F, G, H, I, ], resolved into components in directions x (East) and y (North).
These components are then added to give the components of the resultant R,
® Note that the vertical (southward) vector J has zero X-component.
Its Y-component is, of course, the full vector J itself.
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As the stone moves along its path, both these state-
ments are true at each stage; so we say

x =10t
y = 16¢*
To find a single equation that describes the path,
we ask, “What relation between x and y makes both
requirements above true at each stage in the path?”
If we choose any point on the path, its x and
values must satisfy the two equations above, for the
appropriate value of ¢. That value of ¢ must be the
same in both the equations—it is the time when the
stone reaches that chosen point. Therefore we can
get rid of ¢ by making one equation yield an expres-
sion for ¢+ which can be substituted in the other
equation; thus:
x =10¢ gives t = x/10, and we can use x/10
for t in y = 16¢t*, which then becomes
y =16 (x/10)% or y = (16/100)x>.
The equation of the path is then y = (0.16)x2
More generally, if the stone is thrown horizon-

tally with initial velocity vy feet/second, and falls
with vertical acceleration g feet/second per second,

x = vgt and y = % gt*

_1 X 2_1 g )
Yy=38& on ] T 2loe ]t

y = (constant) x* since % g/vg® is constant.

This is the equation of a parabola.?

You can plot beautiful parabolas on graph-paper
by starting with an equation like this. Try plotting
the graph given by y = (%)x* on paper marked in
inch squares, taking x = —4 inches, x = —3, —2,
—1,0, 1, 2, etc. Try to match this curve with a real
projectile. Put the paper with the sketched curve on
a sloping table and experiment with a rolling ball.
Or hold the paper upright and throw a small object
up in front of it.

Projectile from Tilted Gun

If the projectile is not thrown out horizontally
but starts upward in some slanting direction, its
path is still a parabola. Algebraically this can be
shown by starting with s = v,t 4 % gt* instead of
s ="%gt* Or, we appeal to the visible symmetry

8 Originally described as one of the shapes made by slicing
a cone, a parabola is often defined now as a curve whose
graph-equation is of the form
yf = (constant) «*, or y o «°
A piece of algebraic geometry shows that the algebraic and
geometrical definitions are equivalent.
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Fic. 2-38. ProjecTiLE MotioNn Up anp Down.

Symmetry of Fath suggests that motion up to a “negative
n” on a hill, is similar to motion down from a gun on

the hill. These two motions join to give a full parabola.
Then a projectile started aiong this parabola, at any
point A should follow the same path as if it started
(earlier) at the vertex, O. Symmetry extends this argu-
ment to the whole parabola.

of the curved path and say that the decreasing
upward motion to the top must match the increas-
ing downward motion from the top, and so we
draw the complete path from the horizontally pro-
jected case. This is only good guessing but experi-
ment confirms it. Or we may argue thus: on the
downward part of the path from the vertex, O, the
stone cannot know whether it started at O or earlier
or later. So a stone started on this part of the path,
say at A by being thrown outward and downward
must therefore follow the same path as one thrown
horizontally from some earlier vertex, O. (See Fig,
2-38.) Similarly for one thrown upward at B.

This implies an extension of the idea of inde-
pendence of motions. The vertical component of
the starting motion also continues unchanged, while
the accelerated motion of falling is added to it.
This constant vertical motion is responsible for the
distance v,t in the relation s = vt -+ % gt?. Then
we might lump together the two constant motions,
the vertical and horizontal parts of the initial
throw, and say that the initial slanting motion given
by the thrower remains unchanging in flight, while
the gain of vertical falling motion responsible for
% gt* is added to it. Thus a stone thrown as in Fig,
2-39 may be regarded as having two motions, its
initial motion continuing along the line AB, and
free fall measured from successive positions on AB.
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Fic. 2-39. Anarysis. The motion of any projectile
may be regarded as being made up of an
unchanging motion along the initial direction
and a free fall from that line.

We can demonstrate this by the “monkey and gun”
experiment. Suppose a hunter, ignoring gravity,
sights through his rifle barrel on a monkey hanging
by one arm from a tree. If the hunter fires, the
bullet will miss the monkey because of its falling
motion, as in Fig. 2-40. Now suppose the monkey

Detiils of
rdease
nu’crwmjm
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Fic. 2-40. T MoNkEY AND GUN EXPERIMENT,

At the instant the bullet emerges from the gun,
it breaks a contact and allows the electromagnet
to release the “monkey.” The electrical connection
is maintained by a small spring touching the
metal gun barrel until the emerging bullet moves it.

watches the gun and lets go at the instant the bullet
leaves the gun, when he sees the flash of the gun.
From this instant, both monkey and bullet are

MATTER, MOTION, AND FORCE

accelerated downwards by gravity; the monkey
falls from rest, the bullet—according to our recent
view—falls from the line AB of its “undisturbed
path.” What will happen? This can be demonstrated
by using an iron monkey released by an electro-
magnet which is switched off when the bullet trips
a switch at the muzzle of an air-gun aimed at the
monkey.

Such experiments confirm our guess that vertical
fall is quite independent of the initial motion, which
continues unchanged. Any projectile drops freely
from its starting line, from the very beginning. It
falls 1,4, 9,16, . . . feet in 1, 2, 3, 4, . . . quarter-
seconds from start. If the starting line slants up-
wards, the projectile’s actual path rises at first and
then falls when the accelerated rate of free fall has
beaten the steady rate of rise due to the initial
motion. (See Fig. 2-41. Note that this path is a

parabola.)

=
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Fic. 2-41. Free FaLL oF A PROJECTILE.
However it is started, a projectile falls with the same
“free fall” from its original starting-line as an object
released from rest. The accelerated motion of fall
is independent of both the vertical and horizontal
components of the initial motion.

Notice how our discussion has torn the problem
of projectile motion to pieces, leaving it easier to
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deal with, ready for further studies by experts in
ballistics. We have not so much set forth new in-
formation as made existing knowledge easier to use.

When the projectiles are speedy electrons (or, in
other cases, charged atoms) pulled by electric and
magnetic fields instead of gravity, we assume that
similar “rules” apply and use our measurements of
the curved path to obtain information about electric
charge and mass and speed. We use that informa-
tion in turn—still assuming the same rules for
projectile behavior—to predict the effects of fields
on particles moving at other speeds. Then we are
becoming literally electronic engineers, designing
television tubes and other radio devices; and we
are becoming atomic scientists, bending streams of
electrons or atoms to our bombarding uses or sort-
ing light atoms from heavy ones by differences of
their projectile paths.

PROBLEMS FOR CHAPTER 2

1-16. These are in the text of Chapter 2.

% 17. POLICE WORK
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Fic. 2-42. ProBLEM 17

A lunatic, driving too fast on a bridge, skids, crashes
through the railings along the side of the bridge, and lands
(man + car) in the river 16 feet below the level of the road-
way of the bridge. (Note: 16 feet is the vertical distance
between bridge and river.) The police find that the car
is not vertically below the break in the railings, but is 66 ft
beyond it horizontally.

(a) Estimate the speed before the crash.

(b) Say whether this is probably an overestimate or an under-
estimate; and say why.

(c) State clearly the properties of falling bodies that you
assumed in making the calculation of (a).

% 18. ELECTRON STREAM

An electron moving 6 million meters/sec (which is quite
slow, as electrons go) along a horizontal path, runs into a
region where a vertical electric field gives it a downward
acceleration of

40,000,000,000,000 m./sec/sec or 4 X 10" m./sec/sec.

This region extends for 0.30 meter, in the direction of the
original path; so the electron travels along in a region of no

field, then for 0.30 meter (horizontally) of vertical field, then
out into a region of no field again.

|--o.30nu-|
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(a) Do you expect the vertical acceleration to affect the
horizontal motion?

(b) Calculate the time taken by the electron to travel across
the field-region.

(c) Calculate the distance it will fall in the field. (This is the
distance an experimenter would measure to investigate
the electron’s behavior.)

(d) Calculate the electron’s vertical velocity at the instant
it emerges from the field.

(e) Predict the path of the electron, and draw a rough sketch
showing the path before, through and after the field.

(f) Why is it unnecessary to take gravity into account in this
question? (It does act on the electron.)

19. RANGE OF PROJECTILE (A problem using algebra and
trigonometry.)

(a) An ancient gun projects a cannon ball at an elevation of
45° with speed 141.4 feet/sec.
(i) Split this velocity into horizontal and vertical com-
ponents,
(ii) Coalculate the time from the start of the ball till it
reaches the ground again.
(iii) Caleulate the range.
(b) An ancient gun projects a cannon ball with velocity vo
in a direction making angle A with the horizontal.
(i) Resolve vo into horizontal and vertical components.
(ii) Calculate the time taken by the vertical motion,
from the start of the ball till it reaches the ground
again.
(ii) Calculate the horizontal distance the ball travels
(i.e., its range).
(c) Show, by trig. or calculus, that range is maximum for
A = 45°, for a given va.

(Remember that 2 sin x cos x = sin 2x.)

% 20. MEASURE HOW FAST YOU CAN THROW A
BALL

A scientist wants to find out how fast he can throw a base-
ball. He throws it out horizontally at shoulder height, 4 ft
above the ground. It lands on the ground 20 ft away from
his feet.

(a) What was the ball’s original speed? (See Problem 17.)

(b) Apart from any formula for accelerated motion, an im-
portant general principle concerning projectiles (formu-
lated by Galileo) has to be used in calculating the answer
to (a). What is it?

(c¢) Instead of throwing the ball, the scientist runs along at
the speed calculated in (a) above, carrying the ball at
shoulder height. While running, he releases the ball so
that it can fall. Describe carefully the path of the falling
ball:

(i) as seen by a stationary observer,
(ii) as experienced by the running scientist,
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21. An qutomobile travelling 96 ft/sec (over 65 miles/hour)
along a horizontal mountain road failed to make a corner
and crashed into a snowdrift 144 ft (vertically) below.

(a) How long did the car take to fall?

(b) How far (horizontally) did it land from the place it left
the road?

(c) What was its acceleration when half way down?

(d) Describe the angle of the tunnel that it made in the
snowdrift on landing.

22. A man holds a rifle 9 ft above the level ground and
aims it horizontally.

(a) How long is it from the instant of firing until the bullet
hits the ground?

(b) If the cartridge is ejected horizontally to the side, just
as the bullet leaves the barrel, when will the cartridge
hit the ground?

MOTION, AND FORCE

(c) Would the man be able to shoot farther (with this aim)
on the Moon?

(d) Give a clear reason for your answer to (c).

% 23. A man inside a large elevator throws a ball straight
out from him horizontally with speed about 10 ft/sec. In
each of the cases (a), (b), etc., sketch the path of the ball
as observed by the man in the elevator.

(a) The elevator is moving downward with constant velocity
10 ft/sec.

(b) The elevator is accelerating steadily with downward ac-
celeration 32 ft/sec/sec.

(c) The elevator is accelerating steadily with downward ac-
celeration 10 ft/sec/sec.

(d) The elevator is accelerating with downward acceleration
64 ft/sec/sec (suitable machinery being used to achieve
this).
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Brute force, unsupported by wisdom, falls of its own weight.

—Horacg, Odes, 111, 4
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Forces are pushes and pulls: things you feel when
they act on you, things that stretch springs, things
that make moving bodies accelerate. We shall meas-
ure forces with spring balances. As these instru-
ments are commonly graduated in pounds or in
kilograms, we shall use those units for force at
present. Later we shall change to more proper
units.

Engineers are much concerned with adding
forces in bridges—cranes, buildings, machinery—
or with subtracting them to find the remaining
force needed to hold some system balanced. We can
show that forces are vectors, i.e., that they obey
geometrical addition. The vector treatment of bal-
anced forces is called “Statics.” It is a bulky but
dull part of physics, and most texts spend a lot of
space teaching tricks for solving engineering statics
problems. We shall give only a few examples, and
even they might be better omitted to give time for
more study of force and motion.

First we must have some assurance that forces
are vectors. To say that they must be vectors be-
cause they have size and direction is risky. That
does not make sure they add geometrically. Though
it looks plausible—especially to people who deal
with ropes on ships or tents—we ought to test it
directly. You should see the demonstration de-
scribed below.

BLACKBOARD

Demonstration Experiment

Fig. 3-1 shows a large contraption set up in front
of a blackboard. O is a metal ring pulled by two
ropes, OA, OB, with spring balances A and B to
measure the pulls. The ropes must exert considera-
ble pulls to hold O in the position shown because
it is pulled the opposite way by a large spring S,

Fic, 3-1. DemonsTRATION TEST,

which is anchored to the wall at its other end. The Are forces vectors? (i.e. do forces add by geometrical
rope-pulls are together sufficient to stretch the addition?)
spring and hold O in its present position. The posi- (i) Two ropes excrt measured pulls on a ring O, pulling
! ) . . it out to a marked position against the pull of spring S.
tion of the ring O is marked, and the lines of the .. ) i
(ii) The ropes and spring are removed, and the predicted

ropes, OA, OB, are marked. The balances A and B resultant of the pulls F4 and Fj is obtained by geometri-
are read to give the pulls F _and F_. cal addition.

: R (iii) Then the prediction is tested by measuring the
The resultant of these two pulls is found by draw aciual force needed to pull the ring out to its marked

ing, assuming geometﬁcal addition Of fOI’CCS. FOI POSitiOn with a Single rope.
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(b) FACT DIAGRAM: EXAMPLE A
Scale: licwﬁ.npmenb 2 ft.
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Fic. 3-5b,c. DiacRAMS FOR EXAMPLE A.

We start by drawing a vector we know all about:
the vertical pull of 8 pounds. We represent this by
an 8-centimeter line AB drawn vertically, with an
arrow head to show it is downwards.” We then add
the other vector we know all about, the 6-pound
horizontal pull, representing it by a line BC, 6
centimeters long. The third line for force must close
the triangle since the resultant is zero. Therefore
the third force must be in the line CA. Measuring
this on a carefully drawn diagram we find it is
10 centimeters long, representing 10 pounds tension
in the slanting string.

Or we can in this case look at a rough sketch and
use Pythagoras and say the length is \/8* + 6* or
/100 or 10 centimeters. The direction makes an
angle with the vertical whose slope (tangent) is
3. Therefore from trig. tables, or by measurement,
the angle is about 37°. Transferring to the actual
pendulum we then say: The string tension must be
10 pounds and the string must make an angle 37°
with the vertical.

* The points A, B, C are not labelled on Fig. 3-5c. Mark
them.

Example B

A pendulum consisting of a 10-pound bob on a
S-foot string has its bob pulled aside by a horizontal
pull F. If the bob is thus displaced 3 feet sideways,
what is the size of the force? The fact diagram and
the stages of the force diagram are shown in Fig.
3-6. In the force diagram we start by drawing the
only force we know all about, the 10-pound down-
ward pull of the bob’s weight, AC. Then we try
to add to it the horizontal pull, tail-to-head, but as
we do not yet know the size of that pull we do not
know how long to draw its line. However, we do
know that when we add the string’s pull to the other
two forces the diagram must be a closed triangle
(if the bob is in equilibrium). So the string’s pull
must start where F ends and finish at A, Also the
string’s pull must be in the direction of the string
itself. (Can you visualize a string pulling in any
direction but along itself?) So we transfer the string
direction from the fact-diagram to the force-dia-
gram and draw a line through A parallel to the
string. This slanting line gives the third side of the
force triangle, BA, for string tension. The corner
B lies on the slanting line and on the horizontal
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FACT PICTURE

10 (bs weight

Fic. 3-6. ExampLE B.

These show how a force-diagram is built up from
information shown in the fact picture. Since a triangle
can be specified completely by two angles and a side,

the force-diagram can be constructed in this case.

line; so it must be the place where these two lines
intersect. Now that we know where B is, we know
the size of F, and, incidentally, the string tension
also. We can find the size by careful drawing and
measurement.

Or, in this case where the data provide easy
geometry, we can calculate F from rough sketches,
arguing thus: The sides of the force triangle ABC
are parallel to the sides of the triangle MNO in the
fact picture. Therefore? these triangles are similar.

(Note: Pythagoras’ Theorem tells us that OM =
4 feet.)

M in the force triangle
10 pounds

3 feet
T 4feet

in the fact picture.

F = (10 pounds)(3/4)
Horizontal Pull, F = 7.5 pounds

T pounds 5 feet

Similarly, =
Y10 pounds 4 feet

String tension, T = 12.5 pounds

2If you are not familiar with the properties of similar
triangles, review them in a geometry book, or ask for in-
struction. You will need to use them confidently.

FORCES AS VECTORS 37
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FACT PICTURE, DRAWN TO SCALE:
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FORCE DIAGRAM
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F1c. 3-9. Driacrants DRAWN TO SCALE FOR ExampLE C

Example C

A 20-foot telephone wire is strung loosely be-
tween two supports. A 4-pound bird perches on the

v T

[k

4 pounds

Frc. 3-8. Examrre C

mid-point of the wire. The wire is thus pulled into
a shallow V. Its mid-point is then 1 foot below the
level of the end-supports. Calculate the tension in
the wire. (This may seem a trivial artificial prob-
lem, like so many mechanics problems in statics,
but it is a very serious matter for telephone and
power companies. As the answer to this problem
suggests, birds and ice may produce huge tensions
in wires and overstretch or break them.)

We draw a force diagram for the small central
bit of wire, Y, where the bird perches.® Three forces
act on it, the weight of the bird downward and the
slanting pulls of the wire tensions T, and T,. Call
the angle between wire and horizontal E.

