Practical
Ansible 2

Daniel Oh, James Freeman,
and Fabio Alessandro Locati

Practical Ansible 2

Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author(s), nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged
to have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Vijin Boricha
Acquisition Editor: Meeta Rajani

Content Development Editor: Ronn Kurien
Senior Editor: Rahul Dsouza

Technical Editor: Sarvesh Jaywant

Copy Editor: Safis Editing

Project Coordinator: Neil Dmello
Proofreader: Safis Editing

Indexer: Rekha Nair

Production Designer: Jyoti Chauhan

First published: June 2020
Production reference: 1050620
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78980-746-2

www.packt .com

Table of Contents

Preface 1

Section 1: Learning the Fundamentals of Ansible

Chapter 1: Getting Started with Ansible 8
Technical requirements 9
Installing and configuring Ansible 9

Installing Ansible on Linux and FreeBSD 9
Installing Ansible on macOS 12
Configuring Windows hosts for Ansible 15
Understanding your Ansible installation 20
Understanding how Ansible connects to hosts 21
Verifying the Ansible installation 23
Managed node requirements 26
Running from source versus pre-built RPMs 28
Summary 30
Questions 31
Further reading 32

Chapter 2: Understanding the Fundamentals of Ansible 33
Technical requirements 34
Getting familiar with the Ansible framework 34

Breaking down the Ansible components 38
Learning the YAML syntax 42
Organizing your automation code 47
Exploring the configuration file 51
Command-line arguments 56
Understanding ad hoc commands 59
Defining variables 64
Understanding Jinja2 filters 69
Summary 74
Questions 75
Further reading 75

Chapter 3: Defining Your Inventory 76
Technical requirements 77
Creating an inventory file and adding hosts 77

Using host groups 80
Adding host and group variables to your inventory 84

Generating a dynamic inventory file 91

Table of Contents

Using multiple inventory sources in the inventory directories

96

Using static groups with dynamic groups 96
Special host management using patterns 98
Summary 101
Questions 102
Further reading 102

Chapter 4: Playbooks and Roles 103
Technical requirements 104
Understanding the playbook framework 104

Comparing playbooks and ad hoc tasks 110

Defining plays and tasks 113
Understanding roles — the playbook organizer 116

Setting up role-based variables and dependencies 123

Ansible Galaxy 130
Using conditions in your code 131
Repeating tasks with loops 136
Grouping tasks using blocks 144
Configuring play execution via strategies 149
Using ansible-pull 152
Summary 155
Questions 156
Further reading 156

Section 2: Expanding the Capabilities of Ansible

Chapter 5: Consuming and Creating Modules 158
Technical requirements 159
Executing multiple modules using the command line 159
Reviewing the module index 161
Accessing module documentation from the command line 165
Module return values 167
Developing custom modules 170

Avoiding common pitfalls 179

Testing and documenting your module 181

The module checklist 186

Contributing upstream — submitting a GitHub pull request 187
Summary 191
Questions 192
Further reading 193

Chapter 6: Consuming and Creating Plugins 194
Technical requirements 195
Discovering the plugin types 195
Finding included plugins 198

[ii]

Table of Contents

Creating custom plugins 201
Learning to integrate custom plugins with Ansible source code 209
Sharing plugins with the community 211

Summary 215

Questions 215

Further reading 216

Chapter 7: Coding Best Practices 217

Technical requirements 218

The preferred directory layout 218

The best approach to cloud inventories 224

Differentiating between different environment types 229

The proper approach to defining group and host variables 230

Using top-level playbooks 236

Leveraging version control tools 237

Setting OS and distribution variances 240

Porting between Ansible versions 244

Summary 246

Questions 246

Further reading 247

Chapter 8: Advanced Ansible Topics 248

Technical requirements 249

Asynchronous versus synchronous actions 249

Control play execution for rolling updates 253

Configuring the maximum failure percentage 256

Setting task execution delegation 259

Using the run_once option 263

Running playbooks locally 267

Working with proxies and jump hosts 269

Configuring playbook prompts 271

Placing tags in the plays and tasks 273

Securing data with Ansible Vault 276

Summary 281

Questions 282

Further reading 282

Section 3: Using Ansible in an Enterprise

Chapter 9: Network Automation with Ansible 284
Technical requirements 285
Why automate network management? 285
Learning how Ansible manages networking devices 287

Enabling network automation 289

[iii]

Table of Contents

Reviewing the available Ansible networking modules
Connecting to network devices

Environment variables for network devices
Conditional statements for networking devices
Summary
Questions
Further reading

Chapter 10: Container and Cloud Management
Technical requirements
Designing and building containers with playbooks
Managing multiple container platforms
Deploying to Kubernetes with ansible-container
Managing Kubernetes objects with Ansible
Installing Ansible Kubernetes dependencies
Listing Kubernetes namespaces with Ansible
Creating a Kubernetes namespace with Ansible
Creating a Kubernetes Service with Ansible
Automating Docker with Ansible
Exploring container-focused modules
Automating against Amazon Web Services
Installation
Authentication
Creating your first machine
Complementing Google Cloud Platform with automation
Installation
Authentication
Creating your first machine
Seamless automation integration to Azure
Installation
Authentication
Creating your first machine
Expanding your environment with Rackspace Cloud
Installation
Authentication
Creating your first machine
Using Ansible to orchestrate OpenStack
Installation
Authentication
Creating your first machine
Summary
Questions
Further reading

Chapter 11: Troubleshooting and Testing Strategies

[iv]

291
293
205
298
300
301
301

302
303
303
306
307
308
308
308
308
310
312
314
317
317
317
318
320
320
321
322
323
323
324
325
328
328
328
329
330
330
330
331
334
334
336

337

Table of Contents

Technical requirements 338
Digging into playbook execution problems 338
Using host facts to diagnose failures 339
Testing with a playbook 339
Using check mode 342
Solving host connection issues 344
Passing working variables via the CLI 347
Limiting the host's execution 349
Flushing the code cache 351
Checking for bad syntax 352
Summary 353
Questions 354
Further reading 354
Chapter 12: Getting Started with Ansible Tower 355
Technical requirements 356
Installing AWX 356
Running your first playbook from AWX 358
Creating an AWX project 358
Creating an inventory 360
Creating a job template 363
Running a job 365
Controlling access to AWX 366
Creating a user 366
Creating a team 367
Creating an organization 368
Assigning permissions in AWX 369
Summary 370
Questions 371
Assessments 372
Other Books You May Enjoy 375
Index 378

[v]

Preface

Welcome to Practical Ansible 2, your guide to going from beginner to proficient Ansible
automation engineer in a matter of a few chapters. This book will provide you with the
knowledge and skills required to perform your very first installation and automation tasks
with Ansible, and take you on a journey from simple one-line automation commands that
perform single tasks, all the way through to writing your own complex custom code to
extend the functionality of Ansible, and even automate cloud and container infrastructures.
Throughout the book, practical examples will be given for you to not just read about
Ansible automation, but actually try it out for yourself and understand how the code
works. You will then be well placed to automate your infrastructure with Ansible in a
manner that is scalable, repeatable, and reliable.

Who this book is for

This book is for anyone who has IT tasks they want to automate, from mundane day-to-day
housekeeping tasks to complex infrastructure-as-code-based deployments. It is intended to
appeal to anyone with prior experience of Linux-based environments who wants to get up
to speed quickly with Ansible automation, and to appeal to a wide range of individuals,
from system administrators to DevOps engineers to architects looking at overall
automation strategy. It will even serve hobbyists well. Basic proficiency in Linux system
administration and maintenance tasks is assumed; however, no previous Ansible or
automation experience is required.

What this book covers

Chapter 1, Getting Started with Ansible, provides the steps you need for your very first
installation of Ansible, and explains how to get up and running with this powerful
automation.

Chapter 2, Understanding the Fundamentals of Ansible, explores the Ansible framework, gives
you a sound understanding of the fundamentals of the Ansible language, and explains how
to work with the various command-line tools that it comprises.

Chapter 3, Defining Your Inventory, gives you details about the Ansible inventory, its
purpose, and how to create your own inventories and work with them. It also explores the
differences between static and dynamic inventories, and when to leverage each type.

Preface

Chapter 4, Playbooks and Roles, provides you with an in-depth look at creating your own
automation code in Ansible in the form of playbooks, and how to enable effective reuse of
that code through roles.

chapter 5, Consuming and Creating Modules, teaches you about Ansible modules and their
purpose, and then provides you with the steps required to write your own module, and
even to submit it to the Ansible project for inclusion.

Chapter 6, Consuming and Creating Plugins, explains the purpose of Ansible plugins, and
covers the various types of plugin that Ansible uses. It then explains how to write your own
plugins, and explains how to submit your code to the Ansible project.

chapter 7, Coding Best Practices, provides an in-depth look at the best practices that you
should adhere to while writing Ansible automation code to ensure that your solutions are
manageable, easy to maintain, and easy to scale.

Chapter 8, Advanced Ansible Topics, explores some of the more advanced Ansible options
and language directives, which are valuable in scenarios such as performing a roll-out to a
highly available cluster. It also explains how to work with jump hosts to automate tasks on
secure networks, and how to encrypt your variable data at rest.

Chapter 9, Network Automation with Ansible, provides a detailed look at the importance of
network automation, explains why Ansible is especially well suited to this task, and takes
you through practical examples of how to connect to a variety of network devices with
Ansible.

Chapter 10, Container and Cloud Management, explores the manner in which Ansible
supports working with both cloud and container platforms, and teaches you how to build
containers with Ansible, along with methods to deploy infrastructure as code in a cloud
environment using Ansible.

Chapter 11, Troubleshooting and Testing Strategies, teaches you how to test and debug your
Ansible code, and gives you robust strategies to handle errors and unexpected failures both
with playbooks and the agentless connections on which Ansible relies.

Chapter 12, Getting Started with Ansible Tower, provides an introduction to Ansible Tower
and its upstream open source counterpart, AWX, demonstrating how this powerful tool
provides a valuable complement to Ansible, especially in large, multi-user environments
such as enterprises.

[2]

Preface

To get the most out of this book

All the chapters of this book assume you have access to at least one Linux machine running
a relatively recent Linux distribution. All examples in this book were tested on CentOS 7
and Ubuntu Server 18.04, but should work on just about any other mainstream distribution.
You will require Ansible 2.9 installed on at least one test machine too — installation steps
will be covered in the very first chapter. Later versions of Ansible should also work, though
there may be some subtle differences, and you should refer to the release notes and porting
guide for newer Ansible versions. The final chapter also takes you through the installation
of AWX, but this assumes a Linux server with Ansible installed. Most examples
demonstrate automation across more than one host, and if you have more Linux hosts
available you will be able to get more out of the examples; however, they can be scaled up
or down as you require. Having more hosts is not mandatory, but enables you to get more
out of the book.

Software/hardware covered in the book OS requirements

CentOS 7 or Ubuntu Server 18.04, though

At least one Linux server (virtual machine
or physical)

other mainstream distributions (including
newer versions of these operating systems)
should work.

Ansible 2.9

As above

AWX release 10.0.0 or later

As above

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing so
will help you avoid any potential errors related to the copying and pasting of code.

Download the example code files

You can download the example code files for this book from your account at
www.packt .com. If you purchased this book elsewhere, you can visit
www .packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Select the Support tab.
Click on Code Downloads.

L s

instructions.

[31]

Log in or register at www.packt.com.

Enter the name of the book in the Search box and follow the onscreen

Preface

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WIinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Practical-Ansible-2. In case there's an update to the code, it will be
updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http://www.packtpub.com/sites/default/files/
downloads/9781789807462_ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded websStorm-10*.dmg disk image file as another disk in
your system.”

A block of code is set as follows:

html, body, #map {
height: 100%;
margin: 0;
padding: 0

}

[4]

Preface

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

[default]

exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail (ul00)
exten => s,102,Voicemail (b100)
exten => i,1,Voicemail (s0)

Any command-line input or output is written as follows:

$ mkdir css
$ cd css

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel.”

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt . com with a link to the material.

[5]

Preface

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt . com.

[6]

Section 1: Learning the
Fundamentals of Ansible

In this section, we will take a look at the very fundamentals of Ansible. We will start with
the process of installing Ansible and then we will get to grips with the fundamentals,
including the basics of the language and ad hoc commands. We will then explore Ansible
inventories, before looking at writing our very first playbooks and roles to complete multi-
stage automation tasks.

This section contains the following chapters:

e chapter 1, Getting Started with Ansible

e Chapter 2, Understanding the Fundamentals of Ansible
e Chapter 3, Defining Your Inventory

e Chapter 4, Playbooks and Roles

Getting Started with Ansible

Ansible enables you to easily deploy applications and systems consistently and repeatably
using native communication protocols such as SSH and WinRM. Perhaps most importantly,
Ansible is agentless and so requires nothing to be installed on the managed systems (except
for Python, which, these days, is present on most systems). As a result, it enables you to
build a simple yet robust automation platform for your environment.

