OXFORD

POEMS
THAT
SOLVE

PUZZLES

The History
and Science
of Algorithms

CHRIS BLEAKLEY

POEMS THAT
SOLVE PUZZLES

The History and Science of Algorithms

Chris Bleakley

UNIVERSITY PRESS

OXTORD

UNIVERSITY PRESS

Great Clarendon Street, Oxford, OX2 6DP,
United Kingdom

Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide. Oxford is a registered trade mark of
Oxford University Press in the UK and in certain other countries

© Chris Bleakley 2020
The moral rights of the author have been asserted

First Edition published in 2020

Impression: |

All rights reserved. No part of this publication may be reproduced, stored in
aretrieval system, or transmitted, in any form or by any means, without the
prior permission in writing of Oxford Uniy ersity Press, or as expressly pcrmilled
by law, by licence or under terms agreed with the appropriate reprographics
rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the
address above

You must not circulate this work in any other form
;md vVl)l—] must IlTlPﬂ\'ﬁF lhlh same rnndlti(m on L]n_\f 1(qulrrr

Published in the United States of America by Oxford University Press
198 Madison Avenue, New York, NY 10016, United States of America

British Library Cataloguing in Publication Data
Data available
Library of Congress Control Number: 2020933199
ISBN 978—0—19-885373—2

Printed and bound by
CPI Group (UK) Ltd, Croydon, CRO4YY

Links to third party websites are provided by Oxford in good faith and
for information only. Oxford disclaims any responsibility for the materials
contained in any third party website referenced in this work.

Nl B = S R S

N
b =

13

Contents

Introduction

Ancient Algorithms
Ever-Expanding Circles
Computer Dreams

Weather Forecasts

Artificial Intelligence Emerges
Needles in Haystacks

The Internet

Googling the Web

Facebook and Friends
America’s Favourite Quiz Show
Mimicking the Brain
Superhuman Intelligence

Next Steps

Appendix
Notes

Permissions

Bibliography
Index

25
39

75

93
117
143
139
171
179
203
215

229
233
241
243
259

Copyrighted material

Introduction

‘One for you. One for me. One for you. One for me.” You are in the
school yard. The sun is shining. You are sharing a packet of sweets with
your best friend. ‘One for you. One for me.” What you didn’t realize back
then was that sharing your sweets in this way was an enactment of an
algorithm.

An algorithm is a series of steps that can be performed to solve an
information problem. On that sunny day, you used an algorithm to
share your sweets fairly. The input to the algorithm was the number of
sweets in the packet. The output was the number of sweets that you and
your friend each received. If the total number of sweets in the packet
happened to be even, then both of you received the same number of
sweets. If the total was odd, your friend ended up with one sweet more
than you.

An algorithm islike a recipe. Itis a list of simple steps that, if followed,
transforms a set of inputs into a desired output. The difference is that
an algorithm processes information, whereas a recipe prepares food.
Typically, an algorithm operates on physical quantities that represent
information.

Often, there are alternative algorithms for solving a given problem.
You could have shared your sweets by counting them, dividing the
total by two in your head, and handing over the correct number of
sweets. The outcome would have been the same, but the algorithm—
the means of obtaining the output—would have been different.

An algorithm is written down as a list of instructions. Mostly, these
instructions are carried out in sequence, one after another. Occasion-
ally, the next instruction to be performed is not the next sequential
step but an instruction elsewhere in the list. For example, a step may
require the person performing the algorithm to go back to an earlier
step and carry on from there. Skipping backwards like this allows
repetition of groups of steps—a powerful feature in many algorithms.
The steps, ‘One for you. One for me.” were repeated in the sweet sharing
algorithm. The act of repeating steps is known as iteration.

2 Introduction

If the number of sweets in the packet was even, the following iterative
algorithm would have sufficed:

Repeat the following steps:
Give one sweet to your friend.
Give one sweet to yourself.
Stop repeating when the packet is empty.

In the exposition of an algorithm such as this, steps are usually written
down line-by-line for clarity. Indentation normally groupsinter-related
steps.