To draw the force diagram for Y (shown in Fig.
3-10) we start with the fully known weight of the
bird, drawn as a downward vertical vector, AB,
2 centimeters long to represent 4 pounds weight.

3 How do we know that it is wise to choose that bit of
wire as the victim to draw the diagram for, rather than half
the wire, XY, or the whole wire, XYZ? To know which victim
to choose is one of the “tricks” of solving mechanics problems,
soon learned, not of much value in serious science.

From B we draw BC parallel to the right-hand
section of wire to represent its tension, and then
another vector parallel to the other section of wire.
This must close the triangle, since the resultant
force on Y must be zero. But we do not know how
long to make the vectors for the tensions. So we
draw unlimited lengths, one slanting at angle E
upwards from B and the other slanting at angle E
upwards to A, and thus fix C by their intersection.
We now have a triangle of forces, which we could
measure and interpret by the scale we use.

We could avoid measuring if we could link up
the fact-picture and the force-diagram by similar
triangles. The force-triangle ABC is not similar to
the fact-triangle XYZ, but, as in most of these
problems, we can find similar triangles by playing
with the diagrams and adding simple construction
lines. In this case we can add the broken lines in
the diagrams and use the argument shown below.

The triangles WYZ and DBC are similar.

In triangle DBC, DB represents half the bird’s
weight, or %(4 pounds).

In triangle WYZ, WY is the vertical sag of wire,
given as 1 foot.

10 feet

Tioor in triangle WYZ

T, pounds

= in triangle DBC
2 pounds

Tension, T, =
Similarly, T

(2 pounds)(10/1) = 20 pounds
, = 20 pounds

A 4-pound bird can produce a 20-pound tension.
If the wires were less slack, sagging only one inch
instead of one foot, what would the tension be?
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SIMILAR A's

Fic. 3-10. ExampLE C. These sketches, not to scale,
illustrate the treatment of Example C by geometrical
argument with similar triangles.

PROBLEMS FOR CHAPTER 3

1. In text.

2. A pendulum consisting of a 12-pound bob on a 10-foot
cord is pulled aside by a horizontal pull on the bob. The
tension in the slanting cord is then 20 pounds.

(i) How big is the horizontal pull on the bob?
(ii) Describe the slant of the cord.

Fic. 3-11. ProBLEM 3

3. A surgeon wishes to apply a vertical force of ten pounds
down on a special splint on the shoulder of his patient. He
proposes to do this by pulling the splint down with a string.
But the patient’s shoulders and ribs get in the way, so the
surgeon decides to use two strings, one slanting forward and
downward, the other backward and downward, from the
patient’s shoulder, each string making an angle of 30° with
the vertical. (See Fig. 3-11.)

(i) Calculate the tension that each string should have. (Give

a large clear force diagram.)
(ii) Explain your calculation.

Fic. 3-12. ProBLEM 4.

4. (@) A 150-pound tight-rope walker stands on the mid-
point of a 26 ft wire strung between two posts 24 ft
apart. Find the tension in the wire, giving diagrams and
clear explanation. (Note: With these dimensions, sag at
middle is 5 ft. See sketch, Fig. 3-12,)

(b) Suppose extra wire is added so that the wire at one end
extends farther and rises to a higher support as in sketch
(b), but the angles made by the two sections of wire re-
main unaltered. How will the tension(s) be affected?

5. (a) Which of the following do you consider must be vec-
tors? (A vector is a quantity which obeys the geometrical
addition rule.) Force, volume, acceleration, velocity, tem-
perature, density, kindness, humility, humidity, electric
field.

(b) Write, in two lines at most, a definition of the resultant
of a set of vectors. (Do not give a rule for finding the
resultant. Give a clear description, showing what it is.)

(c) Show by sketches and a little description how the paral-
lelogram method of adding vectors (i.e., geometrical
addition) leads to the polygon method of adding vectors
tail-to-head.
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Fic. 3-13. ProBLEM 6

Fic. 3-14. ProBLEM 8,

% 6. AN IMPORTANT RELATION: LOAD ON A HILL

A sled rests on a frictionless incline which makes an angle
A with the horizontal (or rises h feet vertically for a distance
L feet up the slope so that sin A = h/L). The sled is pre-
vented from sliding down hill by a rope which pulls uphill
with tension F. Gravity pulls vertically down on the sled with
a force which we call its weight, W. (See Fig. 3-13.)

(a) Draw a sketch of the sled on the hill and add arrows to
show the directions of W and F. Add another arrow to
show the direction of P, the push of the hill. Assume
that, since the hill is frictionless, P must be perpendicular
to the slope. Make all these arrows sprout out from the
sled.

(b) Now draw another sketch showing the vectors W, P, and
F all adding up to a resultant zero.

(c) If you agree that your two sketches contain triangles
which are similar, use this idea to write down the ratio
F/W in terms of h, etc., or in terms of the angle A.

{d) Now suppose the rope is cut so that F disappears and the
sled accelerates downhill. Without the rope there is a
resultant force downhill of the same size as F was up-
hill. How big is this?

7. Treat the sled problem (6) by a different method. Resolve
the weight W into components F downhill and P across the
hill (i.e., perpendicular to it). Express F in terms of W and
h, etc. This gives the tension the rope must have; or, if there
is no rope, the downhill resultant accelerating force.

8. Shortly before Galileo’s work, Stevin published an in-
genious “‘thought experiment,’”” arguing thus: Imagine a
necklace of smooth beads hung on a triangular wedge or
prism, as in Fig. 3-14. The necklace must be in equilibrium—
we do not expect it to slide round and round, faster and
faster, just because there are more beads on the slope. Cut
off the loop that hangs freely underneath. Since that loop
is symmetrical, its removal cannot spoil the equilibrium.
From this, Stevin predicted that F/W must = h/L for a
load on an incline. Try to continue and complete his argu-
ment and make that prediction. (Hint: Condense all the
beads on the slope into one lump, all the beads in the vertical
portion into another lump. Connect the lumps by a thread
over a pulley.)

9. A designer wishes to incorporate a pendulum in his ap-
paratus, with a string to pull it aside with a pull perpendicular
to the pendulum-cord; i.e., along the tangent to the arc along
which the bob moves. (See Fig. 3-15.) The pendulum cord
is to be 10 feet long, its bob a 20-pound lump of iron.

{a) What pull, P, is needed to pull the pendulum aside by
1 ft horizontally? Give careful diagrams and explanations
of your calculations.

(b) Repeat the calculation for the bob pulled aside 2 ft hori-
zontally, 3 ft, 4 ft, 5 ft. . . .

(c) What can you say in general about the force P needed
for such deflections? (This contains the germ of the
theory of swinging pendulums.)
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Fic. 3-15. ProBLEM 9.
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ment offers a fruitful field, and almost any equipment
gives you good opportunities. But you need time to
bring each experiment to a close—or sometimes to
extend an experiment along a new line. Thus it is good
if the laboratory organization lets you extend the time
for some experiments instead of requiring each to be
run through in a single period. Given time, you can
work on your own, needing only occasional advice from
instructors—if you ask them for cookbook instructions,
they will remind you, “If’s your experiment.”

The Objectives of Laboratory Work

Now, with doubts and conditions of “transfer” in
mind, we can review the purposes of laboratory
work realistically.

You can learn “facts” of physics, from a small
detail to a general law, very comfortably in lab—
but very slowly. Tests have shown that information
is acquired quicker and just as well in classes or by
reading. It seems a waste of time and expensive
equipment to use labs to teach you facts. Yet you
will find yourself learning what you learn in lab
with a fuller sense of understanding. In that way
laboratory provides a valuable sense of understand-
ing the information of science.

However, laboratory can provide much more im-
portant gains if it can teach you scientific ways and
give you a more general understanding of science.
For that you must make your experiments your own
work, work that you like and regard as part of your
present life and future hopes. If you work as a
scientist yourself, you are on common ground with
scientists, gaining an understanding of science.

So we offer laboratory work with a variety of
aims: learning some physics with the thoroughness
that comes from doing it yourself; gaining an ap-
preciation of scientific techniques by using them;
and, above all, gaining an understanding of science
and scientists by experiencing for yourself the
delights of scientific work and its sorrows, its
honesty and its risks, its successes and failures, its
uncertainties as well as sure results. When you
come to the lab, make yourself “a scientist for a day,”
and you will gain understanding that will outlast
all information.

restrict the word to systematic trial and planned investigation,
in contrast with casual playing around with apparatus that
gives entertainment with little promise of new knowledge.
The distinction cannot be made a hard and fast one without
a loss of good science, and yet you will find that the word
“experimenting” develops a clear flavor as you proceed. The
longer word “experimentation” has a respectable history, but
it now seems to many professional scientists a childish use
of a longer word to make science sound grander.

LABORATORY WORK 63

“Open” Experiments

On some days in lab you will be free to find out
all you can (within a region of physics) by experi-
menting and making inferences—an “open” lab.
Though some apparatus is provided, you may get
other equipment by asking for it. (Modern labora-
tory store-rooms have vast resources, and you should
receive extra equipment if it is reasonably possible.
You may have to explain what you want it for, but
your plans will not be laughed at.) A good lab
encourages independent experimenting and should
offer good apparatus. In return you will be ex-
pected to treat apparatus with care. Scientific instru-
ments are expensive,® often made with great care
by skilled craftsmen; and, as agents to extend hu-
man senses and skills, they deserve your respect.

You will also meet simple harmless instruments
like rulers and watches which you take for granted
as good. Do not be too sure: there are crooked
rulers, and shrunk ones of modern plastic, and
there are rough watches in brightly polished cases.
Make sure they are as good as you need, or ask
for better.

Those who provide for “open” labs foresee many
of your investigations and needs; but someone, you
or a neighbor, will branch out in unexpected direc-
tions, sometimes very fruitfully, and such work will
be welcomed and provided for. It is not necessary
for you to do everything your neighbors do—meth-
ods and results can be pooled in conferences.

Discoveries?

You may think of new experiments or devise new
methods, but you are not likely to discover entirely
new physics unknown to professional scientists: we
shall not deceive you into thinking that, nor should
you deceive yourself—yet you can enjoy making
what is to you a new discovery, uncovering a de-
lightful simplicity in nature, or exploring some
surprising phenomenon.

Classical Experiments

On other days of laboratory, you may find the
field narrowed to a definite requirement, perhaps
trying for yourself some famous experiment. In

6e.g.: A single set of electrical apparatus for one of your
later experiments will cost $50 to $150. The jewelled pivots
of its ammeters are so fine that the small weight they bear
exerts a pressure of several tons/sq. inch at the points. Put-
ting a meter down on the table abruptly applies many times
that pressure; and that may blunt the pivots and reduce the
meter to a sticky unreliable one which you do not deserve.
The repair is costly, chiefly in skilled instrument-maker’s
time.
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such cases, you will gain more if you do not regard
it as routine repetition but take it as an opportunity
to share the original scientist’s delight.

Reports

As a scientist for a day, you are entitled to ask for
good equipment, to work hard, extract inferences, argue
with all who come, and trust your own results. In all
this activity you should keep some record of your work,
a diary of what you did and what you observed, with
a discussion of inferences and conclusions. Such a
record is usually called a Laboratory Report. It can be
drawn out by formal requirements into a long work of
futile drudgery, and that is not genuine science. Yet
without some record you would miss the scientist’s
systematic care. Every professional scientist treasures
the pencil-written notebook that is his companion as he
experiments. He copies it and expands it for formal
publication, and then he dreads the errors that creep
in when data are copied. So you should make simple
records. We hope you will value them as a diary of your
work, and, like professional scientists, will keep them
long after the experiment is over.

A good report need not be long. Write it at the time
of the lab, and do not copy it out later in a mistaken
worship of neatness. As a written workshop for data
and calculations of your experiment, your report is
more efficient if fairly tidy, but we should not expect
it to be as clean as a workshop that is not in use. What
would you think of a carpenter who was afraid to use
his shop for fear of making it untidy with sawdust and
shavings? Mistakes crossed out, poor measurements put
in [ 1, circuits redrawn with improvements, calculations
tried roughly then repeated in detail, . . . are all wel-
come as signs of honest work. (Never erase—that looks
like suppressing evidence—but cross out when you
change your mind.)

As a guide: your report should serve to tell you
clearly what you did, if you consult it a year later.
Perhaps it should enable another student to carry the
experiment through quickly, if he comes to the lab
alone with no instructor but with the same apparatus
and takes your record as a specimen, with your warn-
ings of useful techniques.

A good report should contain:

(i) a full record: measurements and other observa-
tions—the actual pointer reading you saw on each
meter or scale, not some number calculated from it.

(ii) analysis: calculations, graphs, etc.

(iii) comments, inferences and conclusions. These are
essential, the fruitful outcome of your work.

(iv) a critical survey of the report’s accuracy—some-
thing a good professional scientist would add. If
other scientists want to use his results they would
hardly welcome it alone like this:

In fission of Li nucleus,
energy released = 17.4 Mev
They want the scientist’s own estimate of his likely
error—or they may prefer to study his discussion
of errors and make their own assessment too. They
would want at least this:
energy released = 17.4 = 0.2 Mev (see note 7)

Estimating errors and discussing them is a fine thing to
do, but it takes time and skill; do not spend time on it
unless you feel the need and enjoy it.

(i) Description. This is a timewaster and should be
reduced to notes jotted while you work. Omit the
obvious. (e.g., if your record says

Temperature of water . . . . .. 16.2°C

it is quite unnecessary to say in your description, “We
took a thermometer and measured the temperature of
the water.”) It is a waste of time to list the apparatus
used (unless some was of special quality or a numbered
instrument that you wish to use again). On the other
hand, if you took special precautions, say so (e.g., “We
stirred the water carefully before taking maximum
temperature”). A few lines will usually suffice for (i)—
an account of what you did, not a copying of some
official instructions that you did or did not follow.

(ii) Record of measurements. This is the central part
of your report. Record everything that might be useful.
To avoid re-copying, plan your original record to be
easy to read and use. There are two standard forms
used by scientists:

(a) sets of measurements in labelled columns

and rows;
(b) a collection of separate measurements
like this:
MEASUREMENT CF THERMAL CONDUCTIVITY - RECOFD
Temperature of water . « « v v+« 4 &« o « & 16.2 %

2.18 2.46
2.46 2.4k

Pismetar of rod } . « . average 2.L6 em

*. radius of rod = 2.k6/2 . .. .. = 1.23 cm
(see note 8)

‘. area = wxr® = 3.1k x 1.23° = 4,75 cn®

Length of rod ... (and o
on)

(iii) + (iv) Analysis and conclusions make half the
main value of your experiment—the other half is in
doing it. Be critical and ingenious, bold and imaginative.
Squeeze all the inferences you can from your observa-
tions, and outline vour reasoning. Where you can draw
a definite conclusion, state it clearly—but avoid pious
statements such as “I verified the law,” “The difference
is due to experimental error.” (This last is a catch-all,
an alibi used by amateurs.)

Partners

You may be asked to work in pairs, or larger groups.
Most laboratories require this as a necessary economy
in equipment and staff. A partner is a doubtful advan-
tage. If you rely on him, a partner will take both appa-
ratus and thinking away from you, to your short-term

7 That means “17.4 is the best guess, from my measure-
ments. I do not think the correct value is 174 + .2 or
174 — .2, but from my work I consider the true value
may be anywhere in the region between.”

8 The diameter of a rod is the easy thing to measure, not
the radius. Record the diameter. Then calculate the radius,
setting that line in your record a short distance in, to show
it is derived.
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gain and ultimate loss. But you can gain from your
partner if you treat him as a fellow scientist and critic:
plan your experiment with him; criticize his techniques;
watch his measurements and have him watch yours;
and compare your results with his independent ones.
(Use his measurements in your report as well as yours,
but make their origin clear in case they prove doubtful.)

SUGGESTED EXPERIMENTS

(This list is tentative and incomplete, to be
supplemented by suggestions from other chapters
and from your Instructors in laboratory.)

EXPERIMENT A. Falling Bodies and
Projectiles (An informal, OPEN lab)

This was mentioned in Ch. 1. If you have an
opportunity for laboratory work at the very begin-
ning of the course, try any physical experiments
you like relating to falling bodies and projectiles
(in air or other media). Start with old, simple,
obvious ones such as dropping unequal coins: try
them quickly and record, in a few lines, what you
did, what you observed, and any inferences. Then
proceed quickly to any more complicated investiga-
tions you can devise. Try for ingenuity and variety.
This is a lighthearted stage, at which careful plan-
ning and long systematic investigations are not
called for.

EXPERIMENT B. Investigation of Springs
(OPEN lab)

Find out anything you can about the physics of
springs. (You will be provided with a ready-made
spiral spring of steel wire, but you can make other
springs for yourself, e.g., by winding copper wire
on a rod. Other materials, and other shapes than
spirals, are easily available for investigations of
springy behavior.) This is a wide field, usually
called “Elasticity,” that allows you to push your
investigations in many directions: stretching, twist-
ing, effects of various treatments, . . . You would be
wise to start with the simple “official experiment”
below and then branch out on investigations of your
own devising—and it is the latter that carry most
“credit” in this course, and offer you most lasting
benelfit.