Ansible is simple and straightforward to install and comes packaged for most modern
systems. Its architecture is serverless as well as agentless, and so it has a minimal footprint.
You can choose to run it from a central server or your own laptop—the choice is entirely
yours. You can manage anything from a single host to hundreds of thousands of remote
hosts from one Ansible control machine. All remote machines can be (with sufficient
playbooks being written) managed by Ansible, and with everything created correctly, you
may never have to log in to any of these machines individually again.

In this chapter, we will begin to teach you the practical skills to cover the very
fundamentals of Ansible, starting with how to install Ansible on a wide variety of operating
systems. We will then look at how to configure Windows hosts to enable them to be
managed with Ansible automation, before delving into greater depth on the topic of how
Ansible connects to its target hosts. We'll then look at node requirements and how to
validate your Ansible installation, before finally looking at how to obtain and run the very
latest Ansible source code if you wish to either contribute to its development or gain access
to the very latest of features.

In this chapter, we will cover the following topics:

e Installing and configuring Ansible
¢ Understanding your Ansible installation
¢ Running from source versus pre-built RPMs

Getting Started with Ansible Chapter 1

Technical requirements

Ansible has a fairly minimal set of system requirements—as such, you should find that if
you have a machine (either a laptop, a server, or a virtual machine) that is capable of
running Python, then you will be able to run Ansible on it. Later in this chapter, we will
demonstrate the installation methods for Ansible on a variety of operating systems—it is
hence left to you to decide which operating systems are right for you.

The one exception to the preceding statement is Microsoft Windows—although there are
Python environments available for Windows, there is as yet no native build of Ansible for
Windows. Readers running more recent versions of Windows will be able to install Ansible
using Windows Subsystem for Linux (henceforth, WSL) and by following the procedures
outlined later for their chosen WSL environment (for example, if you install Ubuntu on
WSL, you should simply follow the instructions given in this chapter for installing Ansible
on Ubuntu).

Installing and configuring Ansible

Ansible is written in Python and, as such, can be run on a wide range of systems. This
includes most popular flavors of Linux, FreeBSD, and macOS. The one exception to this is
Windows, where though native Python distributions exist, there is as yet no native Ansible
build. As a result, your best option at the time of writing is to install Ansible under WSL
proceeding as if you were running on a native Linux host.

Once you have established the system on which you wish to run Ansible, the installation
process is normally simple and straightforward. In the following sections, we will discuss
how to install Ansible on a wide range of different systems, so that most readers should be
able to get up and running with Ansible in a matter of minutes.

Installing Ansible on Linux and FreeBSD

The release cycle for Ansible is usually about four months, and during this short release
cycle, there are normally many changes, from minor bug fixes to major ones, to new
tfeatures and even sometimes fundamental changes to the language. The simplest way to
not only get up and running with Ansible but to keep yourself up to date is to use the
native packages built for your operating system where they are available.

[9]

Getting Started with Ansible Chapter 1

For example, if you wish to run the latest version of Ansible on top of Linux distribution
such as CentOS, Fedora, Red Hat Enterprise Linux (RHEL), Debian, and Ubuntu, I strongly
recommend that you use an operating system package manager such as yum on Red Hat-
based distributions or apt on Debian-based ones. In this manner, whenever you update
your operating system, you will update Ansible simultaneously.

Of course, it might be that you need to retain a specific version of Ansible for certain
purposes—perhaps because your playbooks have been tested with this. In this instance,
you would almost certainly choose an alternative installation method, but this is beyond
the scope of this book. Also, it is recommended that, where possible, you create and
maintain your playbooks in line with documented best practices, which should mean that
they survive most Ansible upgrades.

The following are some examples showing how you might install Ansible on several Linux
distributions:

¢ Installing Ansible on Ubuntu: To install the latest version of the Ansible control
machine on Ubuntu, the apt packaging tool makes it easy using the following
commands:

$ sudo apt-get update

$ sudo apt-get install software-properties—-common

$ sudo apt-add-repository —-yes —-—update ppa:ansible/ansible
$ sudo apt-get install ansible

If you are running an older version of Ubuntu, you might need to
repkmeSoftwarefpropertiesfcommon¥Vﬂhpythonfsoftwarefproperties
instead.

¢ Installing Ansible on Debian: You should add the following line into your
/etc/apt/sources.list file:

deb http://ppa.launchpad.net/ansible/ansible/ubuntu trusty main

You will note that the word ubuntu appears in the preceding line of
configuration along with t rusty, which is an Ubuntu version. Debian builds of
Ansible are, at the time of writing, taken from the Ansible repositories for Ubuntu
and work without issue. You might need to change the version string in the
preceding configuration according to your Debian build, but for most common
use cases, the line quoted here will suffice.

[10]

Getting Started with Ansible Chapter 1

Once this is done, you can install Ansible on Debian as follows:

$ sudo apt-key adv ——keyserver keyserver.ubuntu.com —--recv-keys
93C4A3FD7BB9C367

$ sudo apt-get update

$ sudo apt-get install ansible

¢ Installing Ansible on Gentoo: To install the latest version of the Ansible control
machine on Gentoo, the portage package manager makes it easy with the
following commands:

$ echo 'app-admin/ansible' >> /etc/portage/package.accept_keywords
$ emerge -av app-admin/ansible

¢ Installing Ansible on FreeBSD: To install the latest version of the Ansible
control machine on FreeBSD, the PKG manager makes it easy with the following
commands:

$ sudo pkg install py36-ansible
$ sudo make —-C /usr/ports/sysutils/ansible install

¢ Installing Ansible on Fedora: To install the latest version of the Ansible control
machine on Fedora, the dnf package manager makes it easy with the following
commands:

$ sudo dnf -y install ansible

¢ Installing Ansible on CentOS: To install the latest version of the Ansible control
machine on CentOS or RHEL, the yum package manager makes it easy with the
following commands:

$ sudo yum install epel-release
$ sudo yum -y install ansible

If you execute the preceding commands on RHEL, you have to make sure that the
Ansible repository is enabled. If it's not, you need to enable the relevant
repository with the following commands:

$ sudo subscription-manager repos ——-enable rhel-7-server-
ansible-2.9-rpms

[11]

Getting Started with Ansible Chapter 1

e Installing Ansible on Arch Linux: To install the latest version of the Ansible
control machine on Arch Linux, the pacman package manager makes it easy with
the following commands:

$ pacman -S ansible

Once you have installed Ansible on the specific Linux distribution that you use, you can
begin to explore. Let's start with a simple example—when you run the ansible
command, you will see output similar to the following:

$ ansible --version
ansible 2.9.6

config file = /etec/ansible/ansible.cfg

configured module search path =

[u' /home/jamesf local/.ansible/plugins/modules’',
u'/usr/share/ansible/plugins/modules']

ansible python module location = /usr/lib/python2.7/dist-packages/ansible
executable location = /usr/bin/ansible

python version = 2.7.17 (default, Nov 7 2019, 10:07:09) [GCC 9.2.1
20191008]

Those who wish to test the very latest versions of Ansible, fresh from GitHub itself, might
be interested in building an RPM package for installing to control machines. This method
is, of course, only suitable for Red Hat-based distributions such as Fedora, CentOS, and
RHEL. To do this, you will need to clone source code from the GitHub repository and build
the RPM package as follows:

$ git clone https://github.com/ansible/ansible.git
$ cd ./ansible

$ make rpm

$ sudo rpm -Uvh ./rpm-build/ansible-*.noarch.rpm

Now that you have seen how to install Ansible on Linux, we'll take a brief look at how to
install Ansible on macOS.

Installing Ansible on macOS

In this section, you will learn how to install Ansible on macOS. The easiest installation
method is to use Homebrew, but you could also use the Python package manager. Let's get
started by installing Homebrew, which is a fast and convenient package management
solution for macQOS.

[12]

Getting Started with Ansible Chapter 1

If you don't already have Homebrew installed on macQOS, you can easily install it as
detailed here:

* Installing Homebrew: Normally the two commands shown here are all that is
required to install Homebrew on macQOS:

$ xcode-select --install
$ ruby -e "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/master/install)™"

If you have already installed the Xcode command-line tools for another purpose,
you might see the following error message:

xcode-select: error: command line tools are already installed, use
"Software Update" to update

You may want to open the App Store on macOS and check whether updates to
Xcode are required, but as long as the command-line tools are installed, your
Homebrew installation should proceed smoothly.

If you wish to confirm that your installation of Homebrew was successful, you
can run the following command, which will warn you about any potential issues
with your install—for example, the following output is warning us that, although
Homebrew is installed successfully, it is not in our PATH and so we may not be
able to run any executables without specifying their absolute path:

$ brew doctor

Please note that these warnings are just used to help the Homebrew
maintainers

with debugging if you file an issue. If everything you use Homebrew
for is

working fine: please don't worry or file an issue; just ignore
this. Thanks!

Warning: Homebrew's sbin was not found in your PATH but you have
installed
formulae that put executables in /usr/local/sbin.
Consider setting the PATH for example like so
echo 'export PATH="/usr/local/sbin:$PATH"' >> ~/.bash_profile

¢ Installing the Python package manager (pip): If you don't wish to use
Homebrew to install Ansible, you can instead install pip using with the
following simple commands:

$ sudo easy_install pip

[13]

Getting Started with Ansible Chapter 1

Also check that your Python version is at least 2.7, as Ansible won't run on
anything older (this should be the case with almost all modern installations of
macOS):

$ python --version
Python 2.7.16

You can use either Homebrew or the Python package manager to install the latest version
of Ansible on macOS as follows:

e Installing Ansible via Homebrew: To install Ansible via Homebrew, run the
following command:

$ brew install ansible

¢ Installing Ansible via the Python package manager (pip): To install Ansible via
pip, use the following command:

$ sudo pip install ansible

You might be interested in running the latest development version of Ansible
direct from GitHub, and if so, you can achieve this by running the following
command:

$ pip install git+https://github.com/ansible/ansible.git@devel

Now that you have installed Ansible using your preferred method, you can run
the ansible command as before, and if all has gone according to plan, you will see output
similar to the following:

$ ansible --version
ansible 2.9.6

config file = None

configured module search path = ['/Users/james/.ansible/plugins/modules’,
'/usr/share/ansible/plugins/modules’]

ansible python module location =
/usr/local/Cellar/ansible/2.9.4_1/libexec/lib/python3.8/site-
packages/ansible

executable location = /usr/local/bin/ansible

python version = 3.8.1 (default, Dec 27 2019, 18:05:45) [Clang 11.0.0

(clang-1100.0.33.16)]

If you are running macOS 10.9, you may experience issues when installing Ansible using
pip. The following is a workaround that should resolve the issue:

$ sudo CFLAGS=—Qunused-arguments CPPFLAGS=—-Qunused-arguments pip install
ansible

[14]

Getting Started with Ansible Chapter 1

If you want to update your Ansible version, pip makes it easy via the following command:

$ sudo pip install ansible ——upgrade

Similarly, you can upgrade it using the brew command if that was your install method:
$ brew upgrade ansible

Now that you have learned the steps to install Ansible on macOS, let's see how to configure
a Windows host for automation with Ansible.

Configuring Windows hosts for Ansible

As discussed earlier, there is no direct installation method for Ansible on
Windows—simply, it is recommended that, where available, you install WSL and install
Ansible as if you were running Linux natively, using the processes outlined earlier in this
chapter.

Despite this limitation, however, Ansible is not limited to managing just Linux- and BSD-
based systems—it is capable of the agentless management of Windows hosts using the
native WinRM protocol, with modules and raw commands making use of PowerShell,
which is available in every modern Windows installation. In this section, you will learn
how to configure Windows to enable task automation with Ansible.

Let's look at what Ansible is capable of when automating Windows hosts:

e Gather facts about remote hosts.

e Install and uninstall Windows features.
¢ Manage and query Windows services.

¢ Manage user accounts and a list of users.

e Manage packages using Chocolatey (a software repository and accompanying
management tool for Windows).

e Perform Windows updates.
¢ Fetch multiple files from a remote machine to the Windows host.
¢ Execute raw PowerShell commands and scripts on target hosts.

Ansible allows you to automate tasks on Windows machines by connecting with either a
local user or a domain user. You can run actions as an administrator using the Windows
runas support, just as with the sudo command on Linux distributions.

[15]

Getting Started with Ansible Chapter 1

Also, as Ansible is open source software, it is easy to extend its functionality by creating
your own modules in PowerShell or even sending raw PowerShell commands. For
example, an InfoSec team could manage filesystem ACLs, configure Windows Firewall, and
manage hostnames and domain membership with ease, using a mix of native Ansible
modules and, where necessary, raw commands.

The Windows host must meet the following requirements for the Ansible control machine
to communicate with it:

¢ Ansible attempts to support all Windows versions that are under either current
or extended support from Microsoft, including desktop platforms such as
Windows 7, 8.1, and 10, along with server operating systems including Windows
Server 2008 (and R2), 2012 (and R2), 2016, and 2019.

¢ You will also need to install PowerShell 3.0 or later and at least .NET 4.0 on your
Windows host.

