ROBERT HARPER

Practical Foundations for
PROGRAMMING
LANGUAGES

Practical Foundations for
Programming Languages

Second Edition
I

Robert Harper

Carnegie Mellon University

5E CAMBRIDGE
' UNIVERSITY PRESS

CAMBRIDGE
UNIVERSITY PRESS

32 Avenue of the Americas, New York, NY 10013

Cambridge University Press is part of the University of Cambridge.

It furthers the University’s mission by disseminating knowledge in the pursuit of
education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781107150300

© Robert Harper 2016

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 2016
Printed in the United States of America
A catalog record for this publication is available from the British Library.

Library of Congress Cataloging in Publication Data
Names: Harper, Robert, 1957—
Title: Practical foundations for programming languages / Robert Harper,
Carnegiec Mellon University.

Description: Second edition. | New York NY : Cambridge University Press,
2016. | Includes bibliographical references and index.
Identifiers: LCCN 2015045380 | ISBN 9781107150300 (alk. paper)
Subjects: LCSH: Programming languages (Electronic computers)
Classification: LCC QA76.7 .H377 2016 | DDC 005.13-dc23
LC record available at http://lcen.loc.gov/2015045380

ISBN 978-1-107-15030-0 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of
URLs for external or third-party Internet Web sites referred to in this publication
and does not guarantee that any content on such Web sites is, or will remain,
accurate or appropriate.

Contents

Preface to the Second Edition page xXv
Preface to the First Edition Xvii
Part | Judgments and Rules
1 Abstract Syntax 3

1.1 Abstract Syntax Trees 3
1.2 Abstract Binding Trees 6
1.3 Notes 10
2 Inductive Definitions 12
2.1 Judgments 12
2.2 Inference Rules 12
2.3 Derivations 14
2.4 Rule Induction 15

25 1 and Simul Inductive Definiti 17

2.6 Defining Functions by Rules 18
2.7 _Notes 19
3 Hypothetical and General Judgments 21
3.1 Hypothetical Judgments 21
3.2 Hypothetical Inductive Definitions 24
3.3 General Judgments 26
3.4 Generic Inductive Definitions 27
3.5 Notes 28
Part 11 Statics and Dynamics
4 Statics 33
4.1 Syntax 33
4.2 Type System 34
4.3 Structural Properties 35
4.4 Notes 37

vi

Contents

5

Dynamics

5.1 Transition Systems
5.2 Structural Dynamics
5.3 Contextual Dynamics
5.4 Equational Dynamics
5.5 Notes

6 Type Safety

7

6.1 Preservation
6.2 Progress
-3 Run-Time E
6.4 Notes

Evaluation Dynamics

7.1 Evaluation Dynamics

7.2 Relating Structural and Evaluation Dynamics
7.3 Type Safety, Revisited

7.4 Cost Dynamics

7.5 Notes

Part 11l Total Functions

Function Definiti Vv

3 First-Order Functi
8.2 Higher-Order Functions

8.3 Evaluation Dynamics and Definitional Equality
8.4 Dynamic Scope

8.5 Notes

System T of Higher-Order Recursion

10

9.1 Statics

9.2 Dynamics

9.3 Definability
9.4 Undefinability
9.5 Notes

Part IV Finite Data Types

Product Types

10.1 Nullary and Binary Products
10.2 Finite Products

10.3 Primitive Mutual Recursion
10.4 Notes

CEEERRB [3RRER RBRRREE BBEEE SELEREE

BRERERE

vil Contents

11 Sum Types
11.1 Nullary and Binary Sums
> Finite Sums
11.3 Applications of Sum Types
11.4 Notes

Part V Types and Propositions

12 Constructive Logic
12.1 Constructive Semantics
12.2 Constructive Logic
12.3 Proof Dynamics
12.4 Propositions as Types
12.5 Notes

13 Classical Logic
13.1 Classical Logic

13.2 Deriving Elimination Forms

13.3 Proof Dynamics

13.4 Law of the Excluded Middle

13.5 The Double-Negation Translation
13.6 Notes

Part VI Infinite Data Types

14 Generic Programming
14.1 Introduction
14.2 Polynomial Type Operators
14.3 Positive Type Operators
14.4 Notes

15 Inductive and Coinductive Types
15.1 Motivating Examples
15.2 Statics
15.3 Dynamics
15.4 Solving Type Equations
15.5 Notes

Part VII Variable Types

16 System F of Polymorphic Types
16.1 Polymorphic Abstraction
16.2 Polymorphic Definability
16.3 Parametricity Overview
16.4 Notes

CRERERER

“ERERE EEEgs®

—
|95]

114

-
oa
]

st
‘m
<3

EEE

viii Contents

17 Abstract Types
17.1 Existential Types
17.3 Definability of Existential Types
17.4 Representation Independence
17.5 Notes

18 Higher Kinds
18.1 Constructors and Kinds

18.2 Constructor Equality

18.3 Expressions and Types
18.4 Notes

Part VIII Partiality and Recursive Types

19 System PCF of Recursive Functions
19.1 Statics
19.2 Dynamics

19.3 Definability
19.4 Finite and Infinite Data Structures

19.5 Totality and Partiality
19.6 Notes

20 System FPC of Recursive Types
20.1 Solving Type Equations
20.2 Inductive and Coinductive Types
20.3 Self-Reference
20.4 The Origin of State
20.5 Notes

Part IX Dynamic Types

21 The Untyped A-Calculus
21.1 The A-Calculus
21.2 Definability
21.3 Scott’s Theorem
21.4 Untyped Means Uni-Typed
21.5 Notes

22 Dynamic Typing
22.1 Dynamically Typed PCF
22.2 Variations and Extensions
22.3 Critique of Dynamic Typing
22.4 Notes

BERE

167
167
169

_
%
N

._.
=
2

._.
NS
=

(-
wn

ix Contents

23 Hybrid Typing
23.1 A Hybrid Language
23.2 Dynamic as Static Typing
23.3 Optimization of Dynamic Typing
23.4 Static versus Dynamic Typing
23.5 Notes

Part X Subtyping

24 Structural Subtyping
24.1 Subsumption

24.2 Varieties of Subtyping
24.4 Dynamics and Safety
24.5 Notes

25 Behavioral Typing
25.1 Statics
25.2 Boolean Blindness
25.3 Refinement Safety
25.4 Notes

Part XI Dynamic Dispatch

26 Classes and Methods
26.1 The Dispatch Matrix
26.2 Class-Based Organization
26.3 Method-Based Organization
26.4 Self-Reference
26.5 Notes

27 Inheritance
27.1 Class and Method Extension
27.2 Class-Based Inheritance
27.3 Method-Based Inheritance

27.4 Notes
Part X1l Control Flow
28 Control Stacks
28.1 Machine Definition
28.2 Safety

28.3 Correctness of the K Machine
28.4 Notes

Contents

29

30

31

32

33

34

35

Exceptions

29.2 Exceptions

29.3 Exception Values
29.4 Notes

Continuations

30.1 QOverview

30.2 Continuation Dynamics
303 C . ; Conti .
30.4 Notes

Part XIlIl Symbolic Data

Symbols

31.1 Symbol Declaration
31.2 Symbol References
31.3 Notes

Fluid Binding

32.1 Statics

32.2 Dynamics

32.3 Type Safety
32.4 Some Subtleties
32.5 Fluid References
32.6 Notes

Dynamic Classification

33.1 Dynamic Classes

33.2 Class References

33.3 Definability of Dynamic Classes

33.4 Applications of Dynamic Classification
33.5 Notes

Part XIV Mutable State

Modernized Algol

34.1 Basic Commands

34.2 Some Programming Idioms

34.3 Typed Commands and Typed Assignables
34.4 Notes

Assignable References

35.1 Capabilities
35.2 Scoped Assignables

266
266
268

277
277
280
282

xiii Contents

47 Equality for System PCF 445
47.1 Observational Equivalence 445
47.2 Logical Equivalence 446
47.3 Logical and Observational Equivalence Coincide 446
47.4 Compactness 449
47.5 Lazy Natural Numbers 452
47.6_Notes 453

48 Parametricity 454
48.1 Overview 454
48.2 Observational Equivalence 455
48.3 Logical Equivalence 456
48.4 Parametricity Properties 461
48.5 Representation Independence, Revisited 464
48.6 Notes 465

49 Process Equivalence 467
49.1 Process Calculus 467
49.2 Strong Equivalence 469
49.3 Weak Equivalence 472
49.4 Notes 473

Part XIX Appendices

A Background on Finite Sets 477

Bibliography 479
Index 487

Caopyrighted material

Preface to the Second Edition

Writing the second edition to a textbook incurs the same risk as building the second version
of a software system. It is difficult to make substantive improvements, while avoiding the
temptation to overburden and undermine the foundation on which one is building. With the
hope of avoiding the second system effect, I have sought to make corrections, revisions,
expansions, and deletions that improve the coherence of the development, remove some
topics that distract from the main themes, add new topics that were omitted from the first
edition, and include exercises for almost every chapter.