If the number of sweets in the packet could be even or odd, the
algorithm becomes a little more complicated. A decision-making step
must be included. Most algorithms contain decision-making steps.
A decision-making step requires the operator performing the algorithm
to choose between two possible courses of action. Which action is
carried out depends on a condition. A condition is a statement that is
either true or false. The most common decision-making construct—
‘if-then-else’—combines a condition and two possible actions. ‘If” the
condition is true, ‘then’ the immediately following action (or actions)
is performed. ‘If” the condition is false, the step (or steps) after the ‘else’
are performed.

To allow for an odd number of sweets, the following decision-making
steps must be incorporated in the algorithm:

If this is the first sweet or you just received a sweet,
then give this sweet to your friend,
else give this sweet to yourself.

The condition here is compound, meaning that it consists of two (or
more) simple conditions. The simple conditions are ‘this is the first
sweet’ together with ‘you just received a sweet’. The two simple con-
ditions are conjoined by an ‘or’ operation. The compound condition
is true if either one of the simple conditions is true. In the case that
the compound condition is true, the step ‘give this sweet to your
friend’ is carried out. Otherwise, the step ‘give this sweet to yourself’
is performed.

The Trainee Librarian 3

The complete algorithm is then:

Take a packet of sweets as input.
Repeat the following steps:
Take a sweet out of the packet.
If this is the first sweet or you just received a sweet,
then give this sweet to your friend,
else give this sweet to yourself.
Stop repeating when the packet is empty.
Put the empty packet in the bin.
The sweets are now shared fairly.

Like all good algorithms, this one is neat and achieves its objective in an
efficient manner.

The Trainee Librarian

Information problems crop up every day. Imagine a trainee librarian on
their first day at work. One thousand brand new books have just been
delivered and are lying in boxes on the floor. The boss wants the books
to be put on the shelves in alphabetical order by author name, as soon
as possible. This is an information problem and there are algorithms for
solving it.

Most people would intuitively use an algorithm called Insertion Sort
(Figure L.1). Insertion Sort operates in the following way:

A FG T W]
N_J

Figure I.1 Insertion Sort in action.

4 Introduction

Take a pile of unsorted books as input.
Repeat the following steps:
Pick up a book.
Read the author’s name.
Scan across the shelf until you find where the book should
be inserted.
Shift all the books after that point over by one.
Insert the new book.
Stop repeating when there are no books left on the floor.
The books are now sorted.

At any moment in time, the books on the floor are unsorted. One by
one, the books are transferred to the shelf. Every book is placed on the
shelfin alphabetical order. As a result, the books on the shelf are always
in order.

Insertion Sort is easy to understand and works but is slow. It is slow
because, for every book taken from the floor, the librarian has to scan
past or shift every book already on the shelt. At the start, there are
very few books on the shelf, so scanning and shifting is fast. At the end,
our librarian has almost 1,000 books on the shelf. On average, putting a
book in the right place requires 500 operations, where an operation is an
author name comparison or a book shift. Thus, sorting all of the books
takes 500,000 (1,000 x 500) operations, on average. Let’s say that a single
operation takes one second. That being the case, sorting the books using
Insertion Sort will take around seventeen working days. The boss isn’t
going to be happy.

A faster alternative algorithm—Quicksort—was invented by com-
puter scientist Tony Hoare in 1962. Hoare was born in Sri Lanka, to
British parents in 1938. He was educated in England and attended
Oxford University before entering academia as a lecturer. His method
for sorting is a divide-and-conquer algorithm. It is more complicated
than Insertion Sort but, as the name suggests, much faster.

Quicksort (Figure 1.2) splits the pile of books into two. The split is
governed by a pivot letter. Books with author names before the pivot letter
are put on a new pile to the left of the current pile. Books with author
names after the pivot are placed on a pile to the right. The resulting
piles are then split using new pivot letters. In doing so, the piles are
kept in sequence. The leftmost pile contains the books that come first
in the alphabet. The next pile holds the books that come second, and
so on. This pile—sp]itting process is repeated for the largest pile until

The Trainee Librarian 5

Figure 1.2 Quicksort in action.

the biggest stack contains just five books. The piles are then sorted
separately using Insertion Sort. Finally, the sorted piles are transferred,
in order, to the shelf.