¢ You will need to create and activate a WinRM listener, which is described in
detail later. For security reasons, this is not enabled by default.

Let's look in more detail at how to prepare a Windows host to be automated by Ansible:

1. With regard to prerequisites, you have to make sure PowerShell 3.0 and .NET
Framework 4.0 are installed on Windows machines. If you're still using the older
version of PowerShell or .NET Framework, you need to upgrade them. You are
free to perform this manually, or the following PowerShell script can handle it
automatically for you:

Surl =
"https://raw.githubusercontent.com/jborean93/ansible-windows/master
/scripts/Upgrade-PowerShell.psl"

$file = "Senv:temp\Upgrade-PowerShell.psl" (New-Object -TypeName
System.Net .WebClient) .DownloadFile ($url, $file)

Set-ExecutionPolicy —-ExecutionPolicy Unrestricted -Force &$file -
Verbose Set-ExecutionPolicy -ExecutionPolicy Restricted -Force

This script works by examining the programs that need to be installed (such as
NET Framework 4.5.2) and the required PowerShell version, rebooting if
required, and setting the username and password parameters. The script will
automatically restart and log on at reboot so that no more action is required and
the script will continue until the PowerShell version matches the target version.

[16]

Getting Started with Ansible Chapter 1

If the username and password parameters aren't set, the script will ask the user to
reboot and log in manually if necessary, and the next time the user logs in, the
script will continue at the point where it was interrupted. The process continues
until the host meets the requirements for Ansible automation.

2. When PowerShell has been upgraded to at least version 3.0, the next step will be
to configure the WinRM service so that Ansible can connect to it. WinRM service
configuration defines how Ansible can interface with the Windows hosts,
including the listener port and protocol.

If you have never set up a WinRM listener before, you have three options to do this:

e Firstly, you can use winrm quickconfig for HTTP and winrm quickconfig -
transport:https for HTTPS. This is the simplest method to use when you
need to run outside of the domain environment and just create a simple listener.
This process has the advantage of opening the required port in the Windows
firewall and automatically starting the WinRM service.

e If you are running in a domain environment, I strongly recommend using Group
Policy Objects (GPOs) because if the host is the domain member, then the
configuration is done automatically without user input. There are many
documented procedures for doing this available, and as this is a very Windows
domain-centric task, it is beyond the scope of this book.

e Finally, you can create a listener with a specific configuration by running the
following PowerShell commands:

Sselector_set = @{
Address = "=*"
Transport = "HTTPS"

}
S$value_set = @{

CertificateThumbprint =
"E6CDAABZEEAF2ECEB546E05DB7F3E01AA4T7DT76CE"
}

New-WSManInstance -ResourceURI "winrm/config/Listener" -SelectorSet
Sselector_set —-ValueSet S$value_set

The preceding CertificateThumbprint should match the thumbprint
of a valid SSL certificate that you previously created or imported into the
Windows Certificate Store.

[17]

Getting Started with Ansible Chapter 1

If you are running in PowerShell v3.0, you might face an issue with the WinRM service that
limits the amount of memory available. This is a known bug and a hotfix is available to
resolve it. An example process (written in PowerShell) to apply this hotfix is given here:

Surl =
"https://raw.githubusercontent.com/jborean93/ansible-windows/master/scripts
/Install—WMFBHotfix.psl“

$file = "Senv:temp\Install-WMF3Hotfix.psl"

(New—-Object —-TypeName System.Net.WebClient) .DownloadFile($url, $file)
powershell .exe —-ExecutionPolicy ByPass -File $file -Verbose

Configuring the WinRM listeners can be a complex task, so it is important to be able to
check the results of your configuration process. The following command (which can be run
from Command Prompt) will display the current WinRM listener configuration:

winrm enumerate winrm/config/Listener

If all goes well, you should have output similar to this:

Listener

Address = *

Transport = HTTP

Port = 5985

Hostname

Enabled = true

URLPrefix = wsman

CertificateThumbprint

ListeningOn = 10.0.2.15, 127.0.0.1, 192.168.56.155, ::1,
feB0::5efe:10.0.2.15%6, fe80::5efe:192.168.56.155%8, fe80::
ffff:ffff:fffe%2, feB80::203d:7d97:c2ed:ec78%3, feB80::eBea:d765:2c69:7756%7

Listener

Address = *

Transport = HTTPS

Port = 5986

Hostname = SERVER2016

Enabled = true

URLPrefix = wsman

CertificateThumbprint = E6CDRAAB2EEAF2ECE8546E05DB7F3E012ARA47DT6CE

ListeningOn = 10.0.2.15, 127.0.0.1, 192.168.56.155, ::1,
feB80::5efe:10.0.2.15%6, feB0::5efe:192.168.56.155%8, fe80::
ffff:ffff:£fffe%2, £feB80::203d:7d%97:c2ed:ec78%3, fe80::e8ea:d765:2¢c69:7756%7

[18]

Getting Started with Ansible Chapter 1

According to the preceding output, two listeners are active—one to listen on port 5985 over
HTTP and the other to listen on port 5986 over HTTPS providing greater security. By way
of additional explanation, the following parameters are also displayed in the preceding
output:

¢ Transport: This should be set to either HTTPS or HTTPS, though it is strongly
recommended that you use the HTTPS listener to ensure your automation
commands are not subject to snooping or manipulation.

e port: This is the port on which the listener operates, by default 5285 for HTTP
or 5986 for HTTPS.

* URLPrefix: This is the URL prefix to communicate with, by default, wsman. If
you change it, you must set the ansible_winrm_path host on your Ansible
control host to the same value.

e CertificateThumbprint:If running on an HTTPS listener, this is the certificate
thumbprint of the Windows Certificate Store used by the connection.

If you need to debug any connection issues after setting up your WinRM listener, you may
find the following commands valuable as they perform WinRM-based connections between
Windows hosts without Ansible—hence, you can use them to distinguish whether an issue

you might be experiencing is related to your Ansible host or whether there is an issue with
the WinRM listener itself:

test out HTTP
winrs -r:http://<server address>:5985/wsman -u:Username -p:Password
ipconfig

test out HTTPS (will fail if the cert is not wverifiable)
winrs -r:https://<server address>:5986/wsman -u:Username -p:Password -ssl
ipconfig

test out HTTPS, ignoring certificate verification

$username = "Username"

$password = ConvertTo-SecureString —-String "Password" -AsPlainText -Force
Scred = New-Object -TypeName System.Management.Automation.PSCredential -
ArgumentList $username, S$password

$session_option = New-PSSessionOption -SkipCACheck -SkipCNCheck -
SkipRevocationCheck

Invoke—-Command —ComputerName server -UseSSL -ScriptBlock { ipconfig } -
Credential $cred -SessionOption $session_option

If one of the preceding commands fails, you should investigate your WinRM listener setup
before attempting to set up or configure your Ansible control host.

[19]

Getting Started with Ansible Chapter 1

At this stage, Windows should be ready to receive communication from Ansible over
WinRM. To complete this process, you will need to also perform some additional
configuration on your Ansible control host. First of all, you will need to install

the winrm Python module, which, depending on your control hosts' configuration, may or
may not have been installed before. The installation method will vary from one operating
system to another, but it can generally be installed on most platforms with pip as follows:

$ pip install winrm

Once this is complete, you will need to define some additional inventory variables for your
Windows hosts—don't worry too much about inventories for now as we will cover these
later in this book. The following example is just for reference:

[windows]
192.168.1.52

[windows:vars]

ansible_user=administrator
ansible_password=password
ansible_connection=winrm
ansible_winrm_server cert_ validation=ignore

Finally, you should be able to run the Ansible ping module to perform an end-to-end
connectivity test with a command like the following (adjust for your inventory):

$ ansible -i inventory -m ping windows
192.168.1.52 | SUCCESS => {

"changed": false,

"ping": "pong"
}

Now that you have learned the necessary steps to configure Windows hosts for Ansible,
let's see how to connect multiple hosts via Ansible in the next section.

Understanding your Ansible installation

By this stage in this chapter, regardless of your operating system choice for your Ansible
control machine, you should have a working installation of Ansible with which to begin
exploring the world of automation. In this section, we will carry out a practical exploration
of the fundamentals of Ansible to help you to understand how to work with it. Once you
have mastered these basic skills, you will then have the knowledge required to get the most
out of the remainder of this book. Let's get started with an overview of how Ansible
connects to non-Windows hosts.

[20]

Getting Started with Ansible Chapter 1

Understanding how Ansible connects to hosts

With the exception of Windows hosts (as discussed at the end of the previous section),
Ansible uses the SSH protocol to communicate with hosts. The reasons for this choice in the
Ansible design are many, not least that just about every Linux/FreeBSD/macOS host has it
built in, as do many network devices such as switches and routers. This SSH service is
normally integrated with the operating system authentication stack, enabling you to take
advantage of things such as Kerberos to improve authentication security. Also, features of
OpenSSH such as ControlPersist are used to increase the performance of the
automation tasks and SSH jump hosts for network isolation and security.

ControlPersist is enabled by default on most modern Linux
distributions as part of the OpenSSH server installation. However, on
some older operating systems such as Red Hat Enterprise Linux 6 (and
CentOS 6), it is not supported, and so you will not be able to use it.
Ansible automation is still perfectly possible, but longer playbooks might
run slower.

Ansible makes use of the same authentication methods that you will already be familiar
with, and SSH keys are normally the easiest way to proceed as they remove the need for
users to input the authentication password every time a playbook is run. However, this is
by no means mandatory, and Ansible supports password authentication through the use of
the -—ask-pass switch. If you are connecting to an unprivileged account on the hosts, and
need to perform the Ansible equivalent of running commands under sudo, you can also
add --ask-become-pass when you run your playbooks to allow this to be specified at
runtime as well.

The goal of automation is to be able to run tasks securely but with the
minimum of user intervention. As a result, it is highly recommended that
you use SSH keys for authentication, and if you have several keys to
manage, then be sure to make use of ssh-agent.

Every Ansible task, whether it is run singly or as part of a complex playbook, is run against
an inventory. An inventory is, quite simply, a list of the hosts that you wish to run the
automation commands against. Ansible supports a wide range of inventory formats,
including the use of dynamic inventories, which can populate themselves automatically
from an orchestration provider (for example, you can generate an Ansible inventory
dynamically from your Amazon EC2 instances, meaning you don't have to keep up with all
of the changes in your cloud infrastructure).

[21]

Getting Started with Ansible Chapter 1

Dynamic inventory plugins have been written for most major cloud providers (for example,
Amazon EC2, Google Cloud Platform, and Microsoft Azure), as well as on-premises
systems such as OpenShift and OpenStack. There are even plugins for Docker. The beauty
of open source software is that, for most of the major use cases you can dream of, someone
has already contributed the code and so you don't need to figure it out or write it for
yourself.

Ansible's agentless architecture and the fact that it doesn't rely on SSL
means that you don't need to worry about DNS not being set up or even
time skew problems as a result of NTP not working—these can, in fact, be
tasks performed by an Ansible playbook! Ansible really was designed to
get your infrastructure running from a virtually bare operating system
image.

For now, let's focus on the INI formatted inventory. An example is shown here with four
servers, each split into two groups. Ansible commands and playbooks can be run against an
entire inventory (that is, all four servers), one or more groups (for example, webservers),
or even down to a single server:

[webservers]
webl.example.com
web2.example.com

[apservers]
apl.example.com
ap2.example.com

Let's use this inventory file along with the Ansible ping module, which is used to test
whether Ansible can successfully perform automation tasks on the inventory host in
question. The following example assumes you have installed the inventory in the default
location, which is normally /etc/ansible/hosts. When you run the

following ansible command, you see a similar output to this:

$ ansible webservers -m ping

webl.example.com | SUCCESS => {
"changed": false,
"ping": "pong"

}

web2.example.com | SUCCESS => {
"changed": false,

"Ping" . "pong"

haad

[22]

Getting Started with Ansible Chapter 1

Notice that the ping module was only run on the two hosts in the webservers group and
not the entire inventory—this was by virtue of us specifying this in the command-line
parameters.

The ping module is one of many thousands of modules for Ansible, all of which perform a
given set of tasks (from copying files between hosts, to text substitution, to complex
network device configuration). Again, as Ansible is open source software, there is a
veritable army of coders out there who are writing and contributing modules, which means
if you can dream of a task, there's probably already an Ansible module for it. Even in the
instance that no module exists, Ansible supports sending raw shell commands (or
PowerShell commands for Windows hosts) and so even in this instance, you can complete
your desired tasks without having to move away from Ansible.

As long as the Ansible control host can communicate with the hosts in your inventory, you
can automate your tasks. However, it is worth giving some consideration to where you
place your control host. For example, if you are working exclusively with a set of Amazon
EC2 machines, it arguably would make more sense for your Ansible control machine to be
an EC2 instance—in this way, you are not sending all of your automation commands over
the internet. It also means that you don't need to expose the SSH port of your EC2 hosts to
the internet, hence keeping them more secure.