The revision removes a number of typographical errors, corrects a few material errors
(especially the formulation of the parallel abstract machine and of concurrency in Algol),
and improves the writing throughout. Some chapters have been deleted (general pattern
matching and polarization, restricted forms of polymorphism), some have been completely
rewritten (the chapter on higher kinds), some have been substantially revised (general
and parametric inductive definitions, concurrent and distributed Algol), several have been
reorganized (to better distinguish partial from total type theories), and a new chapter
has been added (on type refinements). Titular attributions on several chapters have been
removed, not to diminish credit, but to avoid confusion between the present and the original
formulations of several topics. A new system of (pronounceable!) language names has been
introduced throughout. The exercises generally seek to expand on the ideas in the main
text, and their solutions often involve significant technical ideas that merit study. Routine
exercises of the kind one might include in a homework assignment are deliberately few.

My purpose in writing this book is to establish a comprehensive framework for formu-
lating and analyzing a broad range of ideas in programming languages. If language design
and programming methodology are to advance from a trade-craft to a rigorous discipline,
it is essential that we first get the definitions right. Then, and only then, can there be mean-
ingful analysis and consolidation of ideas. My hope is that I have helped to build such a
foundation.

I am grateful to Stephen Brookes, Evan Cavallo, Karl Crary, Jon Sterling, James R.
Wilcox and Todd Wilson for their help in critiquing drafts of this edition and for their
suggestions for modification and revision. I thank my department head, Frank Pfenning,
for his support of my work on the completion of this edition. Thanks also to my editors, Ada
Brunstein and Lauren Cowles, for their guidance and assistance. And thanks to Andrew
Shulaev for corrections to the draft.

Neither the author nor the publisher make any warranty, express or implied, that the
definitions, theorems, and proofs contained in this volume are free of error, or are consistent
with any particular standard of merchantability, or that they will meet requirements for any
particular application. They should not be relied on for solving a problem whose incorrect

xvi Preface to the Second Edition

solution could result in injury to a person or loss of property. If you do use this material
in such a manner, it is at your own risk. The author and publisher disclaim all liability for
direct or consequential damage resulting from its use.

Pittsburgh
July 2015

Preface to the First Edition

Types are the central organizing principle of the theory of programming languages. Lan-
guage features are manifestations of type structure. The syntax of a language is governed
by the constructs that define its types, and its semantics is determined by the interactions
among those constructs. The soundness of a language design—the absence of ill-defined
programs—follows naturally.

The purpose of this book is to explain this remark. A variety of programming language
features are analyzed in the unifying framework of type theory. A language feature is defined
by its statics, the rules governing the use of the feature in a program, and its dynamics, the
rules defining how programs using this feature are to be executed. The concept of safety
emerges as the coherence of the statics and the dynamics of a language.

In this way, we establish a foundation for the study of programming languages. But
why these particular methods? The main justification is provided by the book itself. The
methods we use are both precise and intuitive, providing a uniform framework for explaining
programming language concepts. Importantly, these methods scale to a wide range of
programming language concepts, supporting rigorous analysis of their properties. Although
it would require another book in itself to justify this assertion, these methods are also
practical in that they are directly applicable to implementation and uniquely effective as a
basis for mechanized reasoning. No other framework offers as much.

Being a consolidation and distillation of decades of research, this book does not provide
an exhaustive account of the history of the ideas that inform it. Suffice it to say that much
of the development is not original but rather is largely a reformulation of what has gone
before. The notes at the end of each chapter signpost the major developments but are
not intended as a complete guide to the literature. For further information and alternative
perspectives, the reader is referred to such excellent sources as Constable (1986, 1998),
Girard (1989), Martin-Lof (1984), Mitchell (1996), Pierce (2002, 2004), and Reynolds
(1998).

The book is divided into parts that are, in the main, independent of one another. Parts
I and II, however, provide the foundation for the rest of the book and must therefore be
considered prior to all other parts. On first reading, it may be best to skim Part I, and begin
in earnest with Part II, returning to Part I for clarification of the logical framework in which
the rest of the book is cast.

Numerous people have read and commented on earlier editions of this book and have
suggested corrections and improvements to it. I am particularly grateful to Umut Acar,
Jesper Louis Andersen, Carlo Angiuli, Andrew Appel, Stephanie Balzer, Eric Bergstrom,
Guy E. Blelloch, Iliano Cervesato, Lin Chase, Karl Crary, Rowan Davies, Derek Dreyer,
Dan Licata, Zhong Shao, Rob Simmons, and Todd Wilson for their extensive efforts in

Caopyrighted material

Abstract Syntax

Programming languages express computations in a form comprehensible to both people
and machines. The syntax of a language specifies how various sorts of phrases (expressions,
commands, declarations, and so forth) may be combined to form programs. But what are
these phrases? What is a program made of?

The informal concept of syntax involves several distinct concepts. The surface, or con-
crefe, syntax is concerned with how phrases are entered and displayed on a computer. The
surface syntax is usually thought of as given by strings of characters from some alphabet
(say, ASCII or Unicode). The structural, or abstract, syntax is concerned with the structure
of phrases, specifically how they are composed from other phrases. At this level, a phrase
is a tree, called an abstract syntax tree, whose nodes are operators that combine several
phrases to form another phrase. The binding structure of syntax is concerned with the
introduction and use of identifiers: how they are declared, and how declared identifiers can
be used. At this level, phrases are abstract binding trees, which enrich abstract syntax trees
with the concepts of binding and scope.

We will not concern ourselves in this book with concrete syntax but will instead consider
pieces of syntax to be finite trees augmented with a means of expressing the binding and
scope of identifiers within a syntax tree. To prepare the ground for the rest of the book, we
define in this chapter what is a “piece of syntax” in two stages. First, we define abstract
syntax trees, or ast’s, which capture the hierarchical structure of a piece of syntax, while
avoiding commitment to their concrete representation as a string. Second, we augment
abstract syntax trees with the means of specifying the binding (declaration) and scope
(range of significance) of an identifier. Such enriched forms of abstract syntax are called
abstract binding trees, or abt’s for short.

Several functions and relations on abt’s are defined that give precise meaning to the
informal ideas of binding and scope of identifiers. The concepts are infamously difficult to
define properly and are the mother lode of bugs for language implementors. Consequently,
precise definitions are essential, but they are also fairly technical and take some getting
used to. It is probably best to skim this chapter on first reading to get the main ideas, and
return to it for clarification as necessary.

1.1 Abstract Syntax Trees
A

An abstract syntax tree, or ast for short, is an ordered tree whose leaves are variables, and
whose interior nodes are operators whose arguments are its children. Ast’s are classified

4 Abstract Syntax

into a variety of sorts corresponding to difterent forms of syntax. A variable stands for an
unspecified, or generic, piece of syntax of a specified sort. Ast’s can be combined by an
operator, which has an arify specifying the sort of the operator and the number and sorts
of its arguments. An operator of sort s and arity sy, ..., s, combines n > 0 ast’s of sort
S1, ..., S8y, respectively, into a compound ast of sort s.

The concept of a variable is central and therefore deserves special emphasis. A variable
is an unknown object drawn from some domain. The unknown can become known by
substitution of a particular object for all occurrences of a variable in a formula, thereby
specializing a general formula to a particular instance. For example, in school algebra
variables range over real numbers, and we may form polynomials, such as x> 4+ 2x + 1,
that can be specialized by substitution of, say, 7 for x to obtain 72 4+ (2 x 7)+ 1, which can
be simplified according to the laws of arithmetic to obtain 64, which is (7 + 1)°.

Abstract syntax trees are classified by sorts that divide ast’s into syntactic categories.
For example, familiar programming languages often have a syntactic distinction between
expressions and commands; these are two sorts of abstract syntax trees. Variables in abstract
syntax trees range over sorts in the sense that only ast’s of the specified sort of the variable
can be plugged in for that variable. Thus, it would make no sense to replace an expression
variable by a command, nor a command variable by an expression, the two being different
sorts of things. But the core idea carries over from school mathematics, namely that a
variable is an unknown, or a place-holder, whose meaning is given by substitution.

As an example, consider a language of arithmetic expressions built from numbers,
addition, and multiplication. The abstract syntax of such a language consists of a single
sort Exp generated by these operators:

1. An operator num|[n] of sort Exp for each n € N.
2. Two operators, plus and times, of sort Exp, each with two arguments of sort Exp.

The expression 2 4 (3 x x), which involves a variable, x, would be represented by the ast
plus(num[2]; times(num[3]; x))

of sort Exp, under the assumption that x is also of this sort. Because, say, num[4], is an ast
of sort Exp, we may plug it in for x in the above ast to obtain the ast

plus(num[2]; times(num[3]; num[4])),

which is written informally as 2 + (3 x 4). We may, of course, plug in more complex ast’s
of sort Exp for x to obtain other ast’s as result.