For maximum speed, the pivot letters should split the piles into two
halves.

Let’s say that the original pile contains books from A to 7. A good
choice for the first pivot would likely be M. This would give two new
piles: A—L and M—Z (Figure 1.2). If the A-L pile is larger, it will be split
next. A good pivot for A—L might be F. After this split, there will be
three piles: A—E, F-L, and M—Z. Next, M—Z will be split and so on. For
twenty books, the final piles might be: A—C, D-E, F-L, M—R, and S-7.
These piles are ordered separately using Insertion Sort and the books
transferred pile-after-pile onto the shelf.

The complete Quicksort algorithm can be written down as follows:

Take a pile of unsorted books as input.
Repeat the following steps:
Select the largest pile.
Clear space for piles on either side.
Choose a pivot letter.
Repeat the following steps:
Take a book from the selected pile.
If the author name is before the pivot letter,
then put the book on the pile to the left,
else put the book on the pile to the right.
Stop repeating when the selected pile is empty.
Stop repeating when the largest pile has five books or less.
Sort the piles separately using Insertion Sort.
Transfer the piles, in order, to the shelf.
The books are now sorted.

6 Introduction

Quicksort uses two repeating sequences of steps, or laaps, one inside
the other. The outer repeating group deals with all of the piles. The
inner group processes a single pile.

Quicksort is much faster than Insertion Sort for large numbers of
books. The trick is that splitting a pile is fast. Each book need only
be compared with the pivot letter. Nothing needs to be done to the
other books—mno author name comparisons, no book shifts. Applying
Insertion Sort at the end of Quicksortis efficient since the piles are small.
Quicksort only requires about 10,000 operations to sort 1,000 books. The
exact number of operations depends on how accurately the pivots halve
the piles. At one second per operation, the job takes less than three
hours—a big improvement on seventeen working days. The boss will
be pleased.

Clearly, an algorithm’s speed is important. Algorithms are rated
according to their computational complexity. Computational complexity
relates the number of steps required for execution of an algorithm to
the number of inputs. The computational complexity of Quicksort is
significantly lower than that of Insertion Sort.

Quicksort is called a divide-and-conquer algorithm because it splits
the original large problem into smaller problems, solves these smaller
problems separately, and then assembles the partial solutions to form
the complete solution. As we will see, divide-and-conquer is a powerful
strategy in algorithm design.

Many algorithms have been invented for sorting, including Merge
Sort, Heapsort, Introsort, Timsort, Cubesort, Shell Sort, Bubble Sort,
Binary Tree Sort, Cycle Sort, Library Sort, Patience Sorting, Smooth-
sort, Strand Sort, Tournament Sort, Cocktail Sort, Comb Sort, Gnome
Sort, UnShuftle Sort, Block Sort, and Odd-Even Sort. All of these
algorithms sort data, but each is unique. Some are faster than others.
Some need more storage space than others. A few require that the
inputs are prepared in a special way. A handful have simply been
superseded.

Nowadays, algorithms are inextricably linked with computers. By
definition, a computer is a machine that performs algorithms.

The Algorithm Machine

As discussed, an algorithm is an abstract method for solving a problem.
An algorithm can be performed by a human or a computer. Prior to

The Algorithm Machine 7

execution on a computer, an algorithm must be encoded as a list of
instructions that the computer can carry out. A list of computer
instructions is called a program. The great advantage of a computer
is that it can automatically execute large numbers of instructions
one-after-another at high speed. Surprisingly, a computer need not
support a great variety of instructions. A few basic instruction types will
suffice. All thatis needed are instructions for data storage and retrieval,
arithmetic, logic, repetition, and decision-making. Algorithms can be
broken down into simple instructions such as these and executed by a
computer.