We have so far covered a brief explanation of how Ansible communicates with its target
hosts, including what inventories are and the importance of SSH communication to all
except Windows hosts. In the next section, we will build on this by looking in greater detail
at how to verify your Ansible installation.

Verifying the Ansible installation

In this section, you will learn how you can verify your Ansible installation with simple ad
hoc commands.

As discussed previously, Ansible can authenticate with your target hosts several ways. In
this section, we will assume you want to make use of SSH keys, and that you have already
generated your public and private key pair and applied your public key to all of your target
hosts that you will be automating tasks on.

The ssh-copy-id utility is incredibly useful for distributing your public
SSH key to your target hosts before you proceed any further. An example
command might be ssh-copy-id -i ~/.ssh/id_rsa
ansibleuser@webl.example.com.

[23]

Getting Started with Ansible Chapter 1

To ensure Ansible can authenticate with your private key, you could make use of ssh-
agent—the commands show a simple example of how to start ssh-agent and add your
private key to it. Naturally, you should replace the path with that to your own private key:

$ ssh-agent bash
$ ssh-add ~/.ssh/id_rsa

As we discussed in the previous section, we must also define an inventory for Ansible to
run against. Another simple example is shown here:

[frontends]
frt0l.example.com
frt02.example.com

The ansible command that we used in the previous section has two important switches
that you will almost always use: -m <MODULE_NAME> to run a module on the hosts from
your inventory that you specify and, optionally, the module arguments passed using the -a
OPT_ARGS switch. Commands run using the ansible binary are known as ad hoc
commands.

Following are three simple examples that demonstrate ad hoc commands—they are also
valuable for verifying both the installation of Ansible on your control machine and the
configuration of your target hosts, and they will return an error if there is an issue with any
part of the configuration:

¢ Ping hosts: You can perform an Ansible "ping" on your inventory hosts using the
following command:

$ ansible frontends -i hosts -m ping

 Display gathered facts: You can display gathered facts about your inventory
hosts using the following command:

$ ansible frontends —-i hosts -m setup | less
e Filter gathered facts: You can filter gathered facts using the following command:

$ ansible frontends -i hosts -m setup -a
"filter=ansible_distribution*"

For every ad hoc command you run, you will get a response in JSON format—the following
example output results from running the ping module successfully:

$ ansible frontends -m ping
frontend0l.example.com | SUCCESS => ({
"changed": false,

[24]

Getting Started with Ansible Chapter 1

“Ping" . Ilpongll

}

frontend02.example.com | SUCCESS => {
"changed": false,

"Ping" : llponglr
}

Ansible can also gather and return "facts" about your target hosts—facts are all manner of
useful information about your hosts, from CPU and memory configuration to network
parameters, to disk geometry. These facts are intended to enable you to write intelligent
playbooks that perform conditional actions—for example, you might only want to install a
given software package on hosts with more than 4 GB of RAM or perhaps perform a
specific configuration only on macOS hosts. The following is an example of the filtered facts
from a macOS-based host:

$ ansible frontendOl.example.com -m setup —a "filter=ansible_distribution*"
frontend0l.example.com | SUCCESS => {
ansible_facts": ({

"ansible_distribution": "macOS",
"ansible_distribution_major_wersion": "10",
"ansible_distribution_release": "18.5.0",
"ansible_distribution_version": "10.14.4"
}f

"changed": false

Ad hoc commands are incredibly powerful, both for verifying your Ansible installation and
for learning Ansible and how to work with modules as you don't need to write a whole
playbook—you can just run a module with an ad hoc command and learn how it responds.
Here are some more ad hoc examples for you to consider:

* Copy a file from the Ansible control host to all hosts in the frontends group
with the following command:

$ ansible frontends -m copy —-a "src=/etc/yum.conf
dest=/tmp/yum.conf"

¢ Create a new directory on all hosts in the frontends inventory group, and
create it with specific ownership and permissions:

$ ansible frontends -m file -a "dest=/path/userl/new mode=777
owner=userl group=userl state=directory"

e Delete a specific directory from all hosts in the frontends group with the
following command:

$ ansible frontends -m file -a "dest=/path/userl/new state=absent"

[25]

Getting Started with Ansible Chapter 1

e Install the httpd package with yum if it is not already present—if it is present, do
not update it. Again, this applies to all hosts in the frontends inventory group:

$ ansible frontends -m yum —-a "name=httpd state=present"”

¢ The following command is similar to the previous one, except that changing
state=present to state=latest causes Ansible to install the (latest version of
the) package if it is not present, and update it to the latest version if it is present:

$ ansible frontends -m yum —-a "name=demo-tomcat-1 state=latest”

e Display all facts about all the hosts in your inventory (warning—this will
produce a lot of JSON!):

$ ansible all -m setup

Now that you have learned more about verifying your Ansible installation and about how
to run ad hoc commands, let's proceed to look in a bit more detail at the requirements of the
nodes that are to be managed by Ansible.

Managed node requirements

So far, we have focused almost exclusively on the requirements for the Ansible control host
and have assumed that (except for the distribution of the SSH keys) the target hosts will just
work. This, of course, is not always the case, and for example, while a modern installation
of Linux installed from an ISO will often just work, cloud operating system images are
often stripped down to keep them small, and so might lack important packages such as
Python, without which Ansible cannot operate.

If your target hosts are lacking Python, it is usually easy to install it through your operating
system's package management system. Ansible requires you to install either Python version
2.7 or 3.5 (and above) on both the Ansible control machine (as we covered earlier in this
chapter) and on every managed node. Again, the exception here is Windows, which relies
on PowerShell instead.

[26]

Getting Started with Ansible Chapter 1

If you are working with operating system images that lack Python, the following
commands provide a quick guide to getting Python installed:

¢ To install Python using yum (on older releases of Fedora and CentOS/RHEL 7 and
below), use the following:

$ sudo yum -y install python

¢ On RHEL and CentOS version 8 and newer versions of Fedora, you would use
the dnf package manager instead:

$ sudo dnf install python

You might also elect to install a specific version to suit your needs, as in this
example:

$ sudo dnf install python37

e On Debian and Ubuntu systems, you would use the apt package manager to
install Python, again specifying a version if required (the example given here is
to install Python 3.6 and would work on Ubuntu 18.04):

$ sudo apt-get update
$ sudo apt-get install python3.6

The ping module we discussed earlier in this chapter for Ansible not only checks
connectivity and authentication with your managed hosts, but it uses the managed hosts'
Python environment to perform some basic host checks. As a result, it is a fantastic end-to-
end test to give you confidence that your managed hosts are configured correctly as hosts,
with the connectivity and authentication set up perfectly, but where Python is missing, it
would return a failed result.

Of course, a perfect question at this stage would be: how can Ansible help if you roll out
100 cloud servers using a stripped-down base image without Python? Does that mean you
have to manually go through all 100 nodes and install Python by hand before you can start
automating?

Thankfully, Ansible has you covered even in this case, thanks to the raw module. This
module is used to send raw shell commands to the managed nodes—and it works both
with SSH-managed hosts and Windows PowerShell-managed hosts. As a result, you can
use Ansible to install Python on a whole set of systems from which it is missing, or even
run an entire shell script to bootstrap a managed node. Most importantly, the raw module
is one of very few that does not require Python to be installed on the managed node, so it is
perfect for our use case where we must roll out Python to enable further automation.

[27]

Getting Started with Ansible Chapter 1

The following are some examples of tasks in an Ansible playbook that you might use to
bootstrap a managed node and prepare it for Ansible management:

— name: Bootstrap a host without pyvthon2 installed
raw: dnf install -y python2 python2-dnf libselinux-python

— name: Run a command that uses non-posix shell-isms (in this example
/bin/sh doesn't handle redirection and wildcards together but bash does)
raw: cat < /tmp/*txt
args:
executable: /bin/bash

- name: safely use templated variables. Always use quote filter to avoid
injection issues.

raw: "{{package_mgr|quote}} {{pkg_flags|quote}} install {{python|quote}}"

We have now covered the basics of setting up Ansible both on the control host and on the
managed nodes, and we have given you a brief primer on configuring your first
connections. Before we wrap up this chapter, we will look in more detail at how you might
run the latest development version of Ansible, direct from GitHub.

Running from source versus pre-built RPMs

Ansible is always rapidly evolving, and there may be times, either for early access to a new
feature (or module) or as part of your own development efforts, that you wish to run the
latest, bleeding-edge version of Ansible from GitHub. In this section, we will look at how
you can quickly get up and running with the source code. The method outlined in this
chapter has the advantage that, unlike package-manager-based installs that must be
performed as root, the end result is a working installation of Ansible without the need for
any root privileges.

Let's get started by checking out the very latest version of the source code from GitHub:

1. You must clone the sources from the git repository first, and then change to the
directory containing the checked-out code:

$ git clone https://github.com/ansible/ansible.git --recursive
$ cd ./ansible

[28]

Getting Started with Ansible Chapter 1

2. Before you can proceed with any development work, or indeed to run Ansible
from the source code, you must set up your shell environment. Several scripts are
provided for just that purpose, each being suitable for different shell

environments. For example, if you are running the venerable Bash shell, you
would set up your environment with the following command:

$ source ./hacking/env-setup

Conversely, if you are running the Fish shell, you would set up your environment
as follows:

$ source ./hacking/env-setup.fish

3. Once you have set up your environment, you must install the pip Python
package manager, and then use this to install all of the required Python packages
(note: you can skip the first command if you already have pip on your system):

$ sudo easy_install pip
$ sudo pip install -r ./requirements.txt

Note that, when you have run the env-setup script, you'll be running from your
source code checkout, and the default inventory file will be

/etc/ansible/hosts. You can optionally specify an inventory file other than
/etc/ansible/hosts.

. When you run the env-setup script, Ansible runs from the source code
checkout, and the default inventory file is /etc/ansible/hosts; however, you
can optionally specify an inventory file wherever you want on your machine
(see Working with Inventory, https://docs.ansible.com/ansible/latest /user_
guide/intro_inventory.html#inventory, for more details). The following

command provides an example of how you might do this, but obviously, your
filename and contents are almost certainly going to vary:

$ echo "apl.example.com" > ~/my_ansible_inventory

$ export ANSIBLE_INVENTORY=~/my_ansible_inventory

ANSIBLE_INVENTORY applies to Ansible version 1.9 and above and
replaces the deprecated ANSIBLE_HOSTS environment variable.

[29]

Getting Started with Ansible Chapter 1

Once you have completed these steps, you can run Ansible exactly as we have discussed
throughout this chapter, with the exception that you must specify the absolute path to it.
For example, if you set up your inventory as in the preceding code and clone the Ansible
source into your home directory, you could run the ad hoc ping command that we are now
familiar with, as follows:

$ ~/ansible/bin/ansible all -m ping
apl.example.com | SUCCESS => {
"changed": false,
"ping": "pong"
}

Of course, the Ansible source tree is constantly changing and it is unlikely you would just
want to stick with the copy you cloned. When the time comes to update it, you don't need
to clone a new copy; you can simply update your existing working copy using the
following commands (again, assuming that you initially cloned the source tree into your
home directory):

$ git pull --rebase
$ git submodule update --init --recursive

That concludes our introduction to setting up both your Ansible control machine and
managed nodes. It is hoped that the knowledge you have gained in this chapter will help
you to get your own Ansible installation up and running and set the groundwork for the
rest of this book.

Summary

Ansible is a powerful and versatile yet simple automation tool, of which the key benefits
are its agentless architecture and its simple installation process. Ansible was designed to get
you from zero to automation rapidly and with minimal effort, and we have demonstrated
the simplicity with which you can get up and running with Ansible in this chapter.

In this chapter, you learned the basics of setting up Ansible—how to install it to control
other hosts and the requirements for nodes being managed by Ansible. You learned about
the fundamentals required to set up SSH and WinRM for Ansible automation, as well as
how to bootstrap managed nodes to ensure they are suitable for Ansible automation. You
also learned about ad hoc commands and their benefits. Finally, you learned how to run the
latest version of the code directly from GitHub, which both enables you to contribute
directly to the development of Ansible and gives you access to the very latest features
should you wish to make use of them on your infrastructure.

[30]

Getting Started with Ansible Chapter 1

In the next chapter, we will learn Ansible language fundamentals to enable you to write
your first playbooks and to help you to create templated configurations and start to build
up complex automation workflows.

