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Preface

Glad you made it here! This book is about telling the story of quantum theory entirely in
terms of pictures. Before we get into telling the story itself, it’s worth saying a few words
about how it came about. On the one hand, this is a very new story, in that it is closely tied
to the past 10 years of research by us and our colleagues. On the other hand, one could
say that it traces back some 80 years when the amazing John von Neumann denounced
his own quantum formalism and embarked on a quest for something better. One could also
say it began when Erwin Schrodinger addressed Albert Einstein’s concerns about ‘spooky
action at a distance’ by identifying the structure of composed systems (and in particular,
their non-separability) as the beating heart of quantum theory.

From a complementary perspective, it traces back some 40 years when an undergraduate
student named Roger Penrose noticed that pictures out-classed symbolic reasoning when
working with the tensor calculus.

But 80 years ago the authors weren’t around yet, at least not in human form, and 40 years
ago there wasn’t really that much of us either, so this preface will provide an egocentric take
on the birth of this book. This also allows us to wholeheartedly acknowledge all of those
without whom this book would never have existed (as well as some who nearly succeeded
in killing it).

Things started out pretty badly for Bob, with a PhD in the 1990s on a then completely
irrelevant topic of contextual ‘hidden variable representations’ of quantum theory — which
recently have been diplomatically renamed to ontological models (Harrigan and Spekkens,
2010; Pusey et al., 2012). After a period of unemployment and a failed attempt to become
a rock star, Bob ventured into the then even more irrelevant topic of von Neumann’s
quantum logic (Birkhoff and von Neumann, 1936) in the vicinity of the eccentric iconoclast
Constantin Piron (1976).

It was there that category theory entered the picture, as well as serious considerations
on the fundamental status of composition in quantum systems — something that went
hand-in-hand with bringing quantum processes (rather than quantum states) to the
forefront ...

Xiii
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A 1n the case you are suffering from some kind of category theory phobia, do not stop
reading here! Though it has influenced many of the ideas in this book, this is by no means
a book about category theory!

... these considerations would ultimately provide the formal and the conceptual backbone
for a pictorial approach to quantum theory. The categorical push in quantum foundations
came initially from David Moore (1995), a very gifted researcher who suffered his
academic end in the late 1990s, an era in which conceptually oriented physics suffered
from widespread prohibition. In collaboration with Moore and Isar Stubbe, Bob made
some early attempts towards a categorical reformulation of quantum theory (Coecke et al.,
2001), which unfortunately inherited too many deficiencies from old-fashioned quantum
logic. The main problem with quantum logic was its implicit assumption that the physical
systems under consideration are always: ‘some part of the ostensibly external phenomenal
world, supposed separated from its surroundings in the sense that its interactions with the
environment can either be ignored or effectively modelled in a simple way’ (Moore, 1999).
However, interactions with the environment happen to be something one should really care
about!

After being kicked out of his university (cf. bureaucrats, village politics, and lots of
hypocrisy), a second failed attempt in the arts, and looming unemployment, a bit of a
miracle happened to Bob when two complete strangers, Prakash Panangaden and Samson
Abramsky, arranged a ‘trial’ postdoc in the Computing Laboratory at Oxford, which was
back then affectionately known as the Comlab. Despite knowing nothing about computer
science and thinking of computer scientists as a bunch of nerds staring at screens all
day, Bob found a home in this department and quickly discovered that, unlike quantum
logicians, computer scientists had for a long time already studied the structure of interacting
systems and were able to describe such systems elegantly in the language of category
theory. In fact, in this particular computer science department, category theory was even
taught at undergraduate level.

It was here that the second author entered the picture. While on a two-month exchange
to Oxford from his homeland of Tulsa, Oklahoma (Fig. 0.1), Aleks happened to take the
aforementioned undergraduate course in category theory, which was at the time taught
by Samson. The mind-expanding nature of that course (including a guest lecture about
weird-looking pictures of monoidal categories by an equally weird-looking guy) got Aleks
interested enough to get involved in the subject. At Samson’s prompting, he started coming
along to the group’s Quantum Lunch seminar. The seminar format consisted of a large pub
lunch followed by a talk where a drunk and drowsy speaker addressed an equally drunk
and drowsy audience on topics in the newborn subject of categorical quantum mechanics.
It was great.

Two months turned into nine years, the Comlab became the ‘Department of Computer
Science’, and though it seemed like nobody could remember when Aleks first starting
hanging around, he ended up doing a master’s, PhD, and a postdoc.
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Figure 0.1 Some typical sights of Tulsa, Oklahoma.

Without the surprising wealth of both mathematical machinery and conceptual thinking
in this unique computer science environment, this book simply would not have existed. In
sharp contrast to the prohibition in the 1990s of the words ‘foundational” and ‘conceptual’
in physics, in this new environment ‘foundational’ and ‘conceptual’ were (and still are) big
virtues! This led to the birth of a new research community, in which computer scientists,
pure mathematicians, philosophers, and researchers in the now-resurgent area of quantum
foundations closely interact. It is probably even fair to say that this unique atmosphere
contributed to the resurrection of the quantum foundations community as a whole, and
along the way several of its highly respected practitioners have adopted the diagrammatic
paradigm, notably Chiribella et al. (2010) and Hardy (2013a).

The conference series Quantum Physics and Logic (QPL), founded by Peter Selinger in
2003 under a different name (but with the same abbreviation!), was a particularly impor-
tant forum for the development of the key results leading up to this book. In fact, the
first paper about diagrammatic reasoning for novel quantum features (Coecke, 2003) was
presented at the first QPL. The categorical formalisation of this result (Abramsky and



Xvi Preface

//jl';HE. TUNDMMENTALS OF
CATEGORICAL QUuaNTum Mecunnies !

_Srer L srer 2 Srer 3

Figure 0.2 Yanking for cash.

Coecke, 2004), now referred to as categorical quantum mechanics, became a hit within the
computer science semantics community, and ultimately allowed for several young people
to establish research careers in this area. Top computer science conferences (e.g. LiCS
and ICALP) indeed regularly accept papers on categorical quantum mechanics, and more
recently leading physics journals (e.g. PRL and NJP) have started to do so too.

We are very grateful to have received a healthy flow of research funding (cf. Fig. 0.2),
by the UK Engineering and Physical Sciences Research Council (EPSRC), the European
Commission (FP6 FET Open), the US Office of Naval Research (ONR), the US Air Force
Office of Scientific Research (AFOSR), the Foundational Questions Institute (FQXi), and
the John Templeton Foundation (JTF). In particular, during the writing of this book both
authors were generously supported by the latter. As a result, the Quantum Group at Oxford
has grown over the past 10 years from 5 members in 2004 to 50 members now, and several
of its former members have even started to build groups elsewhere, spreading the Gospel of
pictures and processes. The constant interaction with the Quantum Group (and its numerous
diaspora) has of course been absolutely essential in the development of this book.

So where did the idea of actually writing this book come from? Here at Oxford one
typically doesn’t like to mention ‘that other place’. But, in the summer of 2012 Cambridge
University Press contacted us to ask whether the diagrammatic language may be ready for
a book. This generated the idea of teaching the Quantum Computer Science course that fall
entirely with diagrams. The lecture notes would then provide the basis for a book, which
would most certainly be ready by spring 2013. A quick glance at the first couple of pages
in this book should tell you that this plan failed. The lecture notes were entirely dumped,
and in fall 2013 we started again from scratch, leading up to what you are reading now.

Quite a number of things did happen from start to finish, like one of the authors
relaunched a music career, met a girl, got married, made a baby, got a baby, and took a baby
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book
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Figure 0.3 Aleks’ beard growth, as correlated with textbook completion.

to Beijing to watch him play a metal show. Meanwhile, the other author also got married,
had a brief foray into stand-up comedy, got a position at Radboud University (amongst
Bob’s mortal enemies: the Dutch), and grew a humongous beard (Fig. 0.3). Both authors
became well known at a local pub for being beaten up outside (rumour has it over a dispute
on the interpretations of quantum theory, but neither author remembers too well). They also
formed a southern country folk industrial noise band called the Quantum Dagger Orchestra.

The students who have taken this course over the past several years have been an invalu-
able source of inspiration and practical guidance in terms of what works and what doesn’t
when teaching this drastically new approach to quantum theory. In particular, we would like
to thank students Jiannan Zhang, William Dutton, Jacob Cole, Pak Choy, and Craig Hull
in the class of 2013, Tomas Halgas in the class of 2014, and Ernesto Ocampo, Matthew
Pickering, Callum Oakley, Ashok Menon, Ignacio Funke Prieto, and Benjamin Dawes in
the class of 2015, who have all contributed to this finished product by pointing out typos in
those original (and revised) lecture notes.

We would especially like to thank Yaared Al-Mehairi, Daniel Marsden, Katie Casey,
John-Mark Allen, Fabrizio Genovese, Maaike Zwart, Hector Miller-Bakewell, Joe Bolt,
John van de Wetering, and Adria Garriga Alonso, who all provided substantial qualities
and/or quantities of corrections, and the class tutors Miriam Backens, Vladimir Zamd-
hiev, Will Zeng, John-Mark Allen, and Ciaran Lee for their valuable overall input, model
solutions, and for bearing the brunt of the students’ frustration when some of the more
‘experimental’ exercises went wrong.

Detailed corrections on the final manuscript were provided by booze brothers John
Harding and Frank Valckenborgh, and the pictures of angry Bob were all taken by yet
another booze brother, Ross Duncan. Consistent reminders for Aleks to eat and avoid head
trauma were graciously provided by his wife Claire. Bob failed to take account of these
reminders by his wife Selma.

All of the diagrams in this book were created using PGF/TikZ package for LaTeX and
the TikZiT software. Grab the latest version from tikzit.github.io.

Finally: Why Cambridge University Press and not Oxford University Press? Because a
CUP causes a whole lot of magic in this book while an OUP is ... no clue.



2 Introduction

He’s a dodo. Not your typical run-of-the-mill dodo, but a quantum dodo. We will assume
that Dave behaves in the same manner as the smallest non-trivial quantum system, a two-
level system, which these days gets referred to as a quantum bit, or gubit. Let’s compare
Dave’s state to the state of his classical counterpart, the bit. Bits form the building blocks of
classical computers, whereas (we will see that) qubits form the building blocks of quantum
computers. A bit:

1. admits two states, which we tend to label 0 and 1,
2. can be subjected to any function, and
3. can be freely read.

Here, ‘can be subjected to any function” means that we can apply any function on a bit to
change its state. For example, we can apply the ‘NOT’ function to a bit, which interchanges
the states 0 and 1, or the ‘constant 0’ function which sends any state to 0. What we mean by
‘can be freely read’ is that we can read the state of any bit in a computer’s memory without
any kind of obstruction and without changing that state.

The fact that we even mention all of this may sound a bit odd...until we compare this to
the quantum analogue. A qubit:

1. admits an entire sphere of states,

2. can only be subjected to rotations of the sphere, and

3. can only be accessed by special processes called guantum measurements, which only
provide limited access, and are moreover extremely invasive.

The set of states a system can occupy is called the state space of that system. For classical
bits, this state space contains just two states, whereas a qubit can be in infinitely-many
states, which we can visualise as a sphere. In the context of quantum theory, this state
space is called the Bloch sphere. For the sake of explanation, any sphere will do, so we’ll
just take the Earth. There’s plenty of space on Earth for two states of a bit, so put 0 on the
North Pole and 1 on the South Pole:



1.1 The Penguins and the Polar Bear 3

The particular choice of North Pole/South Pole is not important, but it is important that
they are antipodal points on the sphere.

Since we can only apply rotations to the sphere of qubit-states, we cannot map both 0
and 1 to 0 (as we could with classical bits), simply because there is no rotation that does
that. On the other hand, there are lots of ways to interchange 0 and 1, since there are many
(different!) rotations that will turn a sphere upside-down.

So what are quantum measurements? Just like when we read a normal bit, measuring a
qubit will produce one of two answers (e.g. 0 or 1, hence the name qubit). However, this
act of ‘measuring’ is not quite as innocent as simply reading a bit to get its value. To get a
feel for this, we return to Dave. Since qubits can live anywhere in the world, Dave — like
one particularly famous (classical) dodo — lives in Oxford:

Now, suppose we wish to ascertain where in the world certain animals live, subject to the
following assumptions:

1. we are only allowed to ask whether an animal lives at a specific location on Earth or its
antipodal location;

2. all animals can talk and will always answer ‘correctly’; and

3. predatory animals will refrain from eating the questioner.
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If we ask a polar bear whether she lives at the North Pole or the South Pole, then she’ll
say ‘the North Pole’. If we ask again, she’ll say ‘the North Pole” again, because that’s just
where polar bears are from. Similarly, if we ask a penguin, he’ll keep saying ‘the South
Pole’, as long as we keep asking.

On the other hand, what will Dave say if we ask him whether he lives at the North Pole
or the South Pole? Now, Dave doesn’t really understand the question, but since dodos are
a bit thick, he’ll give an answer anyway. However, assumption 2 was that all animals will
answer correctly. Consequently, as soon as Dave says ‘the North Pole’, his statement is
correct: he actually is at the North Pole!

Now, if we ask him again, he’ll say ‘the North Pole’ again, and he’ll keep answering thus
until he’s eaten by a polar bear (Fig. 1.1). Alternatively, if he had initially said ‘the South
Pole’, he would immediately have been at the South Pole.
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Figure 1.1 A polar bear attempting a ‘demolition measurement’ on Dave.

So. no matter what answer Dave gives, his state has changed. The fact that he was
originally in Oxford is permanently lost. This phenomenon, known as the collapse of the
quantum state, happens for almost all questions (i.e. measurements) we might perform.
Crucially, this collapse is almost always non-deterministic. We almost never know until
we measure Dave whether he’ll be at the North Pole or the South Pole. We say ‘almost’,
because there is one exception: if we ask whether Dave is in Oxford or the Antipodes
Islands, he’ll say ‘Oxford” and stay put.

While quantum theory cannot predict with certainty the fate of Dave, what it does
provide are the probabilities for Dave to either collapse to the North Pole or to the South
Pole. In this case, quantum theory will tell us that Dave is more likely to go to the North
Pole and get eaten by a polar bear than to go to the South Pole and chill with some penguins.
The dodo is extinct for a reason after all ...