“Official Experiment”

Find out how the sTRETCH of your spring de-
pends on the Loap hung on it. sTrReTCH is defined as
INCREASE-OF-LENGTH, from the spring’s length when
unloaded to its length when carrying a given load.
(Thus, sTReTcH is reckoned from the original, un-
loaded position each time.)
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Record the position of some pointer on a scale
of centimeters or meters (and then compute the
stretch in a later column ), and the load in grams or
kg. Plot a graph to exhibit your measurements.
(After this experiment you should, at some time,
consider the meaning of a Law in Science.)

EXPERIMENT C. A Precise Study of
Accelerated Motion

Fic. 4-1. ExpermvenTt C.

This is the “rolling wheel” investigation, men-
tioned in Ch. 1. Try some form of that experiment
(see Fig. 4-1). Make very careful measurements,
and exhibit your results by plotting graphs. Use a
graph of s against #? to see how closely your wheel’s
motion fits the simple motion described by

ACCELERATION — constant.

If possible, make a general review of accuracy,
after your experiment, in conference with instruc-
tors and other experimenters. If you can decide on
likely errors for your average values of times and

distances, mark error-boxes around your graph
points.

Analysis Questions for Rolling Wheel Experiment

When you have finished Experiment C, give your
results an analytical “work-out” along the lines of the
questions below. These questions—which must be modi-
fied to fit the arrangements of your apparatus—were
framed for a wheel that rolled down slanting rails a
meter long, taking about 25 seconds from start. The
experimenter is supposed to have measured times for
travels of 0.2, ..., 0.6, 0.8, . . . meter from rest and
used them for his graphs. (He also recorded the time
for an intermediate distance, 0.7 meter, and he also
noted the distance travelled in 15 secs from rest, but
he did not plot these data on his graph; he kept them
secret for use as checks in this analysis.)

(1) Did your Graph I (of s against t) suggest that s
varies directly as TimE?

(2) Did your Graph II (of s against #*) suggest that s
varies directly as TIME??

(3) Interpolation. Assume that your graph-lines are
“true” and interpolate to answer the following
questions:

(a) What is the value of t for s = 0.7 meter,
(i) by reading from Graph I?
(ii) by reading from Graph II?
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(iii) by your direct measurement (stored
up for this check)?

(b) What is the value of s for t = 15 secs,

(i) by reading from Graph I?

(ii) by reading from Graph IIP

(iii) by your direct measurement (stored
up for this check)?

(4) Why is it more accurate to use Graph II than
Craph I for the interpolation asked for in (3)?

(5) (a) If s=%%at* (the acceleration a being con-

stant) how would you expect ¢ for 0.8 meter
to compare with ¢ for 0.2 meter?

(b) Write down the ratio of your average meas-
urements for these two times, and calculate
its value.

(6) Calculating Acceleration from Graph-Slope. Choose
two convenient points on your second graph, far
apart, read off their values of s and ¢*, record them.
Calculate a from them, assuming s = % a#? applies.

(7) Why is the method of (6), using a graph-slope, a
more accurate way of estimating a than using
measured values of s and ¢ for one distance alone,
say 0.8 meterP

(8) Estimating Velocity by Several Methods. Choose
a suitable place in the motion, say at 0.6 meter,
and find the velocity there by three methods:

(a) Use v = at, with your measured value of ¢
for that instance and the value of a from
(6).

(b) Use v? = 2as, with your chosen s and the
value of a from (6).

(c) Use the slope of Graph I. Draw a tangent
at s = 0.6 meter. Extend the tangent right
across the paper; choose two points on the
tangent, far apart; read off their coordinates
and record them. Thence calculate the
slope. (See the discussion in Ch. 1. Also see
notes on graphs in Ch, 11.)

(d) Compare the results of methods (b) and
(c). Express the resulting difference be-
tween VELOCITY given by (¢) and vELoCITY
given by (b) as a % of that velocity (see
discussion of % differences in Ch. 11).

(9) If the wheel were to slide without friction instead
of rolling, would you expect the same acceleration,
or greater or less” Why? (This is a very important
question, which deserves a guess at an answer
now. The full answer involves more complicated
physics. You would be wise to leave your guess
without asking now whether it is wholly “right.”
A later chapter will supply a clear answer.)

EXPERIMENT D. PENDULUMS

Narrow your field of investigation down to a
simple pendulum, a small bob swinging to and fro
on a long thread; and narrow it still more to the
question, “How does the time-of-swing or period of
a pendulum depend on each of the physical factors
that might affect it?” Thus restricted, this is still a
complex investigation unless you follow the good
scientific practice of holding all the other factors
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constant while you change one chosen factor at
a time.
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Fic. 4-2. StvpLE PENDULUM

We define the periop as the time of one “swing-
swang,” one complete cycle. What factors might
affect the period? Obviously the LENGTH of the
pendulum—most easily defined as distance from
support to center of bob, but not easily, or wisely,
measured directly in that form. We all know a
longer pendulum takes more time to swing to-and-
fro. But just how is period T related to length L?
Is there a simple mathematical rule? (There is. We
can deduce it from other experimental knowledge,
e.g., from force vectors and Newton’s Laws of
Motion; but here you should make an “empirical
investigation”—ask a straight question of nature in
your own experiments.)

What other factors might affect T? Mass or
weight of bob; amplitude, or size of swing; and
possibly other factors?

Start by investigating how T depends on

length of pendulum, L

amplitude of swing, A° each side of vertical

mass of bob, M
To avoid confusing several effects, keep two of the
three, L, A, M, constant while you change the third,
and measure T. Does it matter which of the three
you choose to vary first? In this case it does: there
is one logically correct choice. While you are con-
sidering this, make some preliminary measurements
to try out techniques.
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EXPERIMENT D (0). Preliminary Measurements

A good scientist does not expect a stream of accu-
rate measurements to flow at once from his appa-
ratus. He experiments on his experiment, trying
out techniques, gaining skill by practice. Choose a
long pendulum, 2 or 3 ft long, and make accurate
timings of its period with a good stop-watch (or
use a magnifying glass over the seconds hand of an
ordinary watch while a partner gives you signals. )
Record your measurements. Compare them with
your partner’s. Look at the methods being used by
neighbors, and get ready to criticize.

Discussion Group

When you have practical experience of your
apparatus, meet with other students and the in-
structor, as a “research council” to discuss difficulties
and techniques. This is the time to suggest good
tricks you have discovered, to criticize mistakes you
saw neighbors making, to discuss the reliability of
the equipment, and to decide on good techniques
and plan the order of experiments. There is little
use in such a discussion before you have done pre-
liminary experimenting: that would lead to childish
guessing or else your instructor would have to step
in with cookbook directions. As in a professional
research group, an adult discussion needs practical
experience of the apparatus.

At this time you will find there is a good reason
for investigating the effect of ampLITUDE first, before
MASS Or LENGTH.

EXPERIMENT D (1). Measurements: T vs. A

Make careful measurements of T for various
amplitudes such as 80°, 60°, 40°, 30°, 20°, 10°, . . .
Plot a rough graph of T against A as you go, to
guide your further measurements. If you find the
graph-points use only a narrow region of your
paper, you should plot another graph with one
coordinate expanded, so that the blown-up graph
reveals the shape better. (A blown-up graph need
not have the origin on the paper—in fact its origin
may be many inches off the paper.) If you run into
difficulties, discuss them with your instructor—treat
him as a source of good advice from another scien-
tist, not as a short cut to “right answers.”

When you have enough good measurements, plot
a careful graph of T against A—with a blown-up
version, too, if that seems called for.

At this stage, another conference is likely to be
useful. Comparing your graph with the graphs of
others, you will probably decide there is a definite
relationship, but many graphs may show such large
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accidental errors that their form is obscured. An
accurate answer to “How does T depend on A?” is
essential: the other parts of this investigation will
be impossible without it. You will need very careful
measurements of T for a certain range of ampli-
tudes. It will be obvious from your present graphs
what that range is, and why measurements outside
that range need not be very accurate.

More accurate measurements

With increased skill from practice and better
knowledge of techniques, make the measurements
needed to settle the essential question about T and
A and plot them in the graph of T against A. (This
sounds like a long piece of drudgery, fussing over
better precision. It will take time and trouble, but
the outcome is rewarding.) When you have settled
the question write your answer or conclusion clearly,
and use it in D(2).

EXPERIMENT D (2). Measurements: T vs. M

How much faster would you expect a heavy bob
to pull the pendulum to and fro than a light one?
Measure T for a fairly long pendulum, using the
conclusion of your T vs. A experiments to guide your
arrangements. (Of course you should not repeat
your T vs. A investigation all over again for each
bob in this investigation. Once that is settled it is
settled, and its results can be used without repeat-
ing the investigation. ) Change to another bob much
heavier or much lighter and repeat your measure-
ments. Make sure that the L, from support to center
of bob, is the same for both. (That is why we offered
the cookbook suggestion of a long pendulum: the
longer the thread the smaller the % change in L
if you make a small mistake in changing bobs.)

EXPERIMENT D (3). Measurements of T vs. L

The period T changes greatly as L changes, and
a good graph (or other investigation) of the rela-
tionship between them needs many sets of measure-
ments. Here is where cooperation among the whole
laboratory group is welcome. With the answers to
questions D(1) and D(2) known, it is easy to
arrange for a pooling of comparable measurements
from every member of the group.

Each student (or pair) should measure T for one
length, and then the group should pool their meas-

9 We assume that the factors A and M, L, etc. affect T
independently, so that changing M here does not affect the
T vs. A story. That is a safe assumption in most places in
physics. In some other fields of study—such as biology,
psychology, economics—it would be a very dangerous as-
sumption.
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the top of the dam. The water extends for a distance of 2.93
miles behind the dam.

(a) The total weight of water held back by the dam can be
found. To calculate it we must use the 2.93 miles. Why
does the 2.93 miles not enter into the calculation of
water pressure on the dam? (In other words, how can
the pressure be the same as if the water extended only
1.93 miles?)

(b) The atmosphere presses on the open outer face of the
dam. It also adds its pressure to the water pressure on
the inner face. These two contributions subtract out
when we are trying to find the forces pushing the dam
over. So in the following calculations, atmospheric pres-
sure may be neglected. Calculate:

(i) The pressure at the water’s open surface. (Answer:
zero)

(ii) The pressure at the bottom of the water.

(iii) The average pressure over the region from the
water-level down to the bottom of the water. (Use
common sense.)

(iv) The total force with which the water pushes on the
dam. (Hint: Pressure = force/area. .". force = pres-
sure * area. Now use the average pressure to calcu-
late force.)

PROBLEM 5 (HARD)

A dam has been built incompetently low, so that the
water-level behind it is higher than the dam, and water
gushes over the top of the dam to a height 2 ft above the
dam top (Fig. 4-6). The dam is 100 ft wide, 40 ft high, and
the water-depth behind it is 42 ft, Repeat the calculations
of Problem 4 to find the total force pushing the concrete
dam. (lgnore any strange pressure-changes due to rapid
motion of water, such as “Bernoulli effects.”)

Laws of Pressure (Due to Pascal)

We find that pressure has the following useful
characteristics, in fluids at rest:1*

(I) The pressure is the same all over the bottom
of a rectangular tank of liquid. More gen-
erally, the pressure is the same at all points
which are at the same level in one liquid (or
gas).

(II) Fluid pressURE on any surface is perpendicu-
lar to it. (A diver carrying a coin finds the
pressure perpendicular to its surface what-
ever direction it faces.)

(III) At any place in a fluid, PREssURE pushes
equally in all directions. (A diver carrying
a coin finds the same pressure on the coin
whatever direction it faces.)

(IV) PRESSURE is transmitted without loss from one
place to another throughout a fluid. (Push
a piston in at one place in a hydraulic system
and the pressure you exert is carried to every
wall and any other pistons in the system. )

14+ When there is motion, there are complications, such as
fluid friction and “Bernoulli effects.” (See Ch. 9.)

(V) The DIFFERENCE IN PRESSURE between any two
places in a single fluid is given by h - d where
h is the vertical difference of level and d is
the density of fluid. This leads to an easy way
of measuring pressures. It is derived below.

Algebra and Pressure Laws I and V

Fic. 4-8. Law V.

Fi1c. 4-8. Law V. PRESSURE

DirrFereNCE between two

places in a fluid is
A(Hewcnr) » DENSITY.

Fic. 4-7. Law 1.

Fic. 4-7. Law 1. The pres-
sure is the same all over
the bottom of a rectangular
tank of liquid.

(I) The pressure is the same all over the bottom
of a rectangular tank of liquid. We can calculate the
pressure on any area of bottom thus:

Choose an area A sq. inches.

Find the weight of the vertical pillar of liquid
which sits on A (= the pull-of-the-Earth on that
liquid). Then divide this wercHT by the AREA A, to
find the pressure.

voLUME of pillar = HEIGHT * AREA = h - A
Mass of liquid
in this pillar = vOLUME - ( MASS/VOLUME )
= VOLUME * DENSITY = hA - d

In “bad” units (such as kg-wt.) the mass of the
pillar of liquid, in kg, tells us the weicuT of liquid,
in kg-weight.
PRESSURE, P
= FORCE/AREA
= (WEIGHT OF PILLAR)/( AREA OF BASE)

— hAd/A = hd

Thus the pressure on any base area is
DEPTH OF LIQUID * DENSITY
and is independent of the area chosen.

If we want the weight in “good” units, such as
newtons, we must multiply mass by gravitational
FIELD-STRENCTH, ¢ (9.8 newtons/kilogram ). Then,

PRESSURE — hd * ( FIELD-STRENCTH, g )

PRESSURE On
any base area — DEPTH OF LIQUID * DENSITY * &
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(V) Pressure difference between two places in
a fluid is A (HEIGHT) * DENSITY. To find the difference
of pressure, py — px, between Y and X, we imagine
a rectangular box, or vertical pillar, drawn in the
liquid, with base of area A and height h from Y to
X. The fluid in this block is in equilibrium, so the
resultant of all vertical forces on it must be zero.
These forces are:

weIGHT of fluid in block, h+ A -d

PUSH DOWN of neighboring fluid on top, px+ A

pusH UP of neighboring fluid on bottom, py* A
py'A:px‘A-'—h‘A‘d

px—px=h-d
In “good” (absolute) units
Px — px = hdg

U-tubes for Measuring Pressure-Differences

To measure pressures, we often use liquid in a
U-tube, which need not be uniform in bore. We
apply the last result, PRESSURE-DIFFERENCE = hd.

77T 1 7/ 7T 77 7777

Fic. 4-9. MEASURING PRESSURE

For example, in Fig. 4-9, the man’s breath exerts a
pressure p which we wish to measure. So the pres-
sure at M is p. The pressure at N, opposite M, is
also p. (We may argue our way down from M to
the bend, then across, then up to N, getting back to
the same pressure p at the same level.) The pressure
at L is the atmospheric pressure A.

But (PressURE at N) = (PRessure at L) 4 (hd)
pressure, p = A - hd

Units for Pressure

When we use hd, we obtain pressure differences
in “engineering” units such as pounds/sq. inch or
kilograms/sq. meter. (This is how they are written
and spoken. Strictly, their force-unit should be
pounds-weight or kg-wt. )

If we then multiply by g, the Earth’s gravitational
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field-strength (9.8 newtons/kg), we obtain pres-
sure in “absolute” units such as newtons/sq. meter.

Sometimes pressures are expressed in liquid
heights such as “inches-of-water,” just as a mountain
distance may be expressed in “hours (of climbing).”

Sometimes pressures are expressed in “atmos-
pheres” using a standard average value for atmos-
pheric pressure.

EXPERIMENT E(1). Simple Pressure
Measurements

Use U-tubes with liquid to make the measure-
ments listed below. It is difficult to measure accu-
rately from one level to the other. It is much wiser
to make two measurements, each from the table to
the liquid level. Surface tension makes the liquid
surface in each tube curve into a meniscus. Since
you want a level difference, you should measure to
the same part of the meniscus on both sides. Pro-
fessional observers consider the bottom of the
meniscus bowl the best for this—viewed with eyes
level with it. (Do you also need the original levels,
before the pressure is applied? Why?)

(i) Measure your lung-pressure in inches-of-
water, excess over atmospheric pressure. Then
calculate your lung pressure in lbs/sq. inch. Call the
atmospheric pressure, which you do not yet know,
A, simply writing + A where necessary.

(ii) If you like, also measure your minimum lung
pressure, using suction.

(iii) Measure your lung pressure in meters-of-
mercury, excess over atmospheric pressure. Thence
calculate it in (a) kilograms-wt./sq. meter; (b)
newtons/sq. meter. Call the atmospheric pressure,
A, adding it as 4 A.

(iv) Measure the excess pressure of the illumi-
nating gas in inches-of-water.

Ereda
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Fic. 4-10. BAROMETER

(v) Demonstration Experiment. A barometer will
be set up to measure the pressure of the atmosphere
at the time and place of your experiments. Record
the “barometer height” in inches-of-mercury and
meters-of-mercury. Calculate the atmospheric pres-
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sure in (a) pounds/sq. inch; (b) kilogram-wt./sq.
meter; (c) newtons/sq. meter. (It is likely to be
near an easily remembered round-number value in
these units. You will need this in Ch. 25.)

\(

Fic. 4-11. Fic. 4-12.
TESTING FOR BoyLE's Law
A Goop Vacuum APPARATUS

PROBLEM 6

In calculating air pressure from barometer height, we
assume there is @ vacuum at the top of the tube.
(@) Why do we expect a vacuum? Give detail of experimental
procedure that makes us expect it.
(b) What practical test makes us believe there is a vacuum?