The tree structure of ast’s provides a very useful principle of reasoning, called structural
induction. Suppose that we wish to prove that some property P(a) holds for all ast’s a of a
given sort. To show this, it is enough to consider all the ways in which @ can be generated
and show that the property holds in each case under the assumption that it holds for its
constituent ast’s (if any). So, in the case of the sort Exp just described, we must show

1. The property holds for any variable x of sort Exp: prove that P(x).
2. The property holds for any number, num[#n]: for every n € N, prove that P(num[n]).

5 1.1 Abstract Syntax Trees

3. Assuming that the property holds for @, and a», prove that it holds for plus(a;;a;) and
times(a;;az): if P(a;) and P(az), then P(plus(a;;az)) and P(times(a;;az)).

Because these cases exhaust all possibilities for the formation of a, we are assured that
‘P(a) holds for any ast a of sort Exp.

It is common to apply the principle of structural induction in a form that takes account of
the interpretation of variables as place-holders for ast’s of the appropriate sort. Informally, it
is often useful to prove a property of an ast involving variables in a form that is conditional
on the property holding for the variables. Doing so anticipates that the variables will be
replaced with ast’s that ought to have the property assumed for them, so that the result of
the replacement will have the property as well. This amounts to applying the principle of
structural induction to properties P(a) of the form “if a involves variables x,, ..., x;, and
Q holds of each x;, then Q holds of a,” so that a proof of P(a) for all ast’s a by structural
induction is just a proof that Q(a) holds for all ast’s @ under the assumption that Q holds
for its variables. When there are no variables, there are no assumptions, and the proof of P
is a proof that Q holds for all closed ast’s. On the other hand, if x is a variable in a, and we
replace it by an ast b for which @ holds, then Q will hold for the result of replacing x by b
ina.

For the sake of precision, we now give precise definitions of these concepts. Let § be
a finite set of sorts. For a given set S of sorts, an arity has the form (sy, ..., s,)s, which
specifies the sort s € S of an operator taking n > 0 arguments, each of sort 5; € S. Let
O = {0, } be an arity-indexed family of disjoint sets of operators O, of arity «. If o is
an operator of arity (s, ..., 5,)s, we say that o has sort s and has n arguments of sorts
S1sney Sy

Fix a set & of sorts and an arity-indexed family O of sets of operators of each arity. Let
A = { & }ses be a sort-indexed family of disjoint finite sets X, of variables x of sort s.
When A is clear from context, we say that a variable x is of sort s if x € A, and we say
that x is fresh for X, or just fresh when X' is understood, if x ¢ A for any sort s. If x is
fresh for A" and s is a sort, then A, x is the family of sets of variables obtained by adding
x to A;. The notation is ambiguous in that the sort s is not explicitly stated but determined
from context.

The family A[X] = { A[X]; };es of abstract syntax trees, or ast’s, of sort s is the smallest
family satisfying the following conditions:

1. A variable of sort s is an ast of sort s: if x € A}, then x € A[X],.

2. Operators combine ast’s: if o is an operator of arity (s, ..., sp)s, and if @y € A[X];,,
ey ay € A[X],, then o(ay; . . . ;a,) € A[X],.

It follows from this definition that the principle of structural induction can be used to prove
that some property P holds of every ast. To show P(a) holds for every a € A[X], it is
enough to show:

1. If x € X, then P,(x).
2. If o has arity (s, ..., s,)s and Py (ay) and ... and Py, (a,), then Ps(o(ay:. .. ;a,)).

6 Abstract Syntax

For example, it is easy to prove by structural induction that A[X] € A[Y] whenever
X cy.

Variables are given meaning by substitution. If a € A[X, x]y, and b € A[X];, then
[b/x]a € A[lX]y is the result of substituting b for every occurrence of x in a. The ast a is
called the target, and x is called the subject, of the substitution. Substitution is defined by
the following equations:

I. [b/x]x =band [b/x]y = yif x # y.
2. [b/x]o(ars. . .;a,) = o([b/x]ay;. .. ;[b/x]a,).

For example, we may check that
[num[2]/x]plus(x; num[3]) = plus(num|[2]; num[3]).

We may prove by structural induction that substitution on ast’s is well-defined.

Theorem 1.1. Ifa € A[X, x], then for every b € A[X] there exists a unique ¢ € A[X]
such that [b/x]a = ¢

Proof By structural induction on a. If ¢ = x, then ¢ = b by definition; otherwise, if

a = y # x, then ¢ = y, also by definition. Otherwise, @ = o(ay, ..., a,), and we have
by induction unique cy, ..., ¢, such that [b/x]a; = ¢, and ... [b/x]a, = c,, and so c is
¢ =o(cy;...;cy), by definition of substitution. O

1.2 Abstract Binding Trees
I ——

Abstract binding trees, or abt’s, enrich ast’s with the means to introduce new variables and
symbols, called a binding, with a specified range of significance, called its scope. The scope
of a binding is an abt within which the bound identifier can be used, either as a place-holder
(in the case of a variable declaration) or as the index of some operator (in the case of a
symbol declaration). Thus, the set of active identifiers can be larger within a subtree of
an abt than it is within the surrounding tree. Moreover, different subtrees may introduce
identifiers with disjoint scopes. The crucial principle is that any use of an identifier should
be understood as a reference, or abstract pointer, to its binding. One consequence is that
the choice of identifiers is immaterial, so long as we can always associate a unique binding
with each use of an identifier.

As a motivating example, consider the expression let x be a; ina;, which introduces
a variable x for use within the expression a» to stand for the expression a;. The variable
x is bound by the let expression for use within a>; any use of x within a; refers to a
different variable that happens to have the same name. For example, in the expression
let x be 7inx + x occurrences of x in the addition refer to the variable introduced by the
let. On the other hand, in the expression let x be x * x inx + x, occurrences of x within
the multiplication refer to a different variable than those occurring within the addition. The

9 1.2 Abstract Binding Trees

l. x € x.

2. x € o(X1.ay;...:xy.ay) if there exists 1 < i < n such that for every fresh renaming
p . X; < Z; we have x € pla;).

The first condition states that x is free in x but not free in y for any variable y other than x.
The second condition states that if x is free in some argument, independently of the choice
of bound variable names in that argument, then it is free in the overall abt.

The relation a =, b of w-equivalence (so-called for historical reasons) means that a and
b are identical up to the choice of bound variable names. The «-equivalence relation is the
strongest congruence containing the following two conditions:

1. x =, x.
- . . s f. Rl ’ H 3 _— “‘F 1
2. o(Xj.ay;. . iXy.ay) =4 0(X].a);. .3 X,.a)) if for every 1 < i < n, pi(a;) =, pj(a}) for
‘ J . 1 o - = - =
all fresh renamings p; : X; <> Z; and p] : X[< Z;.

The idea is that we rename X; and X consistently, avoiding confusion, and check that a;
and a,-' are w-equivalent. If @ =, b, then a and b are a-variants of each other.

Some care is required in the definition of substitution of an abt b of sort s for free
occurrences of a variable x of sort s in some abt a of some sort, written [b/x]a. Substitution
is partially defined by the following conditions:

1. [b/x]x = b,and [b/x]y = yifx # y.
2. [b/x]o(Ry.ay; . . . iXy.ay) = o(X).a);. . .:X,.a)), where, for each | < i < n, we require
that X; ¢ b, and we set a/ = [b/x]a; if x ¢ X;, and a] = a; otherwise.

The definition of [b/x]a is quite delicate and merits careful consideration.

One trouble spot for substitution is to notice that if x is bound by an abstractor within
a, then x does not occur free within the abstractor and hence is unchanged by substitution.
For example, [b/x]let(a;; x.a;) = let([b/x]a,; x.az2), there being no free occurrences of
X in x.az. Another trouble spot is the capture of a free variable of b during substitution.
For example, if y € b and x # y, then [b/x]let(a;;y.az) is undefined, rather than
being let([b/x]a;; y.[b/x]a>), as one might at first suspect. For example, provided that
x # y,[y/x]let(num[0]; y.plus(x; y))is undefined, not let(num[0]; y.plus(y; y)), which
confuses two different variables named y.

Although capture avoidance is an essential characteristic of substitution, it is, in a sense,
merely a technical nuisance. If the names of bound variables have no significance, then
capture can always be avoided by first renaming the bound variables in a to avoid any
free variables in b. In the foregoing example, if we rename the bound variable y to
y' to obtain @’ £ let(num[0]; y'.plus(x;y’)), then [b/x]a’ is defined and is equal to
let(num[0]; y'.plus(b; y')). The price for avoiding capture in this way is that substitution
is only determined up to a-equivalence, and so we may no longer think of substitution as a
function but only as a proper relation.