1.2 So What’s New?

Almost a century has passed since Dave’s unfortunate travels to the North Pole. In particu-
lar, the past two decades have seen a humongous surge in new kinds of research surround-
ing quantum theory, ranging from re-considering basic concepts (Fig. 1.2) to envisioning
radically new technologies. A paradigmatic example is quantum teleportation, whereby
the non-local features of quantum theory are exploited to send a quantum state across
(sometimes) great distances, using nothing but a little bit (actually two little bits ...) of
classical communication. Quantum teleportation exposes a delicate interaction between
quantum theory and the structure of spacetime at the most fundamental level. At the same
time, it is also a template for an important quantum computational model (measurement-
based quantum computing), as well as a component in many quantum communication
protocols.
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Figure 1.2 The paper by Einstein, Podolsky, and Rosen, which was the first to identify quantum non-
locality, has enjoyed a huge surge in citations over the past two decades according to Google Scholar,
now making it Albert Einstein’s most cited paper. And considering the competition, that’s saying
something.

Quantum theory as we now know it — that is to say, its formulation in terms of Hilbert
spaces — first saw daylight in 1932 with John von Neumann’s book Mathematische Grund-
lagen der Quantenmechanik. On the other hand, quantum teleportation was only discovered
in 1992, Hence the question:

Why did it take 60 years for quantum teleportation to be discovered?

A first explanation is that within the tradition of physics research during those 60 years,
the question of whether something like quantum teleportation would be possible was sim-
ply never asked. It only became apparent when researchers stepped outside the existing
scientific tradition and asked a seemingly bizarre question:

What are the information processing features of quantum theory?

However, one could go a step further and ask why it was even necessary to first pose such
a question for teleportation to be discovered. Why wasn’t it plainly obvious that quantum
theory allowed for quantum teleportation, in the same way that it is plainly obvious that
hammers are capable of hitting nails? Our answer to this question is that the traditional
language of Hilbert spaces just isn’t very good at exposing many of the features of quantum
theory, and in particular, those features such as teleportation that involve the interaction of
multiple systems across time and space. Thus, we pose a new question:

What is the most appropriate language to reason about quantum theory?

The answer to this question is what this book is all about. The reader will learn about
many important new quantum features that rose to prominence within the emerging fields
of quantum computation, quantum information, and quantum technologies, and how these
developments went hand-in-hand with a revival of research into the foundations of quantum
theory. All of this will be done by using a novel presentation of quantum theory in a purely
diagrammatic manner. This not only consists of developing a two-dimensional notation for
describing and reasoning about quantum processes, but also of a unique methodology that
treats quantum processes, and most importantly compositions of processes, as first-class
citizens.

1.2.1 A New Attitude to Quantum Theory: ‘Features’

Since its inception, many prominent thinkers were deeply unsettled by quantum theory.
A great deal of effort and ingenious mathematics in the early twentieth century went
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Figure 1.5 Contrasting a low-level and a high-level representation of the digital data that one may
find within a computational device.

1.2.2 A New Form of Mathematics: ‘Diagrams’

It should be emphasised that discovering these new quantum features wasn’t trivial and
involved some very smart people. Our bold claim is that when one adopts the appropri-
ate language for quantum theory, these features jump right off the page. Conversely, the
traditional, Hilbert space—based language of quantum theory forms a major obstruction to
discovering such features. To give some idea of why this is the case, we will make use of
some simple metaphors.

Imagine that you were trying to determine what was happening in a video just by looking
at its digital encoding (Fig. 1.5). Obviously this is a more or less impossible task. While
digital data, i.e. strings of Os and s, is the workhorse of digital technology, and while it is
possible to understand ‘in principle’ how they encode all of the media stored on your hard
drive, asking a person to decode a particular string of binary by hand is more suitable for
punishing greedy bankers and corrupt politicians than solving interesting problems.

Of course, even skilled computer programmers wouldn’t be expected to interact directly
with binary data. Somewhere along the way to modern computer programming came the
advent of assembly language, which gives a (somewhat) human-readable translation for
individual instructions sent to a computer processor. While this made it more practical to
write programs to drive computers, it still takes a lot of head-scratching to figure out what
any particular piece of assembly code does. Using low-level languages such as assembly
language creates an artificial barrier between programs and the concepts that they represent
and places practical limits on the complexity of problems those programs can solve. For
this reason, virtually every programmer today uses high-level languages in their day-to-day
work (Fig. 1.6).

Similarly, ‘detecting new quantum features’ in terms of the traditional (i.e. low-level)
language for quantum theory, namely ‘strings of complex numbers’ (rather than ‘strings
of Os and 1s7), isn’t that easy either. This could explain why it took six highly esteemed
researchers to discover quantum teleportation, some 60 years since the actual birth of the
quantum theoretical formalism. By contrast, the diagrammatic language we use in this
book is a high-level language for exploring quantum features (Fig. 1.7). We will soon see
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.LCO:
.string "QUANTUM!"
.text
.globl main
.type main, @function
main:
-LFBO:
.cfi_startproc
pushg %rbp
.cfi def cfa offset 16
.cfi_offset 6, -16
movqg $rsp, %rbp

.cfi_def cfa_register 6 5.times do
sub 516, %rs .
mov? s0. - 4(%§bp] Vs, print "QUANTUM!"
jmp . L2 end
L3
movl $.LCO, %edi
movl 50, %eax
call printf
addl $1, -4(%rbp)
L2
cmpl $4, -4(%rbp)
jle .L3
leave
.cfi_def cfa 7, 8
ret

.cfi_endproc

Figure 1.6 Contrasting a low-level and a high-level language for computer programs. The programs
on the left and right perform the same task, but one is written in the low-level x86 assembly language
and one in the high-level language Ruby.
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Figure 1.7 Contrasting a low-level and a high-level language for quantum processes, just like we
contrasted the low-level and a high-level representation for digital data in Fig. 1.5 and a low-level
and a high-level programming language in Fig. 1.6.

that by embracing the diagrammatic language for quantum theory, features like quantum
teleportation are pretty much staring you in the face!

Although it goes beyond the scope of this book, it is worth mentioning that the diagram-
matic language we use has found applications in other areas as well, such as modelling
meaning in natural language (Fig. 1.8), doing proofs in formal logic, control theory, and
modelling electrical circuits.

Diagrams are also becoming increasingly important in some fancy research areas of
pure mathematics, such as knot theory, representation theory, and algebraic topology. By
using diagrams we eliminate a huge amount of redundant syntactic garbage in representing
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Figure 1.8 Comparing diagrammatic representations of quantum processes to those of ‘the flow of
meaning’ in natural language. While these are two very different contexts, Aleks and Bob feel well
at home in both due to their diagrammatic similarity. In the diagram representing natural language,
the upper half represents the grammatical structure, while the bottom half represents meaning of
individual words, and the overall wiring exposes how the meanings of these words interact in order
to produce the meaning of the entire sentence.
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Figure 1.9 Two distinct syntactic descriptions corresponding to the same diagram. In terms of the
symbolic language that is used on the left, two syntactically non-equal expressions might mean the
same thing. On the other hand, in terms of the graphical language that is used on the right, there is
only one representation. This example is explained in great detail in Section 3.2.4.

mathematical objects (Fig. 1.9), freeing us to concentrate on the important features of the
mathematical objects themselves.

There are clear indications that diagrammatic reasoning will become increasingly impor-
tant in the sciences in general, and this book represents the first attempt to comprehensively
introduce a big subject like quantum theory entirely in this new language. By reading this
book — or even more, taking a course based on this book — you, like the monkeys launched
into space in the 1960s, are the ‘early adopters’ (a.k.a. ‘test subjects’) in a totally new
enterprise.

1.2.3 A New Foundation for Physics: ‘Process Theories’

By taking diagrammatic language as a formal backbone for describing quantum theory
(or any other physical theory, for that matter) one also subscribes (o a new perspective on
physical theories.

First, traditional physical theories take the notion of a ‘state of a system’ as the pri-
mary focus, whereas in diagrammatic theories, it is natural to treat arbitrary processes
on equal footing with states. States are then treated just as a special kind of process, a
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‘preparation’ process. In other words, there is a shift from focussing on ‘what is’ to ‘what
happens’, which is clearly a lot more fun. This is very much in line with the concerns
of computer science, where the majority of time and energy goes into reasoning about
processes (i.e. programs), and states (i.e. data) only exist to be used and communicated
by programs. It is also becoming clear that one should focus not just on single programs
but on collections of interacting programs to understand the complex, distributed computer
systems that are becoming increasingly prevalent in the modern world.

Another example where studying interaction is crucial to understanding a system comes
from biology. While one can (in principle) deduce the coat of an animal from its genetic
code, this does not explain why that animal has such a coat. On the other hand, if we look at
where an animal lives or how it attracts a mate, for example, this can immediately become
clear. Similarly, rather than concentrating on systems in isolation, our approach to physics
looks at the overall structure of many systems and processes and how they compose. We call
such a structure consisting of all the ‘allowed processes’ and how these interact a process
theory.

Schrodinger realised early on that the most startlingly non-classical features of quantum
theory came from looking not at a single system, but rather at how multiple systems behave
together. Rather than acting as a collection of individuals, quantum systems establish com-
plex relationships, and it is these relationships that suddenly enable amazing new things:

When two systems, of which we know the states by their respective representatives, enter into tem-
porary physical interaction due to known forces between them, and when after a time of mutual
influence the systems separate again, then they can no longer be described in the same way as before,
viz. by endowing each of them with a representative of its own. I would not call that one but rather
the characteristic trait of quantum mechanics, the one that enforces its entire departure from classical
lines of thought.

Schrodinger says that the most important trait of quantum mechanics only becomes
apparent when we study the interactions of two systems. So, one might expect any approach
to quantum theory to start from a point of view that emphasises compositionality from
page 1. But oddly, if you pick up a random textbook on quantum theory, this is not the point
of view you will see. It was not until the late 1990s — largely prompted by the discoveries
we discussed in Section 1.2.1 — that this idea made it back into the mainstream.

The concept of a process theory does of course put composition at the forefront, and it
suggests a natural way of reasoning about processes. One should pare down the nitty-gritty
aspects of how processes are mathematically defined and seek out high-level principles
that govern their interactions. These principles taken together constitute what can be called
the logic of interaction for a process theory. Von Neumann also thought that quantum
theory should be understood in terms of logical principles. Three years after he published
Mathematische Grundlagen, von Neumann wrote:

I would like to make a confession which may seem immoral: I do not believe absolutely in Hilbert
space no more. [sic]
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Figure 1.10 Quantomatic: a diagrammatic proof assistant.

He went on to say that it is not the Hilbert-space structure of quantum theory that is
physically relevant, but rather the quantum analogue of ‘logical propositions’, namely those
properties verifiable by means of quantum measurements. However, this new kind of logic,
called quantum logic, ultimately failed to replace Hilbert space as a conceptual basis for
quantum theory. Its biggest stumbling block was its complete focus on systems in isolation
and its inability to obtain any conceptual account of composed systems. More pragmati-
cally, the passage from Hilbert space to quantum logic seems to make it more difficult to
establish new facts or discover new features of quantum theory, typically requiring extreme
cleverness on the part of its practitioners to establish even basic facts.

In contrast, this new kind of interaction logic via process theories has very quickly
become a practical tool for high-level reasoning about quantum systems and beyond, not
in the least due to its intuitive diagrammatic language. It has even formed the basis of
a diagrammatic proof assistant — i.e. an interactive software tool that constructs proofs
(semi-)automatically — called Quantomatic (Fig. 1.10).

So, what should we call this new way of reasoning about quantum theory entirely with
diagrams, focussing crucially on its processes and the logic of their interactions? Since
the term ‘quantum logic’ is already trademarked, we’ll have to use something a bit more
descriptive ...

1.2.4 A New Paradigm: ‘Quantum Picturalism’

In Section 1.2.1 we said that the dissatisfaction with quantum theory obstructed people from
realising what the actual features of quantum theory were and how those features could be
put to good use. Then, by asking the right ‘positive’ question, many new features were
discovered. We went on to argue that in an adequate mathematical language, the features
of quantum theory should be plainly obvious. Taking things one step further, one could
wonder if this adequate mathematical language isn’t just easier to work with, but is also
closer to what the world is made up of!

The Holy Grail of theoretical physics is to come up with a theory of quantum gravity. It is
likely that to develop a consistent theory of quantum gravity, some of the core assumptions
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exactly as predicted by quantum theory. It should be mentioned that there were a handful
of objections to that initial experiment, in the form of ‘loopholes’ in that particular demon-
stration of non-locality. All of these have meanwhile been closed by other experiments
(Weihs et al., 1998; Rowe et al., 2001; Hensen et al., 2015). On top of that, the huge variety
of experiments that have been done confirming some form or another of non-locality for
quantum theory is pretty compelling, to say the least (see e.g. Rauch et al., 1975; Zeilinger,
1999; Pan et al., 2000; Groblacher et al., 2007).

Another development prompted by the EPR paper was the quest for interpretations of
quantum theory. Given EPR’s claim of incompleteness of quantum theory, one family of
interpretations was all about completing quantum theory, although due to Bell’s theorem,
any such an attempt is bound to be non-local. The most famous one of these is the hidden
variable interpretation due to David Bohm (1952a,b). Another one loved by Hollywood
is the many-worlds interpretation due to Hugh Everett III (1957). The official default
interpretation of quantum theory is the Copenhagen interpretation due to Niels Bohr and
Werner Heisenberg, which in the eyes of many is a non-interpretation, given that at first
sight it provides nothing more than a recipe to compute probabilities. A detailed survey and
extensive discussion of the interpretations of quantum theory can be found in Bub (1999).

The shut-up-and-calculate slogan is often associated with Richard Feynman, who did in
many ways embody this way of working, but in fact it was coined by David Mermin (May
2004), who very much did not skirt around foundational questions in quantum theory. He
used the term not to refer to this common practice in particle physics, but rather to give his
view on the Copenhagen interpretation (Mermin, April 1989).

While on the topic of Feynman, it is worth mentioning that he was the first to realise that
there was something quantum systems are really good at: simulating themselves (Feynman,
1982). Thus, his notion of a quantum simulator contained the first seeds of the idea of quan-
tum computation. The discovery of less self-referential applications for quantum features in
information processing began a few years later with the advent of quantum key distribution
(Bennett and Brassard, 1984). A year later, at the University of Oxford, David Deutsch
(1985) gave a formulation for a universal quantum computer, the quantum analogue to
Turing’s universal machine (Turing, 1937). This led to the discovery of quantum algorithms
that substantially outperformed any classical algorithm (Deutsch and Jozsa, 1992; Shor,
1994; Grover, 1996; Simon, 1997). The term ‘qubit’ was coined by Schumacher (1995).