EXPERIMENT E(2). Boyle’s Law Test
(Original Form)

(This is a simple, single test using Boyle’s own
arrangement. )

Robert Boyle gave an account of his experiments
on the “Spring of the Air” in a paper communicated
to the Royal Society of London in 1661. The quota-
tion below is an extract from his account. With a
supply of mercury, and a J-shaped glass tube, like
the one in Fig. 4-12, carry out the test described by
Boyle. (Record the two stages of the experiment by
two sketches, with measurements marked on them.)

“We took then a long glass tube, which by a
dexterous hand and the help of a lamp was in such
a manner crooked at the bottom, that the part
turned up was almost parallel to the rest of the
tube, and the orifice of this shorter leg . . . being
hermetically sealed, the length of it was divided into
inches (each of which was subdivided into eight
parts) by a straight list of paper, which, containing
those divisions, was carefully pasted along it. Then
putting in as much quicksilver as served to fill the
arch or bended part of the siphon that the mercury
standing in a level might reach in the one leg to the
bottom of the divided paper and just to the same
height or horizontal line in the other, we took care,
by frequently inclining the tube, so that the air
might freely pass from one leg into the other by the
sides of the mercury (we took, I say, care), that
the air at last included in the shorter cylinder should
be of the same laxity with the rest of the air about
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it. [The same density and pressure as the atmos-
phere.] This done, we began to pour quicksilver
into the longer leg of the siphon, which by its weight
pressing up that in the shorter leg did by degrees
strengthen the included air, and continuing this
pouring in of quicksilver till the air in the shorter
leg was by condensation reduced to take up but
half the space it possessed . . . before, we cast our
eyes upon the longer leg of the glass, on which was
likewise pasted a list of paper carefully divided
into inches and parts, and we observed not without
delight and satisfaction that the quicksilver in that
longer part of the tube was 29 inches higher than
the other . . . the same air being brought to a degree
of density about twice as great as that it had before,
obtains a spring twice as strong as formerly.”

Boyle made more extensive measurements and
obtained close agreement between the pressure ob-
served and “what that pressure should be according
to the hypothesis that supposes the pressures and
expansions [= volumes] to be in reciprocal pro-
portions.”

EXPERIMENT E(3). Boyle’s Law Test with
Modern Apparatus

Use some modern form of apparatus for an accu-
rate test of Boyle’s Law for a sample of some gas
over as wide a range of pressures as possible. (You
would be wise to regard this as a test of your skill—
you against Nature—rather than a routine verifying
of a well-known law.)

The tube containing the sample of dry air (or
other gas for the test) must have a uniform bore:
otherwise you will be testing the taper of the tube
as well as a gas law.

If the pressures are measured by a mercury
column open to the atmosphere at the top, there
is a useful trick for calculating the pressure of the
sample. Since the atmosphere presses on the open
mercury, replace it by an extra column of “imagi-
nary mercury,” thus: (1) read the open mercury
level; (2) add the barometer height, to obtain a
new “open level” with atmosphere allowed for; (3)
then continue with any subtraction, etc. . . .

Make Boyle’s test with your measurements by
multiplying Pressure of gas, p, by its voLumE, V.
Also plot two graphs:

Graph I  PRESSURE against VOLUME
Graph II (taking a hint from Boyle of what to
plot for a straight line)

PRESSURE against
VOLUME
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PROBLEM 7

(a) If the points on Graph Il fit a straight line through the
origin, show that pV = constant expresses the behavior
of the gas.

(b) Since the gas is enclosed by a leak-proof piston, its
mass, m, is constant. If Graph 1l is a straight line through
the origin, what does that tell you about the density of
the gas?

PROBLEM 8

To see the shape of a ““Boyle’s Law Graph’ more clearly
sketch an extended p:V graph. Assume that Boyle's Law
gives the behavior of air quite accurately over a much wider
range than that of your laboratory experiment, and obtain
more ‘‘data’ by extrapolation as follows. Suppose your ex-
periment ran from % atm. to 2 atm. Calculate the (average)
value of pV for your measurements, and then calculate V
for, say, & atm., & atm., and for 4 atm., 8 atm. Plot these
“’data’’ and your measurements on a graph with a suitable
scale—distinguishing carefully between true points from your
experiment and guesses by extrapolation.

EXPERIMENT F. General Investigation of
Heat-Transfer

[These experiments, with closely defined field and
some cook-book instructions, are intended to offer
an OPEN field for making inferences. They can be
done early in the course, as they need only a simple
idea of heat (supplemented by the notes given
here). They need not wait for the experiments on
the measurement of heat suggested in Ch. 27.]

Introduction

Work in a scientist’s laboratory ranges from spe-
cific measurements or tests through carefully
planned study of some new phenomenon to general,
freehanded investigation of some field. This last
extreme was the way in which much early science
developed, and it is still useful today when a new
field opens up. Scientists carry out such investiga-
tions with flexible hand-to-mouth planning as the
work proceeds, with open eyes and ears for unex-
pected possibilities of future experimenting or hints
of new knowledge. In science, “chance favors only
the prepared mind,”® and science itself favors the
alert, flexible mind.

In Experiments F(1)-(10) you are asked to find
out all you can, from your own observations, con-
cerning the transfer of heat. Apparatus is provided,
some of it already set up with definite instructions.
However, you should apply for any extra apparatus
you need, and if time permits you should devise
further experiments of your own. First, read the
notes below.

15 From the writings of Louis Pasteur, whose preparation

in physics, chemistry, and good scientific thinking served
him well in his brilliant researches in biology.

Descriptive Notes on Forms of Heat-transfer

Heat can be transferred from one thing to another;
and, besides being a nuisance in experiments, such
transfer can be of great importance, e.g. in heating
houses and in chemical manufacture. There are three
distinct methods of transferring heat, rather like the
three ways of transferring a message: by handing a note
from person to person in a crowd; by a runner carrying
it; by sound waves.

Conduction. When heat is handed on from one piece
of material to the next without the material moving
visibly, we call the process conduction. Heat is con-
ducted along a poker from red-hot end to colder end;
or up a silver spoon dipping in coffee.

In terms of atoms or molecules—discussed fully
later—we imagine the hotter particles of material
jostling their less agitated neighbors so that the molecu-
lar motion which we call heat is handed on. In liquids
and gases, the process is just a progressive sharing of
energy, in collisions between richer (hotter) molecules
and poorer ones. In solids we picture molecular vibra-
tions being handed on by elastic binding forces. (Some-
times mogem theory treats this slow giffusion of heat
through solids as a case of waves ganging together into
a group that travels slowly under some quantum re-
striction.)

Convection. When a piece of hot material moves as
a whole, thus carrying heat with it to another region,
we call the process convection. Chunks of the hot ma-
terial convey heat elsewhere. A red-hot poker carried
across the room is a case of convection, if we must give
it a name, but the word is usually applied to warm cur-
rents carrying heat through a fluid while colder reverse
currents complete the flow. In this sense, convection
occurs in liquids and gases but not in solids. Winds are
convection currents on a vast scale.

When some hot water or air moves upward in such
a current, people say, “hot water rises” or “hot air rises.”
These statements are poor science. They merely repeat
the observation, in a dogmatic voice. Taken literally
they are obviously untrue, but they can be expanded to
become sensible. Hot coffee does not shoot up out of a
cup. Hot air does not rise when all alone any more than
a cork rises when all alone. On the other hand, corks
do rise when released under water . . . , and there is
the hint of the proper explanation. A chunk of hot water
in cold water is pushed up by the presence of the denser
water around it, a case of buoyancy. Hot gases are
pushed up the chimney by the denser cold air outside
the chimney. One current moves up and another down—
often in a pattern of circulation. (Usually the hotter
material moves up, but not always. Water expands,
growing less dense, when heated from 4° to 10°C and
on up to boiling point. But it shows an unusual be-
havior below 4°. As it warms from 0°C, melted ice, to
4°C it contracts—though very little, only 0.013%. How
does that peculiarity affect a lake when its surface water
is cooled by freezing winds or warmed by bright sun-
shine?)

Radiation. There is another way in which heat travels,
or rather disappears in one place and reappears in
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another. This form of transfer occurs extremely fast,
along straight lines. We call this “radiation” after the
Latin “radius” for the spoke of a wheel. Though scien-
tists use the word for anything spreading out along
straight spokes, we use it here for some process that
transfers warmin% from a glowing fire to us. This in-
cludes warming by the Sun—carried through millions
of miles of vacuum—and warming by light, visible and
invisible, through the vacuum of some electric lamps.
So we are dealing with transfer which can take place
through a vacuum, and also through glass, ice
water, .. .18 This can hardly be conduction or convec-
tion, as we have pictured them. It is not actual heat
travelling, because the material it travels through re-
mains unwarmed. As an extreme example, a lens made
of ice can be used as a burning glass to focus sunshine
without the ice melting. Later experimenting shows all
such radiation to be electromagnetic waves, which in-
clude light. We then picture the hot source producing
waves, at the expense of some of its heat, and the
waves travelling till they reach a receiver, where they
are stopped and heat is generated again.

Record and Inferences

Write your record as you work, making very short
notes of what you did, writing clear statements of
what you observed. Then add conclusions, or infer-
ences. These conclusions should be the facts that
you extract from your observations, or the guesses
you make by inference from them, or even generali-
zations.

If you use some other knowledge, from books or
previous science courses, to explain your observa-
tions, you are reversing the logic asked for and are
missing the whole point of this experimenting.

For example, suppose in some very simple
experiment on another aspect of heat, your record
ran: “Plunged thermometer in hot water. Saw mer-
cury run up the tube.” You might proceed to the
inference: “I conclude that (or I infer that . ..” or
“Therefore . . .) mercury expands when heated.”
Or, on the other hand, you might try to explain your
observation, saying, instead of any inference: “This
is because mercury expands when heated.” The two
look almost the same, but the second form spoils
the logic of this investigation. Please avoid such
“explanations” here, even where you are sure of

16 And some forms of it through other materials; e.g.,
infra-red radiation through hard-rubber, X-rays through card-
board or flesh, radio waves through brick walls.

17 In fact this is not the logically safe inference! What can
you infer? This is a good scientific puzzle. When you have
guessed the right answer, you will know you are right; and
you can suggest an experiment to settle the matter. And in
fact the observation is not quite correct. When the ther-
mometer is first plunged in hot water its mercury dips down
momentarily, then rises. With some common-sense knowl-
edge, this provides a discriminating inference.

them, and pretend you are restricted to what you
can draw from your experiment.

In general, there are great possibilities of draw-
ing a rich variety of conclusions from some of these
experiments,

EXPERIMENT F(1). General Experimenting

You are provided with Bunsen burner, glass
beaker, test tubes, samples of metal wire (iron and
copper), glass rod, “dye” (crystals of potassium
permanganate ), and you may ask for other appa-
ratus relevant to your researches. Find out all you
can about the travelling or transfer of heat.

Pre-arranged Experiments. When you have tried
informal experiments with the materials of F(1),
try Experiments F(2), F(3), etc. Though these are
given with some cookbook instructions you are
hardly told what to look for and, still less, what kind
of conclusions to hope for. In your record, make
notes of what you do and what you observe. Then
add clear conclusions, squeezing out all the infer-
ences you can, even at the risk of guessing,

EXPERIMENT F(2). Experiments with Water

b
@ (6)

i P AN

Fic. 4-13. ExperimenT F(2)

Heat some cold water in a pyrex test tube. To
mark any currents in the water, drop a crystal of
“dye” (potassium permanganate) into the water
and let it fall to the bottom without stirring. It will
leave little color; but if there is any circulation it
will color the stream and show it. Perform two ex-
periments, in each case holding the tube with bare
fingers at one end and heating it with a Bunsen
flame at the other end.

(a) Hold the tube near the top of the water, but
not above the water level. Heat with flame at the
bottom of the tube as long as you can hold it.
Watch the “dye.”

(b) Cool the tube carefully and refill with cold
water. When the water is still, add a crystal of “dye”
without stirring. Hold the tube at the bottom, and
heat with flame near the top just below the water
surface. Continue as long as you can, and watch
the “dye.”

Record your observations. Infer.
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reaching them is absorbed and gives them a small
temperature-rise leading to a corresponding voltage.
(The absorbing metal quickly warms up until it is
losing heat by convection, etc., as fast as it is gain-
ing it from the radiation; and its temperature-rise
gives a measure of the rate-of-receiving radiation.)

Ordinary glass happens to be transparent for the
visible spectrum but only a little way beyond it at
each end. In the far ultra-violet and in most of the
infra-red glass is BLACK. Since glass is used in the
spectrum apparatus we find a sharp “cut-off” when
we reach the limit of glass-transmission in the
infra-red. This is a defect due to our choice of
apparatus, not a real cut-off in the energy spectrum.

Make a note of the micro-voltmeter readings for
various portions of the spectrum. (Remember it
may have a “zero reading” due to other radiation
reaching it.) Sketch a rough graph.

If time and equipment are available, experiment
with various color filters (which subtract some
colors from the spectrum) and colored spotlights
(which add colors on a screen).

CONNECTIONS OF EXPERIMENTS
IN THIS CHAPTER WITH OTHER CHAPTERS

Ch.1: Mentions open-lab investigation of falling
bodies and projectiles; also precise investigation
of motion down a hill. These are Experiments
A and C of this chapter.

Ch. 5: Gives a discussion of Hooke’s Law, which
should follow Experiment B (Springs) of this
chapter.
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Ch. 10: Gives pendulum analysis and discussion of
S.H.M., which should follow Experiment D (Pen-
dulums) of this chapter.

Ch. 25: Assumes a knowledge of Boyle’s Law from
Experiment E of this chapter.

SUGGESTIONS FOR EXPERIMENTS IN
OTHER CHAPTERS

Ch. 10: Young's fringes, rough estimate of wave-
length of light.

Ch. 21: Test of F = Mv?*/R for motion around a
circle,

Ch. 27: Calorimetry, Experiments A-E: simple meas-
urements of heat,

Ch. 28: Measurements of power.

Ch. 29: “J”: measuring the mechanical equivalent
of heat,

Ch. 32: Electric circuits, Experiments A-W. In-
tended to give a knowledge of “Current Elec-
tricity”—from simple circuits to a diode radio
tube—by laboratory work and reading, without
other teaching.

Ch. 34: Mapping fields of magnets and currents.

Ch. 39: Measuring radioactive decay (depends on
facilities).

Ch. 41: “Laboratory work with electrons,” Experi-
ments A-]. These are:

A-G “Magnets and Coils” (electromagnetic in-
duction, generators, transformers, capacitors).

H Triode tube, used for amplifying.

I Electrons: measurement of e/m and velocity.

] Oscilloscope: working and use.
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At this moment the King, who had been for some time busily writing in his note-book,
called out “Silence!” and read out from his book, “Rule Forty-two. All persons more than

a mile high to leave the court.”
Everybody looked at Alice.
“I'm not a mile high,” said Alice.
“You are,” said the King.

“Nearly two miles high,” added the Queen.

“Well, I shan’t go, at any rate,” said Alice: “besides, that's not a regular rule: you

invented it just now.”

“It’s the oldest rule in the book,” said the King.
“Then it ought to be Number One,” said Alice.
The King turned pale, and shut his note-book hastily. “Consider your verdict,” he said

to the jury, in a low trembling voice.

—LEWIS CARROLL, Alice in Wonderland
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What is a scientific Law? Who makes it, who
obeys? Who uses it, the great thinker or the prac-
tising engineer? In this chapter we select one aspect
of your work on springs, their proportional stretch-
ing, to discuss it as an example of a scientific law;
and to show how engineers put it to use.

Hooke’s Discovery

In 1676 Robert Hooke announced that he had
made a discovery concerning springs. It was a
simple law, accurate over a wide range, destined to
play an important part in physics and engineering,
Hooke was delighted with his discovery but jealous
of his colleagues and anxious lest someone should
steal the credit for it. The publishing of discoveries
in regular scientific journals was only beginning to
replace personal books and private letters; and there
was still danger that when one revealed a discovery
others would jump up and say, “Oh, we found that
long ago.” So Hooke gave his law of springs as an
anagram:

ceiiinosssttuv
This was like patenting his discovery. He gave his
rivals two years in which to claim their discoveries
about springs; then he translated his puzzle: “ut
tensio, sic vis,” or “as the stretch, so the force.™

! You are advised to postpone the reading of this chapter
until you have finished your laboratory investigation of
springs.

2 The Latin word “tensio” means stretch (extension) not
tension.

He had discovered that when a spring is stretched
by an increasing force the stretch varies directly
as the force.

EXPERIMENT

¥ HOOKE’'S LAW

Fi1c. 5-1. EXPERIMENT AND GRAPH FOR SPRING
(Note: In this case the graph is plotted
downward to match the experiment. )

As you know from your own work, this simple
relation holds for a steel spring with remarkable
accuracy over a wide range of stretches. It holds
for springs of other materials, perhaps best of all
for a spiral of quartz (pure melted sand). It would
not be so surprising, or so useful, if it only applied
over a narrow range of small stretches—almost any
curve can be treated appropriately as a straight line
for short distances. But this relation continues un-
til the spring’s stretch is several times its original
length. It gives many of us, as it did Hooke, a de-
lightful feeling of success to discover something so
clear and simple about nature.
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Fic. 5-2.

We meet similar Hooke’s-Law behavior in many
cases of stretching, compression, twisting, bending,
all varieties of elastic deformation. Here are some
examples:

(i) for a wire being pulled: STRETCH o TENSION.

(ii) for a rod being stretched or compressed:

A LENGTH o« FORCE.