The list of instructions to be performed and the data to be operated
on are referred to as the computer software. In a modern computer,
software is encoded as electronic voltage levels on microscopic wires.
The computer hardware—the physical machine—executes the program
one instruction at a time. Program execution causes the input data to
be processed and leads to creation of the output data.

There are two reasons for the phenomenal success of the computer.
First, computers can perform algorithms much more quickly than
humans. A computer can perform billions of operations per second,
whereas a human might do ten. Second, computer hardware is general-
purpose, meaning that it can execute any algorithm. Just change the
software and a computer will perform a completely different task. This
gives the machine great flexibility. A computer can perform a wide
range of duties—everything from word processing to video games. The
key to this flexibility is that the program dictates what the general-
purpose hardware does. Without the software, the hardware is idle. It
is the program that animates the hardware.

The algorithm is the abstract description of what the computer
must do. Thus, in solving a problem, the algorithm is paramount. The
algorithm is the blueprint for what must be done. The program is the
precise, machine-executable formulation of the algorithm. To solve an
information problem, a suitable algorithm must first be found. Only
then can the program be typed into a computer.

The invention of the computer in the mid-twentieth century gave
rise to an explosion in the number, variety, and complexity of al-
gorithms. Problems that were once thought impossible to solve are
now routinely dispatched by cheap computers. New programs are re-
leased on a daily basis, extending the range of tasks that computers can
undertake.

8 Introduction

Algorithms are embedded in the computers on our desktops, in our
cars, in our television sets, in our washing machines, in our smart-
phones, on our wrists, and, soon, in our bodies. We engage a plethora
of algorithms to communicate with our friends, to accelerate our work,
to play games, and to find our soulmates. Algorithms have undoubtedly
made our lives easier. They have also provided humankind with un-
precedented access to information. From astronomy to particle physics,
algorithms have enhanced our comprehension of the universe. Re-
cently, a handful of cutting-edge algorithms have displayed superhu-
man intelligence.

All of these algorithms are ingenious and elegant creations of the
human mind. Thisbook tells the story of how algorithms emerged from
the obscure writings of ancient scholars to become one of the driving
forces of the modern computerized world.

1

Ancient Algorithms

Go up on to the wall of Uruk, Ur-shanabi, and walk around,

Inspect the foundation platform and scrutinise the brickwork!

Testify that its bricks are baked bricks,

And that the Seven Counsellors must have laid its foundations!

One square mile is city, one square mile is orchards,

one square mile is clay pits,

as well as the open ground of Ishtar’s temple.

Three square miles and the open ground comprise Uruk.
Unknown author, translated by Stephanie Dalley

The Epic of(;i'lgamesh, circa 2,000 BCE 2

The desert has all but reclaimed Uruk. Its great buildings are almost
entirely buried beneath accretions of sand, their timbers disintegrated.
Here and there, clay brickwork is exposed, stripped bare by the wind or
archaeologists. The abandoned ruins seem irrelevant, forgotten, futile.
There is no indication that seven thousand years ago, this land was the
most important place on Earth. Uruk, in the land of Sumer, was one of
the first cities. [t was here, in Sumer, that civilization was born.

Sumer lies in southern Mesopotamia (Figure 1.1). The region is
bounded by the Tigris and Euphrates rivers, which flow from the
mountains of Turkey in the north to the Persian Gulf in the south.
Today, the region straddles the Iran—Iraq border. The climate is hot and
dry, and the land inhospitable, save for the regular flooding of the river
plains. Aided by irrigation, early agriculture blossomed in the ‘land
between the rivers’. The resulting surplus of food allowed civilization
to take hold and flourish.

The kings of Sumer built great cities—Eridu, Uruk, Kish, and Ur.
At its apex, Uruk was home to sixty thousand people. All of life was
there—family and friends, trade and religion, politics and war. We know
this because writing was invented in Sumer around 5,000 years ago.

10 Ancient Algorithms

ligris

., River

Euphrates

River
Alexandria Bnb\'lun.L ™~
) BABYLONIA | ™ -
—. U\rul\
SUMER B Ur—~_
Erid

Figure 1.1 Map of ancient Mesopotamia and the later port of Alexandria.