Quantum teleportation was proposed by Bennett et al. (1993), and its first experimental
realisation was by Bouwmeester et al. (1997). The question of why it took 60 years for
quantum teleportation to be discovered was asked by one of the authors in a seminar at
the Perimeter Institute of Theoretical Physics and was immediately answered by Gilles
Brassard, co-inventor of quantum teleportation and a pioneer of the quantum information
endeavour as a whole, who happened to be in the audience. He said that no one before
had considered the information-processing features of quantum theory and had therefore
simply not thought to ask the question. This exchange is reported in Coecke (2005).

The diagrams used in this book are an extension of those used by Roger Penrose (1971),
who introduced them as an alternative for ordinary tensor notation (see Section 3.6.1).
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However, many similar diagrammatic languages were invented prior to this or reinvented
later.

In programming language theory, flow charts were among the first abstract presentations
of programs and algorithms. These flow charts, introduced in Gilbreth and Gilbreth (1922)
under the name ‘process charts’, are widely used in many other disciplines too. In quan-
tum information the use of diagrammatic representations started with quantum circuits, a
notation borrowed from circuits made up of Boolean logic gates, to which a number of new
properly quantum gates were added (see e.g. Nielsen and Chuang, 2010).

A diagrammatic notation specifically tailored towards the processes responsible for
quantum weirdness was first introduced in Coecke (2003, 2014a) and, independently, also
in Kauffman (2005). These diagrams were provided with an axiomatic underpinning in
Abramsky and Coecke (2004), and independently in Baez (2006), paving the way to a
diagrammatic approach for quantum theory as a whole. The main pillars supporting the
story outlined in this book are the diagrammatic representation of mixed states and com-
pletely positive maps by Selinger (2007), the diagrammatic representation of classical
data as ‘spiders’ in (Coecke and Pavlovic, 2007; Coecke et al., 2010a), the diagrammatic
representation of phases, complementarity, and the introduction of strong complementarity
by Coecke and Duncan (2008, 2011), again in terms of spiders, and the causality postulate
introduced by Chiribella et al. (2010). *Quantum picturalism’ was coined in Coecke (2009).

Important topics in the area of quantum computing and related areas that were dia-
grammatically explored are quantum circuits (Coecke and Duncan, 2008), (topological)
measurement-based quantum computing (Coecke and Duncan, 2008; Duncan and Perdrix,
2010; Horsman, 2011), quantum error correction (Duncan and Lucas, 2013), quantum key
exchange (Coecke and Perdrix, 2010; Coecke et al., 2011a), non-locality (Coecke et al.,
2011b, 2012), and quantum algorithms (Vicary, 2013; Zeng and Vicary, 2014).

Structural theorems about quantum theory emerging from the diagrammatic approach
include a number of completeness theorems (Selinger, 201 1a; Duncan and Perdrix, 2013;
Backens, 2014a; Kissinger, 2014b) and some representation theorems (Kissinger, 2012a;
Coecke et al., 2013c).

For applications of the kinds of diagrams that we consider here to other scientific dis-
ciplines, there are, for example, Coecke et al. (2010c) and Sadrzadeh et al. (2013) for
applications to natural language, Mellies (2012) for logic in computer science, Pavlovic
(2013) for computability, Hinze and Marsden (2016) for programming, Baez and Fong
(2015) for applications to electrical circuits, Bonchi et al. (2014a) and Baez and Erbele
(n.d.) for applications in control theory, Hedges et al. (2016) for applications in economic
game theory, Baez and Lauda (2011) for a prehistory, Baez and Stay (2011) for a Rosetta
Stone, and Coecke (2013) for an alternative Gospel.

A discussion of von Neumann’s discontent with Hilbert space is in Redei (1996),
from which we also took the second quote in Section 1.2.3. Attempted modifications/
generalisations/axiomatisations of quantum theory, all to a great extent inspired by quantum
logic (Birkhoff and von Neumann, 1936), were pioneered by Mackey (1963), Jauch (1968),
Foulis and Randall (1972), Piron (1976), and Ludwig (1985). Coecke et al. (2000) provides
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a survey of these approaches. A tutorial on how property lattices yield Hilbert spaces is
in Stubbe and van Steirteghem (2007). A survey of Foulis and Randall’s ‘test space’
formalism (or ‘manuals’ formalism) is in Wilce (2000). Ludwig’s approach has recently
become very prominent again under the name ‘generalised probabilistic theories’ (Barrett,
2007). Also, several researchers have tried to combine the earlier axiomatic approaches
with diagrams and/or compositional structure (Harding, 2009; Heunen and Jacobs, 2010;
Jacobs, 2010; Vicary, 2011; Abramsky and Heunen, 2012; Coecke et al., 2013a,b;
Tull, 2016).

Giving processes a privileged role in quantum theory was already present in the work
of Whitehead (1957) (cf. the quotation at the beginning of Chapter 6) and in Bohr (1961)
and became more prominent in Bohm (1986). Process ontologies trace back to the pre-
Socratics, most notably to Heraclitus of Ephesus in the sixth century BC (cf. the quotation
at the beginning of Chapter 2). Diagrams, and hence a privileged role for processes and
composition thereof, are used as a canvas for drafting theories of physics in Chiribella et al.
(2010), Coecke (2011), and Hardy (2011, 2013b).

The second quote in Section 1.2.3 on the importance of the role of composition in
quantum theory is taken from Schrédinger (1935). The first proper ‘interaction logic’ was
Geometry of Interaction due to Jean-Y ves Girard (1989), which was recast in a form more
resembling the language used in this book in Abramsky and Jagadeesan (1994), and even
more so in Duncan (2006). That quantum picturalism can be seen as a logic of interaction
is argued in Coecke (2016), on the basis that the roots of logic are language and that the use
of logic is artificial reasoning. The diagrammatic proof assistant Quantomatic is described
in (Kissinger and Zamdzhiev, 2015) and at the time of this writing is still being actively
developed. It is available from the project Website quantomatic.github.io.
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Guide to Reading This Textbook

Nothing endures but change.
— Heraclitus of Ephesus, 535475 BC

2.1 Who Are You and What Do You Want?

While there is already a plethora of textbooks on quantum theory and its features, this one
is unique because it is based on quantum picturalism.

Prerequisites. There are hardly any prerequisites to this textbook. We do not expect
our readers to have a background in physics or computer science or to have any profound
background in mathematics. In principle, some basic secondary-school mathematics should
be sufficient.

For example, linear algebra (and of course quantum theory) is presented from scratch in
a diagrammatic manner. However, this does not mean that the first half of this book will be
a boring read for the specialist, since these presentations from scratch are radically different
from the usual ones.

Target audience. Given its low entrance fee, as well as its unique form and content, this
textbook should appeal to a broad audience, ranging from students to experts from a wide
range of disciplines including physicists, computer scientists, mathematicians, logicians,
philosophers of science, and researchers from other areas with a multidisciplinary interest,
such as biologists, engineers, cognitive scientists, and educational scientists.

One particular target audience for this book consists of students and researchers in
quantum computation and quantum information, as we will apply the tools from quan-
tum picturalism directly to these areas. A practising quantum computing researcher may
discover a new set of tools to attack open problems where traditional methods have failed,
and a student may find some subjects explained in a manner that is much easier to grasp.

Another target audience consists of students and experts with an interest in foundations
and/or philosophy of physics, who can read in this book about a process-oriented approach
to physics that takes composition of systems as a first-class citizen, rather than a derived
notion. In particular, this is the first book that uses diagrammatic language to capture the
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idea of a process theory and puts such process theories forward as a new foundation for
quantum theory, in which all standard quantum theoretical notions can be expressed.

Yet another target audience consists of logicians and computer scientists, who may want
to learn about diagrams as a new kind of logical paradigm, which emphasises ‘composition’
over ‘proposition’. For them, learning quantum theory may just be an added bonus to
learning about this new paradigm for theory development.

But since this textbook covers the essential ingredients of a standard textbook on quan-
tum computation and quantum foundations, it can just as well be used as a first introduction
to those fields. Even though our notation is different from the one used in other textbooks,
we cover the core curriculum of a first course in quantum computation and make a continual
effort to relate the concepts and notations we introduce to those used more commonly in
the literature.

Similarly, this textbook can be used as a first introduction to diagrammatic reasoning,
being pretty much the first textbook that does that too.

2.2 The Menu

While we cannot yet offer dodo steaks, with recent advances in science, it may not be too
long before pigeons give birth to new Daves and Davettes.

2.2.1 How Diagrams Evolve in This Book
In this book two stories more or less evolve in parallel:

« the development of the diagrammatic language and
« the presentation of quantum theory as a process theory.

Quantum picturalism is indeed all about how these two are closely intertwined. We begin
with a very general diagrammatic language and gradually add features to increase its
expressiveness. Thus, we start with a language that is general enough to describe many
different kinds of processes and gradually home in on quantum processes. Along the way,
we present quantum features as and when the language is rich enough to discuss them. As a
result, we will encounter features such as quantum teleportation way before more concrete
notions such as qubits. All together there are five major jumps in the expressiveness of
diagrams on the way to capturing full-blown quantum theory.

1. We first introduce a very basic diagrammatic language in Chapter 3 consisting of nothing
but boxes and wires. This gives us a natural way to express compositions of processes
in any process theory:
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While the account of non-locality in standard textbooks involves pages mixing up words
and formulas, for us it simply boils down to two diagrammatic computations, one about
quantum theory and one about local theories, which yield contradictory results:

Quantum theory Any local theory

(g
AAAAAY
© ©

We will learn that the diagram on the left models four measurements performed on a GHZ-

state, followed by computing the parity of the measurement outcomes. In other words, our
theory is telling us whether to expect an even or an odd number of clicks (or beeps, flashes,
etc.) coming from our measurement devices. We will see that the reduction to 7 on the
left says that, according to quantum theory, the parity will be odd. Compare this with the
derivation on the right, which assumes that there are some pre-established correlations that
determine the measurement outcomes. This is always the case with a local theory, since all
correlations of distant events can be traced back to some common cause. The reduction to
0 on the right says that any local theory predicts an even number of clicks, and hence there
is a contradiction between quantum theory and locality.

This example is taken from Chapter 11, ‘Quantum Foundations’, in which we also
present a toy theory that looks very much like qubit quantum theory, but fails to be
non-local. There are two more themed chapters: Chapter 12, ‘Quantum Computation’,
where we address standard topics such as the circuit model of quantum computation and
quantum algorithms, as well as less standard (but increasingly important) topics such as
measurement-based quantum computation. In Chapter 6, ‘Quantum Resources’, we present
a general framework to study resources in quantum theory, with quantum entanglement as
a particularly important example. We also show how qualitatively distinct types of quantum
entanglement can be thought of as very differently behaving spiders.
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2.2.3 Some Intermediate Symbolic Pollution

We haven’t mentioned Chapter 5 yet. This chapter doesn’t contribute to the development
of quantum picturalism, but makes the connection with the usual quantum theoretical
formalism. The main question addressed is the following. Given a process theory with
string diagrams, when do wires represent Hilbert spaces and boxes represent linear maps?
As an answer to this question, we adjoin some symbols to string diagrams, resulting in a
hybrid diagram—symbol formalism in which one encounters computations like this one:
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Such a hybrid formalism is in itself useful, and is widely used in areas of mathematics such
as knot theory. More importantly, it introduces the usual formalism to those who don’t
know it already, and for those who are familiar with it, it makes clear how the diagrams
relate to it. Finally, and perhaps most importantly, it allows us to state what exactly one can
compute with string diagrams.

Something this allows us to do, which cannot be found in standard textbooks, is to make
a smooth transition from linear maps to quantum processes and ultimately to processes
that model quantum non-determinism and the classical-quantum interaction in a purely
graphical way.

Along the way, we, like Dante, will proceed from linear algebraic Hell:

(o) (@ (v v v))

through Purgatory:
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and ultimately to a purely diagrammatic Paradise:

2.2.4 Summaries, Historical Notes, References, Epigraphs

Each chapter (with the exception of Chapter 10, which is already a summary) contains a
short section entitled ‘Summary: What to Remember’ listing the essential material to be
taken from it.

At the end of each chapter there is also a short section entitled ‘Historical Notes and
References’ in which we sketch the historical development of the material covered in that
chapter, list some key references, and suggest some further reading.

The epigraphs appearing at the beginning of each chapter are all relevant to the contents
of that chapter. For some it will be immediately clear from the text. Determining the
relevance of the others is left as an exercise for the reader.

2.2.5 Starred Headings and Advanced Material Sections

Any sections, theorems, remarks, examples, or exercises that have a star (*) as superscript,
e.g. ‘Remark* x.y.z’, are to be considered as optional. Typically they require some knowl-
edge that only a fraction of our readers would either know about or be interested in, and
hence they are only intended for that particular fraction of readers. For instance, a starred
remark may require knowledge of some advanced concepts from linear algebra, quantum
theory, or programming. Notably, each chapter has a section entitled ‘Advanced Material’,
which contains material that particularly advanced students or specialists may find inter-
esting. These in particular include clarification of the connection between diagrams and
monoidal categories. Some attention is also given to currently ongoing research in quantum
picturalism, how it is related to recent developments in pure mathematics, and the surprising
connection with natural language meaning.

2.3 FAQ

Over the years, we have noticed that people ask a few questions all of the time. We also
anticipate a couple of new questions arising about this book in particular. We’ll try to
address both of these here.
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Q1:
A

Q2
A:

Q3

Guide to Reading This Textbook

Why does it take X pages to get to some basic stuff such as Y?
There are a few reasons for this:

e As the title suggests, this is a first course not only in quantum theory, but also in
diagrammatic reasoning. Thus, we introduce features at the exact points where we
have a rich enough language to talk about them. This doesn’t always happen in the
order you might expect.

e We assume no preliminaries and construct as much as possible from first principles,
anticipating a very broad spectrum of potential readers. This means introducing
many things, such as linear algebra, that will be old hat for many readers. However,
we develop these basic concepts in such a drastically different, diagrammatic way
that we think there is something for everyone in each chapter.

e It turns out that diagrams take up a lot of space. Sorry, trees.

Where's the beef (i.e. the numbers)?

A traditionally held belief is that the predictive content of a physical theory lies in its
ability to produce numbers, such as probabilities. Many find it difficult to reconcile
this idea with a diagram, which seems like a discrete, logical object. However, we will
see in Section 3.4.1 that numbers arise naturally as special kinds of diagrams. That
being said, the most interesting features we will highlight in this book are qualitative,
not quantitative. As previewed in the Hollywood-style trailer, we will use diagrams
continuously to see that quantum theory exhibits behaviours that are simply not pos-
sible in classical physics.