10 Abstract Syntax

To restore the functional character of substitution, it is sufficient to adopt the identification
convention, which is stated as follows:

Abstract binding trees are always identified up to a-equivalence.

That is, w-equivalent abt’s are regarded as identical. Substitution can be extended to «-
equivalence classes of abt’s to avoid capture by choosing representatives of the equivalence
classes of b and a in such a way that substitution is defined, then forming the equiv-
alence class of the result. Any two choices of representatives for which substitution is
defined gives a-equivalent results, so that substitution becomes a well-defined total func-
tion. We will adopt the identification convention for abt’s throughout this book.

It will often be necessary to consider languages whose abstract syntax cannot be specified
by a fixed set of operators but rather requires that the available operators be sensitive to the
context in which they occur. For our purposes, it will suffice to consider a set of symbolic
parameters, or symbols, that index families of operators so that as the set of symbols varies,
so does the set of operators. An indexed operator o is a family of operators indexed by
symbols u, so that o[u] is an operator when u is an available symbol. If I{ is a finite set of
symbols, then B[I{; X']is the sort-indexed family of abt’s that are generated by operators and
variables as before, admitting all indexed operator instances by symbols u € {. Whereas
a variable is a place-holder that stands for an unknown abt of its sort, a symbol does not
stand for anything, and is not, itself, an abt. The only significance of symbol is whether it
is the same as or differs from another symbol; the operator instances o[u] and o[u'] are the
same exactly when u is " and are the same symbol.

The set of symbols is extended by introducing a new, or fresh, symbol within a scope
using the abstractor u.a, which binds the symbol u# within the abt a. An abstracted symbol
is “new” in the same sense as for an abstracted variable: the name of the bound symbol
can be varied at will provided that no conflicts arise. This renaming property ensures that
an abstracted symbol is distinct from all others in scope. The only difference between
symbols and variables is that the only operation on symbols is renaming; there is no notion
of substitution for a symbol.

Finally, a word about notation: to help improve the readability we often “group” and
“stage” the arguments to an operator, using round brackets and braces to show grouping, and
generally regarding stages to progress from right to left. All arguments in a group are consid-
ered to occur at the same stage, though their order is significant, and successive groups are
considered to occur in sequential stages. Staging and grouping is often a helpful mnemonic
device, but has no fundamental significance. For example, the abt ofa;; a>}(as; x.a4) is
the same as the abt o(a,; a2; as; x.a4), as would be any other order-preserving grouping or
staging of its arguments.

1.3 Notes
I ——

The concept of abstract syntax has its origins in the pioneering work of Church, Turing,
and Godel, who first considered writing programs that act on representations of programs.

11 Exercises

Originally, programs were represented by natural numbers, using encodings, now called
Gddel-numberings, based on the prime factorization theorem. Any standard text on mathe-
matical logic, such as Kleene (1952), has a thorough account of such representations. The
Lisp language (McCarthy, 1965; Allen, 1978) introduced a much more practical and direct
representation of syntax as symbolic expressions. These ideas were developed further in the
language ML (Gordon et al., 1979), which featured a type system capable of expressing
abstract syntax trees. The AUTOMATH project (Nederpelt et al., 1994) introduced the
idea of using Church’s A notation (Church, 1941) to account for the binding and scope of
variables. These ideas were developed further in LF (Harper et al., 1993).

The concept of abstract binding trees presented here was inspired by the system of
notation developed in the NuPRL Project, which is described in Constable (1986) and
from Martin-Lof’s system of arities, which is described in Nordstrom et al. (1990). Their
enrichment with symbol binders is influenced by Pitts and Stark (1993).

Exercises

1.1. Prove by structural induction on abstract syntax trees that if X' €), then A[X] C
A

1.2. Prove by structural induction modulo renaming on abstract binding trees thatif X' €),
then B[X] C B[Y].

1.3. Show that if a =, &’ and b =, b" and both [b/x]a and [b'/x]a’ are defined, then
[b/x]a =, |b'/x]a’.

1.4. Bound variables can be seen as the formal analogs of pronouns in natural languages.
The binding occurrence of a variable at an abstractor fixes a “fresh” pronoun for use
within its body that refers unambiguously to that variable (in contrast to English, in
which the referent of a pronoun can often be ambiguous). This observation suggests an
alternative representation of abt’s, called abstract binding graphs, or abg’s for short,
as directed graphs constructed as follows:

(a) Free variables are atomic nodes with no outgoing edges.

(b) Operators with n arguments are n-ary nodes, with one outgoing edge directed at
each of their children.

(c¢) Abstractors are nodes with one edge directed to the scope of the abstracted variable.

(d) Bound variables are back edges directed at the abstractor that introduced it.

Notice that ast’s, thought of as abt’s with no abstractors, are acyclic directed graphs

(more precisely, variadic trees), whereas general abt’s can be cyclic. Draw a few

examples of abg’s corresponding to the example abt’s given in this chapter. Give a

precise definition of the sort-indexed family G[.X'] of abstract binding graphs. What

representation would you use for bound variables (back edges)?

Inductive Definitions

Inductive definitions are an indispensable tool in the study of programming languages.
In this chapter we will develop the basic framework of inductive definitions and give
some examples of their use. An inductive definition consists of a set of rules for deriving
Judgments, or assertions, of a variety of forms. Judgments are statements about one or more
abstract binding trees of some sort. The rules specify necessary and sufficient conditions
for the validity of a judgment, and hence fully determine its meaning.

2.1 Judgments
I

We start with the notion of a judgment, or assertion, about an abstract binding tree. We
shall make use of many forms of judgment, including examples such as these:

n nat n is a natural number
n+n=n n is the sum of 7| and na
T type T is a type

e:t expression e has type t
ellv expression e has value v

A judgment states that one or more abstract binding trees have a property or stand in
some relation to one another. The property or relation itself is called a judgment form, and
the judgment that an object or objects have that property or stand in that relation is said
to be an instance of that judgment form. A judgment form is also called a predicate, and
the objects constituting an instance are its subjects. We write a J or J a, for the judgment
asserting that J holds of the abt a. Correspondingly, we sometimes notate the judgment
form J by — J, or J —, using a dash to indicate the absence of an argument to J. When it is
not important to stress the subject of the judgment, we write J to stand for an unspecified
judgment, that is, an instance of some judgment form. For particular judgment forms, we
freely use prefix, infix, or mix-fix notation, as illustrated by the above examples, in order
to enhance readability.

2.2 Inference Rules
(S

An inductive definition of a judgment form consists of a collection of rules of the form

N /N 3

7 2.1

13 2.2 Inference Rules

in which J and Ji, ..., Ji are all judgments of the form being defined. The judgments
above the horizontal line are called the premises of the rule, and the judgment below the
line is called its conclusion. If a rule has no premises (that is, when k& is zero), the rule is
called an axiom; otherwise, it is called a proper rule.

An inference rule can be read as stating that the premises are sufficient for the conclusion:
to show J, it is enough to show Ji, ..., J.. When k is zero, a rule states that its conclusion
holds unconditionally. Bear in mind that there may be, in general, many rules with the same
conclusion, each specifying sufficient conditions for the conclusion. Consequently, if the
conclusion of a rule holds, then it is not necessary that the premises hold, for it might have
been derived by another rule.

For example, the following rules form an inductive definition of the judgment form — nat:

(2.2a)

zero nat

a nat
succ(a) nat

(2.2b)

These rules specify that a nat holds whenever either a is zero, or a is succ(b) where b nat
for some b. Taking these rules to be exhaustive, it follows that @ nat iff @ is a natural
number.

Similarly, the following rules constitute an inductive definition of the judgment
form — tree:

(2.3a)
empty tree
a) tree ap tree

node(a;;a,) tree (2.3b)

These rules specify that a tree holds if either a is empty, or a is node(a, ;a»), where a, tree
and a5 tree. Taking these to be exhaustive, these rules state that @ is a binary tree, which is
to say it is either empty, or a node consisting of two children, each of which is also a binary
tree.

The judgment form a is b expresses the equality of two abt’s a and b such that a nat
and b nat is inductively defined by the following rules:

(2.42)

Zero is zero

aisb
succ(a) is succ(h)

(2.4b)

In each of the preceding examples, we have made use of a notational convention for
specifying an infinite family of rules by a finite number of patterns, or rule schemes. For
example, rule (2.2b) is a rule scheme that determines one rule, called an instance of the rule
scheme, for each choice of object a in the rule. We will rely on context to determine whether
a rule is stated for a specific object a or is instead intended as a rule scheme specifying a
rule for each choice of objects in the rule.

16 Inductive Definitions

those rules, and (b) sufficient for any other property also closed under those rules. The
former means that a derivation is evidence for the validity of a judgment; the latter means
that we may reason about an inductively defined judgment form by rule induction.