Etched in Clay

It seems that writing developed from simple marks impressed on wet
clay tokens. Originally, these tokens were used for record keeping and
exchange. A token might equate to a quantity of gain or a headcount
of livestock. In time, the Sumerians began to inscribe more complex
patterns on larger pieces of clay. Over the course of centuries, simple
pictograms evolved into a fully formed writing system. That system is
now referred to as cuneiform script. The name derives from the script’s
distinctive ‘wedge shaped’ markings, formed by impressing a reed stylus
into wet clay. Symbols consisted of geometric arrangements of wedges.
These inscriptions were preserved by drying the wet tablets in the sun.
Viewed today, the tablets are aesthetically pleasing—the wedges thin
and elegant, the symbols regular, the text neatly organized into rows
and columns.

The invention of writing must have transformed these communities.
The tablets allowed communication over space and time. Letters could
be sent. Deals could be recorded for future reference. Writing facilitated
the smooth operation and expansion of civil society.

Uncovered at Last 11

For a millennium, cuneiform script recorded the Sumerian lan-
guage. In the twenty-fourth century Bce, Sumer was invaded by the
armies of the Akkadian Empire. The conquerors adapted the Sumerian
writing methods to the needs of their own language. For a period, both
languages were used on tablets. Gradually, as political power shifted,
Akkadian became the exclusive language of the tablets.

The Akkadian Empire survived for three centuries. Thereafter, the
occupied city states splintered, later coalescing into Assyriain the north
and Babylonia in south. In the eighteenth century sce, Hammurabi,
King of Babylon, reunited the cities of Mesopotamia. The city of Babylon
became the undisputed centre of Mesopotamian culture. Under the
King’s direction, the city expanded to include impressive monuments
and fine temples. Babylonia became a regional superpower. The Akka-
dian language, and its cuneiform script, became the lingua franca of
international diplomacy throughout the Middle East.

After more than one millennium of dominance, Babylon fell, almost
without resistance, to Cyrus the Great, King of Persia. With its capital
in modern Iran, the Persian Empire engulfed the Middle East. Cyrus’s
Empire stretched from the Bosporus strait to central Pakistan and from
the Black Sea to the Persian Gulf. Persian cuneiform script came to
dominate administration. Similar at first glance to the Akkadian tablets,
these new tablets used the Persian language and an entirely different set
of symbols. Use of the older Akkadian script dwindled. Four centuries
after the fall of Babylon, Akkadian fell into disuse. Soon, all understand-
ing of the archaic Sumerian and Akkadian cuneiform symbols was lost.

The ancient cities of Mesopotamia were gradually abandoned. Be-
neath the ruins, thousands of tablets—records of a dead civilization lay
buried. Two millennia passed.

Uncovered at Last

European archaeologists began to investigate the ruins of Mesopotamia
in the nineteenth century. Their excavations probed the ancient sites.
The artefacts they unearthed were shipped back to Europe for inspec-
tion. Amongst their haul lay collections of the inscribed clay tablets.
The tablets bore writing of some sort, but the symbols were now
incomprehensible.

Assyriologists took to the daunting task of deciphering the un-
known inscriptions. Certain oft repeated symbols could be identified

12 Ancient Algorithms

and decoded. The names of kings and provinces became clear.
Otherwise, the texts remained impenetrable.

The turning point for translators was the discovery of the Behistun
(stitﬁn) Inscription. The Inscription consists of text accompanied by a
relief depicting King Darius meting out punishment to handcuffed pris-
oners. Judging by their garb, these captives were from across the Persian
Empire. The relief is carved high on a limestone cliff face overlooking
an ancient roadway in the foothills of the Zagros mountains in western
Iran. The Inscription is an impressive fifteen metres tall and twenty five
metres wide.

The significance of the Inscription only became apparent after Sir
Henry Rawlinson—a British East India Company officer—visited the
site. Rawlinson scaled the cliff and made a copy of the cuneiform text. In
doing so, he spotted two other inscriptions on the cliff. Unfortunately,
these were inaccessible. Undaunted, Rawlinson returned in 1844 and,
with the aid of a local lad, secured impressions of the other texts.