What about infinite-dimensional Hilbert spaces?

: The lesson of quantum computing and quantum information processing is that we

can access many new, revolutionary features of quantum theory by restricting to finite
(and often just two!) dimensions. In fact, the long-held belief that ‘real physics’ only
happens in the infinite-dimensional realm, with all of its associated difficulties, could
have contributed to the blindness to new quantum features that were not discovered
until the past couple of decades. Of course, we are not claiming that infinite dimen-
sions should therefore be ignored, but it does present a unique set of difficulties for
quantum picturalism. Most notably, the main diagrammatic workhorses in this book
(cups, caps, and spiders) simply don’t exist as bounded operators between infinite-
dimensional Hilbert spaces. So, for many years, we thought one had to choose between
the power (and complexity) of infinite dimensions or the elegance of diagrammatic
reasoning with cups, caps, and spiders. However, certain constructions in this book
that seem to rely on caps and cups can be done in ways to avoid them altogether
(Coecke and Heunen, 2011), and recent results of Gogioso and Genovese (2016)
suggest it is possible for us to have our caps and eat them too! Namely, they showed
using techniques from non-standard analysis that, while cups, caps, and spiders don’t
actually exist in infinite dimensions, reasoning with them is still sound, as long as they
don’t appear in the final answer that comes out.
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While this new way of working with infinite-dimensional systems is still in its
infancy, it shows promise for the advent of a true infinite-dimensional quantum
picturalism.

What about Schridinger’s equation?

: You will notice that we are careful to use the term ‘quantum theory’, as opposed

to ‘quantum mechanics’, which we take to mean the core of quantum mechanics
that ignores things like positions, momenta, and continuous time-evolution. For our
purposes, it suffices to just consider the overall change of systems between some
time f; and some time f7, without expounding on the details of what exactly happens
in between these times. As in the case of finite dimensions, the huge advances in
quantum information/computation have shown us that, even working at this level, we
can access many fascinating features of the theory. That being said, there has recently
been some exciting new research to accommodate dynamics in quantum picturalism
by Gogioso (2015b,c), and it seems likely that many of the features we discuss in this
book (e.g. strong complementarity) play a major role.

Has quantum picturalism ever produced anything new?

What people posing this question usually mean is: Has quantum picturalism helped
solve problems that were already out there and that one couldn’t solve with other
existing methods? The answer is yes, and some examples of that are Duncan and Per-
drix (2010), Coecke et al. (2011b), Horsman (2011), and Boixo and Heunen (2012).
However, in science, coming up with new, interesting questions is sometimes more
important than answering old ones. Issues such as completeness of calculi is a ques-
tion that to our knowledge has never been asked before in physics, and quantum
picturalism has meanwhile produced a string of results in that area (Backens, 2014a,b;
Schroder de Witt and Zamdzhiev, 2014; Hadzihasanovic, 2015). It would be dif-
ficult to see how any answer could arise when sticking to the traditional Hilbert
space formalism. Another new question is whether we can automate reasoning about
physics, for which the Quantomatic software discussed in Chapter 14 has been pro-
duced (Kissinger and Zamdzhiev, 2015). Finally, there is the communality of structure
and use of quantum picturalism methods elsewhere, like in developing a compositional
distributional model of natural language meaning (Clark et al., 2014; Coecke, 2016),
which has actually outperformed other existing methods when applied to empirical
data (Grefenstette and Sadrzadeh, 2011; Kartsaklis and Sadrzadeh, 2013).
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In some cases, wires in the diagram may even correspond to actual physical wires, for
example:

Though, of course, this needs not always be the case. Wires can also represent e.g. ‘aligning
apertures’ on lab equipment, or shipping something by boat. The important thing is that
wires represent the flow of data (or more general ‘stuff’) from one process to another.

As we have just seen, we can wire together simple processes to make more complicated
processes, which are described by diagrams:

In such a diagram outputs can be wired to inputs only if their types match. For example,
the following two processes:

and
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can be connected in some ways, but not in others, depending on the types of their wires:

This restriction on which wirings are allowed is an essential part of the language of dia-
grams, in that it tells us when it makes sense to apply a process to a certain system and
prevents occurrences like this:

noise
quicksort

poo

food love

which probably wouldn’t be very good for your computer! Much like data types in com-
puter science, the types on wires tell us what sort of data (or stuff) the process expects as
input and what it produces as output. For example, a calculator program expects numbers
as inputs and produces numbers as outputs. Thus, it can’t make sense of ‘Dave’ as input,
nor will it ever produce, say, ‘carrots’ as an output.

Another useful example is that of electrical appliances. Suppose we consider processes
to be appliances that have plugs as inputs (i.e. where electricity is ‘input’) and sockets as
outputs:

I wk-plug | uk-plug uk-plug eu-plug
| plugstrip | adaptor power drill
| uk-plug uk-plug eu-plug

Then, system-types are just the shape of the plug (UK, European, etc.). Clearly we can’t
connect a plug to a socket of the wrong shape, so the type information on wires gives us
precisely the information we need to determine which wirings are possible. For example,
one possible wiring is:
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uk-plug uk-plug

power drill |
eu-plug
adaptor =

uk-plug

‘ plugstrip ‘

uk-plug

Though this is a toy example, it is often very useful to draw diagrams whose boxes refer to
devices that actually exist in the real world (e.g. in a lab). We will refer to such diagrams
as operational.

3.1.2 Process Theories

Usually one is not interested in all possible processes, but rather in a certain class of
related processes. For example, practitioners of a particular scientific discipline will typ-
ically only study a particular class of processes: physical processes, chemical processes,
biological processes, computational processes, mathematical processes, etc. For that rea-
son, we organise processes into process theories. Intuitively, a process theory tells us how
to interpret wires and boxes in a diagram (cf. (i) and (ii) below) and what it means to form
diagrams, that is, what it means to wire boxes together (cf. (iii) below).

Definition 3.1 A process theory consists of:

(i) a collection T of system-types represented by wires,
(i1) a collection P of processes represented by boxes, where for each process in P the input
types and output types are taken from 7', and
(iii) a means of ‘wiring processes together’, that is, an operation that interprets a diagram
of processes in P as a process in P,

In particular, (iii) guarantees that

process theories are ‘closed under wiring processes together’,
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since it is this operation that tells us what ‘wiring processes together’ means. In some
cases this operation consists of literally plugging things together with physical wires, as
in the example of the power drill. In other cases this will require some more work, and
sometimes there is more than one obvious choice available. We shall see in Section 3.2
that in traditional mathematical practice one typically breaks down ‘wiring processes
together’ in two sub-operations: parallel composition and sequential composition of
processes.

Example 3.2 Some process theories we will encounter are:

« functions (types = sets)

« relations (types = sets, again)

« linear maps (types = vector spaces, or Hilbert spaces)
« classical processes (types = classical systems)

« quantum processes (types = quantum and classical systems)

We will use the first two mainly in various examples and exercises, whereas the remaining
three will play a major role in this book.

Remark 3.3 Note how we refer to a particular process theory by saying what the ‘pro-
cesses’ are, leaving the types implicit. This tends to be a good practice, because the pro-
cesses are the important part. For instance, we’ll see that the process theory of functions is
quite different from that of relations, so it will not do to just call both ‘sets’.

Since a process theory tells us how to interpret diagrams as processes, it crucially tells us
when two diagrams represent the same process. For example, suppose we define a simple
process theory for computer programs, where the types are data-types (e.g. integers,
booleans, lists) and the processes are computer programs. Then, consider a short program,
which takes a list as input and sorts it. It might be defined this way (don’t worry if you can’t
read the code, neither can half of the authors):

gs [1 = []

gs (x :: xs) =

gs [y | v <- x8; v < x] ++ [x] ++
gs [y | v <- xs; y >= x]
Wiring together programs means sending the output of one program to the input of another

program. Taking two programs to be equal if they behave the same (disregarding some
details like execution time, etc.), our process theory yields equations like this one:
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-

quicksort

i.e. sorting a list twice has the same effect as sorting it once.

The reason we call a process theory a theory is that it comes with lots of such equations,
and these equations are precisely what allows us to draw conclusions about the processes
we are studying.

To take another example, the function we defined at the beginning of Section 3.1.1 lives
in the process theory of functions. Types are sets and processes are functions between sets.
We consider two functions equal if they behave the same; i.e. they have the same graph:

(Note how two input wires means a function of two variables, hence the three-dimensional
plot.) Since they have the same graph, we have:

as well as:

Exercise 3.4 Cook up some of your own process theories. For each one, answer the
following questions:

1. What are the system-types?
2. What are the processes?
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We will also consider a single wire of type A as a ‘special’ box:

In almost every respect, these special boxes are just boxes like any other and may be
interpreted as the process that ‘does nothing’. However, when we connect them to the input
or output of another box, they vanish:

-B1By By BB,
A1Ax "By —JA 1A (34)

The following definition summarises all of above.

Definition 3.8 A diagram formula is a sequence of box names such that all wire names
are unique, except for matched pairs of upper and lower names. Two diagram formulas are
equal if and only if one can be turned into the other by:

(a) changing the order in which box names are written,
(b) adding or removing identity boxes, as in (3.4), or
(c) changing the name of a repeated wire name.

With this concept in hand, we can now provide a definition of a diagram that makes
direct reference to a formula-like counterpart.

Definition 3.9 A diagram is a pictorial representation of a diagram formula where box
names are depicted as boxes (or various other shapes), wire names are depicted as input
and output wires of the boxes, and repeated wire names tell us which outputs are connected
to which inputs.

Exercise 3.10 Draw the diagrams of the following diagram formulas:

f‘AI Ay By lAf,lAs 1A4

fB.czé’Q 8,4, As LAs

Use the convention that inputs and outputs are numbered from left to right.
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The above construction shows that all of our work with diagrams could be translated,
without ambiguity, into work on diagram formulas. We will mostly stick to diagrams since
they are easier to visualise, are easier to work with, and do away with the bureaucratic
overhead of extra subscripts. However, we will occasionally use diagram formulas as a
handy tool for computing the process of a given diagram, as in Sections 3.3.3 and 5.2.4.

3.1.4 Process Equations

In Example 3.6 above, we wrote down many equations involving diagrams on the left-
hand side (LHS) and the right-hand side (RHS). These diagram equations always hold,
regardless of how we interpret the boxes and wires. That is, they are true in any process
theory. On the other hand, within a particular process theory it may be possible to represent
the same process using two distinct diagrams. We have already seen a couple of examples
of this in Section 3.1.2.

Returning to the process theory functions, suppose we define two processes: ‘minus’,
which takes two inputs m, n and subtracts them, outputting m — n:

and ‘times 2°, which takes a single input and multiplies it by 2:

where all of the wires have type R. Now, consider the following two diagrams:

As diagrams, these two are not equal. However, if we look at the processes they represent,
we see that the process on the left multiplies both inputs by 2, then subtracts one from
the other. The one on the right first subtracts the inputs, then multiplies the result by 2.
Even though they have different diagrams, both processes compute the same function,
namely:

2m—2n=2(m—n)
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Thus, these distinct diagrams represent the same process when interpreted in the process
theory of functions; i.e. they are equal as processes, which we write simply as:

-

— (3.5)

-]

This is called a process equation. A diagram equation is a (trivial) special case of a process
equation, since equal diagrams will always be interpreted as equal processes.

Remark* 3.11 There is a special class of theories where diagram equations and process
equations coincide. That is, two processes are equal if and only if they have the same
diagram. These are called free process theories, in analogy with the use of the term ‘free’
in algebra. Here, ‘free’ means ‘no extra equations’. In general, imposing extra equations
between processes puts a constraint on which interpretations of boxes are allowed (i.e.
only those satisfying the extra equations). Free process theories have the property that
any interpretation of their boxes as processes (in some other process theory) extends to
a consistent interpretation of diagrams.

Exercise 3.12 Give the (diagram) equations that express the algebraic properties of asso-
ciativity, unitality, and commutativity of a two-input, one-output process. Can you do the
same for distributivity of a pair of two-input processes (e.g. ‘plus’ and ‘times’)? If not,
what’s the problem?

The notion of a diagram equation may seem completely obvious (because it is!), but it
is important to note that such an equation gives a bit more information than you might first
think. To see why, note that equation (3.5) is true, but the following equation is false:

-] ®# [

= (3.6)

=

The LHS will map the inputs m,n to 2m — 2n, whereas the RHS will map those same
inputs to 2(n — m) # 2m — 2n. The only difference between this equation and the true
equation (3.5) is that the inputs of the RHS are flipped. Even though we do not write down
the names of wires in the diagrams (as we do for the diagram formulas of Definition 3.8),
these inputs and outputs do have distinct identities. Furthermore, for a diagram equation
to be well formed, both sides must have the same inputs and outputs, which suggests that
there is a correspondence between them:
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first (and only) output ﬂ
-
-
first input M— second input

In terms of diagram formulas, this would be reflected by the fact that we call e.g. the first
input A; and the second input A» on both sides of the equation. In a diagram, we show
which inputs and outputs are in correspondence by their positions on the page. Bearing
this rule in mind, there is clearly a difference between the correct equation (3.5) and the
erroneous (3.6).

Equations between processes with only one ‘output’ should already be familiar from
algebra. When we write an equation like:

2m—2n=2(m—n)

we distinguish the inputs m, n of the formulas on the LHS and RHS by giving them names:
namely ‘m’ and ‘n’. In algebra, there is always exactly one ‘output’ of a formula, namely
the value computed when all the variables have been substituted by numbers, so we don’t
bother to give it a name. On the other hand, diagrams can have many outputs in general, so
we need to distinguish those as well.

We typically think of multivariable functions, such as the algebraic operations above, as
taking one or more inputs to a single output:

(ai,....am) = b

where the ‘—’ symbol means ‘maps to’ (cf. Appendix). However, in the process theory
functions we can also consider functions of this form:

(als---ﬁam)'_* (b]:-'-:bn) (37)

Remark* 3.13 In functional programming, one might encounter a function with many
outputs in the sense of (3.7) in expressions like:

‘let (by,...,by) =f(a,....am)in ...
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A simple example of a two-output function is ¢p, which takes in a number n and sends
a copy of n down both of its output wires:

D R (n,n)

The function ¢p satisfies the following process equation with minus:

ERE :
-
-]

The process on the LHS takes in two inputs m and n, copies each of them, and sends one
copy of each to two separate subtraction operations. So, the output is two copies of m — n,
one on each wire:

(m.,n) — (m,m,n,n) — (myn,m,n) — (M—n,m-—n)

The process on the RHS takes the inputs m and n, subtracts them, and copies the result.
Again, this yields two copies of m — n:

(m,n) —» m—n+— (m—n,m—n)

As before, implicit in equation (3.8) is a correspondence between inputs and outputs:

first output m— second output

first input M— second input

Exercise 3.14 Write (3.8) as an equation between diagram formulas.