(iii) for a rod being twisted:

ANGLE OF TWIST o TWISTING FORCE.

(iv) for a beam being bent: SAG OF BEAM o« LOAD.

(v) for a sample of solid or liquid being com-

pressed:

CHANGE OF VOLUME o APPLIED PRESSURE.
and, in general,

DEFORMATION o DEFORMING FORCE.
This general rule is called “Hooke’s Law” in honor
of Hooke’s discovery. The sketches in Fig. 5-3 show
devices for investigating some examples of Hooke’s
Law. See them demonstrated.

Breaking

/‘;ﬁﬁq'/_z:

Yield prount jroink
e~ Elastic limit '
“— quﬁzk law
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pointer ' scale STRETCH i’
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LOAD (&)

Fic. 5-3. DEMONSTRATING ELasTic CHANGES
Fic. 5-3 (i) Stretching a wire.
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Fic. 5-3 (ii) Twisting a metal rod or wire.

The left-hand end of the specimen is clamped and
cannot turn. The right-hand end is attached to the large
wheel which is free to turn. Loads are hung on a tape
which is wrapped around the wheel’s circumference.

A pointer on the wheel shows the angle of twist.

LOAD
g (L)
YA

Fic. 5-3 (iii) Bending.
A wooden beam, anchored at one end, is loaded at
the other end. The vertical deflection is measured
near the loaded end. Or the beam may be supported
near its ends and loaded in the middle. This avoids
doubts about the choice of deflection for measurement.

Scientific Laws

When we say that wires “obey” Hooke’s Law, for
small stretching loads, we do not mean that either
Hooke or his Law compels them to behave in this
simple way. We mean they just do behave thus—as
shown by experiment—and that this is an example
of the general behavior which is summed up by
Hooke’s Law. The word “Law” is misleading. It is
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used in science for a relationship, or description of
behavior which has been discovered, and which
seems very general and appeals to us as simple and
important.

Most scientific laws are first derived inductively
from experiment, as in the case of Hooke’s Law.
Others are first deduced from some theoretical
scheme: chemistry’s Law of Multiple Proportions
developed from atomic theory; the Law of Equi-
partition of energy among molecules was deduced
from mathematical mechanics (and turned out to
be partly inapplicable). Sometimes a different title
is awarded: “principle” or “rule” or even the hon-
est word “relation”; for example: the Principle of
Conservation of Energy, the Quantum Rules, the
Mass-Energy Relation E = mc* Law, principle,
rule*—at present you may regard these as all much
the same; all are summaries of what we find, or
think, does happen in nature. So it is unfortunate
that scientists say, “. . . obey . . . Law.” Scientific
laws do not command nature like policemen. Nor
should we use them to “explain” the observations
that suggested them—though they can throw light
on other experiments; they come from experiments
themselves, and can hardly be taken fo experiments
as heaven-sent causes. Laws are, rather, simple
guiding threads which we have drawn from the
tangled web we study, the main threads of experi-
mental knowledge which we weave into the fabric
of science. Science gets nowhere if knowledge is
just a vast tangle of facts or random observations.

We take it for granted that there are simple laws
to be found, and that they are true descriptions of
nature when we find them. But modern philosophy
of science warns us that we are being over-confi-
dent. It reminds us that our whole behavior in
seeking law is artificial. The nature we codify is
just our idea of nature. Our laws are man-made
because we make assumptions to suit our hopes.
Even in deriving Hooke’s Law we assumed we could
simply add up the weights we put on the spring to
find the load. We have no possible way of proving
that load 200 4- load 300 makes load 500; we simply
assume that as a definition of “total load.” So some
of the simplicity is of our own making; we do not
force nature into a simple mould, but we do force

3 There is a tendency to use “law” for great simple out-
comes of experiment, “principle” for general beliefs which
are built into theory, and “rule” for more earthy working
statements. Perhaps there are signs of the times, reflections
of changes in scientific philosophy, in the shift in popularity
from proud laws in the 17th and 18th centuries to great prin-
ciples in the 19th, and now hard-working unassuming rules.

our description of nature to be simple. If this cyni-
cism irritates you, you are in good company with
many physicists.

Another View of Laws

Once extracted, must scientific laws live a pre-
carious existence, ready to be discredited by the
discovery of exceptions or limitations? Some modern
philosophers quarrel with such poor courtesy to
laws and award them much more permanent privi-
lege. They take the view that the law is there, a
clear statement of possible simple behavior, with no
question of its being wrong or untrue. It just states
what it states, a peg on which to hang our informa-
tion. The important science, they say, is the knowl-
edge that goes with the law concerning its limita-
tions.

In discussing Hooke’s Law, “stretch varies as
load,” we should not ask, “Is that statement true?”
but rather, “How closely do the facts fit the state-
ment? Do many substances in many shapes ‘obey’
it? Does it apply over a small range of stretch or
a large one?” When we find that most springs and
wires obey it over a large range of stretching, we
consider it a useful law, worth naming. We may
picture the law itself as going on for ever, right out
towards infinite stretches and back into compres-
sions, but we have no illusion that real materials
obey it over such a range. Instead we pride our-
selves on a cunning knowledge (drawn of course
from experience) of its limitations. We ccasider we
know within what range of stretches it is likely to
apply to, say, a steel wire, and in that range how
closely experimental measurements are likely to fit
it. And we keep track of special substances, such as
glass and clay, that we suspect of serious devia-
tions.

On this view, a law is rather like the perma-
nent timetable of a railroad. A timetable just says
what it says; there is no question of its being wrong
(apart from foolish misprints). But how accurately
real trains follow it each day is quite another ques-
tion, the important one for travellers and one that
may take an experienced railroad scientist to an-
swer. Notice that this view of scientific law is not
as different as it looks from our first view, that a law
sums up experimental behavior. We have merely
pushed the knowledge of experimental tests and
limitations of the law itself into the guide-book
knowledge that now goes with it. Then we must
think of every good scientist as carrying an invisible
“little black pocket-book” of detailed knowledge.
That is what makes him an expert.
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The body of knowledge that we call Science will
stay much the same however you regard laws, but
thinking about these views may help you to see how
real nature, which seems complex indeed, can be
interpreted with the help of a framework of simple
laws.

We take it for granted that there are simple laws
to be found—whichever of the two views above we
choose to favor. Extracting laws is one of the great
activities of physical science, but there is imagina-
tive thinking, too, and above all much scheming to
combine laws together, hoping to find a common
key or reveal new predictions. We shall return in a
later chapter to a discussion of laws and concepts
and theories. Meanwhile, in following this course,
you should watch for laws, give each a critical wel-
come, and look forward to seeing for yourself the
growth of science when laws are combined.*

Stretching beyond the Hooke's Law Range

In the apparatus of Fig. 5-3(i), the stretch of a
copper wire, A, several meters long is shown by a
pointer which slides on a scale held by another
wire B suspended from the same ceiling. Up to a
certain load (many kilograms for a copper wire a
millimeter in diameter), the wire “obeys” Hooke's
Law, stretching a few millimeters. As the load is
increased still more, the stretches are slightly greater
than Hooke’s Law would predict, then suddenly far
greater, the wire running visibly. Finally after
stretching hundreds of millimeters, perhaps 40% of
its length, the wire breaks. Try this for yourself with
a short copper wire, well anchored. The broken end
is worth examining.

Physicists are interested in these changes and try
to interpret them in terms of metal crystals distort-
ing or slipping. There are surprises; the irregularity
introduced by jamming many small crystals together
makes a much stronger wire than a single crystal
whose atom-layers slide easily on each other. The
forces between atoms which bind crystals together
are still being explored. We know that these forces
change rapidly with distance, so it is surprising to
find that they can produce anything as simple as
Hooke’s Law, even for the smallest stretches.

¢For example: combining Hooke’s Law with Newton’s
Second Law of Motion can produce surprising and useful
predictions about the bouncing of a load hung on a spring,
the vibrations of a tuning-fork and the motion of the balance-
wheel in a watch, and even certain vibrations of atoms in
molecules. These diverse motions and many others are shown
to be linked together by a common characteristic, which you
will meet later. Without the help of combined laws, the
common behavior might have remained unknown, and some
of the motions never put to use or fully understood.
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Engineers and Elasticity

To the engineer, Hooke’s Law offers an easy way
of allowing for elastic changes in his structures
when loaded. He can calculate the sag of a bridge
before he builds it, or estimate the twisting force in
a ship’s propeller shaft by measuring its slight
twisting-distortion. For such uses, he needs to know
the exact behavior of a measured sample of the
material; he can argue from that to his large struc-
ture. He is also interested in properties beyond the
Hooke’s Law range, such as the breaking load; and
these too he calculates from measurements on a
sample. How do experimenters who compile engi-
neers’ reference tables remove the unwanted details
of the sample? How do they reduce their measure-
ments to a number that belongs to the material
itself, not just the sample?

The descriptions and questions in the special
Problems on Elasticity will show you some of the
engineer’s treatment, and answering the questions
will enable you to think out the “rules of the game.”
Some of the questions are “thought experiments”
drawing on common sense. Others are merely illus-
trations of the useful terms introduced by engineers.

“The problems on pages 82, 83,
and 84 are intended to be an-
swered on typewritten copies of
these pages. Work through the
problems on the enlarged copies,
filling in the blanks, ( ),

that are left for answers.”
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STRATN.

10.

In dealing with wires of different lengths, we see that the ratio
smmfm'm should be the same for all wires of the same materisl with
the same stress, though they have different lengths. Do you consider this

statement risky, reasonable, probably right, right?

This useful ratio 1s called STRAIN. By using it we get rid of the length of
the sample, and specify the state of the material itself. If we measure

STRETICH in inches and LENGTH in inches, STRAIN must be measured in
units

MODULI.

1.

Engineers and physicists often want to record the elastlc properties
of a material in some form which will hold for a variety of shapes and sizes

of sample, and for a varlety of applied forces. To do this, we use:

FORCE
AREA to which it is applied

CHANGE OF LENGTH (or size)
STRAIN, which 1s gp=mor—n Ao S50 ingtead of Just CHANGE OF LENGTH.

Then in the Hooke's Law region, where the simplest statement says

STRESS, which is

insteed of just FORCE (or load);

STRETCH OC I0AD, (or IOAD/STRETCH = constant), we manufacture a much grander
fraction, which, like LOAD/STRETCH, is constant. But this grander fraction does
not depend on the ghape or size of sample used. It is the same for all samples
of & given material. To meke this grander fractlon we use stress and strain
instead of load and stretch. And we now write Hooke's Law in the general, grand

form, ; is constant.

We call such a constant & "modulus." The emsler a substance 1s to stretch

(or compress), the 1ts modulus must be.
larger? [ smaller?




CHAPTER 5 -
Elastic Moduli

Using stress and strain, we can state Hooke’s Law
stress

in general form, is constant; that is, the fraction

strain
force/area

A length (or size)/(original length or size)
is constant.

stress

We call such a fraction a “modulus.” Within

strain

the Hooke’s Law range, moduli are constants char-
acteristic of the material, different for different
types of distortion but independent of the shape
and size of the sample and the force applied. The
bigger the force a material needs for a given dis-
tortion the bigger the modulus. So the size of the
modulus indicates the stiffness of the material, not
its ease of stretching, etc.

For simple stretching of a rod or wire by ten-
sion—which is what we have been discussing—the
modulus given by stress/strain is called Young’s
modulus. It applies to compression too. Engineers
use it to predict changes in bridge girders when
pulled or compressed.

Bending an elastic beam stretches some fibers and
compresses others, therefore Young’s modulus is
involved in bending. Mark a rubber tube or block of
eraser with ink and try stretching it and bending it.

F F

U

- COMPRESSED
R g T c

Fic. 5-4

(a) Stretching or compressing a rod or a wire
(b) Bending a beam

STRESS AND STRAIN 85

It is the outermost fibers of a bent beam that are
greatly compressed and stretched and therefore
exert great pressures and tensions to oppose the

Fibers of part B exert
the forces shown, on part A

fibersS ——+

(Plane section. of A )

An I-beam. can be much @ﬁm-
bt almost as strong for bending

F1c. 5-5. BENT BEAaM.
Stretching and compressing oppose bending.

bending. The inner fibers suffer little strain, so they
exert only small forces; they can be removed with
little loss of strength but valuable saving of weight.
That is why solid beams are scooped out into I-
girders and solid rods hollowed into tubes in
bicycle frames.

Other types of distortion lead to other moduli.
For pure change of size, without change of shape
(i.e., pure compression) we have the “bulk modu-

SR

N N@W//A F

N

Fi1c. 5-6. Pure CHANGE oF S1ZE

lus.” The compression stress is easily applied by
fluid pressure.

For pure change of shape, without change of size
(shearing) we have the “rigidity modulus.” Torsion
or twisting of a rod involves shearing, and therefore
involves the rigidity modulus. Try twisting rubber
blocks or tubes marked with ink. Place a fat book
on the table and push the cover, so that the pages
slide. A square, pencilled on the end edges of the
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pages, distorts into a diamond. The book is being
sheared; its shape changes while its volume stays
the same. You might imagine each layer of atoms
or molecules—represented by a page of the book—
being urged to slide over the next layer and experi-
encing increasing restraining force. When a rod is
twisted, fibers parallel to its axis are made to lean
over: they are sheared. (See Fig. 5-7c.)

s

p—
| =
- -

Fic. 5-7Ta. SHEARING. As a cubical block is sheared,
its square sides become diamonds.

i S F
v
K 2] F

Fic. 5-7b. SHEARING.
Alternative view of the same shear-distortion; slanting
fibers are stretched and compressed so that a “45°
square” becomes a rectangle. Try this on the top edge
of a large book.

This end twisted This end twisted
|
cl cl,
A A
"_;H ] 7
Al /

]
—

T

\_ B -~ \_pr/
This end fixed This end twisted
Fic. 5-Tc. ToRsION.
When a cylinder is twisted, a fiber AB is sheared to a

slanting position A'B and squares drawn on its
surface show shearing distortions.

Here again the inner layers of a twisted rod suffer
relatively small strains, produce small opposing
stresses, and so contribute little to its strength

against twisting. A tube is almost as strong as a
solid rod and far lighter.

Various Strains in Various Materials

Liquids and gases offer no permanent opposition
to change of shape, so they do not have a rigidity
modulus for shearing. But they are elastic for

MATTER,

MOTION, AND FORCE

changes of volume, and have a bulk modulus for
compression. Liquids obey Hooke’s Law, with their
small changes of volume, over a large range of
pressures; but gases soon deviate from it, and an-
other law must be sought for them. For solids, the
simple changes of shearing and compression can be
combined into more complicated distortions, e.g,,
in coiled springs or loaded machinery, and in all
cases the simple Hooke’s behavior holds over a
wide range:
stress (due to applied forces)

strain (distortion)
is a constant for the material; or stress « strain.

Hooke’s Law

The general form of Hooke’s Law, “sTRESS/STRAIN
is constant,” applies to all materials (within limits)
and to many types of distortion. The law is re-
markable, and useful, not just for its simplicity but
for its wide range. A closely coiled steel spring may
stretch to five or ten times its original length before
reaching its Hooke’s Law limit. A wooden beam
may be bent, or a hair-spring coiled up, through a
large angle and still fit with Hooke’s Law. Even a
simple metal wire being stretched fits Hooke’s Law
over a surprising range of stretches—far beyond
the tiny expansion caused by heating. Its atoms,
being dragged apart against electrical attractions,
seem to experience individual Hooke’s Law forces.

If we plot a graph of y, to represent sTRAIN,
against x, to represent sTress, Hooke’s Law would
be shown by a straight line through the origin. That
line would represent a relation y = kx. The accu-
rate statement for real materials might be a much
more complicated mathematical relation, but in
many cases where y = (a complicated function of
x) we can express it as a series:

y=A-+ Bx+4 Cx* 4 Dx® ...

where A, B, C, . . . are constants. In this case, y = 0
when x =0 (no stress applied, no strain). So A
must = 0. Now the experimental fact that Hooke’s
Law fits well suggests that C, D, . . . are very small.
Then y ~ Bx, for Hooke’s Law. However, when x
increases x* and x° etc. grow even larger in im-
portance (since doubling x makes x* 4 times as
big, x* 8 times as big, etc.). So unless C, D, . . . are
exactly zero, we should expect their terms to make
themselves felt with big stresses. The wide range-of
Hooke’s Law tells us that those constants are re-
markably small. Yet they are there, so we must
regard our great simple Hooke’s Law as only a very
close guess at nature. Have we discovered that sim-
plicity, or have we manufactured it?



CHAPTER 6 - SURFACE TENSION: DROPS
AND MOLECULES
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“We especially need imagination in science. It is not all mathematics, nor all logic, but it

is somewhat beauty and poetry.”

—Maria MrtcHELL (American Astronomer, ~ 1860)
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[This chapter is not an essential part of the course. It
is inserted because:

(1) It provides many pretty experiments, some of
them simple household ones. See the experiments first
and enjoy them; then read the chapter.

(2) It shows, on a local scale, how scientists investi-
gate a piece of nature: observing, interpreting, guessing,
testing, thus increasing both useful knowledge and
scientific understanding.

(3) In addition to comments on practical matters
ranging from shampooing to gold-mining, it provides a
measurement of the size of a single molecule, useful in
our studies of atoms.]

Demonstration Experiments

Start, like a scientist yourself, collecting informa-
tion by watching the behavior of liquid surfaces.