Questions

1. On which operating systems can you install Ansible? (Multiple correct answers)
A) Ubuntu
B) Fedora
C) Windows 2019 server
D) HP-UX
E) Mainframe

2. Which protocol does Ansible use to connect the remote machine for running
tasks?

A) HTTP
B) HTTPS
C) SSH
D) TCP
E) UDP

3. To execute a specific module in the Ansible ad hoc command line, you need to
use the -m option.

A) True

B) False

[31]

Getting Started with Ansible Chapter 1

Further reading

e For any questions about installation via Ansible Mailing Liston Google Groups,
see the following:

https://groups.google.com/forum/#!forum/ansible-project

¢ How to install the latest version of pip can be found here:
https://pip.pvypa.io/en/stable/installing/#installation

e Specific Windows modules using PowerShell can be found here:
https://github.com/ansible/ansible-modules—core/tree/devel /windows

e If you have a GitHub account and want to follow the GitHub project, you can
keep tracking issues, bugs, and ideas for Ansible:

https://github.com/ansible/ansible

[32]

Understanding the
Fundamentals of Ansible

Ansible is, at its heart, a simple framework that pushes a small program called an Ansible
module to target nodes. Modules are at the heart of Ansible and are responsible for
performing all of the automation's hard work. The Ansible framework goes beyond this,
however, and also includes plugins and dynamic inventory management, as well as tying
all of this together with playbooks to automate infrastructure provisioning,

configuration management, application deployment, network automation, and much more,
as shown:

Public / Private
Cloud

@ ANISIBLE'S AUTOMATION ENGINE ! o
! o0 |

N
USERS % </> :|H 0STS

l \ .| INVENTORY API i

|
MODULES PLUGINS |
ANSIBLE PLAYBOOK .)| NETWORKING

Understanding the Fundamentals of Ansible Chapter 2

Ansible only needs to be installed on the management node; from there, it distributes the
required modules over the network's transport layer (usually SSH or WinRM) to perform
tasks and deletes them once the tasks are complete. In this way, Ansible retains its agentless
architecture and does not clutter up your target nodes with code that might be required for
a one-off automation task.

In this chapter, you will learn more about the composition of the Ansible framework and its
various components, as well as how to use them together in playbooks written in YAML
syntax. So, you will learn how to create automation code for your IT operations tasks and
learn how to apply this using both ad hoc tasks and more complex playbooks. Finally, you
will learn how Jinja2 templating allows you to repeatably build dynamic configuration files
using variables and dynamic expressions.

In this chapter, we will cover the following topics:

Getting familiar with the Ansible framework
¢ Exploring the configuration file

Command-line arguments

Defining variables

Understanding Jinja2 filters

Technical requirements

This chapter assumes that you have successfully installed the latest version of Ansible (2.9,
at the time of writing) onto a Linux node, as discussed in chapter 1, Getting Started with
Ansible. It also assumes that you have at least one other Linux host to test automation code
on; the more hosts you have available, the more you will be able to develop the examples in
this chapter and learn about Ansible. SSH communication between the Linux hosts is
assumed, as is a working knowledge of them.

The code bundle for this chapter is available at https://github.com/PacktPublishing/
Ansible-2-Cookbook/tree/master/Chapter%202.

Getting familiar with the Ansible framework

In this section, you will understand how the Ansible framework fits into IT operations
automation. We will explain how to start Ansible for the first time. Once you understand
this framework, you will be ready to start learning more advanced concepts, such as
creating and running playbooks with your own inventory.

[34]

Understanding the Fundamentals of Ansible Chapter 2

In order to run Ansible's ad hoc commands via an SSH connection from your Ansible
control machine to multiple remote hosts, you need to ensure you have the latest Ansible
version installed on the control host. Use the following command to confirm the latest
Ansible version:

$ ansible —--version
ansible 2.9.6

config file = /etc/ansible/ansible.cfg

configured module search path =

[u' /home/jamesf local/.ansible/plugins/modules’,
u'/usr/share/ansible/plugins/modules']

ansible python module location = /usr/lib/python2.7/dist-packages/ansible
executable location = /usr/bin/ansible

python version = 2.7.17 (default, Nowv 7 2019, 10:07:09) [GCC 9.2.1
20191008]

You also need to ensure SSH connectivity with each remote host that you will define in the
inventory. You can use a simple, manual SSH connection on each of your remote hosts to
test the connectivity, as Ansible will make use of SSH during all remote Linux-based
automation tasks:

$ ssh <username>@frontend.example.com
The authenticity of host 'frontend.example.com (192.168.1.52)' can't be

established.
ED25519 key fingerprint is SHA256:hU+saFERGFDERW453tasdFPAkpVws.

Are you sure you want to continue connecting (yes/no)? yes
password: <Input_Your_ Password>

In this section, we will walk you through how Ansible works, starting with some simple
connectivity testing. You can learn how the Ansible framework accesses multiple host
machines to execute your tasks by following this simple procedure:

1. Create or edit your default inventory file, /etc/ansible/hosts (you can also
specify the path with your own inventory file by passing options such as —
inventory=/path/inventory_file). Add some example hosts to your
inventory—these must be the IP addresses or hostnames of real machines for
Ansible to test against. The following are examples from my network, but you
need to substitute these for your own devices. Add one hostname (or IP address)
per line:

frontend.example.com

backendl.example.com
backendZ.example.com

[35]

Understanding the Fundamentals of Ansible Chapter 2

All hosts should be specified with a resolvable address—that is, a Fully Qualified
Domain Name (FQDN)—if your hosts have DNS entries (or are in /etc/hosts
on your Ansible control node). This can be IP addresses if you do not have DNS
or host entries set up. Whatever format you choose for your inventory addresses,

you should be able to successfully ping each host. See the following output as an
example:

$ ping frontend.example.com

PING frontend.example.com (192.168.1.52): 56 data bytes

64 bytes from 192.168.1.52: icmp_seq=0 ttl=64 time=0.040 ms
64 bytes from 192.168.1.52: icmp_seq=1 tt1l=64 time=0.115 ms
64 bytes from 192.168.1.52: icmp_seqg=2 ttl=64 time=0.097 ms
64 bytes from 192.168.1.52: icmp_seqg=3 ttl=64 time=0.130 ms

2. To make the automation process seamless, we'll generate an SSH authentication
key pair so that we don't have to type in a password every time we want to run a
playbook. If you do not already have an SSH key pair, you can generate one
using the following command:

$ ssh-keygen

When you run the ssh-keygen tool, you will see an output similar to the
following. Note that you should leave the passphrase variable blank when
prompted; otherwise, you will need to enter a passphrase every time you want to
run an Ansible task, which removes the convenience of authenticating with SSH
keys:

$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/Users/doh/.ssh/id_rsa):
<Enter>

Enter passphrase (empty for no passphrase): <Press Enter>
Enter same passphrase again: <Press Enter>

Your identification has been saved in /Users/doh/.ssh/id_rsa.
Your public key has been saved in /Users/doh/.ssh/id_rsa.pub.
The key fingerprint is:

SHA256: 1IFOKMMTVAMEQF 62kTwcG590kGZLiMmi 4Ae /BGBT+24 doh@danieloh.com
The key's randomart image is:

+-——[RSA 2048]----+

| =*=*BB==+00 |

|B=*+*B=.0+ . |

|=+=o0=.0+. . |

l...=. . |

| o .. 8|

| I

[36]

Understanding the Fundamentals of Ansible Chapter 2

E |
-
|

+-———[SHA256]————- +

3. Although there are conditions that your SSH keys are automatically picked up

with,

it is recommended that you make use of ssh-agent as this allows you to

load multiple keys to authenticate against a variety of targets. This will be very
useful to you in the future, even if it isn't right now. Start ssh-agent and add
your new authentication key, as follows (note that you will need to do this for
every shell that you open):

$
$

ssh—-agent bash
ssh-add ~/.ssh/id_rsa

4. Before you can perform key-based authentication with your target hosts, you
need to apply the public key from the key pair you just generated to each host.
You can copy the key to each host, in turn, using the following command:

$

ssh-copy-id -i ~/.ssh/id_rsa.pub frontend.example.com

/usr/bin/ssh-copy-id: INFO: Source of key(s) to be installed:
"~/.ssh/id_rsa.pub"

/usr/bin/ssh—copy—-id: INFO: attempting to log in with the new
key(s), to filter out any that are already installed
/usr/bin/ssh-copy-id: INFO: 1 key(s) remain to be installed —- if
you are prompted now it is to install the new keys
doh@frontend.example.com's password:

Number of key(s) added: 1

Now try logging into the machine, with: "ssh
'frontend.example.com'"
and check to make sure that only the key(s) you wanted were added.

5. With this complete, you should now be able to perform an Ansible

ping command on the hosts you put in your inventory file. You will find that you
are not prompted for a password at any point as the SSH connections to all the
hosts in your inventory are authenticated with your SSH key pair. So, you should
see an output similar to the following:

$

ansible all -i hosts —m ping

frontend.example.com | SUCCESS => ({

}

"changed": false,
Ilpingll . "POng“

backendl.example.com | SUCCESS => {

[371]

Understanding the Fundamentals of Ansible Chapter 2

"changed": false,
"Ping": “pong"
}
backend2.example.com | SUCCESS => {
"changed": false,
"ping": "pong"
}

This example output is generated with Ansible's default level of verbosity. If you run into
problems during this process, you can increase Ansible's level of verbosity by passing one
or more -v switches to the ansible command when you run it. For most issues, it is
recommended that you use —vvvv, which gives you ample debugging information,
including the raw SSH commands and the output from them. For example, assume that a
certain host (such as backend2.example. com) can't be connected to and you receive an
error similar to the following:

backend2.example.com | FAILED => SSH encountered an unknown error during
the connection. We recommend you re—run the command using -vvvv, which will
enable SSH debugging output to help diagnose the issue

Note that even Ansible recommends the use of the —vvvv switch for debugging. This could
potentially produce pages of output but will include many useful details, such as the raw
SSH command that was used to generate the connection to the target host in the inventory,
along with any error messages that may have resulted from that call. This can be incredibly
useful when debugging connectivity or code issues, although the output might be a little
overwhelming at first. However, with some practice, you will quickly learn to interpret it.

By now, you should have a good idea of how Ansible communicates with its clients over
SSH. Let's proceed to the next section, where we will look in more detail at the various
components that make up Ansible, as this will help us understand how to work with

it better.

Breaking down the Ansible components

Ansible allows you to define policies, configurations, task sequences, and orchestration
steps in playbooks—the limit is really only your imagination. A playbook can be executed
to manage your tasks either synchronously or asynchronously on a remote machine,
although you will find that most examples are synchronous. In this section, you will learn
about the main components of Ansible and understand how Ansible employs those
components to communicate with remote hosts.

[38]

Understanding the Fundamentals of Ansible Chapter 2

In order to understand the various components, we first need an inventory to work from.
Let's create an example one, ideally with multiple hosts in it—this could be the same as the
one you created in the previous section. As discussed in that section, you should populate
the inventory with the hostnames or I’ addresses of the hosts that you can reach from the
control host itself:

remotel.example.com
remoteZ.example.com
remote3.example.com

To really understand how Ansible—as well as its various components—works, we first
need to create an Ansible playbook. While the ad hoc commands that we have
experimented with so far are just single tasks, playbooks are organized groups of tasks that
are (usually) run in sequence. Conditional logic can be applied and in any other
programming language, they would be considered your code. At the head of the playbook,
you should specify the name of your play—although this is not mandatory, it is good
practice to name all your plays and tasks as without this, it would be quite hard for
someone else to interpret what the playbook does, or even for you to if you come back to it
after a period of time. Let's get started with building our first example playbook:

1. Specity the play name and inventory hosts to run your tasks against at the very
top of your playbook. Also, note the use of ---, which denotes the beginning of a
YAML file (Ansible playbooks that are written in YAML):

- name: My first Ansible playbook
hosts: all

2. After this, we will tell Ansible that we want to perform all the tasks in this
playbook as a superuser (usually root). We do this with the following statement
(to aid your memory, think of become as shorthand for become superuser):

become: yes

[39]

Understanding the Fundamentals of Ansible Chapter 2

3. After this header, we will specify a task block that will contain one or more tasks
to be run in sequence. For now, we will simply create one task to update the
version of Apache using the yum module (because of this, this playbook is only
suitable for running against RHEL-, CentOS-, or Fedora-based hosts). We will
also specify a special element of the play called a handler. Handlers will be
covered in greater detail in chapter 4, Playbooks and Roles, so don't worry too
much about them for now. Simply put, a handler is a special type of task that is
called only if something changes. So, in this example, it restarts the web server,
but only if it changes, preventing unnecessary restarts if the playbook is run
several times and there are no updates for Apache. The following code performs
these functions exactly and should form the basis of your first playbook:

tasks:
- name: Update the latest of an Apache Web Server
yum:
name: httpd
state: latest
notify:
- Restart an Apache Web Server

handlers:
- name: Restart an Apache Web Server
service:
name: httpd
state: restarted

Congratulations, you now have your very first Ansible playbook! If you run this now, you
should see it iterate through all the hosts in your inventory, as well as on each update in the
Apache package, and then restart the service where the package was updated. Your output
should look something as follows:

$ PLAY [My first Ansible playbook]
kAt hkr A rrhkdkhhkdrdhrhkkhkdrhbrhbhkdhrhrdrhrehrkhhhbthhkx

TASK [Gathering Facts]
hkhkhkhhhhhrhhhhkhhbhhhdhb kbbb bbb dhh b hhhhhdhhbhdhdd
ok: [remote2.example.com]

ok: [remotel.example.com]

ok: [remote3.example.com]

TASK [Update the latest of an Apache Web Server]
hhkhkkkhkhkhkhkhkkhkhkhhkhhkhkhkhhkhhkhkhkhhhhhkd

changed: [remote2.example.com]

changed: [remote3.example.com]

changed: [remotel.example.com]

[40]

Understanding the Fundamentals of Ansible Chapter 2

RUNNING HANDLER [Restart an Apache Web Server]
khkkhkhkhhhhkhhkhkhhkhkhhhhhhhhhrhkrhkhhkk

changed: [remote3.example.com]
changed: [remotel.example.com]
changed: [remote2.example.com]

PLAY RECAP
Fhkkkkhhkkkkkkhhkkkkkkdkhhkkkkhkkkkhhkkkkkkhkhhkkkhkkkkkhhhkhhkkkkkkdkkk

remotel.example.com : ok=3 changed=2 unreachable=0 failed=0 skipped=0
rescued=0 ignored=0
remote2.example.com : ok=3 changed=2 unreachable=0 failed=0 skipped=0
rescued=0 ignored=0
remote3.example.com : ok=3 changed=2 unreachable=0 failed=0 skipped=0
rescued=0 ignored=0

If you examine the output from the playbook, you can see the value in naming not only the
play but also each task that is executed, as it makes interpreting the output of the run a very
simple task. You will also see that there are multiple possible results from running a task; in
the preceding example, we can see two of these results—ok and changed. Most of these
results are fairly self-explanatory, with ok meaning the task ran successfully and that
nothing changed as a result of the run. An example of this in the preceding playbook is the
Gathering Facts stage, which is a read-only task that gathers information about the
target hosts. As a result, it can only ever return ok or a failed status, such as unreachable,
if the host is down. It should never return changed.