Exercise* 3.15 Using ¢p, is it now possible to express the distributivity equation between
‘plus’ and ‘times’ mentioned in Exercise 3.127

3.1.5 Diagram Substitution

We can obtain new process equations from old ones via diagram substitution. Along with
simple diagram deformation, diagram substitution will be the most common style of calcu-
lation in this book.
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3.2 Circuit Diagrams

Recalling that boxes represent processes, we can define two basic composition opera-
tionson processes with the following interpretations:

f®g:
f o g = ‘process f takes place after process g takes place’

‘process f takes place while process g takes place’

These operations allow us to define an important class of diagrams called circuits. Despite
their importance, we will see in the next chapter that the most interesting processes are in
fact those that fail to be circuits.

3.2.1 Parallel Composition

The parallel composition operation consists of placing a pair of diagrams side by side. We
write this operation using the symbol ‘®’:

Any two diagrams can be composed in this manner, since placing diagrams side by side
does not involve connecting anything. This reflects the intuition that both processes are
happening independently of each other.

This composition operation is associative:

and it has a unit, the empty diagram:

e = E@#— (3.12)

Parallel composition is defined for system-types as well. That is, for types A and B, we
can form a new type A ® B, called the joint system-type:

A®B = A B
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We have already made use of composition of system-types implicitly by drawing boxes that
have many inputs and outputs. Formally, a box with three inputs A, B, C and two outputs D
and E is the same as a box with a single input A ® B ® C and a single output D ® E:

DRE D E
=
ARB®C A |B |C

There is also a special ‘empty’ system-type, symbolically denoted 7, which is used to
represent ‘no inputs’, ‘no ouputs’, or both.

Examples 3.18 Here are some examples of boxes with no input and/or output wires,
written both in terms of ‘®” and I and in the usual way:

I A B A |B I
rl=1_r | =H o] = [s]
1

ARBRC A |B |C

Processes with no inputs and/or outputs play a special role in this book, as we will see
starting in Section 3.4.1.

In the diagrammatic notation, we will rarely use the ® symbol explicitly, preferring
instead to express joint systems as multiple wires.

3.2.2 Sequential Composition

The sequential composition operation consists of connecting the outputs of a first diagram
to the inputs of a second diagram. We write this operation using the symbol ‘o’:
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The intuition is that the process on the right happens first, and then the process on the left
happens, taking the output of the first process as its input. Clearly not any pair of diagrams
can be composed in this manner: the number and type of the inputs of the left process must
match the number and type of the outputs of the right process.

We assume that sequential composition will connect outputs to inputs in order. If we
wish to vary this order, we can introduce swaps:

The LHS of this equation is well-defined of course, since the sequential composition oper-
ation is also associative:

o o _ 613
and it also has a unit. This time, it’s a plain wire of appropriate type:
B
B o = o |a = (3.14)
A A A

We already encountered these plain wires or identities in Section 3.1.3, where we men-
tioned that as a process, we can think of them as ‘doing nothing’ to the input. For a system
of type A we will denote the identity on A symbolically as 14. The empty diagram is also
an identity, but on the system-type I, so we denote it as 1.

3.2.3 Two Equivalent Definitions of Circuits
Definition 3.19 A diagram is a circuit if it can be constructed by composing boxes, includ-

ing identities and swaps, by means of ® and o.

Every diagram that we have seen in this chapter is in fact a circuit. Here is an example
of the assembly of such a circuit:
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(3.15)

Note however that such a decomposition of a diagram does not uniquely determine the
assembly process (e.g. associativity of ® and o allows for two manners of composing three
boxes). and the same diagram may even allow for several distinct decompositions. We will
see in the next section how this feature makes a non-diagrammatic treatment of circuits in
terms of ® and o especially unwieldy.

Not all diagrams are circuits. To understand which ones are, we provide an equivalent
characterisation that doesn’t refer to the manner that one can build these diagrams but
instead to a property that has to be satisfied.

Definition 3.20 A directed path of wires is a list of wires (wj,wa2,...,wy) in a diagram
such that for all i < n, the wire w; is an input to some box for which the wire w;y; is an
output. A directed cycle is a directed path that starts and ends at the same box.
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An example of a directed path is shown in bold here:

Remark® 3.21 In an area of mathematics called graph theory, graphs without directed
cycles are called directed acyclic.

Theorem 3.22 The following are equivalent:

« adiagram is a circuit, and
« it contains no directed cycles.

FProof There exists a (non-unique) way to express any diagram with no directed cycles
in terms of ®, o, and swap. Since the diagram contains no directed cycles, we divide the
diagram into ‘layers’ [1,...,[,, where the outputs of each box (including identities and
swaps) in layer /; connect only to boxes in layer /;yi. For example, one way to divide
diagram (3.15) into layers is:

In each layer, ® combines boxes into one, and o combines the layers together, so we indeed
have a circuit. Conversely, any diagram built up using just ® and o can be decomposed into
such layers, which implies the absence of directed cycles. U
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Evidently, in the absence of any additional equations on the ®- and o-symbols these are not
equal. Now we compute their corresponding diagrams. For the first expression we obtain:

and for the second we obtain:

O o o _

So we get the same diagram twice!
Since the ®- and o-symbols are supposed to be an algebraic syntax for diagrams, we
need to impose a new equation:

@1 ®g)o(fidh)=(1fi) @ (g20/) (3.16)

while in the diagrammatic language this is nothing but a tautology! So what is the actual
content of (3.16)7 It states that the composite process:

process g takes place while process g takes place,
after
process f) takes place while process f> takes place,

is the same as the composite process:

process g takes place after process fi takes place,
while
process g2 takes place after process f> takes place.

Evidently this is true, and it is something we get for free in the diagrammatic language, but
in algebraic language we need to explicitly state this.

Given the equations we have stated thus far for the ®- and o-symbols, we can derive
many new ones. For example:

can be derived by combining (3.12), (3.14), and (3.16):

0= ®11 o 1;® = OI[ ® 1:0 =®
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while in the diagrammatic language it is again a tautology. Another example of an extra
equation for the ®- and o-symbols involves a crossing:

(3.17)

One can easily imagine how many more non-trivial equations are derivable when combin-
ing (3.11), (3.12), (3.14), (3.16), and (3.17), many of which would look not at all obvious
without drawing the diagram.

Exercise* 3.26 Assume the following equation:

Oaep.c = (04c® 1p) o (14 ® o) where OB =
A B

Prove the first and the last diagram equation from Example 3.6 as algebraic equations using
just the above equation and the other algebraic equations introduced in this section.

So why do things become so complicated? In simple terms, one is trying to squeeze
something that wants to live in two dimensions (a diagram) into one dimension (a ‘linear’
algebraic notation). When we do this, the horizontal and the vertical space on the piece
of paper we used to draw our diagram suddenly coincide, and we need a bunch of extra
syntax (e.g. brackets), to disambiguate the parallel and sequential compositions in their
new, ‘compressed’ world. We then need to subject this extra syntax to a bunch of extra
rules to enable the kinds of deformations we were doing quite naturally with diagrams

betfore. The punchline:

There is a lot more to say about the precise connection between algebraic equations and
diagrammatic reasoning, particularly in the context of an area called (monoidal) category
theory. Although the latter is not crucial to understanding this book, we refer the interested
reader to the advanced material in Section 3.6.2.

3.3 Functions and Relations as Processes

We now introduce two simple process theories: the theory of functions and the theory of
relations. Besides it being useful to have some concrete examples of process theories in
hand in order to understand some of the concepts to come, these examples establish two
important insights:

« that traditional mathematical structures (sets, in this case) can form the types of a process
theory, and
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« that, even for some fixed system-types, the choice of processes is in fact far more impor-
tant in determining the character of a process theory. In particular, while the process
theories functions and relations are both based on sets, we shall see in this and the next
chapter that their properties as process theories couldn’t be farther apart.

For these reasons, these example process theories and, maybe somewhat surprisingly, rela-
tions in particular, will prove a useful stepping stone towards the process theories of linear
maps and quantum maps.

3.3.1 Sets

To define a process theory, we need to first say what the system-types are, then what the
processes are. For both functions and relations, the system-types are just sets. We will
encounter some familiar sets, like the natural numbers N, the real numbers R, the complex
numbers C (whose properties we review in Section*® 5.3.1), and:

B :={0,1}

which is called the set of booleans or bit values. Joint system-types are formed by taking
the Cartesian product of sets, that is:

ARB.=AxB={(a.b)|lac A, be B}

The definition is similar for three or more sets, in which case we replace pairs of elements
by ruples:

Ay x - x Ay i={(ar,...,a,) | a;i € A;}
If we ignore brackets on tuples of elements, e.g. letting:
((a,b),¢) = (a.b,c) = (a,(D,0))
parallel composition of systems is associative:
AxBxC)=AxB)xC
as required.

Example 3.27 The set of bitstrings of length n can be expressed as an n-fold Cartesian
product:

We can think of this as the set of natural numbers ranging from 0 to 2" — 1 by considering
the bit strings as a binary representations of these numbers; e.g. for n = 4 we represent 0 as
(0,0,0,0), 1 as (0,0,0,1), 2 as (0,0,1,0), ..., up to 15, which we represent as (1,1, 1, 1).
This is a trick often used in computer science, and it is also important in this book.
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The trivial type I is defined to be the set {*} that contains just a single element, here
called ‘x’. If we always drop * from tuples, e.g. letting:

(a,%) =a=(xa)
then {x*} becomes the unit for parallel composition of wires:
Ax{x}=A=1{x}xA

Remark* 3.28 Strictly speaking, the sets (A x B) x C and A x (B x C), as well as the
sets A x {x} and A, are not equal, but isomorphic; that is, their elements are in one-to-one
correspondence. In fact, they are not just isomorphic but isomorphic in a very strong sense,
called naturally isomorphic, which pretty much means that for all practical purposes they
can be treated as equal. The failure of strict equality is mainly due to the sort of ‘algebraic
bureaucracy’ we complained about in Section 3.2.4, so it won’t have any effect on working
with diagrams. Section® 3.6.2 contain more details on this somewhat delicate issue.

3.3.2 Functions

In the process theory of functions every process:

is a function from a set A to a set B. Since joint systems are formed using the Cartesian
product, a function with many inputs and outputs, e.g.

is a function from the Cartesian product of sets A x B to the Cartesian product B x C x D.
So f maps pairs (a,b) € A x B to triples (V', ¢, d) € Bx C x D. More specifically, a function
fromB x B to B x B x B is a function from bit strings of length 2 to bit strings of length 3,
for example:

(0,0) = (0,0,0)
0. 1) — (0,1, 1)
(1.,0O) — (1,0,1)
(1,1) = (0,1,1)

Now that we know what the system-types and processes are, we need to say what
‘wiring processes together’ means (cf. Definition 3.1). We will do so by specifying what
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parallel and sequential composition for functions means. Sequential composition is the
usual composition of functions:

(gof)a):=g(f(a)) (3.18)

Parallel composition is defined as applying each function to its corresponding element of a
pair:

(f ® &)a,b) := (f(a),g(b)) (3.19)

This tells us everything we need to know to compute the function represented by a circuit
diagram, since we can decompose the diagram across ® and o:

= (1a®go(f®@h

then applying equations (3.18) and (3.19). There might be more than one way to decompose
a diagram, but the actual function computed will always be the same. Note that this will
work for any diagram where the wires do not cross. To handle crossings, we need to define
a ‘swap’ function.

Exercise 3.29 Which function represents the swap:

B A

where A and B can be any set?

Exercise 3.30 Compute the functions:




58 Processes as Diagrams

Step 1: Write P as a diagram formula:
2B:Cy 243 ¢B2Cy
Pg]A] R; SA'sDI Al

Step 2: Change wire names to elements of the appropriate set. For example, write By as
an element b, € B:

azbacy
byay

Ruzm, S.l')')( 1 le

azd, " ay

Step 3: Change box names to actual relations that map the element(s) in the subscript to
the element(s) in the superscript, and adjoin *Jx’ for every repeated element x:

R :: by (az.a3) and
P (bi,a)) — (az,br,c)) < 3Fa33d, S (as,dy) > (ba,cp) and
T:a— di

In the absence of inputs and/or outputs, one must use ‘*’, i.e. the unique element
in the set I = {x}.

Step 4: The expression in the RHS of * <= ’ now uniquely characterises all related tuples
in the LHS, and hence can now be used to compute P.

For the particular cases of sequential and parallel composition of relations, we recover
(3.21) and (3.22), respectively. To see this, just draw the diagrams of f ® g and g o f, apply
steps 1-3, and see what comes out.

Exercise 3.31 Suppose A, B, C, and D are the following sets:

= {ai, a2, a3}
B=DB

= {red, green}
D=N

Compute P as defined by (3.23), for R, S, T defined as follows:

I+ (ay,ap) ap — 200
S 4 (ar.3) — (1,red) T :
I = (ay,a2) as— 5

[ (ay,5) — (0,red)
(az,6) — (1, green)

and for R, S, T defined as follows:

(a1,0) — B x {red, green}
0 A x {ar, a3} (ai, 1) — B x {red, green}
s i S
1= A x {axas) (ar,2) — B x {red, green}

a — N
az — N

a3|—>N
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Remark* 3.32 Due to the close resemblance between the process theories relations
and linear maps, and in particular, the fact that they both admit a marrix calculus (see
Chapter 5), this ‘trick’ for computing diagrams of relations applies also for computing
diagrams of linear maps, as we shall see in Section 5.2.4, and hence will also be relevant
for quantum processes. In fact, if we treat relations as matrices with boolean entries, the
computation is essentially identical.