{a) STAGES OF WATER DRIPPING FROM A VERY SMALL FAUCET

(F) SMALL POOLS OF LIQUID ON TABLE

L

(£0) water on wax (i) Mercuny om clean 5&13_\

ool

(i) wWater on glass

SR D IR0 ..,

({) FAMILY OF DROPS ON TABLE

Funnel

of andline (
Warm warm .

Cold —

waler Hot wt | @

(¢) ANILINE DROPS IN WATER

_f((i} Insect

I. General Observation. Look at the shapes of
small drops:

(a) Drops forming on a dripping faucet.

(b) Pools of liquid on a table: (i) water on clean
glass, (ii) water on waxed glass, (iii) mercury on
glass. The sketches of Fig. 6-1(b) show the shapes
roughly, but as a wise scientist you should observe
the real shapes and pay little attention to pictures
in books except as reminders. Does a real teardrop
on a heroine’s cheek have the shape shown in the
story books?

(c¢) Raindrops are perfect spheres. Accurate
direct observation is difficult, but we get indirect
assurance from two sources: first, the shape and
position of rainbows. These appear exactly where

clity sHoT
TOWER

FiINeedle
floats
77
e ot

mowaker

wel

fis) ToY PAINTBRUSH

Fic. 6-1. SurFace TENSION
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round raindrops would place them. Distorted drops
would shift the bows. Second, the shape of lead shot
made in an old fashioned shot tower—molten lead
poured through a sieve fell in a rain of drops through
air into a deep tank of water and arrived as round
balls.

PROBLEM 1

A tiny raindrop resting on a woolly sleeve is spherical, but
a large drop of water on a waxed floor takes a flatter shape.
Why?

I1. Special Apparatus. The next scientific move
is to use instruments or apparatus to help us.
With a projection lantern, observe the drops of (a)
and (b) in Fig. 6-1 on an enlarged scale. (If water
now seems to move too fast, try dropping viscous oil
from a medicine dropper.)

(d) If you observe a whole “family” of pools and
drops of different sizes, as in Fig. 6-1(d), you should
be able to infer (by induction) several interesting
rules. Look for properties common to most of them.

(e) Remove most of the effects of gravity by
using a supporting liquid. Crude aniline, a brown
poisonous liquid, is slightly denser than water.
When it drips from a funnel submerged in water
the drops form very slowly; a bag of aniline forms
and grows deeper, then a narrow waist develops
and the drop quickly breaks off, the waist turning
into a smaller drop which follows.* If the apparatus
is jogged, the hanging drop vibrates.

(f) Sometimes small objects which we expect
to sink will float on the surface of water; for exam-
ple, a needle, or a razor blade if it is a little greasy,
and some kinds of water-beetle. Strange supporting
forces seem to be available.

I11. Soap Films. Soap bubbles show liquid surface
effects on a large scale. They are “all surface and no

1 Another method: Some aniline is poured into a tall glass
beaker of hot water which is heated steadily at the bottom.
Hot aniline is less dense than hot water, so the aniline starts
at the top as a huge drop hanging in the water. When it
cools it drips down through the water to the bottom where
it is warmed again and rises to repeat the giant dripping
motion.

Theead _)Q

Thevad
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bulk,” with little weight to compete against surface
forces. See the following, sketched in Fig. 6-2.

(g) A soap bubble on a funnel contracts, blowing
air out against a candle flame.

(h) The “window shade.” A flat soap film is
formed on a wire frame whose lower edge is a
movable slider. The film can be stretched by pulling
the slider down by a thread which is then released.

(i) A flat soap film is formed on a square wire
frame. A silk thread knotted into a loose loop is
thrown on to the film. Then the film inside the loop
is broken.

(j) The window-shade experiment is repeated
with a movable bar at the top as well as the bottom.
The upper bar is held by a small spring. A soap
film is formed between the two bars. The lower bar
is then pulled up and down with a thread.

(k) Two soap bubbles, unequal in size, are
blown on a T-shaped tube. The blowing inlet is then
closed, leaving the bubbles connected.

% PROBLEM 2. INFERENCES

For each of the experiments (g) to (k) described above,
first record your observations and then say what you can
infer from them regarding soap films and their ‘'surface
tension.”” (Note: The plane figure with maximum area for a
given perimeter is a circle.) Warning: An important inference
from (h) will rule out the simplest interpretation of (k).

Extracting General Comments

What do these experiments show about liquid
surfaces? The drops forming on a faucet look as if
they were supported by a rubber bag. We can make
a giant artificial “drop” with a real skin of rubber,
which goes through similar shapes as more and
more water is poured into it; but the increasing
tension of the rubber spoils the strict analogy.

Raindrops and pools of liquid on a table seem to
be pulled towards round shapes, again suggesting
a skin holding them together against the pull of
gravity. Thinking about our observations, we may
extract two general comments, vague and risky, but
worth further study:

(A) The surfaces of liquids seem to behave as if
held together by an elastic skin, pulling them into
round shapes.

© c D

(k)

A B
Ad D B
foep (1) ,L

Fic. 68-2. Soar BuBBLES
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F1c. 6-5. Forces oN MoLECULES 1IN A Ligum

pulled in no particular direction; molecules on the
surface will be like B, pulled inward. With all such
“B” molecules trying to get in towards the middle
of the drop, the surface will try to shrink: in fact
it will seem to have a stretched skin. Obviously, if

I3

PR

mﬁ

Fi1c. 6-6. SurFAcE Forces oN SMALL Drop oF LiQuip.

The attractions of neighbors on “B” type molecules
tend to pull the liquid mass into spherical shape.
(Note that a sphere is the shape with minimum

surface for a given volume.)
If small irregularities develop on surface,
surface forces tend to remove them—the full
discussion of such effects is very complicated.

a pimple developed on the surface, molecular at-
tractions would flatten it out, against jostling oppo-
sition. (A small depression, a dimple, would also
be removed, though this is less obvious; molecular
attractions would flatten the convex corners of its
rim; Fig. 6-8.) To picture the general effect,
compare a drop full of molecules with a crowd of
people attracted by a street fight. Fig. 6-7b shows
a bird’s eye view of a crowd collecting. More and

Fic. 6-7. A Crowp CoLLECTS

more interested spectators arrive. Later arrivals,
finding it hard to see, press in towards the middle—
they are attracted by the fight, but they would push
just the same if attracted by neighbors farther in.
What is the effect of this inward attraction on the
crowd as a whole? A fluid crowd is shoved into a
round shape with minimum outside perimeter. (A
circular patch has less rim than any other shape
with the same total area.) A person, A, well inside
the crowd gets squeezed; and if he is tall enough
he sees that his unpleasant sensations are caused by
the outer members, B, pushing inward. But we
could make him suffer in the same way by running
a great belt of rope around the crowd and pulling
it tight. A belt in tension would have much the
same effect on the external shape of the crowd, and
its internal discomfort, as inward attractions acting
on the outermost members. Using this analogy,’
can you see how molecular attractions might pro-
duce the effects of a stretched elastic skin in tension
all over a liquid surface? On this view, there is a
privileged layer on liquid surfaces, a layer of outer
“B” molecules, not a real skin like a rabbit’s.

Surface-Effects versus Volume-Effects. Tragedy in
a Bug's Life

Why does this “skin” pull tiny drops into a perfect
ball, in defiance of gravity, while larger pools com-
promise? On our molecular view—on our theory,
if you like—the skin effect is due to the peculiar
experience of surface molecules, B; thus its forces

5 Analogy, often a help in learning, can never prove any-
thing. Some theories are really analogies; for example, the
older mechanical models of atom-structure. While we should
welcome their help to our thinking and give them credit for
fruitful suggestions, we should not make the mistake of
thinking they must tell us “the real truth” and we should
not cling to them when their usefulness is over.
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should be related to the surface, and should not
involve the main bulk of liquid inside. Gravity,
however, pulls on all the liquid, outer layers and
inner ones alike. Surface tension is a “surface-
effect,” weight is a “volume-effect”; and their rela-
tive importance will change with actual size of
drop or pool. To study this contrast, pretend that
surface forces increase in direct proportion to sur-
face area, while weight, of course, increases in
direct proportion to volume. Consider the change
from a small drop to one ten times as big. For geo-
metrical simplicity, pretend the drops are shaped
as cubes:® a small cube, C, (Fig. 6-8), with each
edge of length a, and a big cube, C, with edge 10a.”

C
@ l — — 100 — —>

Fic. 6-8. CueicaL “Drops.”
Hlustrating surface and volume comparisons.

How do their surfaces compare? Each cube has six
sides. C, has area 6a* and C, has area 6(10a)* or
600a®>. The larger cube, with 10 times the linear
size, has 102 or 100 times the area. How do the
volumes compare? They are a® and (10a)® which
is 1000a®. The larger cube has 10* or 1000 times the
volume and therefore would contain 1000 times
the weight of water. When we change from small
cube to large, surface-effects increase only one
hundredfold; but gravity-effects increase a thou-
sandfold and thus grow tenfold in relative impor-
tance.

Actually, surface tension forces appear to tug at
any boundary or rim in the surface. So they increase
in direct proportion to linear dimensions, edge or
radius, and their comparison with volume-forces is
even more extreme.

For a very large pool, gravity literally outweighs
surface tension effects by a huge factor: ponds are

6 Cubical drops are unreal, but lead to the same result as
spheres—or any other pair of similar shapes. If you know
the formulas for a sphere, surface 41* and volume (4/3)nr’,
argue with them instead. The result must be general, since
we have to measure surface in units like ft* and volume in
fee.

7 One of the soap film demonstrations supports this view
that surface tension is independent of the main bulk of liquid.
So does another simple experiment, sketched in one part of
Fig. 6-1.
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flat and a pailfull of water poured on the floor
spreads out under gravity’s control. For small drops
surface tension has an important effect on shape.
For very small drops it becomes paramount. A man
diving into a lake contends with gravity-pressures.
A tiny bug interviewing a raindrop finds surface-
tension-forces insurmountable. Now can you see
why small water-spiders can run about on the sur-
face of a pond without falling in? They are safe
enough: most of them are waterproof and cannot
fall in. Even if pushed under water they bob out
through the surface with skin helping them. Other
small creatures with a wettable body find a drop
of water a clutching prison. Some partially water-
proof ones can keep above water if they are small
enough, but once in, once through the terrifyingly
tough “skin” which they encounter, they can never
get out. To still smaller creatures, bacilli for ex-
ample, surface forces are everything and weight
hardly matters. Their surface is their channel of
life, through which all food must come and which
they must change if they wish to move. No wonder
their life can be ruined by surface poisons, which
cover their surface as a dye covers cloth fibers.

Imaginative thinking has carried us far beyond
the experimental facts. Some of the ideas set forth
are justified by further experimenting; others remain
little more than wild picturing, to be suspected of
romantic lying and to be used only so far as fruitful
suggestions emerge.

Molecular View of Angle of Contact

Yet we might carry molecular pictures one stage
further and discuss the way liquids hang on to
solids: questions of wetting and waterproofing.
Reverting to small pools on a table, and our classifi-
cation by angle of contact, we picture the pool
being humped together by surface forces on “B”
molecules. However, at the edges where the pool
meets the table the corner molecules, C, must be
attracted by the table as well. How do the combined
attractions tilt the surface and determine the angle
of contact? Adding the attractions as vectors, we
could obtain the resultant attraction, R, due to
neighboring molecules of both liquid and table. The
liquid surface will treat this resultant as a local
“vertical” and will set itself perpendicular to it, just
as the surface of a big pool takes a horizontal posi-
tion perpendicular to gravity’s vertical. The direc-
tion of the resultant attraction, R, determines angle
of contact; but before discussing that we should
give a more detailed account of the forces that mold
the surface.
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Fic. 6-9. MovLecurar ViEw oF Surrace TENsION
AND ANGLE oF CoNTtacT

(i) Attractions of neighbors on
“B” molecules in the surface
make skin effects.

(ii) and (iii) Corner molecule C
is attracted by neighbors in liquid,
and by molecules of table:
resultant attraction R.

sl

(ev) R

(iv) In this case C is attracted
more strongly by table than by
liquid neighbors.

Molecular Forces and Liquid Surface

To see why the liquid surface sets itself perpendicular
to the resultant attraction, R, return to the general dis-
cussion of forces on a molecule. Molecules are acted
on by:

“long-range forces”

(a) gravity

(b) attraction of neighbors (range only a few
molecular diameters)

“short-range forces”

(c¢) violent repulsions during “collisions” with
neighbors (range, a small fraction of molecu-
lar diameter)

“Equilibrium” is a doubtful term in a molecule’s detailed
life, but we can say that each molecule, in a liquid at
rest, is on the average in equilibrium. For any surface
molecule, “B”, the short-range forces come from neigh-
bors at each side and below; and, by symmetry, their
average resultant will be perpendicular to the surface.
Because it balances that short-range force, the resultant
long-range force must have the opposite direction: it
too must therefore be perpendicular to the surface.
Putting the last comment the other way round, the
surface must be perpendicular to the resultant long-
range attraction—all the forces involved will push the
surface about until it is so. (Of course, looked at in
molecular detail, the surface itself would vanish into a
hubbub of irregular motion, like the edge of any crowd.

It is only when we view it from afar with gross human
eves that it seems so smooth; we are then taking a
molecular average.) Two of these forces on a surface
molecule belong with the surface and change their
direction when the surface tilts. These are the short-
range repulsion and the long-range attraction of neigh-
bors. The third force, Earth’s gravity, always acts
vertically down. In a large pond, vertical gravity gives
the defining direction, and pulls the whole surface into
a horizontal plane, and that makes the other two forces
then vertical also. In the case of molecules very near a
solid wall or in the surface of a small curved drop, the
effect of the neighbors’ attractions is much greater than
that of gravity. So we neglect gravity in a first attempt
to explain a curved meniscus or an angle of contact.
We simply say: “the surface will set itself perpendicu-
lar to the resultant long-range attraction on a surface
molecule.”

Angle of Contact and Molecular Forces

To interpret angle of contact in terms of molecular
forces, consider the attractions acting on a corner
molecule, C, where a liquid pool meets a solid table
(see Fig. 6-11). A wedge of liquid neighbors pulls
with resultant attraction, F,, along the bisector of
the wedge-angle—the direction suggested by sym-
metry. The molecules of the solid table within
range of C exert a resultant pull, F,, perpendicular
to the table—symmetry again.

Vector addition gives the resultant of these pulls,
R, and we expect the liquid surface near C to set
itself perpendicular to R. This is sketched in Fig.
6-11 with F, drawn much smaller than F,, showing

/f“'t‘\.l\ (@) Pulls of grawity

(very small)

g (6) Long-range attractions
N T of newghbors

m (¢ SRm-r-mnge repulsions
S iy collisions
k RESULTANT

i5 L to surfoce

Tl ﬁewﬁv swHace must
set {rseg" 1 to resultant
of long-range attraction

Fic. 6-10. Lonc- axp SHorRT-RancE FoORCES
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Fi1c. 6-11. Forces on A MoLECULE
AT THE EpcE oF A Smarn Ligum PooL.

The pool is on a table that attracts liquid molecules strongly.

the molecule C attracted less by its brethren than
by the table. This leads to a small angle of contact,
with the liquid wetting the table. We can picture
the highly attractive table encouraging the liquid
to spread. Thus wetting appears to be a matter of
relative molecular attractions. If liquid molecules
are pulled harder by neighboring solid molecules
than by neighboring molecules of the liquid itself,
the liquid will wet the table and spread.

On the other hand, if the liquid molecule C likes
its brethren better than the table molecules, the
force F, must be drawn larger than F,, and the
pattern swings over to Fig. 6-12 showing a large
angle of contact. “Waterproofing” (non-wetting)
seems to require the table molecules to exert rela-
tively small pulls on a liquid molecule nearby com-
pared with the pulls of liquid neighbors.

Fic. 6-12. Forces oN o MoLECULE AT THE EDGE OF A
SmaLr Ligum Poor. The pool is on a table that does
not attract liquid molecules strongly.

Waterproofing and Wetting

Now we have a molecular explanation of wetting
and angles of contact. Explanation? Is it anything
more than an interpretation in terms of a fairy story
woven to fit the facts? It is not as bad as that be-
cause it uses molecular ideas which fit in well else-
where in physics and chemistry. And it makes useful
suggestions such as the following:

(1) To promote wetting (the laundryman’s
dream), make F, larger than F,: have the liquid
molecules attracted more by the solid than by their
own brethren. This can be done by using middle-
man-molecules, which are in fact molecules of soap.
This is the secret of soap and has pointed the way
to new synthetic soaps.

(2) To make a large angle of contact (the water-
proofer’s hope), coat the textile fibres with some-
thing that has F, small compared with F,. In answer
to the question, “how thick a coating?” (the water-
proofer’s worry ), footnote 4 says a very thin layer
will suffice, just a few molecules thick. (When the
waterproofer’s purchasing department says, “how
thick is a molecule?” our own studies later in this
chapter will provide an answer.)

(3) Offered a situation where surface forces are
important, a liquid with small angle of contact (F,
greater than F,) will try to crawl over the solid
surface, even climbing upward. This is specially
noticeable when liquids climb up very narrow
tubes: “capillarity,” a useful behavior, which we
shall now discuss.