However, you can see in the preceding output that all three hosts need to upgrade their
Apache package and, as a result of this, the results from the Update the latest of an
Apache Web Server task is changed for all the hosts. This changed result means that our
handler variable is notified and the web server service is restarted.

If we run the playbook a second time, we know that it is very unlikely that the Apache
package will need upgrading again. Notice how the playbook output differs this time:

PLAY [My first Ansible playbook]
hhkhkkhkhkhkhkhhkhhkhkhhkhhkhkhhkhhkhhhhkhhkhhkhhkhhkhhkhkhhkkhkhkkkk

TASK [Gathering Facts]

it 22222222222 i 22ttt is st iia st it s sttt st s s S
ok: [remotel.example.com]

ok: [remoteZl.example.com]

ok: [remote3.example.com]

TASK [Update the latest of an Apache Web Server]
dhkdkkhkhkhkhhhkdhkdhhkhkhbkdthdkhrdkhkhkdhdhki

ok: [remote2.example.com]

ok: [remote3.example.com]

[41]

Understanding the Fundamentals of Ansible Chapter 2

ok: [remotel.example.com]

PLAY RECAP
e e e e e e e e ek 3k ke ok e ke ok ok ke S ok ok 3k vk ok e ok ke ok ok ok o ok ok 3k ok ok ke ok ok ok ok ke ok ke ok e ke ke sk ok e ok ok ke e ke ke ok ke ke ke ke ok

remotel.example.com : ok=2 changed=0 unreachable=0 failed=0 skipped=0
rescued=0 ignored=0
remote2.example.com : ok=2 changed=0 unreachable=0 failed=0 skipped=0
rescued=0 ignored=0
remote3.example.com : ok=2 changed=0 unreachable=0 failed=0 skipped=0
rescued=0 ignored=0

You can see that this time, the output from the Update the latest of an Apache Web
Server task is ok for all three hosts, meaning no changes were applied (the package was
not updated). As a result of this, our handler is not notified and does not run—you can see
that it does not even feature in the preceding playbook output. This distinction is
important—the goal of an Ansible playbook (and the modules that underpin Ansible)
should be to only make changes when they need to be made. If everything is all up to date,
then the target host should not be altered. Unnecessary restarts to services should be
avoided, as should unnecessary alterations to files. In short, Ansible playbooks are (and
should be) designed to be efficient and to achieve a target machine state.

This has very much been a crash course on writing your first playbook, but hopefully, it
gives you a taste of what Ansible can do when you move from single ad hoc commands
through to more complex playbooks. Before we explore the Ansible language and
components any further, let's take a more in-depth look at the YAML language that
playbooks are written in.

Learning the YAML syntax

In this section, you will learn how to write a YAML file with the correct syntax and best
practices and tips for running a playbook on multiple remote machines. Ansible uses
YAML because it is easier for humans to read and write than other common data formats,
such as XML or JSON. There are no commas, curly braces, or tags to worry about, and the
enforced indentation in the code ensures that it is tidy and easy on the eye. In addition,
there are libraries available in most programming languages for working with YAML.

This reflects one of the core goals of Ansible—to produce easy-to-read (and write) code that
described the target state of a given host. Ansible playbooks are (ideally) supposed to be
self-documenting, as documentation is often an afterthought in busy technology
environments—so, what better way to document than through the automation system
responsible for deploying code?

[42]

Understanding the Fundamentals of Ansible Chapter 2

Before we dive into YAML structure, a word on the files themselves. Files written in YAML
can optionally begin with ——- (as seen in the example playbook in the previous section)
and end with This applies to all files in YAML, regardless of whether it is employed by
Ansible or another system, and indicates that the file is in the YAML language. You will
find that most examples of Ansible playbooks (as well as roles and other associated YAML
files) start with —-- but do not end with . . . —the header is sufficient to clearly denote that
the file uses the YAML format.

Let's explore the YAML language through the example playbook we created in the
preceding section:

1. Lists are an important construct in the YAML language—in fact, although it
might not be obvious, the tasks: block of the playbook is actually a YAML list.
A list in YAML lists all of its items at the same indentation level, with each line
starting with -. For example, we updated the ht t pd package from the preceding
playbook using the following code:

- name: Update the latest of an Apache Web Server
yum:
name: httpd
state: latest

However, we could have specified a list of packages to be upgraded as follows:

- name: Update the latest of an Apache Web Server
yum:
name :
- httpd
- mod_ssl
state: latest

Now, rather than passing a single value to the name : key, we pass a YAML-
formatted list containing the names of two packages to be updated.

2. Dictionaries are another important concept in YAML—they are represented by
akey: value format, as we have already extensively seen, but all of the items in
the dictionary are indented by one more level. This is easiest explained by an
example, so consider the following code from our example playbook:

service:
name: httpd
state: restarted

[43]

Understanding the Fundamentals of Ansible Chapter 2

In this example (from handler), the service definition is actually a dictionary
and both the name and state keys are indented with two more spaces than the
service key. This higher level of indentation means that the name and state
keys are associated with the service key, therefore, in this case, telling the
service module which service to operate on (httpd) and what to do with it
(restart it).

Already, we have observed in these two examples that you can produce quite
complicated data structures by mixing lists and dictionaries.

3. As you become more advanced at playbook design (we will see examples of this
later on in this book), you may very well start to produce quite complicated
variable structures that you will put into their own separate files to keep your
playbook code readable. The following is an example of a variables file that
provides the details of two employees of a company:

employees:
- name: daniel
fullname: Daniel Oh
role: DevOps Evangelist
level: Expert
skills:
— Kubernetes
- Microservices
— Ansible
- Linux Container
- name: michael
fullname: Michael Smiths
role: Enterprise Architect
level: Advanced
skills:
- Cloud
- Middleware
— Windows
- Storage

In this example, you can see that we have a dictionary containing the details of
each employee. The employees themselves are list items (you can spot this
because the lines start with) and equally, the employee skills are denoted as list
items. You will notice the fullname, role, level, and skills keys are at the
same indentation level as name but do not feature - before them. This tells you
that they are in the dictionary with the list item itself, and so they represent the
details of the employee.

[44]

Understanding the Fundamentals of Ansible Chapter 2

4. YAML is very literal when it comes to parsing the language and a new line
always represents a new line of code. What if you actually need to add a block of
text (for example, to a variable)? In this case, you can use a literal block scalar, |,
to write multiple lines and YAML will faithfully preserve the new lines, carriage
returns, and all the whitespace that follows each line (note, however, that the
indentation at the beginning of each line is part of the YAML syntax):

Specialty: |
Agile methodology
Cloud-native app development practices
Advanced enterprise DevOps practices

So, if we were to get Ansible to print the preceding contents to the screen, it
would display as follows (note that the preceding two spaces have gone—they
were interpreted correctly as part of the YAML language and not printed):

Agile methodology
Cloud—-native app development practices
Advanced enterprise DevOps practices

Similar to the preceding is the folded block scalar, >, which does the same as the
literal block scalar but does not preserve line endings. This is useful for very long
strings that you want to print on a single line, but also want to wrap across
multiple lines in your code for the purpose of readability. Take the following
variation on our example:

Specialty: >
Agile methodology
Cloud-native app development practices
Advanced enterprise DevOps practices

Now, if we were to print this, we would see the following:

Agile methodologyCloud-native app development practicesAdvanced enterprise
DevOps practices

We could add trailing spaces to the preceding example to stop the words from
running into each other, but I have not done this here as I wanted to provide you
with an easy-to-interpret example.

[45]

Understanding the Fundamentals of Ansible Chapter 2

As you review playbooks, variable files, and so on, you will see these structures used over
and over again. Although simple in definition, they are very important—a missed level of
indentation or a missing - instance at the start of a list item can cause your entire playbook
to fail to run. As we discovered, you can put all of these various constructs together. One
additional example is provided in the following code block of a variables file for you to
consider, which shows the various examples we have covered all in one place:

servers:
frontend
- backend
- database
- cache
employees:
- name: daniel
fullname: Daniel Ch
role: DevOps Evangelist
level: Expert
skills:
— Kubernetes
- Microservices
- Ansible
— Linux Container
- name: michael
fullname: Michael Smiths
role: Enterprise Architect
level: Advanced
skills:
- Cloud
- Middleware
- Windows
- Storage
Speciality: |
Agile methodology
Cloud-native app development practices
Advanced enterprise DevOps practices

You can also express both dictionaries and lists in an abbreviated form, known as flow
collections. The following example shows exactly the same data structure as our original
employees variable file:

employees: [{"fullname": "Daniel Oh","level": "Expert", "name":
"daniel","role": "DevOps Evangelist", "skills":

["Kubernetes", "Microservices", "Ansible", "Linux Container"]}, {"fullname":
"Michael Smiths", "level": "Advanced","name": "michael","role": "Enterprise
Architect","skills":["Cloud", "Middleware", "Windows", "Storage"] }]

[46]

Understanding the Fundamentals of Ansible Chapter 2

Although this displays exactly the same data structure, you can see how difficult it is to
read with the naked eye. Flow collections are not used extensively in YAML and I would
not recommend you to make use of them yourself, but it is important to understand them
in case you come across them. You will also notice that although we've started talking
about variables in YAML, we haven't expressed any variable types. YAML tries to make
assumptions about variable types based on the data they contain, so if you want

assign 1.0 to a variable, YAML will assume it is a floating-point number. If you need to
express it as a string (perhaps because it is a version number), you need to put quotation
marks around it, which causes the YAML parser to interpret it as a string instead, such as in
the following example:

version: "2.0"

This completes our look at the YAML language syntax. Now that's complete, in the next
section, let's take a look at ways that you can organize your automation code to keep it
manageable and tidy.

Organizing your automation code

As you can imagine, if you were to write all of your required Ansible tasks in one massive
playbook, it would quickly become unmanageable—that is to say, it would be difficult to
read, difficult for someone else to pick up and understand, and—most of all—difficult to
debug when things go wrong. Ansible provides a number of ways for you to divide your
code into manageable chunks; perhaps the most important of these is the use of roles. Roles
(for the sake of a simple analogy) behave like a library in a conventional high-level
programming language. We will go into more detail about roles in chapter 4, Playbooks and
Roles.

There are, however, other ways that Ansible supports splitting your code into manageable
chunks, which we will explore briefly in this section as a precursor to the more in-depth
exploration of roles later in this book.