It transpired that the three texts were in different languages—OIld
Persian, Elamite, and Babylonian. Crucially, all three recounted the
same propaganda—a history of the King’s claims to power and his mer-
ciless treatment of rebels. Some understanding of Old Persian had per-
sisted down through the centuries. Rawlinson compiled and published
the first complete translation of the Old Persian text two years later.

Taking the Old Persian translation as a reference, Rawlinson and
a loose cadre of enthusiasts succeeded in decoding the Babylonian
text. The breakthrough was the key to unlocking the meaning of the
Akkadian and Sumerian tablets.

The tablets in the museums of Baghdad, London, and Berlin were re-
visited. Symbol by symbol, tablet by tablet, the messages of the Sumeri-
ans, Akkadians, and Babylonians were decoded. A long-lost civilization
was revealed.

The messages on the earliest tablets were simplistic. They recorded
major events, such as the reign of a king or the date of an important
battle. Over time, the topics became more complex. Legends were
discovered, including the earliest written story: The Epic of Gilgamesh.
The day-to-day administration of civil society was revealed—Tlaws, legal
contracts, accounts, and tax ledgers. Letters exchanged by kings and
queens were found, detailing trade deals, proposals of royal marriage,
and threats of war. Personal epistles were uncovered, including love

Uncovered at Last 13

poems and magical curses. Amid the flotsam and jetsam of daily life,
scholars stumbled upon the algorithms of ancient Mesopotamia.

Many of the extant Mesopotamian algorithms were jotted down by
students learning mathematics. The following example dates from the
Hammurabi dynasty (1,800 to 1,600 Bck), a time now known as the Old
Babylonian period. Dates are approximate; they are inferred from the
linguistic style of the text and the symbols employed. This algorithm
was pieced together from fragments held in the British and Berlin State
Museums. Parts of the original are still missing.

The tablet presents an algorithm for calculating the length and
width of an underground water cistern. The presentation is formal and
consistent with other Old Babylonian algorithms. The first three lines
are a concise description of the problem to be solved. The remainder
of the text is an exposition of the algorithm. A worked example is
interwoven with the algorithmic steps to aid c;ornpr(:hension.5

A cistern.

The heightis 3.33, and a volume of 27.78 has been excavated.

The length exceeds the width by 0.83.

You should take the reciprocal of the height, 3.33, obtaining 0.3.

Multiply this by the volume, 27.78, obtaining 8.33.

Take half of 0.83 and square it, obtaining 0.17.

Add 8.33 and you get 8.51.

The square root is 2.92.

Make two copies of this, adding to the one (.42 and subtracting
from the other.

You find that 3.33 is the length and 2.5 is the width.

This is the procedure.

The question posed is to calculate the length and width of a cistern,
presumably of water. The volume of the cistern is stated, as is its
height. The required difference between the cistern’s length and width
is specified. The actual length and width are to be determined.

The phrase, ‘You should’, indicates that what follows is the method
for solving the problem. The result is followed by the declaration, “This
is the procedure’, which signifies the end of the algorithm.

The OId Babylonian algorithm is far from simple. It divides the
volume by the height to obtain the area of the base of the cistern.

14 Ancient Algorithms

Simply taking the square root of this area would give the length and
width of a square base. An adjustment must be made to create the
desired rectangular base. Since a square has minimum area for a given
perimeter, the desired rectangle must have a slightly larger area than
the square base. The additional area is calculated as the area of a square
with sides equal to half the difference between the desired length and
width. The algorithm adds this additional area to the area of the square
base. The width of a square with this combined area is calculated. The
desired rectangle is formed by stretching this larger square. The lengths
of two opposite sides are increased by half of the desired length—width
difference. The length of the other two sides is decreased by the same
amount. This produces a rectangle with the correct dimensions.
Decimal numbers are used the description above. In the original, the
Babylonians utilized sexagesimal numbers. A sexagesimal number system
possesses sixty unique digits (0-39). In contrast, decimal uses just ten
digits (0-9). In both systems, the weight of a digit is determined by
its position relative to the fractional (or decimal) point. In decimal,
moving right-to-left, each digit is worth ten times the preceding digit.
Thus, we have the units, the tens, the hundreds, the thousands, and
so on. For example, the decimal number 421 is equal to four hundreds
plus two tens plus one unit. In sexagesimal, moving right-to-left from
the fractional point, each digit is worth sixty times the preceding one.
Conversely, moving left-to-right, each column is worth a sixtieth of the
previous one. Thus, sexagesimal 1,3.20, means one sixty plus three units
20 or 63.333 decimal. Seemingly, the