Capillarity

Demonstration experiment. Melt a piece of glass
tubing, draw it out into a very thin tube, and dip
one end into ink (Fig. 6-13). The dyed water runs
up, in defiance of gravity, refuting the adage “water
finds its own level.” Yet the apparatus used to

01123
1111
Scale of wches Scale of wnches
Fic. 6-13. Fic. 6-14. Fic. 6-15.
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demonstrate that adage, a U-tube with unequal
arms, shows the liquid at the same level on both
sides (Fig. 6-14). Remembering the discussion of
surface-effects vs. volume-effects, we guess that a
small-scale apparatus would show surface tension
effects more clearly. A tiny U-tube shows this
(Fig. 6-15). Of course, this was already shown,
slightly disguised, by dipping the thin tube in ink.
The sketches of Fig. 6-16 show the gradation from

b }Z‘;‘Q’t— ﬂ@ﬁ% ‘\%
Hf{ﬂ.‘kﬂj
Fic. 6-16.

one experiment to the other. If liquid runs up fine
tubes, it should run farther up finer tubes. Test
this. (See Fig. 6-17.)

U

Fic. 6-17.

Since this effect of surface tension shows up in
tubes “as fine as a hair” it is named after the Latin
word for hair, capilla. Capillarity, then, is an old
name for surface tension, still used, particularly for
the action of liquids climbing up fine tubes. It is a
nice name, but it does not explain liquid rise. If we
say water runs up a small tube “because of capil-
larity” we are saying “because of small-tube be-
havior.” Magnifying the meniscus (liquid surface)

Fic. 6-18.

in each tube we see it hanging like a curved bag
hitched up on the glass rather like a fireman’s
blanket receiving a heavy citizen. We are back at
the rubber skin idea. If we measure the hitch-up
forces involved, we find they are the same as those
holding small drops together. We may even talk of
the sagging skin supporting the weight of liquid
which rises up the tube?® but it is much more
realistic to talk of molecules climbing up the tube’s
inner surface to make the slanting meniscus.

The liquid does not have to have a round glass
capillary tube to run up. Any narrow spaces will
show capillarity. When water runs among the
bristles of a paintbrush or seeps up from a bathtub
into your hair, it is not filling hollow hairs but
running into narrow spaces between hairs. This
behavior has many uses: pulling oil up lamp wicks,
water into bath towels, ete.

PROBLEM 3. (Difficult) CAPILLARITY FORMULA

Suppose you accept the view that capillary rise is deter-
mined by a pressure-difference across the meniscus. Look
back at the demonstration of two soap-bubbles connected
together (Fig. 6-2k). What can you infer, simply from that
demonstration, concerning the relation between capillary
rise and diameter of capillary tube?
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Fic. 6-19. PROBLEM 4

% PROBLEM 4. CAPILLARITY IN A "“WATERPROOF"
TUBE

Suppose the liquid makes a large angle of contact on the
tube. Fig. 6-19 shows mercury, for example, in a glass tube.
The mercury meniscus in the large tube is shown but the
diagrams are unfinished. Sketch all the diagrams and com-
plete them.

8 We may use this idea to derive a formula, much beloved
of the problemsetter in old-fashioned examinations, for meas-
uring the surface-tension, T, pulling on each inch or meter
of rim: Pull up of skin = weight of liquid supported in tube.
T - [rim, 2#7] = [voLuME, (wr*) * (Ri1SE HEIGHT)]

* [DENSITY] * [FIELD STRENGTH, g]
Therefore, T = %(g) * DENSITY * RISE HEIGHT * TUBE RADIUS,
This formula is more or less right and is used in rough meas-
urements of T; but this derivation is almost a swindle. There
is no rubber skin hitched onto the glass; and the T in the
real formula relates to the liquid/air surface and is not a
hitch-on-to-glass force. There is a curved surface, however
(the meniscus); and, as in any balloon, the pressure is greater
“inside” (above this meniscus) than outside. Using this
pressure-difference we can both explain capillary rise and
derive the formula honestly.
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0 boundany where water meets dirt.
A cormer water molecule, C,
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Fic. 6-21. Action oF WErTING-AcENT ( AEROsor O. T.) _ -' - =
Note: Molecules of Aerosol O. T. wetting-agent are : gy e = >
shown utterly out of scale—_far too large. i el el e e Ll e e
et S b e IR
At a waxy surface this molecule hitches both ends to the

wax and humps its water-liking middle inward. At a free Ditt 45 held suspended, Gecause detergent molkulss frm: proveitivelage
surface it humps itself with its inert ends outward. on cleaned platter and arownd chunks of dirt.

Fic. 6-22.* ActioN oF DETERGENT (SoAP or SynTHETIC). (a) Molecules of “soap” being added to water.
The molecules are shown out of scale—much too big. These are molecules with one water-liking end and
the other end waxy so that it can attach itself to grease or wax. The water-liking end is shown as a round
blob. Many of the dissolved detergent molecules crowd onto the surface of the water and line up there with
their water-liking ends in water and their inert ends out. They also crowd on the walls of the container and
on any wax or grease. (b) The detergent (= cleaning) action of soap or modern synthetic detergent.

® From Scientific American, October 1951, pages 26-27.
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And (ii) soap solution, an uneven mixture, provides
the film with a slightly variable surface-tension
which enables it to carry extra weight near the top
and to pull any irregularities back to normal. A pure
liquid, however, seldom forms stable bubbles or
froth—beware of drinking from ponds with froth.

Waterproofing. To waterproof a raincoat, we
make surface tension discourage water from running
through the pores. This is done, without blocking
the pores, by coating the fibers with wax, to give a
large angle of contact with water. Then, if the pores
are small, the water does not run right through but
is restrained by bulgy skin surfaces. The sketches of
Fig. 6-23 show water being poured on coated

. )

NOT WATE RPROOF

Fic. 6-23, WATERPROOFING AND WETTING.

These diagrams show the fibers of a woven fabric,
in section, greatly enlarged, with water descending on them.
The fabric might be umbrella fabric or tent canvas.
The pores are not blocked up, but where the fibers are
coated to make a large angle of contact (between water
and coated fiber), the water bulges through with
surface tension in opposition.
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fibers—a magnified version of rain meeting umbrella
fabric or tent canvas. The stages can be demon-
strated by a model in a lantern, or the general effect
can be shown by a small sieve of metal screen
netting. When its wires have been waterproofed
with molten paraffin wax, the sieve will hold water
poured in gently. A wet finger touching the sieve
underneath will break the bulging water droplets
and start a deluge, like the unbelieving Boy Scout’s
wet head in the tent.

Surface Chemistry and Mining Miracles

The chemistry of angle-of-contact-changers opens
fields of technical miracles: wetting-agents to help
launderers, sheep-dippers, window-cleaners; trifling
additions to nose-drops to help them wriggle past
the barrage of hairs in the patient’s nose; water-
proofing agents for raincoats and industrial filters;
and differential waterproofing/wetting agents to
separate valuable mineral from useless rock. In this
last use, rock containing metal ore is pounded to
dust in a mill, then stirred in a vat of water. A
differential agent added to the water coats the par-
ticles of ore and makes them “float™* easily; but it
lets the useless sand be wet and sink to the bottom
as a sludge which is thrown away. The open air
surface of the water is insufficient to collect all the
waterproofed ore particles; so a froth of air bubbles
is blown in the muddy mixture to carry the ore up
to the top, where it is skimmed off. This “froth
flotation” scheme is no impractical toy. It is a suc-
cessful process, used in mining to separate a million
tons of rock a day. There is much clever chemistry
in finding agents that will grip the ore with a proof-
ing coat and refuse to protect sandy rock. Some
agents go further, selecting one metal in mixed ores
and refusing another—cleverer chemistry still.
Strange new uses of froth-flotation include sepa-
rating ergot fungus from rye grain, sorting peas
for canning, recovering particles of waste rubber;
but the main business of separating lead, zine, sil-
ver, etc., has grown to a vast industry in which
surface-tension is the essential worker.,

Amoebas and Surface-Tension

How do small simple creatures living in water
travel and find their food? You can get hints from
crude chemical models like the wriggling camphor
boat and the following demonstration of a fake
mercury “amoeba” (Fig. 6-24). A small pool of

13 To float a needle or razor blade on water, first water-

proof it with a little wax or grease. A large angle of contact
enables surface-tension forces to give much greater support.
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mercury, resting in a watch-glass in a dish, is
covered with dilute nitric acid. A crystal of potas-

=
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Mereury

Fic. 6-24. A MERcURY “AMOEBA”

sium bichromate is dropped in near the mercury.
The mercury’s amoeba-like movements are due to
changes of surface tension caused by chemical or
electrical effects. A real amoeba pushes and pulls its
irregular shape in a similar way, possibly using
changes of surface-tension.

More Demonstrations

Changing the surface skin of water. Here are
some pretty experiments which show changes in
surface-tension.

(i) A sewing needle or a tiny leaf of metal can
be made to float in a dish of water. If surface-tension
is lessened, the boat sinks. Try adding alcohol or
soap to the water.

(ii) Sprinkle the surface of clean water with
waterproof dust (soot, talc, or lycopodium seeds).
The weakening of the surface skin can be shown by
motion of dust. When alcohol is dropped on the

Fic. 6-25. Drops oF ArconoL FALL oN WATER,
which has been dusted to mark surface motions

surface the dust rushes away. The usual explanation
is this: the alcohol provides a weak skin and the dust
is pulled away by the strong skin of plain water
farther out. But some people prefer to say that the
alcohol molecules push the powder as they spread,
with a “surface pressure.” Though the two views
differ, either is useful in interpreting experiments.

MATTER, MOTION, AND FORCE

(iiia) Add olive oil to a clean water surface
sprinkled with dust. So little is needed that a match
stick dipped in oil and then wiped dry will suffice.
Even your finger rubbed in your hair will collect
enough natural oil. In experiment (ii), the surface
recovers from alcohol, but the effect of oil remains;
hence the need for very clean grease-free apparatus
in these experiments. Soap and saliva have effects
like that of alcohol.

Mosquito larvae live in ponds and protrude tail-
whisker breathing tubes through the surface. Oil
placed on the surface gets into these tubes and
kills the larva. The old explanation, that oil so
weakened the skin that the larva could not hang on
to breathe, is discredited.

(iiib) A tiny drop of oil placed on a huge dish
of lightly powdered clean water, spreads very fast
to a big round patch, then seems to have no further
interest in spreading. This is observed with vege-
table oils, which are “fatty acids” with one end of
their molecule attracted to water, the acid end

/O

\O —H

(Mineral-oil molecules, which have both ends
inert, seem to lie flat on the water surface and
move around like a two-dimensional gas, spreading
more casually—waxy unemployables.) In all cases,
the oil film seems to exert an outward “pressure” on
the surface boundaries—this seems a more realistic
explanation than “weakening the skin tension of
water.” Nowadays we measure this outward push
with delicate balances which weigh the sideways
push of the oil film on a movable boom.

—C

Uses of Long Oil Molecules

Lubrication. In modern lubrication of high-speed
bearings molecules of vegetable oil attach them-
selves to the metal—the metal ousting hydrogen at
the acid end of the oil molecule—and the oil forms
monomolecular velvet carpets whose inert outer
surfaces slide comfortably on each other. (Mineral
oils are added to provide inert oily rollers between
these velvets.) Under extreme ill-treatment even
the velvet monolayers are torn off the metal; the
moving metals then grip each other (“seize”) with
great force at close quarters, and there is serious
damage.

In a similar way lanolin grease will grip your skin
and soak in, to bring it drugs or general comfort,
while inert mineral oil wanders about on the surface
in a greasy mess—beware the druggist who prefers
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mineral oil to lanolin in ointments. Again, molecules
of good shoe polish grip the leather; but paraffin
wax (a longer version of mineral oil) merely makes
messy smears.’* Shoe-polishing promotes the grip
and aligns the chains.

Calming of storms at sea. The calming of rough
seas by oil is no mere fable. Quite small amounts
of suitable oils poured overboard will spread over
a big area. As the wind tries to whip up high waves
by pushing the shallow humps which start them,
the oil is blown into patches whose different surface-
tensions hamper the wind’s effect, with a sort of
surface friction. Then some of the big waves may
never be formed. And big ones arriving from far
away are at least discouraged from breaking into
damaging whitecaps. Surface-tension plays an im-
portant part in the breaking of a crest into spray,
and oil can weaken the surface and stop the
breaking.

More Experiments

(iv) How would you expect surface-tension to be
affected by temperature rise? Try warming a dusted
water surface by bringing a red hot poker near it.

(v) Sprinkle crumbs of camphor on clean water.
Each crumb swims about irregularly. Camphor dis-
solves slowly in water, making a weaker skin. Each
crumb is pulled forward by clean water ahead and
less strongly backward by weaker camphorated
water, so it sails ahead like a little boat, steered by
its own irregular shape. Then try adding a little
oil. This “kills” the camphor movements perma-
nently. A pretty little experiment, but rather a
childish one? By no means a useless toy. It played
an important part in one of the great simple experi-
ments of atomic physics: measurement of a mole-
cule’s size.

The Size of a Molecule

Sixty years ago, Lord Rayleigh watched oil spread
on water. At a time when scientists were speculat-
ing about molecular sizes, he made a very clever
guess. He guessed that the thinnest sheet of oil
that could cover a water surface completely would
be just one molecule thick, and he set out to esti-
mate this thickness. He pictured a spreading drop
of oil as a huddle of molecules tumbling and crawl-
ing over each other till each reached the water

14 For a pleasant discussion, on which this section has
drawn, see W. H. White, A Complete Physics: Written for
London Medical Students (London, 1935), Chs. xxm and
xxmr (pp. 250-269). Also see Science News, No. 20. May
1951.
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surface and could hitch one end to water—for these
oils have long chain molecules with a water-liking
chemical group at one end. Once all the oil mole-
cules are thus attached they should keep together
in a monomolecular carpet, showing little tendency
to spread more. With just enough oil for a given

Fic. 6-26. Oi. oN WATER.

A drop of oil placed on a clean water surface spreads
to cover it with a layer one molecule thick. The oil
molecules probably stand on end like a velvet carpet.

water surface, the layer would be one molecule
thick, with the molecules packed close and upright,
like the pile of velvet. With less oil, patches of open
water should be revealed. With more oil, there
should be excess puddles on the water'® (as on
greasy soup).

Lord Rayleigh cleaned a large dish and filled it
with water—the biggest washtub he could buy,
33 inches across. He placed a weighed drop of oil
on the surface and watched it spread to cover the
surface completely. Then he started again with
clean water and used a smaller drop, then smaller
still, until he found a size that failed to cover the
water completely. How did he know it failed?
Dusting the surface beforehand might spoil it. He
used camphor crumbs afterward, the childish toy.
As long as the water surface was completely cov-
ered with oil the crumbs could find no clean water
to spoil and dance around on; but when the oil
drop was too small it left patches of clean water.
In Problem 5 below, follow Rayleigh’s calculation,
using data based on his actual measurements, and
find out how tall an oil molecule is.

PROBLEM 5. MEASURING A MOLECULE

Rayleigh placed a drop of olive oil on clean water in a
large tub. For simplicity, pretend the tub was rectangular
so that the water surface measured 0.55 meter by 1.00
meter. (This would have the same area as Rayleigh’s round
tub.)

15 As a poor analogy, picture a herd of pigs released near
a long food-trough. Just as one end of a vegetable oil mole-
cule likes water, one end of a pig likes food. They scramble
and push till every pig reaches the trough. If the herd is too
big an unsatisfied crowd is left waiting (like thick drops of
excess oil on water). If the numbers are just right, they
form a mono-porcine line, all crowded perpendicular to the
trough. If too few, they are unevenly oriented and there
are vacant patches.
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Camphor movements showed that the oil just sufficient to
cover that water was a drop weighing 8/10 of a milligram,
or 0.00000080 kilogram.

The density of the oil was 900 kg per cubic meter (0.90°
times the density of water). Assume the density remained
the same, even in a very thin film. (Remember that since the
oil is less dense than water, its volume must be greater than
the volume of the same mass of water.)

(a) Estimate the thickness of the ocil film made by the drop
when it spread over the water.

(b) Assume Rayleigh was correct in guessing that the film
just sufficient to stop camphor movements is one mole-
cule thick, and use the chemists’ suggestion that this
oil has “long’’ molecules one end of which is strongly
attracted to water; say what you infer from (a) concern-
ing the molecule’s dimensions.

The length is minute: millions of molecules to
make a line one inch long. At the time when Ray-
leigh made his estimate, scientists had been making
rough, rash guesses at the size and mass of mole-
cules; roundabout guesses based on gas friction,
on scattering of sunlight by molecules in the sky,
and on some risky electrical arguments. Here was an
amazingly simple measurement, probably reliable.

The method has since been refined and extended
by many, especially by Langmuir in the United
States. Rayleigh’s olive oil was a vague mixture of
oily substances. Later workers used pure chemical
compounds, often measuring several members of a
“homologous series” (= chemical family). For ex-
ample, Langmuir used the “fatty acids.” These are
derived from natural oils and fats, and they com-
bine with sodium or potassium to make soap. They
have long molecules with one end inert and the
other an “acid” end which likes water. There is a
whole series of such compounds, each member’s
molecule being larger than its predecessor’s by one
carbon atom and two hydrogen atoms. Long ago,
chemists sketched the molecules of different mem-
bers of this series with structural formulas like the
three shown below.

PALMITIC ACID

" acid end
A A S A A O A S
A A O S A
H HHHHEHHEHHHEHEHHEHH™
MARGARIC ACID
PRy Ry RwRowowowww oy ui
S A A A A A L AR
HHHHHEHEHHEHEHEHE.HEHRHHH.
STEARIC ACID
¥ H H OH HHEHHEHHEHEHEH H H!:
| 1 ] | | | 1 | 1 | 1 ] 1 | | [ |
L S S S S S S S A (P
H H H H HHHHHHEHHEH H H.