Let's build up a practical example. To start, we know that we need to create an inventory
for Ansible to run against. In this instance, we'll create four notional groups of servers, with
each group containing two servers. Our hypothetical example will contain a frontend
server and application servers for a fictional application, located in two different
geographic locations. Our inventory file will be called production-inventory and the
example contents are as follows:

[frontends_na_zone]
frontendl-na.example.com
frontendZ-na.example.com

[47]

Understanding the Fundamentals of Ansible Chapter 2

[frontends_emea_zone]
frontendl-emea.example.com
frontendZ-emea.example.com

[appservers_na_zone]
appserverl-na.example.com
appserverZ-na.example.com

[appservers_emea_zone]
appserverl-emea.example.com
appserverZ-emea.example.com

Now, obviously, we could just write one massive playbook to address the required tasks on
these different hosts, but as we have already discussed, this would be cumbersome and
inefficient. Let's instead break the task of automating these different hosts down into
smaller playbooks:

1. Create a playbook to run a connection test on a specific host group, such
as frontends_na_zone. Put the following contents into the playbook:

- hosts: frontends_na_zone
remote_user: danieloh
tasks:
- name: simple connection test

ping:

2. Now, try running this playbook against the hosts (note that we have configured
it to connect to a remote user on the inventory system, called danieloh, so you
will either need to create this user and set up the appropriate SSH keys or change
the user in the remote_user line of your playbook). When you run the playbook
after setting up the authentication, you should see an output similar to the
following:

$ ansible-playbook —-i production-inventory frontends-na.yml

PLAY [frontends_na_zone]
e d¢ d Je Je e Fe e d de e d e e e o ok v s de ok ok ok gk e e ok e vk e v dk o e e v ok e e o e v e ok e ke e ok o ok e e ke

TASK [Gathering Facts]
khkkdkhkhkhkhkhkhkhkhhkhkhkhkdhhkhkhhbhbhbhkhkhkhhbhhhbkhhhhhkhkhhhhbhhhhhhdhhbhkdhkhkhhhd

ok: [frontendl-na.example.com]
ok: [frontend2-na.example.com]

TASK [simple connection test]
KAk hhhk kAR AR Ak kA kAR AR A hhhhkh kA Ak kb hkh kA kkkhhkk

ok: [frontendl-na.example.com]

[48]

Understanding the Fundamentals of Ansible Chapter 2

ok: [frontend2-na.example.com]

PLAY RECAP
e 3 e e e 3 e o e ke o e ok ok ok ok e ok ok ke ok ok ke ok ok ok ke ok ok ok e ok ok ok ok ok ok e ok o ok ok ok ok e ok ok ok ok ok ok e ok ok ok ke ok ke ok e ek ok

* %k

frontendl-na.example.com : ok=2 changed=0 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0
frontend2-na.example.com : ok=2 changed=0 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0

3. Now, let's extend our simple example by creating a playbook that will only run
on the application servers. Again, we will use the Ansible ping module to
perform a connection test, but in a real-world situation, you would perform more
complex tasks, such as installing packages or modifying files. Specify that this
playbook is run against this host group from
the appservers_emea_zone inventory. Add the following contents to the
playbook:

— hosts: appservers_emea_zone
remote_user: danieloh
tasks:
- name: simple connection test
ping:

As before, you need to ensure you can access these servers, so either create the
danieloh user and set up authentication to that account or change the
remote_user line in the example playbook. Once you have done this, you should
be able to run the playbook and you will see an output similar to the following:

$ ansible-playbook -i production-inventory appservers—-emea.yml

PLAY [appservers_emea_zone]
dkhkkhkhkhkhkhkhkhkhkhhkhhhhkhkhkhhkhkhkhkhhhkhhhhhkhkhhkhkhkhkhkhhkhhhkhkhhkhkhkkk

TASK [Gathering Facts]
hhkA A hhhhhhhd bbbk bbbk hhhhhhdkdhhdhbhkdhhhhd

ok: [appserver2-emea.example.com]
ok: [appserverl-emea.example.com]

TASK [simple connection test]
dhkkhkhkhkdkdkhkhkhhhhhkhkdkhhhbhhhhhhbhhkhbhkhhhhbhhkhhkhhhhbhkhhdk
ok: [appserver2-emea.example.com]

ok: [appserverl-emea.example.com]

PLAY RECAP
hkkkhkhkhkk ko ke ko k ko h ke k ke kdhdkhddhk

[49]

Understanding the Fundamentals of Ansible Chapter 2

* %

appserverl-emea.example.com : ok=2 changed=0 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0
appserver2-emea.example.com : ok=2 changed=0 unreachable=0 failed=0
skipped=0 rescued=0 ignored=0

4. So far, so good. However, we now have two playbooks that we need to run
manually, which only addresses two of our inventory host groups. If we want to
address all four groups, we need to create a total of four playbooks, all of which
need to be run manually. This is hardly reflective of best automation practices.
What if there was a way to take these individual playbooks and run them
together from one top-level playbook? This would enable us to divide our code
to keep it manageable, but also prevents a lot of manual etfort when it comes to
running the playbooks. Fortunately, we can do exactly that by taking advantage
of the import_playbook directive in a top-level playbook that we will call
site.yml:

- import_playbock: frontend-na.yml
- import_playbock: appserver—-emea.yml

Now, when you run this single playbook using the (by now, familiar) ansible-
playbook command, you will see that the effect is the same as if we had actually
run both playbooks back to back. In this way, even before we explore the concept
of roles, you can see that Ansible supports splitting up your code into manageable
chunks without needing to run each chunk manually:

$ ansible-playbook —-i production-inventory site.yml

PLAY [frontends_na_zone]
e % % J % d e % % e ok 3k v b b sk o v dk o e o g ke ok e e e o e o e e e o e o e e e e e e e e e ke

TASK [Gathering Facts]

*khkkhkkhkhkhkhkhkhkhkhhhkhkhkhkhkhhdbhhkhkhkhhhhkhkhkhhhkhhhkhkhhhhhhkhkhhhrhkhhdkkhhkt

ok: [frontend2-na.example.com]
ok: [frontendl-na.example.com]

TASK [simple connection test]
L R R R R R e R R R L B R R R R P R

ok: [frontendl-na.example.com]
ok: [frontend2-na.example.com]

PLAY [appservers_emea_zone]
khkkkkhkkhkhkkhkhkhkhkhkhkhkhkkhkhkhkhkhkhkkhkhkkhkkkhkkhkhkhkkhkhkkhkhkhkkkkhhkkkk

TASK [Gathering Facts]

[50]

Understanding the Fundamentals of Ansible Chapter 2

The first instance of the file is the configuration it will use; all of the others are ignored,
even if they are present:

1. aNSIBLE_CONFIG: The file location specified by the value of this environment
variable, if set

2. ansible.cfg: In the current working directory
3. ~/.ansible.cfg: In the home directory of the user

4. /etc/ansible/ansible.cfqg: The central configuration that we previously
mentioned

If you installed Ansible through a package manager, such as yum or apt, you will almost
always find a default configuration file called ansible.cfgin /etc/ansible. However, if
you built Ansible from the source or installed it via pip, the central configuration file will
not exist and you will need to create it yourself. A good starting point is to reference the
example Ansible configuration file that is included with the source code, a copy of which
can be found on GitHub at https://raw.githubusercontent .com/ansible/ansible/
devel/examples/ansible.cfgq.

In this section, we will detail how to locate Ansible's running configuration and how to
manipulate it. Most people who install Ansible through a package find that they can get a
long way with Ansible before they have to modify the default configuration, as it has been
carefully designed to work in a great many scenarios. However, it is important to know a
little about configuring Ansible in case you come across an issue in your environment that
can only be changed by modifying the configuration.

Obviously, if you don't have Ansible installed, there's little point in exploring its
configuration, so let's just check whether you have Ansible installed and working by
issuing a command such as the following (the output shown is from the latest version of
Ansible at the time of writing, installed on macOS with Homebrew):

$ ansible 2.9.6

config file = None

configured module search path = ['/Users/james/.ansible/plugins/modules’,
' /usr/share/ansible/plugins/modules']

ansible python module location =
/usr/local/Cellar/ansible/2.9.6_1/libexec/lib/python3.8/site-
packages/ansible

executable location = /usr/local/bin/ansible

python version = 3.8.2 (default, Mar 11 2020, 00:28:52) [Clang 11.0.0
(clang-1100.0.33.17)]

[52]

Understanding the Fundamentals of Ansible Chapter 2

Let's get started by exploring the default configuration that is provided with Ansible:

1. The command in the following code block lists the current configuration
parameters supported by Ansible. It is incredibly useful because it tells you both
the environment variable that can be used to change the setting (see the env
field) as well as the configuration file parameter and section that can be used (see
the ini field). Other valuable information, including the default configuration
values and a description of the configuration, is given (see the default and
description fields, respectively). All of the information is sourced
from 1ib/constants.py. Run the following command to explore the output:

$ ansible-config list

The following is an example of the kind of output you will see. There are, of
course, many pages to it, but a snippet is shown here as an example:

$ ansible-config list
ACTION_WARNINGS:
default: true
description:
- By default Ansible will issue a warning when received from a
task action (module
or action plugin)
- These warnings can be silenced by adjusting this setting to
False.
env:
- name: ANSIBLE_ACTION_WARNINGS
ini:
— key: action_warnings
section: defaults
name: Toggle action warnings
type: boolean
version_added: '2.5'
AGNOSTIC_BECOME_PROMPT:
default: true
description: Display an agnostic become prompt instead of
displaying a prompt containing
the command line supplied become method
env:
- name: ANSIBLE_AGNOSTIC_BECOME_PROMPT
ini:
- key: agnostic_become_prompt
section: privilege_escalation
name: Display an agnostic become prompt
type: boolean
version_added: '2.5'

[531]

Understanding the Fundamentals of Ansible

Chapter 2

yaml:
key: privilege_escalation.agnostic_become_prompt

2. If you want to see a straightforward display of all the possible configuration
parameters, along with their current values (regardless of whether they are
configured from environment variables or a configuration file in one of the

previously listed locations), you can run the following command:

$ ansible-config dump

The output shows all the configuration parameters (in an environment variable
format), along with the current settings. If the parameter is configured with its
default value, you are told so (see the (default) element after each parameter

name):

$ ansible-config dump

ACTION_WARNINGS (default) = True
AGNOSTIC_BECOME_PROMPT (default) = True
ALLOW_WORLD_READABLE_TMPFILES (default) = False
ANSIBLE_CONNECTION_PATH (default) = None
ANSIBLE_COW_PATH (default) = None
ANSIBLE_COW_SELECTION (default) = default

ANSIBLE COW_WHITELIST (default) = ['bud-frogs', 'bunny', 'cheese',
'daemon', 'default', 'dragon', 'elephant-in-snake', 'elephant',
'eyes', 'hellokitty', 'kitty', 'luke-kocala', 'meow', 'milk’,
'moofasa', 'moose', 'ren', 'sheep', 'small', 'stegosaurus',
'stimpy', 'supermilker', 'three-eyes', 'turkey', 'turtle', 'tux',
'udder', 'wvader-koala', 'vader', 'www']

ANSIBLE_FORCE_COLOR (default) = False

ANSIBLE_NOCOLOR (default) = False

ANSIBLE_NOCOWS (default) = False

ANSIBLE_PIPELINING(default) = False

ANSIBLE_SSH_ARGS (default) = -C -o ControlMaster=auto -o

ControlPersist=60s
ANSIBLE_SSH_CONTROL_PATH (default) = None
ANSIBLE_SSH_CONTROL_PATH_DIR (default) = ~/.ansible/cp

3. Let's see the effect on this output by editing one of the configuration parameters.
Let's do this by setting an environment variable, as follows (this command has

been tested in the bash shell, but may differ for other shells):

$ export ANSIBLE_FORCE_COLOR=True

[54]

Understanding the Fundamentals of Ansible Chapter 2

Now, let's re-run the ansible-config command, but this time get it to tell us
only the parameters that have been changed from their default values:

$ ansible-config dump —--only-change
ANSIBLE_FORCE_COLOR (env: ANSIBLE_FORCE_COLOR) = True

Here, you can see that ansible-config tells us that we have only changed
ANSIBLE_FORCE_COLOR from the default value, that it is set to True, and that we
set it through an env variable. This is incredibly valuable, especially if you have
to debug configuration issues.

When working with the Ansible configuration file itself, you will note that it is in INI
format, meaning it has sections such as [defaults], parameters in the format key =
value, and comments beginning with either # or ;. You only need to place the parameters
you wish to change from their defaults in your configuration file, so if you wanted to create
a simple configuration to change the location of your default inventory file, it might look as
follows:

Set my configuration variables

[defaults]

inventory = /Users/danieloh/ansible/hosts ; Here is the path of the
inventory file

As discussed earlier, one of the possible valid locations for the ansible.cfg configuration
file is in your current working directory. It is likely that this is within your home directory,
so on a multi-user system, we strongly recommend you restrict access to the Ansible
configuration file to your user account alone. You should take all the usual precautions
when it comes to securing important configuration files on a multi-user system, especially
as Ansible is normally used to configure multiple remote systems and so, a lot of damage
could be done if a configuration file is inadvertently compromised!

Of course, Ansible's behavior is not just controlled by the configuration files and
switches—the command-line arguments that you pass to the various Ansible executables
are also of vital importance. In fact, we have already worked with one already—in the
preceding example, we showed you how to change where Ansible looks for its inventory
file using the inventory parameter in ansible.cfg. However, in many of the examples
that we previously covered in this book, we overrode this with the -i switch when running

Ansible. So, let's proceed to the next section to look at the use of command-line arguments
when running Ansible.