When specialized to rules (2.2), the principle of rule induction states that to show P(a)
whenever a nat, it is enough to show:

1. P(zero).
2. for every a, if P(a), then P(succ(a)).

The sufficiency of these conditions is the familiar principle of mathematical induction.
Similarly, rule induction for rules (2.3) states that to show P(a) whenever a tree, it is
enough to show

1. P(empty).
2. for every a; and aa, if P(ay), and if P(a,), then P(node(a;;:az)).

The sufficiency of these conditions is called the principle of tree induction.

We may also show by rule induction that the predecessor of a natural number is also a
natural number. Although this may seem self-evident, the point of the example is to show
how to derive this from first principles.

Lemma 2.1. [f succ(a) nat, then a nat.

Proof It suffices to show that the property P(a) stating that a nat and that @ = succ(b)
implies b nat is closed under rules (2.2).

Rule (2.2a) Clearly zero nat, and the second condition holds vacuously, because zero
is not of the form succ(—).

Rule (2.2b) Inductively, we know that a nat and that if a is of the form succ(b),
then & nat. We are to show that succ(a) nat, which is immediate, and that if succ(a) is
of the form succ(b), then b nat, and we have b nat by the inductive hypothesis. [

Using rule induction, we may show that equality, as defined by rules (2.4) is reflexive.

Lemma 2.2. Ifa nat, then a is a.
Proof By rule induction on rules (2.2):
Rule (2.2a) Applying rule (2.4a) we obtain zero is zero.
Rule (2.2b) Assume that a is a. It follows that succ(a) is succ(a) by an application of

rule (2.4b). O

Similarly, we may show that the successor operation is injective.

17 2.5 lterated and Simultaneous Inductive Definitions

Lemma 2.3. [If succ(a,) is succ(az), then a, is as.

Proof Similar to the proof of Lemma 2.1. 0

2.5 lterated and Simultaneous Inductive Definitions

Inductive definitions are often iterated, meaning that one inductive definition builds on top
of another. In an iterated inductive definition, the premises of a rule

oo K
J

may be instances of either a previously defined judgment form, or the judgment form being
defined. For example, the following rules define the judgment form — list, which states that
a is a list of natural numbers:
(2.7a)
nil list

anat b list

cons(a;b) list (2.70)

The first premise of rule (2.7b) is an instance of the judgment form a nat, which was
defined previously, whereas the premise b list is an instance of the judgment form being
defined by these rules.

Frequently two or more judgments are defined at once by a simultaneous inductive
definition. A simultaneous inductive definition consists of a set of rules for deriving instances
of several different judgment forms, any of which may appear as the premise of any rule.
Because the rules defining each judgment form may involve any of the others, none of the
judgment forms can be taken to be defined prior to the others. Instead, we must understand
that all of the judgment forms are being defined at once by the entire collection of rules.
The judgment forms defined by these rules are, as before, the strongest judgment forms that
are closed under the rules. Therefore, the principle of proof by rule induction continues to
apply. albeit in a form that requires us to prove a property of each of the defined judgment
forms simultaneously.

For example, consider the following rules, which constitute a simultaneous inductive
definition of the judgments a even, stating that a is an even natural number, and @ odd,
stating that a is an odd natural number:

_ (2.8a)
Zero even
b odd
succ(b) even (2.8b)
a even (2.8¢)

succ(a) odd

18 Inductive Definitions

The principle of rule induction for these rules states that to show simultaneously that
P(a) whenever a even and Q(b) whenever b odd, it is enough to show the following:

1. P(zero);
2. if Q(b), then P(succ(h));
3. if P(a), then Q(succ(a)).

As an example, we may use simultaneous rule induction to prove that (1) if a even, then
either a is zero or a is succ(b) with b odd, and (2) if @ odd, then a is succ(b) with b even.
We define P(a) to hold iff a is zero or a is succ(b) for some b with b odd, and define
Q(b) to hold iff b is succ(a) for some a with a even. The desired result follows by rule
induction, because we can prove the following facts:

1. P(zero), which holds because zero is zero.

2. If Q(b), then succ(h) is succ(h’) for some b’ with Q(b"). Take b’ to be b and apply the
inductive assumption.

3. If P(a), then succ(a) is succ(a’) for some a’ with P(a"). Take a’ to be a and apply the
inductive assumption.

2.6 Defining Functions by Rules
B |

A common use of inductive definitions is to define a function by giving an inductive
definition of its graph relating inputs to outputs, and then showing that the relation uniquely
determines the outputs for given inputs. For example, we may define the addition function
on natural numbers as the relation sum(a;b;c), with the intended meaning that ¢ is the sum
of a@ and b, as follows:

b nat
sum(zero;b.b) (2.9a)
sum(a:b;c) (2.9b)

sum(succ(a);b;succ(c))

The rules define a ternary (three-place) relation sum(a:b;c) among natural numbers a, b,
and c. We may show that ¢ is determined by a and b in this relation.

Theorem 2.4. For every a nat and b nat, there exists a unique ¢ nat such that sum(a;b;c).

Proof The proof decomposes into two parts:

1. (Existence) If @ nat and b nat, then there exists ¢ nat such that sum(a;b;c).
2. (Uniqueness) If sum(a;b;c), and sum(a;b;c’), then ¢ is ¢’.

19 Exercises

For existence, let P(a) be the proposition if b nat then there exists ¢ nat such that
sum(a;b;c). We prove that if a nat then P(a) by rule induction on rules (2.2). We have two
cases to consider:

Rule (2.2a) We are to show P(zero). Assuming b nat and taking ¢ to be b, we obtain
sumi(zero;b;c) by rule (2.9a).

Rule (2.2b) Assuming P(a), we are to show P(succ(a)). That is, we assume that if
b nat then there exists ¢ such that sum(a;b;c) and are to show that if " nat, then
there exists ¢’ such that sum(succ(a);b";¢’). To this end, suppose that b nat. Then by
induction there exists ¢ such that sum(a;b’;c). Taking ¢’ to be succ(c), and applying
rule (2.9b), we obtain sum(succ(a);b’ic’), as required.

For uniqueness, we prove that if sum(a:bicy), then if sum(a:b;ca), then ¢ is ¢z by rule
induction based on rules (2.9).

Rule (2.9a) We have a is zero and ¢ is b. By an inner induction on the same rules, we
may show that if sum(zero;b;c,), then ¢; is b. By Lemma 2.2, we obtain b is b.

Rule (2.9b) We have that a is succ(a’) and ¢; is succ(c)), where sum(a’;b;c}). By an
inner induction on the same rules, we may show that if sum(a;b:c;), then c; is succ(c’z)
where sum(a’;b;c;). By the outer inductive hypothesis, ¢} is ¢; and so ¢y is c. O

2.7 Notes
I

Aczel (1977) provides a thorough account of the theory of inductive definitions on which the
present account is based. A significant difference is that we consider inductive definitions
of judgments over abt’s as defined in Chapter 1, rather than with natural numbers. The
emphasis on judgments is inspired by Martin-Lof’s logic of judgments (Martin-Lof, 1983,
1987).

Exercises

2.1. Give an inductive definition of the judgment max(m;n;p), where m nat, n nat,
and p nat, with the meaning that p is the larger of m and n. Prove that every m and n
are related to a unique p by this judgment.

2.2. Consider the following rules, which define the judgment hgt(z;n) stating that the binary
tree t has height n.

(2.10a)
hgt(empty;zero)
hgt(ri;n1) hgt(fasna) max(nynain)
hgt(node(#;;1);succ(n))
Prove that the judgment hgt defines a function from trees to natural numbers.

(2.10b)

20

Inductive Definitions

2.3.

24,

2.5.

2.6.

Given an inductive definition of ordered variadic trees whose nodes have a finite, but
variable, number of children with a specified left-to-right ordering among them. Your
solution should consist of a simultaneous definition of two judgments, ¢ tree, stating
that 7 is a variadic tree, and f forest, stating that f is a “forest” (finite sequence) of
variadic trees.

Give an inductive definition of the height of a variadic tree of the kind defined in
Exercise 2.3. Your definition should make use of an auxiliary judgment defining the
height of a forest of variadic trees and will be defined simultaneously with the height
of a variadic tree. Show that the two judgments so defined each define a function.
Give an inductive definition of the binary natural numbers, which are either zero,
twice a binary number, or one more than twice a binary number. The size of such a
representation is logarithmic, rather than linear, in the natural number it represents.
Give an inductive definition of addition of binary natural numbers as defined in Exer-
cise 2.5. Hint: Proceed by analyzing both arguments to the addition, and make use of
an auxiliary function to compute the successor of a binary number. Hint: Alternatively,
define both the sum and the sum-plus-one of two binary numbers mutually recursively.