3.3.4 Functions versus Relations

When we restrict the definitions (3.21) and (3.22) to functions, we obtain (3.18) and (3.19),
respectively. In both cases, we took advantage of the fact that functions relate each input
element to a unique output to obtain a simpler form. For example, in the case of parallel
composition of functions f : A — Cand g : B — D, for each a € A and each b € B there
isauniquec € Candd € Dsuchthatf ::a+> cand g :: b+ d, and hence, building f ® g
amounts to merely pairing these two elements as we did in (3.19). On the other hand, for
relations, R ® S :: (a, b) — (c,d) whenever there exist botha ¢ € C and a d € D such that
R:ar> cand S :: b+ d, and there could of course be more than one of such pair (¢, d).
Now, since:

1. both functions and relations have sets as system-types, so in particular, the system-
types of relations include those of functions;

2. functions are a special case of relations, and hence the processes of relations include
the processes of functions; and

3. sequential composition o of functions is a special case of sequential composition of
relations, and parallel composition & of functions is a special case of parallel compo-
sition of relations,

we say that the process theory of functions is a subtheory of relations. We can write this
as follows:
functions C relations
Of course, there are many more relations than there are functions, and throughout this
book we will encounter many important relations that aren’t functions. In fact, these extra
relations are precisely what make the process theory of relations behave much more like
linear maps than functions.

3.4 Special Processes

In this section, we single out several types of process that will play a central role throughout
this book.

3.4.1 States, Effects, and Numbers

So far, we have been handling boxes without any inputs and/or without any outputs just
like any other boxes. However, these particular boxes have a very special status when we
interpret them as processes.
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« States are processes without any inputs. In operational terms they are ‘preparation proce-
dures’. We represent them as follows:

Whereas a system A could be in any number of possible different states, a preparation pro-
cedure will produce a system of type A in a particular state ¥ taken from these possibilities.
The fact that there is no wire in means we don’t know (or care) where this system came
from, just that we have it now and it is in a particular state. For example, if we say ‘here
is a bit initiated in the O state’, then we don’t really care about the previous history of that
bit as long as we have the guarantee that it is currently in state O and that it is available to
perform some further computations. Or, in the case of saying ‘here is a fresh raw potato’,
we don’t really care whose farm it came from or which animal’s manure was used, as long
as we know that we have a fresh raw potato that we can process further into fries.

« Effects are processes without any outputs. We have borrowed this terminology from
quantum theory, where effects play a key role. From now on we represent them as

follows:

The notion of effect is dual to the notion of state, in that one starts with a system and has
nothing left afterwards — or, we simply don’t care what we have afterwards. The simplest
example of an effect consists of discarding a system, where the system is destroyed (or
simply disregarded). Less trivial effects refer to things that may or may not happen, depend-
ing on the actual state of a system. For example, ‘the bomb exploded’, ‘the photon was
absorbed’, ‘all the food was eaten’, or ‘the dodo became extinct’ could all be considered
effects, since afterwards there is no bomb, no photon, no food, and no dodo.

Operationally speaking, effects are used to model ‘tests’. When we say an effect
‘happens’, it means we tested whether a system satisfies a certain property and have
obtained ‘yes’ as the answer, after which we discard that system, or — as is often the case —
the system is destroyed in the verification process. Altogether, a test consists of:

1. a question about a system,
2. a procedure that enables one to verify this question, and
3. the event of obtaining ‘yes’ as the answer; i.e. the effect ‘happened’.

So, there is more to the notion of a test than just answering a question. For example,
when making a drawing, one could ask the question: ‘Is this a red pen?’ A corresponding
test would then consist of taking a piece of paper, then writing with the pen on it, and
observing that the colour is indeed red. Of course, in this case one would (usually) not
destroy the pen. Genuine destruction takes place when one asks the question: ‘Is this a
working match?’ A corresponding test would then consist of trying to light the match and
succeeding, after which we end up with no match. The act of discarding a system is also a
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test, albeit a trivial one. After verifying some property that holds for any state of a system
(e.g. ‘does this system exist?’), we discard it. This is of course a very silly test, since no
information is gained, but the system is lost.

At first glance, it seems like tests are more than just ‘preparation procedures in reverse’.
However, if we assume that preparation procedures can fail (as is often the case in the lab),
we see that the notions really are symmetric. A preparation procedure consists of:

1. astate we would like our system to be in,
2. aprocedure that enables one to put a system in that state, and
3. the event of obtaining ‘yes’; i.e. the state was successfully prepared.

Of course, unlike tests, we could just keep retrying until a preparation succeeds (or we run
out of funding), so we tend to disregard part 3.
When we compose a state and an effect, a third kind of special box arises:

by -5

« Numbers are processes without any inputs or outputs, From now on we represent them
as:

&

or sometimes simply as:
A

At this point, you're probably saying ‘Hang on! I already know what numbers are, and this
doesn’t have anything to do with processes with no inputs and outputs!” Well, the numbers
you learned about in school (e.g. whole numbers, real numbers, possibly complex numbers)
are all instances of this very general kind of ‘number’.

So, what are processes with no inputs or outputs? Well, they are just a set of things that
can be ‘multiplied’, thanks to ®-composition (or equivalently in this case, o-composition).
That is, if A and ,t are numbers, then:

e ui= B D

is also a number. Also, we saw in Section 3.2.4 that diagrams rule, so this ‘multiplication’
is associative:

rewev=>40 B O

and has a unit, given by the empty diagram:

A®(n®v)
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And finally, because of the lack of inputs and outputs numbers can move around liberally
within a diagram, and even can do a little dance:

This little dance shows that multiplication of numbers is furthermore commutative. So, what
we call ‘numbers’ consists of a set of things that can be ‘multiplied’, and that multiplication

(3.24)

operation is associative, commutative, and has a unit (i.e. a chosen number that means ‘17).
Sound familiar? Mathematicians call this a commutative monoid. Other people would call
this ‘virtually any kind of numbers you can imagine.’

Remark* 3.33 This remarkably simple little proof shown in (3.24) is known as the
Eckmann—Hilton argument. It shows in general that, whenever we have a pair of associative
operations (in this case ® and o, applied specifically to numbers) that share the same unit
(1; in both cases) and satisfy the interchange law (3.16) (which of course comes for
free with diagrams), both of these operations are commutative and are in fact the same
operation. Here, we used it to prove that & (or equivalently o) gives us a commutative
‘multiplication” operation for the numbers of any process theory.

So, how should we interpret the fact that, when a state meets an effect, a number pops
out? One extremely useful interpretation is that this number gives the probability that the
effect happens, given the system is in a particular state. Or, in terms of tests, it is the
probability that when we test the state ¢ for an effect ¥ we get ‘yes’ as the answer:

test {

state {

probability (3.25)

We refer to this as the generalised Born rule. Here, we say ‘generalised’ because it makes
sense in any process theory. We will see in Chapter 6 that by restricting to the theory of
quantum maps, we obtain the rule that is used to compute all probabilities within quantum
theory, which is called simply the Born rule.

Remark* 3.34 A reader familiar with quantum theory may think that rather than a prob-
ability, in (3.25) we obtain a complex number (a.k.a. an ‘amplitude’), which we then have
to multiply with its conjugate in order to obtain a probability. This is indeed the case if we
are dealing with plain old linear maps. However, quantum maps have this step ‘built in’,
so the numbers are always positive real numbers. In Example 3.37 below we indicate how
(3.25) indeed produces the correct probabilities in quantum theory, and in Section 6.1.1
we explain how the passage from complex numbers to probabilities, via multiplication of a
number with its conjugate, is nicely built in to the theory of quantum maps.

In many physical theories, and quantum theory in particular, states are thought of as
elements in some set (or space), and processes as functions between sets and/or spaces.
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If the state is either 0 or 1, then it is possible (but no longer certain) that testing for 0
will yield a positive outcome. Finally consider:

If the system is in the state 0, then it is indeed impossible for the test 1 to give a positive
outcome.

The following starred example uses some notation that will be introduced over the next
two chapters. However, those already familiar with quantum theory may find it useful.
Other readers should skip this example for now.

Example* 3.37 (quantum maps) Quantum maps give a particularly elegant way to
express completely positive maps, of which mixed quantum states, quantum effects, and
probabilities are all special cases. Most of Chapter 6 is devoted to them, but here we
provide a first glimpse. For the benefit of those already familiar with quantum theory,
we use traditional terminology and notation here, rather than the more process-theoretic
versions introduced in Chapter 6.

1. States correspond to density operators. These are depicted as:

7

The action of a completely positive map £ on a state p, that is:

Elpr ZA:.,OA,'

t

is depicted as:

2. Effects are positive linear functionals. These are depicted as:

A

for some positive operator A. Their action on a state p, that is:

p = tr(Ap)
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(where tr is the trace) is depicted as:

AN
\/

(3.26)

A special case is the trace itself:

p = tr(p)

which represents ‘discarding the system’ and is depicted as:

-

The conditions of being trace-1 (for states) and trace-preserving (for completely positive
maps) are written respectively as:

5 @7

3. Numbers are positive reals. The Born rule (3.25) now takes the form (3.26), and it indeed
produces positive reals, which are interpreted as probabilities.

What may surprise the reader is that density matrices are depicted as states, i.e. no input,
rather than as input-output processes (cf. density ‘operator’) and that completely positive
maps are depicted as input-output processes, rather than as something that takes input-
output processes to input-output processes (cf. ‘superoperator’). This is a consequence of
the manner in which we define quantum maps, and this is of course an upshot, since now
the diagrams reflect the true nature of quantum states/effects/processes.

3.4.2 Saying the Immpossible: Zero Diagrams

An extreme example of (non-function) relations are zero relations. These are relations in
which ‘nothing relates to nothing’; i.e. there arenoa € Aand b € Bsuchthat R :: a — b,
or equivalently:

ca— ¥
A

We already encountered a few of these, namely:

Zﬁ% 0 0 _
= :: Aok
l— 0

Each of these represented something ‘impossible’.
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Since an effect represents a test in which we successfully verify a certain question, it
may be the case that for certain states this effect is simply impossible. So what do we get if
we compose that state and that effect in a diagrammatic language? We should of course get
a number that corresponds to ‘impossible’. These impossible numbers, and more generally
impossible processes, have an elegant characterisation within a process theory.

For the specific case of relations, it is easily seen that both the sequential and parallel
composition of a zero relation with any relation is again a zero relation. For general process
theories, assuming that an effect 7 is impossible given a state i, the number:

0=

should represent the impossible. Of course, if part of a larger process is impossible, then
the entire process is impossible, hence:

0] = 0[]

should also be impossible for any f. So if we want to accommodate the impossible in our
language, for every possible input and output type there should be a zero process, which
obeys the following composition rules:

Exercise 3.38 Prove that if a zero process satisfying (3.27) exists, then for any given types
of input and output systems, it is unique.

So just as multiplying by the plain old number zero always yields zero, zero processes
‘absorb’ any diagram in which they occur. In other words, any diagram containing a zero
process is itself a zero process. Due to the uniqueness of the zero process, we will just write
it as ‘0’ and ignore its input and output wires:
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The main point to remember here is that 0 is not the empty diagram, since the empty
diagram can be adjoined to any diagram without changing it. Zeros, on the other hand, ‘eat’
everything around them!

3.4.3 Processes That Are Equal ‘Up to a Number’

There will be many instances in this book where numbers are crucially important, most
notably when the Born rule (3.25) is used to compute probabilities. However, on other
occasions, they are just a bit of a nuisance. For example, we may only be interested in
some qualitative aspect of a process, such as whether it separates into disconnected pieces
(cf. Section 4.1.1 in the next chapter), in which case numbers play no role. In other cases,
we can make life a bit easier by ignoring numbers throughout a calculation and figuring out
at the end what they should be. Therefore, we’ll introduce some notation to handle these
kinds of situations:

Definition 3.39 Two processes are equal up to a number, written:

A[F] = (3.28)

We require A and 1 to be non-zero because otherwise everything would be ~-related to
everything else:

0:0:0

which is not particularly useful. What should instead be true is that the only thing = 0 is
zero itself.

Exercise 3.40 Assume a process theory has no zero-divisors; i.e. for all processes f and
numbers A we have A f = 0 if and only if A = 0 or f = 0. Then show that:

mO = :O

A fortunate feature of the relation = is that it plays well with diagrams. Suppose for
example that & = /', then:
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Even if we ignore numbers in a calculation, we might still recover them at the end.

Suppose we have established that:
m

If there exists a state 1 and an effect = such that:

then by sandwiching both f and g in equation (3.28) we obtain:

/N
Mol =nlel
VAR

where all numbers are non-zero. As a consequence, if the numbers of a process theory are
not too crazy, then we can figure out what A and g must be in order to obtain an equality.

3.4.4 Dirac Notation

Throughout this chapter we have extolled the virtues of diagrams, most coming from
the freedom to write down processes in two dimensions. With modern technology, these
diagrams are pretty easy to stick in, say, a textbook. However, things weren’t always this
good. Let’s see now how far we get if we try to turn diagrams into a notation that can easily
be churned out on a good old-fashioned typewriter.
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Of course, this is ambiguous unless we already know that we are working with some system
A ® B, and pretty soon we need to start requiring extra equations, as in Section 3.2.4.

By sticking to diagrams all of this is immediately solved, and fortunately, very few of
us are still using typewriters. Technology marches on, and now there are some great
tools for drawing diagrams (pretty much) as easily as typing out a Dirac-style formula on a
keyboard.

3.5 Summary: What to Remember

1. Diagrams consist of boxes that are labelled by processes and wires that are labelled by
system-types:

C

processes —/

Diagrams are all around us:

uk-plug uk-plug

power drill
eu-plug | printer
adaptor USB

uk-plug | computer
‘ plugstrip ‘
{ uk-plug

We can obtain new diagram equations from old ones in two ways:

1. Diagram deformation:

= k

:
|k ]

h
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2. Diagram substitution:

-]
= -
-]

2. A process theory is a collection of processes that can be plugged together. It tells us how
to interpret the boxes and wires in a diagram, e.g.:

gs [1 = []

gs (x :: xs8) =
gs [y | v <- x8; v < x] ++ [x] ++

gs [y | v <- xs8; y >= x]

and what it means to ‘wire processes together’. By doing so it also tells us which
diagrams represent the same process, €.2.:

-

Examples are functions, relations, linear maps (defined in Chapter 5), classical
processes (defined in Chapter 8), quantum maps (defined in Chapter 6), and quantum
processes (also defined in Chapter 8).