[551]

Understanding the Fundamentals of Ansible Chapter 2

Command-line arguments

In this section, you will learn about the use of command-line arguments for playbook
execution and how to employ some of the more commonly used ones to your advantage.
We are already very familiar with one of these arguments, the --version switch, which
we use to confirm that Ansible is installed (and which version is installed):

$ ansible 2.9.6

config file = None

configured module search path = ['/Users/james/.ansible/plugins/modules’,
'/usr/share/ansible/plugins/modules']

ansible python module location =
/usr/local/Cellar/ansible/2.9.6_1/libexec/lib/python3.8/site-
packages/ansible

executable location = /usr/local/bin/ansible

python version = 3.8.2 (default, Mar 11 2020, 00:28:52) [Clang 11.0.0
(clang-1100.0.33.17)]

Just as we were able to learn about the various configuration parameters directly through
Ansible, we can also learn about the command-line arguments. Almost all of the Ansible
executables have a ——help option that you can run to display the valid command-line
parameters. Let's try this out now:

1. You can view all the options and arguments when you execute the ansible
command line. Use the following command:

$ ansible —--help

You will see a great deal of helpful output when you run the preceding
command; an example of this is shown in the following code block (you might
want to pipe this into a pager, such as less, so that you can read it all easily):

$ ansible --help

usage: ansible [-h] [--wversion] [-v] [-b] [--become-method
BECOME_METHOD] [--become-user BECOME_USER] [-K] [-i INVENTORY] [--
list-hosts] [-1 SUBSET] [-P POLL_INTERVAL] [-B SECONDS] [-o] [-t
TREE] [-k]

[--private—-key PRIVATE_KEY FILE] [-u REMOTE_USER] [-
c CONNECTION] [-T TIMEOUT] [--ssh—-common—-args SSH_COMMON_ARGS] [—-
sftp-extra-args SFTP_EXTRA_ARGS] [-—-scp-extra-args SCP_EXTRA_ARGS]

[--ssh—extra—args SSH_EXTRA_ARGS] [-C] [--syntax-
check] [-D] [-e EXTRA_VARS] [--vault-id VAULT_IDS] [--ask-vault-

pass | ——vault-password-file VAULT_PASSWORD_FILES] [-f FORKS]
[-M MODULE_PATH] [--playbook-dir BASEDIR] [-a
MODULE_ARGS] [-m MODULE_NAME]
pattern

[56]

Understanding the Fundamentals of Ansible Chapter 2

Define and run a single task 'playbook' against a set of hosts

positional arguments:
pattern host pattern

optional arguments:
--ask-vault-pass ask for vault password
——list-hosts outputs a list of matching hosts; does not execute
anything else
--playbook—dir BASEDIR
Since this tool does not use playbooks, use
this as a substitute playbook directory.This sets the relative path
for many features including roles/ group_vars/ etc.
—--syntax-check perform a syntax check on the playbook, but do not
execute it
—-vault-id VAULT_IDS the vault identity to use
--vault-password-file VAULT_PASSWORD_FILES
vault password file
——version show program's version number, config file location,
configured module search path, module location, executable location
and exit
-B SECONDS, --background SECONDS
run asynchronously, failing after X seconds
(default=N/3a)

-C, —-check don't make any changes; instead, try to predict some
of the changes that may occur
-D, —--diff when changing (small) files and templates, show the

differences in those files; works great with --check
-M MODULE_PATH, --module-path MODULE_PATH
prepend colon-separated path(s) to module

library
(default=~/.ansible/plugins/modules: /usr/share/ansible/plugins/modu
les)

—-P POLL_INTERVAL, —-poll POLL_INTERVAL

set the poll interval if using -B
(default=15)

-a MODULE_ARGS, -—args MODULE_ARGS
module arguments
—e EXTRA_VARS, --extra-vars EXTRA_VARS

set additional variables as key=value or
YAML/JSON, if filename prepend with @

[571

A

ad hoc commands 59, 60, 61, 63, 64
ad hoc tasks
versus playbooks 110,111,112, 113
Amazon Web Services (AWS)
about 361
automating, against 317
automating, with boto library installation 317
boto library, authentication 317
machine, creating 318, 319, 320
Ansible 2.10, porting guide
reference link 244
Ansible collections
about 225
reference link 225
Ansible debugger 152
Ansible framework
about 34, 35, 36, 38
Ansible components, splitting 38, 39, 41, 42

automation code, organizing 47, 48, 50, 51
Ansible Galaxy 130, 131
Ansible installation
about 20
connecting, to hosts 21
managed node requirements 26, 28
verifying 23, 25, 26
Ansible Kubernetes dependencies
installing 308
Ansible module
about 33
reference link 177
return values, discovering 167, 169
Ansible playbook
check mode, using 342, 343, 344
execution problems 338

Index

host facts, using to diagnose failures 339
testing 339, 341, 342
Ansible Tower (AWX)
access, controlling 366
advantage 366
installing 356, 357
inventory, creating 360, 361, 362
job template, creating 363, 364
job, running 365, 366
organization, creating 368
permissions, assigning 369
playbook, running 358
privilege levels 269
project, creating 358, 359
team, creating 367
user, creating 366, 367
Ansible Vault
used, for securing data 276, 277, 278, 280
Ansible versions
porting between 244
Ansible, network platforms
reference link 291
Ansible, networking devices
conditional statements 298, 299, 300
environment variables 295, 297
Ansible, networking modules
reference link 291
reviewing 291, 293
Ansible, porting guides
reference link 245
Ansible, using to orchestrate OpenStack
about 330
authentication 330
installation 330
machine, creating 331, 333, 334
Ansible, variables
ansible_become 294

ansible_become_method 294
ansible_connection 294
ansible_network_os 294
ansible-container
Kubernetes, deploying with 207
ansible-pull command
using 152, 153, 155
Ansible
about 8
configuring 9
connecting, to hosts 22, 23
features 15
installation 24
installing o
installing, on Arch Linux 12
installing, on CentOS 11
installing, on Debian 10
installing, on Fedora 11
installing, on FreeBSD 9, 11
installing, on Gentoo 11
installing, on Linux 9
installing, on macOS 12, 15
installing, on Ubuntu 10
installing, via Homebrew 14
installing, via Python package manager (pip) 14
Kubernetes namespace, creating with 309, 310
Kubernetes namespaces, listing with 308
Kubernetes objects, managing with 308
Kubernetes Service, creating with 310, 311
networking devices management 287, 289
running, with source code 28, 30
used, for automating Docker 312, 313, 314
Windows hosts, configuring for 15
Arch Linux
Ansible, installing 12
asynchronous actions
versus synchronous actions 249, 250, 251, 253
automate network management
need for 285, 286, 287
automation code
organizing 47, 48, 50, 51
Azure Container Service (ACS) 315
Azure Kubernetes Service (AKS) 315

[379]

B

boto configuration
reference link 227

C

CentOS
Ansible, installing 11
Cisco |I0S modules
ios_banner 292
ios_bgp 292
ios_command 292
ios_config 292
ios_vlan 292
reference link 292
cloud inventories
approaches 224,226, 227, 228, 229
code cache
flushing 351, 352
command line
module documentation, accessing 165, 166
used, for executing multiple modules 159, 160,
161
command module
reference link 61
command-line arguments
using, for playbook execution 56, 58, 59
configuration file
exploring 51, 53, 55
container-focused modules
exploring 314, 315, 316
containers, with playbooks
building 303, 304, 305
designing 303, 304, 305
Cumulus VX
URL 290
custom modules
checklist 186, 187
common pitfalls, avoiding 179, 180, 181
developing 170,171,172,173,175,176, 178
documenting 181, 182, 183, 186
testing 181, 182, 183, 185
custom plugins
creating 201,202, 203, 205, 206, 207, 209
developing, reference link 211

integrating, with Ansible source code 209, 211
sharing, with community 213, 214
sharing, with plugins 211

D

Debian
Ansible, installing 10
directory layout 218, 219, 220, 221, 222, 223,
224
directory structure
building 218, 219
Docker
automating, with Ansible 312, 313, 314
dynamic inventory file
generating 1, 92, 93, 94, 95
inventories sources, using 96
static groups, using with dynamic groups 98, 97
dynamic operations, versus static operation
reference link 122

E

Elastic Container Registry (ECR) 315
Elastic Container Service (ECS) 315
Elastic Kubernetes Service (EKS) 315
environment types
differentiating 229, 230
environment, expanding with Rackspace Cloud
about 328
machine, creating 329
pyrax authentication 328
pyrax, installing 328

F

Fedora
Ansible, installing 11
filtering 69
flow collections 46
FreeBSD
Ansible, installing 9, 11
Fully Qualified Domain Name (FQDN) 36

G

Gentoo
Ansible, installing 11

[380]

GitHub pull request
submitting 187, 188, 190
Google Cloud Platform (GCP) 361
Google Cloud Platform, complementing with
automation
about 320
authentication 321
components, installing 321
machine, creating 322, 323
Google Kubernetes Engine (GKE) 316
Group Policy Objects (GPOs) 17
group variables
defining, approach 230, 231, 232, 234, 235,
236

H

handler 40
Homebrew
Ansible, installing 14
installing 13
host connection issues
solving 344, 346
host management
using, patterns 98, 99, 100, 101
host variables
defining, approach 230, 231, 232, 234, 235,
236
host's execution
limiting 349, 350, 351
httpapi 288
hypothetical playbook directory, roles
installapache 117
installtomcat 117

|

included plugins
finding 198, 199, 200
Integrated Development Environments (IDEs) 239
inventory file
creating 77, 78, 79, 80
group variables, adding 84, 85, 86, 87, 88, 89,
90, 91
host groups, using 80, 81, 83, 84
host variables, adding 84, 85, 86, 87, 88, 89,
90, 91

hosts, adding 77, 78, 79, 80
reference link 22

J

Jinja2 69
Jinja2 filters 69, 70, 72, 74
job 358
job template
creating 363, 364
jump hosts
working with 269, 270, 271

K

Kubernetes namespaces
creating, with Ansible 309, 310
listing, with Ansible 308
Kubernetes objects
managing, with Ansible 308
Kubernetes Service
creating, with Ansible 310, 311
Kubernetes
deploying, with ansible-container 307

L

Lightweight Directory Access Protocol (LDAP) 366
linear 150
Linux
Ansible, installing 2
local 289

macOS

Ansible, installing 12
magic variables

about &8

reference link &8
maximum failure percentage

configuring 256, 257, 258, 259
message of the day (MOTD) 130
module documentation

adding, from command line 165, 167
module index

reference link 161

reviewing 161, 162,163, 164

[381]

motd 292
multiple container platforms
managing 306
multiple modules
executing, with command line 159, 160, 161

N

nclu module
reference link 292
netconf 288
network automation
enabling 289, 290, 291
network devices
connectingto 293, 294, 295
network_cli 288
networking devices connection types
about 288
httpapi 288
local 289
netconf 288
network_cli 288
ssh 289
normal user 367, 370

P

patterns
using, for host management 98, 99, 100, 101
permissions 369
ping 169
playbook debugger
reference link 151
playbook framework
about 104, 105,106, 107,108, 109, 110
playbook prompts
configuring 271, 273
playbooks, roles
about 116,120,121, 122
creating 116
practical exercises 118, 119
subdirectories 117
playbooks, tasks
grouping, with blocks 144, 145, 146, 147, 149
repeating, with loops 136, 137, 138, 139, 140,
141,142, 143
playbooks

building, with tasks 273
conditions, using in code 131, 132, 133, 135,
136
dependencies, settingup 123, 124, 125, 128,
127,128,129
play execution, configuring via strategies 149,
150, 151, 152
plays, defining 113, 114, 115, 116
role-based variables, settingup 123, 124, 125,
126,127,128, 129
running, on localhost 267, 268, 269
tags, placing 273, 275, 276
tasks, defining 113, 114, 115, 116
versus ad hoc tasks 110, 111,112,113
plugin types
discovering 195, 197, 198
plugins
about 194
categories 196
reference link 196
proxies
working with 269, 270, 271
Pull Request (PR) 205
Python package manager (pip)
installing 13

Q

Quality Assurance (QA) 229

R

Red Hat Enterprise Linux (RHEL) 240
return values

discovering, for Ansible modules 167, 168, 169
Role-Based Access Control (RBAC) 366
rolling updates

play execution, controlling 253, 254, 255, 2586
run_once option

using 263,264,265, 267

S

seamless automation integration, to Azure
about 323
authentication 324
first machine, creating 325, 327
installation 323

[382]

site.yml 236
Source Control Management (SCM)
about 358
URL 359
ssh 289
syntax error
checking 352, 353
system administrator 367, 369
system auditor 367, 370

T

tags
placing, in playbooks 273,274, 276
task execution delegation
setting 259, 260, 261, 262, 263
teams 368
top-level playbooks
automation code, porting between Ansible
Versions 244, 245
distribution variances, setting 240, 241, 242,
243
08§, setting 240, 241, 242, 243
using 236
version control tools, levering 237, 238, 239

U

Ubuntu
Ansible, installing 10

\'

valid variable names
creating, reference link 66
variables
defining €4, 65, 66, 67, 69

Windows hosts

working copy 238 -
working variables
passing, via CLI 347, 348