23 3.1 Hypothetical Judgments

3.1.2 Admissibility

Admissibility, written I = J, is a weaker form of hypothetical judgment stating that - I"
implies % J. That is, the conclusion J is derivable from rules R when the assumptions
[are all derivable from rules R. In particular if any of the hypotheses are not derivable
relative to R, then the judgment is vacuously true. An equivalent way to define the judgment
Ji, ..., Ju Exr J is to state that the rule
oo
J (3.5)

is admissible relative to the rules in ‘R. Given any derivations of Jy, ..., J, using the rules
in %, we may build a derivation of J using the rules in R.
For example, the admissibility judgment

succ(a) even |=(2.g) a odd (3.6)

is valid, because any derivation of succ(a) even from rules (2.2) must contain a sub-
derivation of @ odd from the same rules, which justifies the conclusion. This fact can be
proved by induction on rules (2.8). That judgment (3.6) is valid may also be expressed by
saying that the rule
succ(a) even
a odd (3.7)

1s admissible relative to rules (2.8).
In contrast to derivability the admissibility judgment is nor stable under extension to the
rules. For example, if we enrich rules (2.8) with the axiom

(3.8)

succ(zero) even

then rule (3.6) is inadmissible, because there is no composition of rules deriving zero odd.
Admissibility is as sensitive to which rules are absenr from an inductive definition as it is
to which rules are present in it.

The structural properties of derivability ensure that derivability is stronger than admissi-
bility.

Theorem 3.2. IfI" - J, then T |=r J.

Proof Repeated application of the transitivity of derivability shows that if I' ¢ J and
b I', then 7 J. O
To see that the converse fails, note that
succ(zero) even |71(2.8) zero odd,

because there is no derivation of the right-hand side when the left-hand side is added as an
axiom to rules (2.8). Yet the corresponding admissibility judgment

succ(zero) even F:(Z.S) zero odd

24 Hypothetical and General Judgments

is valid, because the hypothesis is false: there is no derivation of succ(zero) even from
rules (2.8). Even so, the derivability

succ(zero) even I—(z'g) succ(succ(zero)) odd

is valid, because we may derive the right-hand side from the left-hand side by composing
rules (2.8).

Evidence for admissibility can be thought of as a mathematical function transforming
derivations v, ..., ¥, of the hypotheses into a derivation ¥ of the consequent. Therefore,
the admissibility judgment enjoys the same structural properties as derivability and hence
is a form of hypothetical judgment:

Reflexivity If J is derivable from the original rules, then J is derivable from the original
rules: J E=x J.

Weakening If J is derivable from the original rules assuming that each of the judgments
in I" are derivable from these rules, then J must also be derivable assuming that I" and
K are derivable from the original rules: if I' = J,then ", K =x J.

Transitivity If ', K =r J and T g K, then I' |=¢ J. If the judgments in " are
derivable, so is K, by assumption, and hence so are the judgments in I', K, and hence
sois J.

Theorem 3.3. The admissibility judgment T |=r J enjoys the structural properties of
entailment.

Proof Follows immediately from the definition of admissibility as stating that if the
hypotheses are derivable relative to R, then so is the conclusion. O

If a rule r is admissible with respect to a rule set R, then b5 , J is equivalent to b J.
For if 5 J, then obviously b5 , J, by simply disregarding r. Conversely, if -5, J, then
we may replace any use of r by its expansion in terms of the rules in K. It follows by
rule induction on R, r that every derivation from the expanded set of rules R, r can be
transformed into a derivation from R alone. Consequently, if we wish to prove a property
of the judgments derivable from R, r, when r is admissible with respect to R, it suffices
show that the property is closed under rules R alone, because its admissibility states that
the consequences of rule r are implicit in those of rules R.

3.2 Hypothetical Inductive Definitions
I

It is useful to enrich the concept of an inductive definition to allow rules with derivability
judgments as premises and conclusions. Doing so lets us introduce local hypotheses that
apply only in the derivation of a particular premise, and also allows us to constrain inferences
based on the global hypotheses in effect at the point where the rule is applied.

25 3.2 Hypothetical Inductive Definitions

A hypothetical inductive definition consists of a set of hypothetical rules of the following
form:
roy=J, ... I'r,FJ,
CEJ '

(3.9)

The hypotheses I'" are the global hypotheses of the rule, and the hypotheses I'; are the
local hypotheses of the ith premise of the rule. Informally, this rule states that J is a
derivable consequence of I" when each J; is a derivable consequence of I', augmented
with the hypotheses I';. Thus, one way to show that J is derivable from I is to show, in
turn, that each J; is derivable from I" I';. The derivation of each premise involves a “context
switch™ in which we extend the global hypotheses with the local hypotheses of that premise,
establishing a new set of global hypotheses for use within that derivation.

We require that all rules in a hypothetical inductive definition be uniform in the sense that
they are applicable in all global contexts. Uniformity ensures that a rule can be presented
in implicit, or local form,

| T ST A i
;)
in which the global context has been suppressed with the understanding that the rule applies
for any choice of global hypotheses.

(3.10)

A hypothetical inductive definition is to be regarded as an ordinary inductive definition
of a formal derivability judgment I" = J consisting of a finite set of basic judgments I" and
a basic judgment J. A set of hypothetical rules R defines the strongest formal derivability
judgment that is structural and closed under uniform rules R. Structurality means that the
formal derivability judgment must be closed under the following rules:

(3.11a)
rJ+J
- J
FEET (3.11b)
K TLK-J 3.11¢)

re=us

These rules ensure that formal derivability behaves like a hypothetical judgment. We write
I Fx J to mean that I" - J is derivable from rules R.

The principle of hypothetical rule induction is just the principle of rule induction applied
to the formal hypothetical judgment. So to show that P(I" = J) when I" % J, it is enough
to show that P is closed under the rules of R and under the structural rules.! Thus, for each
rule of the form (3.9), whether structural or in R, we must show that

ifP('ryFJpand ... and P(I' T, F J,), then P(I" - J).

But this is just a restatement of the principle of rule induction given in Chapter 2, specialized
to the formal derivability judgment I' - J.

In practice, we usually dispense with the structural rules by the method described in
Section 3.1.2. By proving that the structural rules are admissible, any proof by rule induction

26 Hypothetical and General Judgments

may restrict attention to the rules in R alone. If all rules of a hypothetical inductive
definition are uniform, the structural rules (3.11b) and (3.11c) are clearly admissible.
Usually, rule (3.11a) must be postulated explicitly as a rule, rather than shown to be
admissible on the basis of the other rules.

3.3 General Judgments
~

General judgments codify the rules for handling variables in a judgment. As in mathematics
in general, a variable is treated as an unknown, ranging over a specified set of objects. A
generic judgment states that a judgment holds for any choice of objects replacing designated
variables in the judgment. Another form of general judgment codifies the handling of
symbolic parameters. A parametric judgment expresses generality over any choice of fresh
renamings of designated symbols of a judgment. To keep track of the active variables and
symbols in a derivation, we write I" F%X J to say that J is derivable from I'" according to
rules R, with objects consisting of abt’s over symbols Z{ and variables X'.

The concept of uniformity of a rule must be extended to require that rules be closed
under renaming and substitution for variables and closed under renaming for parameters.
More precisely, if R is a set of rules containing a free variable x of sort s, then it must also
contain all possible substitution instances of abt’s a of sort s for x, including those that
contain other free variables. Similarly, if R contains rules with a parameter «, then it must
contain all instances of that rule obtained by renaming u of a sort to any u’ of the same sort.
Uniformity rules out stating a rule for a variable, without also stating it for all instances of
that variable. It also rules out stating a rule for a parameter without stating it for all possible
renamings of that parameter.

Generic derivabiliry judgment is defined by

VITrHxJ iff 5,

where Y N A = (. Evidence for generic derivability consists of a generic derivation V
involving the variables X'). So long as the rules are uniform, the choice of) does not
matter, in a sense to be explained shortly.

For example, the generic derivation v,

x nat
succ(x) nat
succ(succ(x)) nat

is evidence for the judgment
x | x nat l—f’z 2) succ(succ(x)) nat

provided x ¢ A’. Any other choice of x would work just as well, as long as all rules are
uniform.

27 3.4 Generic Inductive Definitions

The generic derivability judgment enjoys the following structural properties governing
the behavior of variables, provided that R is uniform.

Proliferation If Y | T 3% J then Y, y | T F3 J.
Renaming If V, y | T+ J.then V., y' | [y < y'IT" b5 [y < y'1J forany y' ¢ X' V.
Substitution If Y,y | ' 5 J anda € B[X' Y], then Y | [a/yIT b5 [a/y1J.

Proliferation is guaranteed by the interpretation of rule schemes as ranging over all expan-
sions of the universe. Renaming is built into the meaning of the generic judgment. It is left
implicit in the principle of substitution that the substituting abt is of the same sort as the
substituted variable.

Parametric derivability is defined analogously to generic derivability, albeit by general-
izing over symbols, rather than variables. Parametric derivability is defined by

VIIYITHEE g it Y e,

where VN4 = . Bvidence for parametric derivability consists of a derivation V involving
the symbols V. Uniformity of R ensures that any choice of parameter names is as good as
any other; derivability is stable under renaming.