60
sole advantage of the Old Babylonian system is that thirds are much

plus twenty sixtieths, equal to 63

easier to represent than in decimal.

To the modern reader, the Babylonian number system seems bizarre.
However, we use it every day for measuring time. There are Sixty
seconds in a minute and sixty minutes in an hour. The time 3:04 am
is 184 (3 x 60 4 4 x 1) minutes after midnight.

Babylonian mathematics contains three other oddities. First, the frac-
tional point wasn’t written down. Babylonian scholars had to infer its
position based on context. This must have been problematic—consider
a price tag with no distinction between dollars and cents! Second, the
Babylonians did not have a symbol for zero. Today, we highlight the
gap left for zero by drawing a ring around it (0). Third, division was
performed by multiplying by the reciprocal of the divisor. In other
words, the Babylonians didn’t divide by two, they multiplied by a half.

Uncovered at Last 15

In practice, students referred to precalculated tables of reciprocals and
multiplications to speed up calculations.

A small round tablet shows the breathtaking extent of Babylonian
mathematics. The tablet—YBC 7280—resides in Yale University’s Old
Babylonian Collection (Figure 1.2). Dating to around 1,800 to 1,600 Bck,
it depicts a square with two diagonal lines connecting opposing cor-
ners. The length of the sides of the square are marked as thirty units.
The length of the diagonal is recorded as thirty times the square root
of two.

The values indicate knowledge of the Pythagorean Theorem, which
you may recall from school. It states that, in triangles with a right angle,
the square (a value multiplied by itself) of the length of the hypotenuse
(the longest side) is equal to the sum of the squares of the lengths of the
other two sides.

Whatis truly remarkable about the tablet is that it was inscribed 1,000
years before the ancient Greek mathematician Pythagoras was born.
For mathematicians, the discovery is akin finding an electric light bulb
in a Viking camp! It raises fundamental questions about the history of
mathematics. Did Pythagoras invent the algorithm, or did he learn of it
during his travelst Was the Theorem forgotten and independently rein-
vented by Pythagoras? What other algorithms did the Mesopotamians
invent?

YBC 7289 states that the square root of two is 1.41421296 (in deci-
mal). This is intriguing. We now know that the square root of two is
1.414213562, to nine decimal places. Remarkably, the value on the tablet

Figure 1.2 Yale Babylonian Collection tablet 7289. (YBC 7289, Courtesy ofthe Yale
Babylonian Collection.)

16 Ancient Algorithms

is accurate to almost seven digits, or 0.0000006. How did the Babylonians
calculate the square root of two so precisely?

Computing the square root of twois not trivial. The simplest method
is Heron of Alexandria’s approximation algorithm. There is, of course,
the slight difficulty that Heron lived 1,500 years (c. 10-70 ck) after
YBE 7289 was inscribed! We must assume that the Babylonians devised
the same method.

Heron'’s algorithm reverses the question. Instead of asking “What is
the square root of two?', Heron enquires ‘What number multiplied by
itself gives two?’ Heron’s algorithm starts with a guess and successively
improves it over a number of iterations:

Make a guess for the square root of two.
Repeatedly generate new guesses as follows:
Divide two by the current guess.
Add the current guess.
Divide by two to obtain a new guess.
Stop repeating when the two most recent guesses are almost
equal.
The latest guess is an approximation for the square root of two.

Let’s say that the algorithm begins with the extremely poor guess of:
2.