3. Parallel composition ‘®" and sequential composition ‘o’ are defined as:

4. Circuit diagrams are an important class of diagrams. They have the following (wo
equivalent characterisations:
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The diagram contains no directed cycles.
That is, information flows from bottom to
top without ‘feeding back’ to an earlier
process:

The diagram can be constructed by com-
posing boxes, including identities and
crossings, by means of the operations ®
and o:

5. Processes lacking inputs, outputs, or both have special names:

states: @7 effects: 45 numbers: <J>

These special processes admit a generalised Born rule:
effect {
number

state {

6. Zero processes ‘eat everything’:

7. Dirac notation is common language for depicting quantum processes. It is a fragment
of the diagrammatic language:
@ & (|

@7 < |¥) < (m|r)
3.6 Advanced Material*

Central to this book are process theories, which tell us how to interpret wires and boxes in
a diagram, and what it means to form diagrams, i.e. what it means to wire boxes together.
Here we present two alternative ways of defining process theories that make no direct
reference to diagrams, namely, abstract tensor systems and symmetric monoidal categories.
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In fact, we already saw a glimpse of each of these, respectively, when we encountered
diagram formulas in Section 3.1.3 and when we defined circuits by means of the operations
parallel and sequential composition in Section 3.2.

So how does one go about constructing a symbolic counterpart to the definition of
process theories? In the first two parts of the definition:

(i) acollection T of system-types represented by wires,
(i1) a collection P of processes represented by boxes, where for each process in P the input
types and output types are taken from 7 ...

diagrams don’t play an essential role and we can just drop the ‘represented by ... bit,
provided that we explicitly require that each process comes with a list of input types and a
list of output types, all taken from 7. The third part of the definition, which concerns what
‘forming diagrams’ means:

(iii) a means of ‘wiring processes together’, that is, an operation that interprets a diagram
of processes in P as a process in P

is the one that requires some non-trivial effort. In particular, we need to provide a sym-
bolic counterpart to ‘wiring processes together’ that does not make reference to diagrams.
Moreover, the symbolic operation(s) should produce processes of that theory.

3.6.1 Abstract Tensor Systems*

We introduced diagram formulas as a symbolic counterpart to diagrams. Can we define
a corresponding notion of process theory? The definition below does exactly that. For
notational simplicity we will assume that all system-types are the same, and consequently,
distinct wire names are merely distinguishing occurrences of the same system.

Definition 3.42 An abstract tensor system (ATS) consists of:
1. For all wire names A;,...,A,; and Bq, ..., By, a set of tensors:
B '"Bﬂ
fA1I...Au| c T({Al, . ,Am], {B], LBy

where Ay, ..., A, are called inputs and By, ..., B, are called outputs.
2. A unit tensor:

1eTWL{D
and for all wire names A and B identity tensors:
55 € T(AL(BY)

3. An operation tensor product that combines tensors provided their inputs and outputs are
distinct, which is denoted by concatenation:

By.By _Dy...D,
f,qllu_Amgc:.__C,: e THAL .-, Am, Cry- ., Gk} ABy, - -, By, Dy, ..., Dy})
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4. For any wire names A and B, an operation CE called tensor contraction, which is denoted
either explicitly or by repeating an upper/lower wire name:

fA B) IA BJ+] BJ’! — (f Bn)

1 Am
which, intuitively, ‘connects’ output B; to input A;.
5. Re-indexing operations that change wire names:
SRtA e A =D
Al -Am - A; ]A AJ+I Am
where these operations satisfy the following conditions:
1. the tensor product is associative, commutative, and has unit 1:
(feyh =f(gh) fe=zgf If=r
2. the order of tensor contractions/products is irrelevant:
(e () = 2l () ch(Ng = cf(fe)
3. contracting with the identity does nothing except change wire names:
Ay C..
ACTINES e gl =1
4. re-indexing respects identities, tensor product, and contraction.

The two operations, tensor product and tensor contraction, together play the role of
‘wiring processes together’. For example, the symbolic counterpart to the diagram:

is obtained as follows:

CB' (fA 5’3’)

More generally, we can compute the tensor corresponding to a diagram by first writing it
down as a diagram formula and then decomposing it further in terms of the tensor product
and tensor contraction. For example:

AB, D EF ,_ D B AB D
s kc' BD = CD/ (CB’( (h B’D!)))
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Definition 3.47 An object A is isomorphic to an object B, denoted:
A=B
if and only if there exists a pair of morphisms:
f:A— B fl:B—>A
such that:
flof=1a fof™t=1g
The morphism /" is then called an isomorphism.

Most monoidal categories we find in the wild tend to be of the non-strict variety. That
is, their parallel composition only satisfies:

A®B)®CZ=ZA® (B® () ARIZAZIRA

We already briefly encountered this situation in Section 3.3.1. Recall that ® was defined in
terms of the Cartesian product. When we compare the sets (A x B) x Cand A x (B x C)
(and the sets A and A x {x}), we do not get equal sets, but rather sets whose elements are
in one-to-one correspondence:

((a,b).c) <> (a,(b,c)) a < (a,*)

To define a non-strict monoidal category, we must include these correspondences in the
definition of the category as so-called structural isomorphisms, and we must assume several
(more!) equations called coherence equations that guarantee that they behave sensibly
when they are composed together.

However, we happily glazed over this fact when we defined the process theories of
functions and relations in Section 3.3. Why? Because of the following coherence theorem.

Theorem 3.48 Every (symmetric) monoidal category C is equivalent to a strict (symmetric)
monoidal category C’.

Equivalent categories are, for all practical purposes, the same. We’ll say more about
what this means in Section® 5.6.4. The proof of Theorem 3.48 consists of an explicit
construction of the category C’ by a procedure called strictification. This procedure is used
implicitly when, e.g. we decide to treat elements ((a,b),c), (a, (b, c)) and (a,b,c) as ‘the
same’, which we do without further comment throughout this text.

Furthermore, we are justified in using circuit diagrams to talk about symmetric monoidal
categories because of the following theorem.

Theorem 3.49 Circuit diagrams are sound and complete for symmetric monoidal cat-
egories. That is, two morphisms f and g are provably equal using the equations of a
symmetric monoidal category if and only if they can be expressed as the same circuit
diagram.
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To summarise, it is possible to translate many concepts between our purely diagram-
matic language and category theory, using this correspondence:

process theory < (strict) symmetric monoidal category
process <> morphism

system-type <> object

3.6.3 General Diagrams versus Circuils®

Some readers may have noted that abstract tensor systems and symmetric monoidal cate-
gories aren’t exactly one and the same. While symmetric monoidal categories correspond to
circuits, abstract tensor systems represent more general kinds of diagrams in which directed
cycles (ctf. Definition 3.20) are allowed. However, we can make the two concepts coincide.

In one direction, one can force abstract tensor systems to be equivalent to strict symmet-
ric monoidal categories by only requiring the contraction operation (_'/‘5: to be well-defined if
it does not introduce a directed cycle.

Conversely, it is possible to introduce ‘feedback loops’ into symmetric monoidal cate-
gories, obtaining so-called rraced symmetric monoidal categories. These categories assume
an additional operation called the trace:

which we will meet in Section 4.2.3 of the next chapter. The trace satisfies a handful
of axioms to ensure that it behaves like a ‘feedback loop’ and that it respects the other
categorical structure. Then, strict traced symmetric monoidal categories are equivalent
to abstract tensor systems, in that it is possible to turn an abstract tensor system into a
strict traced symmetric monoidal category and vice versa without losing any meaningful
information.

We can summarise the above in the following table:

‘General” diagram Circuit diagram

Diagrams

i.e. outputs to inputs | i.e. admits causal structure
ATS ATS ATS without cycles
SMC traced SMC SMC




3.7 Historical Notes and References 81

3.7 Historical Notes and References

The idea of representing the composition of mathematical objects using nodes and wires
dates back a very long time. A prominent example is the flow chart, which goes back (at
least) to the 1920s (Gilbreth and Gilbreth, 1922). In physics, the most notable example is
Feynman diagrams. Despite their name, it is now recognised that they originated in the
work of Ernst Stueckelberg around 1941 and were only later independently re-derived by
Richard Feynman around 1947. In a lecture at CERN after having been awarded the Nobel
Prize Richard Feynman referred to this fact the moment that Stueckelberg left the room:
‘He did the work and walks alone toward the sunset; and, here I am, covered in all the glory,
which rightfully should be his!” (Mehra, 1994).

Penrose (1971) was the first to introduce the particular kind of diagrams we use in this
book as an alternative to the abstract tensor notation (see Section* 3.6.1), which he also
introduced. In fact, he already started using diagrams when he was still an undergraduate
student (Penrose, 2004 ).

Paul Dirac introduced his new notation in Dirac (1939). The connection between Dirac
notation and the corresponding use of the triangle notation for states and effects in string
diagrams was observed in Coecke (2005). The idea of treating diagrams themselves as the
basic structure rather than categories has recently become prominent in the quantum foun-
dations community. It has been used, for example, in efforts towards crafting alternative
formulations of quantum theory and a theory of quantum gravity (Chiribella et al., 2010;
Coecke, 2011; Hardy, 2011, 2013b).

The unwillingness of many to accept diagrams as a rigorous mathematical language
(alluded to in Section 3.1.3) may be largely due to the Bourbakimindset in which mathe-
matics has been taught for much of the previous century. The Bourbaki collective aimed
to found all mathematics on a set-theoretic basis (Bourbaki, 1959-2004). Great credit
should be given to John Baez, the pioneer of scientific blogging, who by means of his
outstanding didactical skills managed to convince many of the amazingness of diagrams.
His old weekly column “This Week's Finds in Mathematical Physics’ is still a great resource
on diagrammatic reasoning (Baez, 1993-2010).

The connection between circuit diagrams and algebraic structure (in the form of sym-
metric monoidal categories, cf. Theorem 3.49) was established in Joyal and Street (1991),
where circuit diagrams are referred to as “progressive polarised diagrams’. Traced symmet-
ric monoidal categories and their graphical notation were introduced in Joyal et al. (1996);
however, the closely related notion of a ‘compact closed category’ (whose diagrams are
string diagrams, which we will encounter very soon) had already been known for some
time. The historical notes in the next chapter provide appropriate references.

The proof of correctness of the graphical language for traced symmetric monoidal
categories has been sketched in various papers (e.g. Hasegawa et al., 2008), and a full
proof is given by Kissinger (2014a). Following on from Joyal and Street’s work came
a plethora of variations of these diagrams and corresponding algebraic structures (see
Selinger, 2011b).
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Monoidal categories themselves were first introduced in Benabou (1963). Theorem 3.48
on coherence is crucial for connecting monoidal categories to diagrams and was first stated
and proved by Mac Lane (1963). The ‘little dance’ in (3.24), a.k.a. the Eckmann—Hilton
argument, is from Eckmann and Hilton (1962).

Abstract tensor systems, and their associated ‘abstract index notation’, were introduced
by Penrose (1971) at the same time as the corresponding diagrammatic notation, in order
to talk about various kinds of multilinear maps without needing to fix bases in advance.
This notation is now very common in theoretical physics and especially general relativity.
Penrose provides an introduction for a general audience in Penrose (2004). The equivalence
between abstract tensor systems and traced symmetric monoidal categories is given by
Kissinger (2014a).

If you want to read more on general category theory, some good places to start are
Abramsky and Tzevelekos (2011) for the connection between categories and logic, Coecke
and Paquette (2011) for the generality of the notion of symmetric monoidal categories, and
Baez and Lauda (2011) for the role categorical structures have played in physics. Standard
textbooks for mathematicians are Borceux (1994a,b) and Mac Lane (1998); standard text-
books for computer scientists are Barr and Wells (1990) and Pierce (1991); and standard
textbooks for logicians are Lambek and Scott (1988) and Awodey (2010). In the context
of category theory, the idea that morphisms represent processes emerged mostly in the
context of applications in computer science, where programs are represented by morphisms
in a category and data types are the objects. Similarly in logic, proofs can be represented
by morphisms in a category, with propositions as the objects. This trifecta of morphisms,
programs, and proofs are all connected by what’s known as the Curry—Howard—Lambek
isomorphism (Lambek and Scott, 1988).

The quote at the beginning of this chapter is taken from Bohm and Peat (1987). As
discussed in Section 1.3, Bohm’s views played a key role in making process ontology more
prominent in physics.
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When two systems, of which we know the states by their respective
representatives, enter into temporary physical interaction due to known
forces between them, and when after a time of mutual influence the
systems separate again, then they can no longer be described in the same
way as before, viz. by endowing each of them with a representative
of its own. T would not call that one but rather the characteristic trait
of quantum mechanics, the one that enforces its entire departure from
classical lines of thought.

— Erwin Schrodinger, 1935

By 1935, Schridinger had already realised that the biggest gulf between quantum theory
and our received classical preconceptions is that, when it comes to quantum systems, the
whole is more than the sum of its parts. In classical physics, for instance, it is possible to
totally describe the state of two systems — say, two objects sitting on a table — by first totally
describing the state of the first system then totally describing the state of the second system.
This is a fundamental property one expects of a classical, separable universe. However, as
Schrodinger points out, there exist states predicted by quantum theory (and observed in
the lab!) that do not obey this ‘obvious’ law about the physical world. Schrodinger called
this new, totally non-classical phenomenon Verschrinkung, which later became translated
to the dominant scientific language as entanglement.

Quantum picturalism is all about studying the way parts compose to form a whole. In
the good company of Schriodinger, we believe that the role of multiple interacting sys-
tems — especially non-separable systems — should take centre stage in the study of quantum
theory.

We shall see in the next section that it is easy to say what it means for a process
to be separable in terms of diagrams. Literally, it means that it can be broken up into
pieces that are not connected to each other. On the other hand, enforcing non-separability
requires us to refine our diagrammatic language. To this end, we introduce special
states and effects called cups and caps, respectively. Intuitively, cups and caps act like
pieces of wire that have been ‘bent sideways’. Whereas all states in the classical world

83
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N A

for some B, B" C B. Then, by (3.22):
@ sk (b b)) = %;7 ::*»—>band vk b

(bpyeC < beBandb' e B

that is:

Since (0,0) € C, it follows that 0 € B. Similarly, (1, 1) € C implies that 1 € B'. But these
two facts imply (0, 1) € C, which is a contradiction. |

The crux of this proof is the fact that the (non-singleton) set:
{(0,0), (1, D)}

cannot be written as a Cartesian product of subsets of B. If as in functions, every such set
is a singleton, then this is always possible.
A closely related notion to ®-separability is the following.

Definition 4.5 We call a process:

o-separable if there is an effect w and a state ¥ such that:

= X (4.3)

Both ®-separability of bipartite states and o-separability of processes are examples of
‘disconnectedness’ of the corresponding diagrams. Whenever no confusion is possible we
will simply say ‘separable’ in both cases.

Moreover, these two notions of separability are related to each other in the following
sense.