3.4 Generic Inductive Definitions

A generic inductive definition admits generic hypothetical judgments in the premises of
rules, with the effect of augmenting the variables, as well as the rules, within those premises.
A generic rule has the form

yylroEsn ..o YV T EJ4
YVITFJ

(3.12)

The variables) are the global variables of the inference, and, for each 1 < i < n, the
variables); are the local variables of the ith premise. In most cases, a rule is stated for all
choices of global variables and global hypotheses. Such rules can be given in implicit form,

y1|[‘l}_']1 ynlrrt'_']n.
J

A generic inductive definition is just an ordinary inductive definition of a family of formal
generic judgments of the form) | I' = J. Formal generic judgments are identified up to
renaming of variables, so that the latter judgment is treated as identical to the judgment
V' | p(') = p(J) for any renaming p : Y <>)'. If R is a collection of generic rules, we
write)V | ' b J to mean that the formal generic judgment)’ | I" - J is derivable from
rules R.

When specialized to a set of generic rules, the principle of rule induction states that to
show P(Y | T = J)when) | I b5 J,itis enough to show that P is closed under the rules

(3.13)

30

Hypothetical and General Judgments

3.4.

3.5.

3.6.

Show that if x | x comb ¢ @ comb, then there is a combinator @', written [x] a and
called bracket abstraction, such that

x| xcombleusa x =a.
Consequently, by Exercise 3.2, if @’ comb, then
([x]a)a" = [a" /x]a.
Hint: Inductively define the judgment
x| x comb - abs, aisa’,

where x | x comb - a comb. Then argue that it defines a’ as a binary function of x
and a. The motivation for the conversion axioms governing k and s should become
clear while developing the proof of the desired equivalence.

Prove that bracket abstraction, as defined in Exercise 3.4, is non-compositional by
exhibiting @ and b such that @ comb and

xy | x combycomb kg b comb

such that [a/y]([x] b) # [x] (la/y]b). Hint: Consider the case that b is y.
Suggest a modification to the definition of bracket abstraction that is compositional
by showing under the same conditions given above that

la/y)([x]b) = [x]([a/y]b).

Consider the set B[.X'] of abt’s generated by the operators ap, with arity (Exp, Exp)Exp,
and A, with arity (Exp.Exp)Exp, and possibly involving variables in X', all of which
are of sort Exp. Give an inductive definition of the judgment b closed, which specifies
that /» has no free occurrences of the variables in A". Hint: it is essential to give an
inductive definition of the hypothetical, general judgment

X1,...,X, | xy closed, ..., x, closed - b closed

in order to account for the binding of a variable by the A operator. The hypothesis that
a variable is closed seems self-contradictory in that a variable obviously occurs free
in itself. Explain why this is not the case by examining carefully the meaning of the
hypothetical and general judgments.

Notes

1 Writing P(I' = J) is a mild abuse of notation in which the turnstile is used to separate the two
arguments to P for the sake of readability.
2 The combinator ap(a,;a,) is written a; a, for short, left-associatively when used in succession.

PARTII

Statics and Dynamics

Caopyrighted material

Statics

Most programming languages exhibit a phase distinction between the static and dynamic
phases of processing. The static phase consists of parsing and type checking to ensure
that the program is well-formed; the dynamic phase consists of execution of well-formed
programs. A language is said to be safe exactly when well-formed programs are well-
behaved when executed.

The static phase is specified by a statics comprising a set of rules for deriving typing
judgments stating that an expression is well-formed of a certain type. Types mediate the
interaction between the constituent parts of a program by “predicting” some aspects of the
execution behavior of the parts so that we may ensure they fit together properly at run-time.
Type safety tells us that these predictions are correct; if not, the statics is considered to be
improperly defined, and the language is deemed unsafe for execution.

In this chapter, we present the statics of a simple expression language, E, as an illustration
of the method that we will employ throughout this book.

4.1 Syntax
|

When defining a language we shall be primarily concerned with its abstract syntax, specified
by a collection of operators and their arities. The abstract syntax provides a systematic,
unambiguous account of the hierarchical and binding structure of the language and is
considered the official presentation of the language. However, for the sake of clarity, it
is also useful to specify minimal concrete syntax conventions, without going through the
trouble to set up a fully precise grammar for it.

We will accomplish both of these purposes with a syntax chart, whose meaning is best
illustrated by example. The following chart summarizes the abstract and concrete syntax
of E.

Typ 7 == num num numbers
str str strings

Exp e u= x X variable
num(n] n numeral
str[s] "s" literal
plus(e;;ea) e +ex addition
times(e;;er) e x e multiplication
cat(e;; e2) e e concatenation
len(e) le| length

let(ej;x.€2) letxbeejine, definition

34 Statics

This chart defines two sorts, Typ, ranged over by 7, and Exp, ranged over by e. The chart
defines a set of operators and their arities. For example, it specifies that the operator let
has arity (Exp, Exp.Exp)Exp, which specifies that it has two arguments of sort Exp, and
binds a variable of sort Exp in the second argument.

4.2 Type System
I

The role of a type system is to impose constraints on the formations of phrases that
are sensitive to the context in which they occur. For example, whether the expression
plus(x;num[n]) is sensible depends on whether the variable x is restricted to have type
num in the surrounding context of the expression. This example is, in fact, illustrative of
the general case, in that the only information required about the context of an expression is
the type of the variables within whose scope the expression lies. Consequently, the statics
of E consists of an inductive definition of generic hypothetical judgments of the form

¥|Tke:r,

where X is a finite set of variables, and I is a fyping context consisting of hypotheses of the
form x : 7, one for each x € X. We rely on typographical conventions to determine the set
of variables, using the letters x and y to stand for them. We write x ¢ dom(I") to say that
there is no assumption in I' of the form x : t for any type t, in which case we say that the
variable x is fresh for T,

The rules defining the statics of E are as follows:

Faitrair @1

FF strlo] ser o)

T mumin] - mum o
I'Hep:num I ke :num

I - plus(e;:e;) : num (4.1d)
ey :num T F e :num

I' - times(e;; ez) : num (4.1e)
I'tep:istr T'ke:str

'+ cat(er;er) : str 4.1f)

I'He:str
T I len(e) : num (4.1g)
F'kFe:ty Toximber:n @i

' let(e;;x.es): 12
In rule (4.1h), we tacitly assume that the variable x is not already declared in I'. This
condition may always be met by choosing a suitable representative of the «-equivalence
class of the 1et expression.

37 Exercises

the type num are addition and multiplication, and those for the type str are concatenation
and length.

The importance of this classification will become clear once we have defined the dynam-
ics of the language in Chapter 5. Then we will see that the elimination forms are inverse
to the introduction forms in that they “take apart” what the introduction forms have “put
together.” The coherence of the statics and dynamics of a language expresses the concept
of rype safety, the subject of Chapter 6.

4.4 Notes
0 I —

The concept of the static semantics of a programming language was historically slow to
develop, perhaps because the earliest languages had relatively few features and only very
weak type systems. The concept of a static semantics in the sense considered here was
introduced in the definition of the Standard ML programming language (Milner et al.,
1997), building on earlier work by Church and others on the typed A-calculus (Barendregt,
1992). The concept of introduction and elimination, and the associated inversion principle,
was introduced by Gentzen in his pioneering work on natural deduction (Gentzen, 1969).
These principles were applied to the structure of programming languages by Martin-L6f
(1984, 1980).

Exercises

4.1. Itis sometimes useful to give the typing judgment I' F e : T an “operational” reading
that specifies more precisely the flow of information required to derive a typing
judgment (or determine that it is not derivable). The analytic mode corresponds to
the context, expression, and type being given, with the goal to determine whether
the typing judgment is derivable. The synthetic mode corresponds to the context and
expression being given, with the goal to find the unique type t, if any, possessed by
the expression in that context. These two readings can be made explicit as judgments
of the form e | T, corresponding to the analytic mode, and e 1 T, corresponding to
the synthetic mode.

Give a simultaneous inductive definition of these two judgments according to the
following guidelines:
(a) Variables are introduced in synthetic form.
(b) If we can synthesize a unique type for an expression, then we can analyze it with
respect to a given type by checking type equality.
(c) Definitions need care, because the type of the defined expression is not given, even
when the type of the result is given.
There is room for variation; the point of the exercise is to explore the possibilities.

38 Statics

4.2, One way to limit the range of possibilities in the solution to Exercise 4.1 is to restrict
and extend the syntax of the language so that every expression is either synthetic or
analytic according to the following suggestions:

(a) Variables are analytic.

(b) Introduction forms are analytic, elimination forms are synthetic.

(c) An analytic expression can be made synthetic by introducing a type cast of the
form cast{r}(e) specifying that e must check against the specified type t, which
is synthesized for the whole expression.