Dividing 2 by 2 gives 1. Adding 2 to this, and dividing by 2 gives:
L.5.

Dividing 2 by 1.5 gives 1.333. Adding 1.5 to this and dividing by 2 again
gives:

1.416666666.
Repeating once more gives:
1.41421568.

which is close to the true value.

How does the algorithm work? Imagine that you know the true value
for the square root of two. If you divide two by this number, the result
is exactly the same value—the square root of two.

Uncovered at Last 17

Now, imagine that your guess is greater than the square root of two.
When you divide two by this number, you obtain a value less than the
square root of two. These two numbers frame the true square root—
one is too large, the other is too small. An improved estimate can be
obtained by calculating the average of these two numbers (i.e. the sum
divided by two). This gives a value midway between the two framing
numbers.

This procedure—division and averaging—can be repeated to further
refine the estimate. Over successive iterations, the estimates converge
on the true square root.

It is worth noting that the process also works if the guess is less than
the true square root. In this case, the number obtained by means of
division is too large. Again, the two values frame the true square root.

Even today, Heron’s method is used to estimate square roots. An
extended version of the algorithm was utilized by Greg Fee in 1996 to
confirm enumeration of the square root of two to ten million digits.

Mesopotamian mathematicians went so far as to invoke the use of
memory in their algorithms. Their command ‘Keep this number in
your head’ is an antecedent of the data storage instructions available
in a modern computer.

Curiously, Babylonian algorithms do not seem to have contained
explicit decision-making (‘if~then—else’) steps. ‘If—then’ rules were,
however, used by the Babylonians to systematize non-mathematical
knowledge. The Code of Hammurabi, dating from 1754 BcE, set out 282
laws by which citizens should live. Every law included a crime and a

punishment:s

If a son strike a father, they shall cut oft his fingers.
If a man destroy the eye of another man, they shall destroy his eye.
If—then constructs were also used to capture medical knowledge and

superstitions. The following omens come from the library of King
Ashurbanipal in Nineveh around 650 BCE:”
If a town is set on a hill, it will not be good for the dweller within that
town.
If a man unwittingly treads on a lizard and kills it, he will prevail over his

adversary.

Despite the dearth of decision-making steps, the Mesopotamians
solved a wide variety of problems by means of algorithms. They

Image
not
avallable

Image
not
avallable

20 Ancient Algorithms

Euclid’s Elements was copied, translated, recopied, and retranslated. What
is now known as Euclid’s algorithm is contained in Book VII.

Euclid’s algorithm calculates the greatest common divisor of two
numbers (also called the GCD, or the largest common factor). For
example, 12 has six divisors (i.e. integers that divide evenly into it). The
divisors are 12, 6, 4, 3, 2, and 1. The number 18 also happens to have six
divisors: 18, 9, 6, 3, 2, and 1. The greatest common divisor of both 12
and 18 is therefore 6.

The GCD of two numbers can be found by listing all of their divisors
and searching for the largest value common to both lists. This approach
is fine for small numbers, butis very time consuming for large numbers.
Euclid came up with a much faster method for finding the GCD of two
numbers. The method has the advantage of only needing subtraction
operations. Cumbersome divisions and multiplications are avoided.

Euclid’s algorithm operates as follows:

Take a pair of numbers as input.
Repeat the following steps:
Subtract the smaller from the larger.
Replace the larger of the pair with the value obtained.
Stop repeating when the two numbers are equal.
The two numbers are equal to the GCD.

As an example, take the following two inputs:
12, 18.

The difference is 6. This replaces 18, the larger of the pair. The pair is
now:

12, 6.
The difference is again 6. This replaces 12, giving the pair:
6, 6.

Since the numbers are equal, the GCD is 6.

Itis notimmediately obvious how the algorithm works. Imagine that
you know the GCD at the outset. The two starting numbers must both
be multiples of the GCD since the GCD is a divisor of both. Since both
inputs are multiples of the GCD, the difference between them must
also be a multiple of the GCD. By definition, the difference between the

Image
not
avallable

Image
not
avallable