« If the process f is o-separable, then for any bipartite state ¢ the following state is ®-
separable:

(“4?7@7
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where:

V

« If the state ¥ is ®-separable, then for any bipartite effect 7 the following process is

e iy
-3

We also saw earlier that in functions all bipartite states are ®-separable. So what kinds
of process theories have all o-separable processes? The answer is, ‘only the really boring
ones!” When we apply a o-separable process to an arbitrary state:

LY
§ ey

we cannot obtain anything other than a fixed state ¢ (ignoring the number 7 o), regardless
of what the input ¥ was. That is, every process is essentially a constant process. In other
words:

where:

nothing ever happens!
Thus it shouldn’t be surprising that the theory of functions does contain o-non-separable

processes.

Exercise 4.6 Show that identities (i.e. plain wires) in functions are o-non-separable, and
characterise those functions that are o-separable.

Remark 4.7 The ultimate boringness of process theories where all processes are o-separable
will play an important role in several ‘no-go’ theorems that we develop later in this chapter.
In particular, we will show that some statement P is not true by proving a theorem of the
form:

If P is true, then all processes are o-separable.
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As this is an absurd condition for any reasonable process theory, and in particular any
theory of physics, we can take this as a proof that P is false.

4.1.2 Process—State Duality

One feature of quantum theory is that one can turn a process into a bipartite state and vice
versa. This is in itself not very significant: we already demonstrated such a conversion in
the previous section in order to relate @-separability of bipartite states to o-separability of
processes. What is significant about quantum theory is that this can be done in a reversible
manner. That is, we have a way to turn a process into a bipartite state and then back
into a process such that we obtain the original process, and vice versa. In other words,
the operations that send processes to bipartite states and bipartite states to processes are
inverses of each other. Therefore, in quantum theory, processes and bipartite states are in
bijective correspondence.

As in the previous section, we will make use of bipartite states and effects to inter-
convert processes and states. However, we will not be using just any state/effect pair but
instead fix a special state and effect:

A |a
@ and @ (4.4)
A A

for each system A. We call these states and effects cups and caps., respectively. They can be
used to convert processes to states and back via the following operations:

(¢)
W - 45)

Theorem 4.8 The operations given in (4.5) are inverses of each other, i.e. they give
process—state duality, if and only if;

(%)

(a) ()
= = (4.6)

In that case, the set of all processes with input type A and output type B is in one-to-one
correspondence with the set of all bipartite states of type A ® B:

12

A Y
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Proof First, assume equations (a) and (b). Then, if we first turn a process into a state

and back:
n
NS v

we can simplify back to the original process using (a):

Similarly, starting with a state:

we can use (b):

Conversely, if the operations given in (4.5) are mutually inverse, then:

n N
7] =[] = <y @
U
U




90 String Diagrams
for all f and . Taking f to be the identity yields (a) immediately. Proving (b) using the
above equations is left as an exercise. t

Exercise 4.9 Prove equation (4.6b) using both of the process—state duality equations (4.7),

by setting:

Exercise 4.10 Show that process—state duality does not hold for functions, but that it does
hold for relations.

Remark* 4.11 A reader familiar with quantum theory may know about a correspondence
between processes and states called the Choi—Jamiotkowski isomorphism. Process—state
duality is in fact a generalisation of the C-J isomorphism. In Chapter 6, we will introduce
the process theory of quantum maps, in which case this generalised C-J isomorphism will
actually be the familiar correspondence between bipartite (possibly mixed) quantum states
and completely positive maps.

4.1.3 The Yanking Equations

Equation (4.6) is not very intuitive when viewed diagrammatically, but by means of a
simple change of notation we can fix this. We write the special states and the special effects,
respectively, as U-shaped and N-shaped wires:

ol -

Equation (4.6) now becomes:

This notation expresses the fact that bent wires involving a U-shape and a N-shape can be
yanked into a straight wire:
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Definition 4.18 A string diagram consists of boxes and wires, where we additionally allow
inputs to be connected to inputs and outputs to be connected to outputs, for example:

(4.12)

Above we already indicated that we can replace the special states and the special effects
of the previous section by cup-shaped wires and by cap-shaped wires, respectively. This
is how we obtain a string diagram from a circuit diagram in which there are states and
effects satisfying (4.11). Conversely, starting from a string diagram we can replace a wire
connecting two inputs with the special cup state and a wire connecting two outputs with
the special cap effect. Hence the following theorem.

Theorem 4.19 The following two notions are equivalent:

(i) string diagrams and
(ii) circuit diagrams to which we adjoin a special state and a special effect for each type,
and for which (4.11) holds.

in the sense that (ii) can be unambiguously expressed as (i) and vice versa.

Bingo! We expressed non-separability in purely diagrammatic terms, and not just by
adding some new boxes to (the now boring) circuit diagrams, but also by simply consider-
ing a different, more liberal kind of diagram. Thus, the most important feature of quantum
theory (according to Schrodinger) is built right into the kinds of diagrams we use!

Exercise 4.20 Write diagram (4.12) in o and & notation using cups and caps.
String diagrams also admit a formula-like presentation (cf. Section 3.1.3).

Definition 4.21 A string diagram formula is the same as a diagram formula except for the
fact that matched pairs of wire names, besides consisting of an upper and a lower name,
can now also consist either of two upper names or of two lower names, for example:

A1As BCy, Cy
fDlDlgB]AEhAS
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Remark 4.22 In Section 3.1.3, we introduced special box names lif to represent plain
wires in diagram formulas. If we need explicit cups or caps in string diagram formulas, we
can use two ‘plain wires’ with their inputs or outputs, respectively, connected together:

A1As . A1 1A2 . 143 A3
U = 1/\31/!3 NA A, = 1/‘]1/'2

This allows us to distinguish, for example:

B A
. By - AxAy pB1

— fa, and «~— U Jr‘A1 Mg, B,
A B

We now explore the richness of these diagrams.

4.2 Transposition and Trace

Transposition and trace are notions you may know from linear algebra. Quite remarkably,
these already arise at the very general level of string diagrams. We already know from the
previous section that cups and caps let us form new processes from old ones by turning
inputs into outputs and vice versa. In the case of process—state duality we have:

H |¢|pr|

More generally, we can always inter-convert inputs and outputs:

EEMEnTT

This ability to inter-convert inputs and outputs for process theories that admit string dia-
grams means that inputs and outputs have a less profound status than in the case of other
process theories that only admit circuits. In particular, any process with an input and an
output has (at least) the following four inter-convertible representations:

and in the case of several inputs and outputs there are many more. We also can obtain new
processes by connecting inputs and outputs together using cups and caps:
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The transpose and the trace are the most prominent examples where caps and cups are used
to convert processes into new processes.

4.2.1 The Transpose

In a process theory that admits string diagrams we can associate to each process another
process going in the opposite direction.

Definition 4.23 The transpose fT of a process f is another process:

This of course should not be confused with another well-known way to obtain a process
going in the other direction:

Definition 4.24 A process f from type A to type B has an inverse if there exists another
process f ! from type B to type A such that:

= |a = |» (4.13)
Exercise 4.25 Show that if a process f has an inverse, it is unique.
While the transpose can be realised by a diagram involving f:
Ll
= (14a®Np)o(l4®f @ 1p) o (Usy ® 1p) (4.14)

|
I
1
1
I
Kl
|
I
d

this is not the case for an inverse, otherwise every process would have an inverse, which is
usually not true.

Remark* 4.26 The simple fact that the transpose in linear algebra can be written using a
cup and a cap as in decomposition (4.14) is surprisingly not very well known, even among
specialists.
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Exercise 4.27 Prove that in relations the transpose of a relation R is the converse relation,

that is:
tar— b — @::bHa

has no input, so we only have to convert the output into an input:

A state:

Hence, it is no coincidence that in relations any system-type A has the same number of
states as effects (see Example 3.36), since we have a bijective correspondence between

states and effects:
-

Proposition 4.28 For any process theory that admits string diagrams there is a bijec-
tive correspondence between states and effects of the same type. More generally, the
correspondence:

This is a general phenomenon.

yields a bijective correspondence between the processes of a fixed input and output type,
and the processes with the opposite input and output type.

The transpose of a transpose yields the original process:

Or, symbolically:
U =7

An operation that ‘undoes itself” like this is called an involution.
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Example 4.29 The transpose of a cup is a cap and vice versa:

G- Qv

Now comes the really cool bit. We can build the definition of transpose into our dia-
grammatic notation. First, we deform our boxes a bit:

b

It doesn’t matter too much how we deform boxes, only that we break the symmetry. For
example,

~ ¥
1’/’\
would also work, but Dave might not appreciate being skewered. Now, we express the
transpose of f as a box labelled ‘f”, but rotated 180°:

o)

This notation is clearly consistent with the fact that the transpose is an involution, since,
if one rotates by 180° twice, one obtains the original box again. However, the real advantage
of this choice of notation comes when transposes interact with cups and caps.

Proposition 4.30 For any process f we have:

7)-\g w14

Proof The first equality is established as follows:

and the proof of the second one proceeds similarly. U
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(4.19)

This would suggest that we should ‘nest’ the caps and cups inside of each other to define
caps and cups for A ® B. However, there’s a problem with defining Usgp and Nygp as
above:

The types don’t match! \'

—

Y
A®B A®B A B B A
o \_J
&/
A

Remark* 4,32 This type mismatch vanishes if we introduce for every type A a dual type
A*, but this is at the cost of having two distinct types for the two systems involved in
cups/caps, while in fact, these two types are often essentially the same. In Section* 4.6.2
we show how one can develop a theory of string diagrams with dual types.

We can avoid this type mismatch if we define cups/caps for A ® B a bit differently,
namely as ‘criss-crossed’ cups/caps:

AwB U " Awﬂ (4.20)
A®B /A\ = Amﬂ @.21)

Proposition 4.33 The cup and cap defined in equations (4.20) and (4.21) satisfy the yank-
ing equations (4.11).

Proof For the first yanking equation of (4.11) we have:

A |B A B A B
A |B A B

Proofs of the other two equations are similar. u
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With these ‘criss-crossed’ cups/caps, we obtain an alternative notion of transposition,
which introduces a twist for composite systems:

(4.22)

It is this twist that restores the matching of types, and since we define cups/caps on A @ B
in terms of cups/caps on A and B individually, there is no ambiguity when we apply this
transpose on processes involving composite systems. But, at the same time, we lost a chunk
of the elegant ‘180° rotation’ notation for transposition.

In fact, it turns out that both versions of transposition can be useful. We will take the
first version, indicated in (4.19), to be the default and continue to refer to this simply as
‘the transpose’. The second version, involving the ‘criss-crossed’ cups and caps, will be
referred to as the algebraic transpose, since it is in fact the one that is used in linear algebra
(see Section 5.2.2). While the transpose is (still) denoted by 180° rotation, we will use the
symbolic notation ( )7 to represent the algebraic transpose. So the equation:

now relates the transpose to the algebraic transpose. Of course, when a box has at most one
input/output wire, these two versions coincide. Unsurprisingly, a process that is equal to its
algebraic transpose is called algebraically self-transposed.

4.2.3 The Trace and Partial Trace

String diagrams give us a simple way of sending processes to numbers.

Definition 4.34 For a process f where the input type is the same as the output type, the
frace is:

tr = A (4.23)
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and for a process g with one of its inputs having the same type as one of its outputs, the
partial trace is:

tI‘A

A funny property of the trace is that while in general:

Y.
UF/

8

the trace of the LHS and the RHS are in fact equal.

Proposition 4.35 (cyclicity of the trace) We have:

o 7/
tr(fog) =tr(gof) 1Le. =
&/

Proof This follows from the fact that the two diagrams are equal; i.e. the LHS can be
deformed into the RHS without changing how the boxes are wired together. O

Alternatively, we can give a more step-wise proof of Proposition 4.35 using Proposi-
tion 4.30. While not strictly necessary. this other proof is nice because it takes the word
‘cyclicity’ quite literally, yielding a ferris wheel of boxes:

Remark 4.36 In the previous section we decided to distinguish the transpose (which
involves nested cups/caps) from the algebraic transpose (which involves criss-crossed
cups/caps). Since equation (4.23) also involves cups and caps, we might ask whether for
composite systems we need to make a similar distinction between ‘nested’ and ‘criss-
crossed’ trace. Luckily, we don’t:
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Exercise 4.37 Show that there is only one trace; i.e. any cup/cap pair satisfying the yanking
equations (4.11) defines the same trace via (4.23).

4.3 Reflecting Diagrams

Having string diagrams at hand is already a substantial step towards the quantum world,
since it guarantees the existence of non-separable states. They also give rise to some math-
ematical concepts that play a central role in quantum theory, such as transposition and
trace.

We will now identify one more diagrammatic feature that makes string diagrams a lot
more articulate, namely vertical reflection of diagrams. Vertical reflection allows us to
define things like adjoints, conjugates, inner products, unitarities, and positivity, all of
which are major players in any presentation of quantum theory.

Moreover, vertical reflection isn’t just some extra degree of freedom that string diagrams
happen to have, but has a clear operational meaning in terms of testability of states. This
operational meaning will lead to a number of conditions that play an important role in
quantum theory. These conditions are in fact quite standard in the literature, but they are
usually just stated formally, without any conceptual justification.

4.3.1 Adjoints

In the previous section we explained how the transpose acts graphically by rotating boxes
180°, and that operationally it captures the perfect correlation between Aleks’ effects on
one side of a cup state and Bob’s states on the other:

But what about the relationship between Aleks’ effects and Aleks’ states?

Recall from Section 3.4.1 that effects can be interpreted as testing a state for some
property. Typically, we want to test whether a system is in a particular state. Therefore, we
should have a means of relating a state v+ to the effect that tests a system for . String
diagrams do not yet tell us how to do this, so we extend our language by representing the
effect testing for a state v as its vertical reflection:
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@7 > @ (4.24)

Instead of ‘the effect testing for a state ¥’ we’ll simply say ¥ s adjoint.
This reflection operation extends very naturally to all processes. If f transforms state ¥

into a state ¢:
g = (4.25)

then fs adjoint is the process that transforms v’s adjoint into ¢’s adjoint:

% = (4.26)

Note that, as in the case of states, we have depicted the adjoint of an arbitrary process as its

vertical reflection:
B . A
=
A B

As a result, equation (4.26) is just equation (4.25) upside-down. We use | to denote the
operation sending f to its adjoint f'. As a special case, if we take the adjoint of the effect

from (4.24), we get back to ¥:
g 7%

Hence, like the transpose, adjoints bijectively relate states and effects, and more generally,
they bijectively relate processes from a type A to a type B to processes from B to A. Also
like the transpose, this is an involution, which is plainly suggested by the diagrammatic
notion:

= — 4.27)