These patterns were only guesses based on chemical
evidence but they suggested long chain molecules,

H
longer for every —él—- link added to the chain in
H
changing from one family member to the next.
Problem 6 is based on improvements of Rayleigh’s
method made by Langmuir, Adam and others.

PROBLEM 6. MEASURING MOLECULES PRECISELY

N. K. Adam used a rectangular bath 0.14 meter wide and
half a meter long. The bath was filled brim-full of water
and the experimental region was limited by two booms A
and B across the top, about 0.4 meter apart. (See Fig. 6-27.)

F{Dahnﬂ
Boom B

Fic. 6-27. Svpririep SkercH oF N. K. Apam’s AppPARATUS.
Qil film is confined between Booms A and B.

Boom B was free to move; it floated freely, but was pre-
vented from drifting by a weighing-device with spring or
weight to indicate any horizontal push on the boom. Boom A
was placed across the bath, resting on the sides, and could
be moved along by hand. The bath and the booms were
waxed, so that the water level could be slightly above the
top of the bath—thus booms A and B cut off a central sec-
tion of the surface.

Starting with boom A far from B, Adam placed a minute
measured quantity of palmitic acid on the water surface
between the booms. Boom B showed no push. He then moved
boom A along, crowding the oil film into smaller and smaller
area, until B suddenly showed a considerable push, this
suggesting that the oil molecules had been pushed together
into a close-packed velvet. (In the actual experiments, the
push did not suddenly rise from zero to its full value
absolutely abruptly. It started at a certain area, and rose
rapidly with further compression, reaching a constant value,
after which still further compression probably made the
"velvet'" buckle. From a graph it was easy to find the point
at which a considerable push developed.)

Adam added the fatty acid by dissolving it in benzene
and placing a few drops of the solution on the water surface.
The benzene quickly evaporated.
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“Pooh,” said the Elephant’s Child . . . “I'll show you.”

Then he uncurled his trunk and knocked two of his dear brothers head over heels.
“O Bananas!” said they, “where did you learn that trick, and what have you done to your
nose?” “I got a new one from the Crocodile . . .” said the Elephant’s Child.

“It looks very ugly,” said his hairy uncle, the Baboon.

“It does,” said the Elephant’s Child. “But it’s very useful,” and he picked up his hairy
uncle, the Baboon, by one hairy leg, and hove him into a hornet’s nest.

—RUDYARD KIPLING, Just So Stories

(This is a long, hard, important chapter: ugly but very useful. It may need several read-
ings and much careful thought; but without it you would make little of astronomy or atomic
physics, which play important parts in the course.

If you find this study of motion difficult, reflect that it took mankind a long time to master
it. Greek scientists had a good knowledge of the easy things in physics, levers and simple
machines and floating bodies, etc., but they were muddled and foggy about motion. Much
of the fog remained until three or four centuries ago. It took mankind over sixteen hundred
years to reach a clear understanding of motion; you should hardly be impatient if it takes

you several weeks.)
b L T

Force and Changing Motion

How can a rocket propel itself in a vacuum? How
do we know the charge of a single electron? How
can we predict the behavior of gases by theory?
How can we explore the structure of atoms with
alpha-particles shot from radium? How can we
predict the energy-release in nuclear fission? All
these things can be done; but, to understand what
happens or how scientists make the measurements,
you must know the relation between force and mo-
tion. This chapter will explore that relation in detail,
not for the sake of dull problems on speeding bi-
cyclists but as a necessary foundation for almost
all the most important physics, ancient as well as
modern.

To the modern scientist, motion is not very inter-
esting unless it changes. He expects steady motion
to continue of its own accord; but if he sees a
moving thing speed up or travel in a curve with
changing direction, he considers he can gain useful
information. He thinks there is force at work.
Changing motions enable him to study the play of
“force” in the physical world, perhaps even to make
rash surmises about cause and effect. The world is
full of changing motions: cars accelerate, cannon-
balls rise and fall, baseballs “curve,” pendulums
swing, the Moon sweeps around its orbit, planets
wander across the sky in looped patterns, gas mole-
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Fic. 7-1a. STeapy MoTioN wrte ConsTANT VELOCITY
Fixed speed in fixed direction.

cules reverse their motion violently when they
bounce on the walls of their container, a beam of
charged atoms squirted through an electric field
is tugged into a parabola, a fine stream of electrons
is wiggled up and down by magnetic fields in a
television tube; and it would be a final marvel if
even rays of light fell in a curve under gravity.* In
this book you will study all these examples of
changing motion. Each involves force, and if we
are to go beyond mere cataloguing description we
must know the relationship between “force”—what-
ever “force” may be—and changing motion. We
shall call any push or pull a force, and we shall
measure such forces by simple spring-balances
(without assuming Hooke’s Law).

This is the time for more experiments, mostly
demonstrations.

1 Perhaps they do. How could you tell whether a beam of
light is curved? How do you test whether a ruler is straight?
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Fic. 7-1b. Cuaxcine MoTioN
Velocity changes in size (i), direction (ii), or both (iii).

Force and Acceleration: Anticipating the Laws

Tie a rock to a string and hold the string. You can
feel the rock pulling the string, and you say this
pull comes from something pulling the rock down—
the Earth or “gravity” or simply the rock’s weight.
That downward pull on the rock is balanced by

(.

Fic. 7-2.

your upward pull. Now cut the string: the rock
falls with constant acceleration. You have stopped
pulling the rock upward, but you may assume that
the same downward pull still acts on it, and is the
only force, a constant downward force. In that case,
a constant force produces a constant acceleration.
This is the beginning of good knowledge of force
and motion. Put with it Galileo’s teaching that when
there is no force there is no acceleration: an object
with zero RESULTANT force acting on it stays at
rest or moves with constant velocity.
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Fic. 7-3. AcceLEraTiON wiTH CoNsTANT FORCE

To investigate force and motion further, we must
apply forces of different sizes, and we must try
various moving objects. In this course, we shall use
a primitive spring balance to measure FORCE, in

S~ = S

double rull - dowble acceleration.

Fic. 7-4.

arbitrary units. Take a good steel spring and pull
it to stretch some standard amount, say 1 inch. Call
that pull “unit force,” one “strang.” (Strang is a new
name for a new unit, coined for use here. Presently
it will be replaced by an official unit.) Then we
can apply one strang to accelerate some “victim”™—
a small truck or a block of ice on a level table—by
pulling with the spring kept at standard stretch.
It is no easy job to pull a cart along with a constant
pull as it runs faster and faster. For the moment
we shall pretend we can do that and look ahead to
the results of such experiments. Measuring times
and distances would show that the acceleration is
constant. The victim’s travel-distances in 1 second,
2, 3, ... secs from rest would show the proportions
1:4:9: . ... (Or from measurements of s and ¢ we
could calculate 25/t* and we should find it constant. )
Then apply double force, 2 strangs, by a pair of
identical springs side by side “in parallel,” each at
standard stretch. We should get double acceleration.
The acceleration increases in the same proportion
as the force.

To provide a whole range of forces, 1, 2, 3, 4, . . .
strangs, make several equal® springs. Then acceler-
ate the victim with 1 strang, 2, 3, . . . and we should

?For a discussion of the philosophy of making forces
“equal” and adding them, see later in this chapter.
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find accelerations in proportions 1:2:3: . . . . Then
ACCELERATION increases in the same proportion as
the accelerating FoRcg, or a « F, for a given victim.

So far we have always pulled the same victim.
Now change to different victims, different quantities
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of moving matter, to twice and three times the Mass.
Make several identical victims® (trucks or blocks of
ice). For double mass, tie two together—or pile one
on top of the other—and pull with 1 strang. Then
put three victims together and pull them. With
double mass, we should find half the acceleration;
with triple mass, one third. The acceleration de-
creases in the proportion that the mass increases,
or a « 1/M, where M is measured by counting the
number of trucks. This is a harder relationship to
picture, so we ask our question another way: how
must the force change if we want the same accelera-
tion for different masses? With double mass, 1
strang gives half acceleration, so 2 strangs would
give the original acceleration. Then, for the same
acceleration, single mass, double mass, and triple
mass need forces in proportion 1:2:3. The ForcEs
needed are proportional to the »Masses, F o« M.

8 For a discussion of the philosophy of making masses
“equal” and adding them, see later in this chapter.

Here, by mass we mean how much stuff is to be
accelerated, how many equal trucks (or blocks
of ice).

Summary
Then we have two important relationships:

(i) ACCELERATION « FORCE, for a constant mass,
Or FORCE o ACCELERATION
(ii) FORCE o« Mass for a constant acceleration.

These can be combined* into

FORCE o MASS * ACCELERATION
or FORCE = (constant) * MASS * ACCELERATION

Newton’s Second Law of Motion

We have pretended glibly that we can apply
constant forces to moving masses and measure the
accelerations accurately. And we have assumed
that the pull of our springs is the only horizontal
force acting on the victim, so that it is the resultant
pull. The relation we have announced,

RESULTANT FORCE <« MASS * ACCELERATION,

is true. It is Newton’s great SECOND LAW OF
MOTION (which includes his FIRST LAW, and as-
sumes his THIRD LAW in any experimental tests).
This law relating FORCE, ACCELERATION and Mass
is essential in later physics. It fits experimentally
the motion of all large bodies, from toy trucks and
tennis balls to jet planes and planets; and we ex-
tend it, by assumption, to atoms, electrons, and
nuclei. To understand this law clearly and use it
well, you must understand its basis of experiment
and definition. So it is very important for you to see
good experimental tests or demonstrations. Before
describing some demonstrations, we shall discuss
the special case F = 0.

No Force: Unchanging Motion—Newton’s
First Law of Motion

If F « M- a, then in the special case F = 0, the
acceleration must be zero; the motion must con-
tinue without change. You could infer this from
projectile motion: you see in the vertical accelera-
tion the effect of Earth-pull, and you should also
see in the horizontal motion the effect of any hori-
zontal force. Apart from air friction (which is not
involved in this ideal case) there is no horizontal

4 See note 16 for the algebra of this combining. For the
moment, compare this with the cost of labor for some job:
COST o« NUMBER OF MEN working
COST o« NUMBER OF HOURs worked
combine into
COST o« (NUMBER OF MEN) * ( NUMBER OF HOURS )
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force. Yet a cannon-ball continues to move forward
with constant horizontal velocity. Then you can
make the guess that with no force the velocity con-
tinues unchanged. In such cases the horizontal
acceleration is zero, but the velocity does not have
to be zero: it can maintain any constant value. So
physicists say, “it takes no force to keep steady
motion going.” This seems absurd at first sight. It
takes a large and continuous shove to keep a box

FORCE NEEDED? . ... . .. _...
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F1G. 7-6. ANCIENT QUESTION AND MODERN ANSWER

moving along a rough floor or to keep a car moving
steadily on a level road. But then we are taking a
limited view; we are forgetting the backward shove
of the floor’s friction or of air resistance. If we in-
clude that, the resultant force may well be zero.
And it is zero resultant force that we say goes with
constant velocity (see Fig. 7-6). Even in the case
of the flying cannon-ball’s horizontal motion we
could add a contraption of springs with resultant

Fic. 7-7. Forces Do Not Arrect MoTiON,
Ir Tuemr ResuLTanT Is Zero!

force zero, one pulling forward, the other back-
ward, and the horizontal motion would still con-
tinue unchanging (see Fig. 7-7).

DEMONSTRATION EXPERIMENTS

(Here are descriptions of some experi-
ments. The forms you see must depend on
the equipment available. )

L. Motion of a body with “no resultant force”—
the skater’s dream. It is impossible to demonstrate
this honestly. We cannot provide a moving body
which obviously has no force acting on it. We run
into trouble from gravity, friction, or logic. All we
can show are experiments that illustrate our line of
thought, running towards the ideal case, itself an

* MATTER, MOTION, AND FORCE

imaginary experiment extrapolated from all real
ones.® The rule “no force: constant motion” applies
whether there is friction or not. We only look for
frictionless experiments to demonstrate it because
friction is difficult to measure and allow for.

Demonstration 1(a). Watch a ball roll along a
level table. Unfortunately it slows and stops; we
blame friction. (And, unfortunately, a rolling ball
is also used as a test to find out whether the table
is level; so there seems to be a danger of arguing in
a circle. But you can avoid that if you experiment

intelligently.)

% PROBLEM 1. SCIENTIFIC EXPLANATION vs. DEMONS*

How do you know it is friction, not demons, that brings a
rolling ball to rest? Suggest experiments to test or support
your view.

* This problem, which looks like a joke at first sight, raises the
whole gquestion of the nature of scientific explanations and laws.
Try to make a logical defense—but remember that an opponent de-
fending demons could claim a variety of properties for them.

Demonstration 1(b). Watch a large block of
“dry ice” (solid carbon dioxide) slide along a level
table of aluminum or plate glass. The block is kept
from contact with the table by a cushion of gaseous
carbon dioxide which is constantly being roasted
off its bottom surface by the table. The block is
cold, far colder than ordinary melting ice; and it
finds the table very hot, so it evaporates to gas and
skates over the table like a block of ice on a hot
sidewalk.
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Fic. 7-8. “NEwTton’s Law 17
Truck on friction-compensated track.

Demonstration I(c). “Model railroad” (see Fig.
7-8). Honestly admitting defeat by friction, we can
make a friction-compensated railroad by tilting the
track. A truck on a tilted track is pulled downhill
by a fraction of the Earth-pull on it, and we can
adjust the slight slope to make that small downhill

® Perhaps the ideal experiment is unthinkably difficult,
requiring a single moving body infinitely isolated from all
others which might disturb it. Then how could we observe
its steady motion? Where would we be, and where would our
mile posts be? Since it would be impossible to observe such
motion if it existed, are we wise to talk about it as part of
scientific knowledge? We are safer to put up with minor
disturbances from friction or perturbations by gravity.
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force just counteract friction. Then we start the
truck with a momentary push and watch it move.
This is a fake demonstration—how did we find out
how much to tilt the track? Yet it is interesting to
watch the truck creep along, the slope of the track
being almost invisible. In fact, we believe the re-
sultant force is zero. Pull of the Earth and push of
the track and drag of friction combine by vectors
to make zero. If the truck is started with a bigger
push, it maintains its new speed all the way along.
Loaded with sand or metal and given a start, it
again moves steadily. Without measurements this is
an unconvincing demonstration, really telling things
about friction rather than about motion with no
force, but we shall find the friction-compensated
track useful in later experiments.

Demonstration 1(d). We meet illustrations of
straight-line travel in the paths of very fast projec-
tiles; rifle bullets move so fast that their gravity-fall
is unnoticeable in a short travel. This only shows us
that the path is nearly straight; it gives no assurance
about unchanging speed. Or streams of electrons
(and other atomic particles) moving faster still can
be shot through pinholes in a series of barriers in
a long pipe (Fig. 7-9). If the pinholes are not lined
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Fic. 7-9. ELEcTRON STREAM TRAVELS ALONG A
StraicuT LINE, IF LEFT ALONE

up in a straight line, the stream does not get
through.®

Some fast atomic particles make a black track
when they pass through sensitive photographic
gelatine. Shot at glancing angles through photo-
graphic films they make very straight streaks. (See
emulsion photographs of the tracks of electrons,
protons, etc. from cosmic rays.)

Demonstration I1. Force and Acceleration. The
relationships suggested above (with optimistic
stories about measurements with springs) form a

8 How would you make sure the pinholes were properly
lined up? An experimental physicist would probably use a
flashlight. If he found it embarrassing to rely on the straight-
ness of rays of light, he could use a taut thread, allowing for
its sag, like a surveyor.
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great basic law of physics, so you should see real
demonstrations. To test whether accelerations are
proportional to forces, as Galileo’s writings sug-
gested to Newton, we measure the acceleration of
a small truck pulled along a railroad by various
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F1c. 7-10a. DEMONSTRATION EXPERIMENT
illustrating the relations of force, mass, and acceleration.
A small load W pulls a massive truck by means of a thread
running over very good pulleys. The track is tilted slightly
to compensate for friction, This is the apparatus used in
the demonstrations II a,b,c. (For details of
timing system, see Fig. 7-10b.)

forces. We tilt the track slightly to compensate for
friction. That is not dishonest, if we publish our
precaution. It is good to compensate for friction,
or keep it small: the laws of motion do not fail when
there is friction, but friction adds another force that
must be measured separately if we want to know the
resultant force. And it is the resultant force that
appears in the simple laws.

Detailed arrangements of track and timing system
depend on the equipment available. The track should
be long, with steel rails as straight as possible and care-
fully supported. The truck should have the very best
ball-bearing wheels. Electrical timing with a large clock
as recorder is more convenient than schemes of ink
spots or wavy traces. The clock can be started by an
clectric contact and stopped by an electric eye
(= photocell) as in Fig. 7-10b. This may seem complex
and mysterious at this stage. You will meet this ma-
chinery later—photocells, amplifiers, etc. All you need
to know now can be got by watching the actual working
of the railroad system and clock. You will see that the
clock starts when the truck leaves the starting-post and
stops when it reaches the electric eye. If you use the
clock simply on this basis of direct observation you
are doing nothing worse than when you use any clock—
you assume its behavior is reasonable, but you keep an
eye open for unwanted errors.

If you see this fundamental demonstration done with
elaborate apparatus, just check it also with your own
watch.