(d) The defining expression of a definition must be synthetic, but the scope of the
definition can be either synthetic or analytic.

Reformulate your solution to Exercise 4.1 to take account of these guidelines.

Note
I

1 This point may seem so obvious that it is not worthy of mention, but, surprisingly, there are
useful type systems that lack this property. Because they do not validate the structural principle of
weakening, they are called substructural type systems.

Dynamics

The dynamics of a language describes how programs are executed. The most important
way to define the dynamics of a language is by the method of structural dynamics, which
defines a transition system that inductively specifies the step-by-step process of executing
a program. Another method for presenting dynamics, called contextual dynamics, is a
variation of structural dynamics in which the transition rules are specified in a slightly
different way. An equational dynamics presents the dynamics of a language by a collection
of rules defining when one program is definitionally equivalent to another.

5.1 Transition Systems

A transition system is specified by the following four forms of judgment:

1. s state, asserting that s is a state of the transition system.

2. s final, where s state, asserting that s is a final state.

3. s initial, where s state, asserting that s is an initial state.

4. s —> s, where s state and s’ state, asserting that state s may transition to state s’

In practice, we always arrange things so that no transition is possible from a final state: if
s final, then there is no s’ state such that s — s’. A state from which no transition is
possible is stuck. Whereas all final states are, by convention, stuck, there may be stuck states
in a transition system that are not final. A transition system is deterministic iff for every
state s there exists at most one state s’ such that s — s'; otherwise, it is non-deterministic.

A transition sequence is a sequence of states s, . . . , 5, such that s initial, and s; — s5;4
for every 0 < i < n. A transition sequence is maximal iff there is no s such that s, — s,
and it is complete iff it is maximal and s, final. Thus, every complete transition sequence
is maximal, but maximal sequences are not necessarily complete. The judgment s | means
that there is a complete transition sequence starting from s, which is to say that there exists
s’ final such that s —* s'.

The iteration of transition judgment s ——* s’ is inductively defined by the following
rules:

s—*g (5.1a)

! ! * I

S8 S*lT)' S (51b)
Sk

40 Dynamics

When applied to the definition of iterated transition, the principle of rule induction states
that to show that P(s, s") holds when s —* §’, it is enough to show these two properties
of P:

1. P(s,s).
2. if s —> s" and P(s', 5""), then P(s,s").

The first requirement is to show that P is reflexive. The second is to show that P is closed
under head expansion, or closed under inverse evaluation. Using this principle, it is easy
to prove that —* is reflexive and transitive.

The n-times iterated transition judgment s —" s, where n > 0, is inductively defined

by the following rules:
s —0¢ (5.2a)

s 5" & —"s"
n+1 5"

(5.2b)

S

Theorem 5.1. For all states s and s', s —* s iff s —* s for some k = 0.

Proof From left to right, by induction on the definition of multi-step transition. From right
to left, by mathematical induction on k > 0. O

5.2 Structural Dynamics

A structural dynamics for the language E is given by a transition system whose states are
closed expressions. All states are initial. The final states are the (closed) values, which
represent the completed computations. The judgment ¢ val, which states that e is a value,
is inductively defined by the following rules:

num|n] val (5.3a)

str[s] val (5.3b)

The transition judgment ¢ — ¢’ between states is inductively defined by the following

rules:
ny+n=n

plus(num[#z;]; num{n;]) — num[zn] (5-42)
el — e’l
; (5.4b)
plus(e;;es) —> plus(e|:ea)
eyval exr— ¢} (5.4¢)

plus(e;;ez) —> plus(e;e))

41 5.2 Structural Dynamics

51783 = 5 str

cat(str(s]: str(s;]) — str(s] (5.4d)
e — e
’ (546)
cat(e;;ez) —> cat(e];e)
ey val e — €
N (5.4f)

cat(e; e;) —> cat(e); eh)

|: el —> ¢] (5.49)

let(e); x.e2) —> let(e];x.e2)

[ey val]
let(e): x.e2) —> [e1/x]es

(5.4h)

We have omitted rules for multiplication and computing the length of a string, which follow
a similar pattern. Rules (5.4a), (5.4d), and (5.4h) are instruction transitions, because they
correspond to the primitive steps of evaluation. The remaining rules are search transitions
that determine the order of execution of instructions.

The bracketed rule (5.4g) and bracketed premise on rule (5.4h) are included for a by-value
interpretation of 1et and omitted for a by-name interpretation. The by-value interpretation
evaluates an expression before binding it to the defined variable, whereas the by-name
interpretation binds it in unevaluated form. The by-value interpretation saves work if the
defined variable is used more than once but wastes work if it is not used at all. Conversely,
the by-name interpretation saves work if the defined variable is not used and wastes work
if it is used more than once.

A derivation sequence in a structural dynamics has a two-dimensional structure, with
the number of steps in the sequence being its “width™ and the derivation tree for each step
being its “height.” For example, consider the following evaluation sequence:

let(plus(num(1]; num[2]); x.plus(plus(x:num[3]); num[4]))
> let(num[3]; x.plus(plus(x; num[3]); num[4]))
+—— plus(plus(num[3]; num[3]); num[4])
+—— plus(num[6]; num[4])
+——> num[10]

Each step in this sequence of transitions is justified by a derivation according to rules (5.4).
For example, the third transition in the preceding example is justified by the following
derivation:

plus(num[3]; num[3]) — num[6] (5.4)

plus(plus(num[3]; num|3]); num[4]) — plus(num|[6]; num[4])

(5.4b)

The other steps are similarly justified by composing rules.

The principle of rule induction for the structural dynamics of E states that to show
P(e —> ¢') when e — ¢, it is enough to show that P is closed under rules (5.4). For
example, we may show by rule induction that the structural dynamics of E is determinate,

Image
not
avallable

44 Dynamics

Proof From left to right, proceed by rule induction on rules (5.4). It is enough in each
case to exhibit an evaluation context £ such that e = E{eg}, ¢’ = e}, and ¢g — ¢,
For example, for rule (5.4a), take £ = o, and note that ¢ — ¢'. For rule (5.4b), we
have by induction that there exists an evaluation context &£ such that ¢; = &i{eg}, €] =
Ei{ey), and ey — e). Take & = plus(&;ey), and note that e = plus(&);ez){ep} and
¢’ = plus(&;; ex)e,} with eg — ¢.

From right to left, note that if e ——>. €', then there exists an evaluation context £
such that e = Efeg), ¢ = E{ey}, and e — e;. We prove by induction on rules (5.7)
that e —— ¢’. For example, for rule (5.7a), g is e, ¢ is ¢/, and ¢ — ¢'. Hence,
e > ¢'. For rule (5.7b), we have that £ = plus(£;e2), e1 = Elen), €] = Eiley),
and) — ¢|. Therefore, e is plus(ey; e2), ¢’ is plus(e]; e2), and therefore by rule (5.4b),
er—rge. O

Because the two transition judgments coincide, contextual dynamics can be considered
an alternative presentation of a structural dynamics. It has two advantages over structural
dynamics, one relatively superficial, one rather less so. The superficial advantage stems
from writing rule (5.8) in the simpler form

ey — ¢

_— . 5.9
Eleo) — Eley) e

This formulation is superficially simpler in that it does not make explicit how an expression
is decomposed into an evaluation context and a reducible expression. The deeper advantage
of contextual dynamics is that all transitions are between complete programs. One need
never consider a transition between expressions of any type other than the observable type,
which simplifies certain arguments, such as the proof of Lemma 47.16.

5.4 Equational Dynamics

Another formulation of the dynamics of a language regards computation as a form of
equational deduction, much in the style of elementary algebra. For example, in algebra, we
may show that the polynomials x? +2 x + 1 and (x + 1)° are equivalent by a simple process
of calculation and re-organization using the familiar laws of addition and multiplication.
The same laws are enough to determine the value of any polynomial, given the values of
its variables. So, for example, we may plug in 2 for x in the polynomial x> + 2x + 1
and calculate that 22 + 2 x 2 + 1 = 9, which is indeed (2 + 1)>. We thus obtain a model
of computation in which the value of a polynomial for a given value of its variable is
determined by substitution and simplification.

Very similar ideas give rise to the concept of definitional, or computational, equivalence
of expressions in E, which we write as X' | ' - e =¢’ : t, where I" consists of one
assumption of the form x : 7 for each x € A'. We only consider definitional equality of
well-typed expressions, so that when considering the judgment I’ F e = ¢’ : 1, we tacitly

45 5.4 Equational Dynamics

assume that T e : T and I - ¢’ : t. Here, as usual, we omit explicit mention of the
variables A when they can be determined from the forms of the assumptions I'.

Definitional equality of expressions in E under the by-name interpretation of let is
inductively defined by the following rules:

FFe=eir (5.10a)
ke ze::r (5.10b)
be=é:1
'Fe=eée:1 ITFe=e":1
5.10
'Fe=e€e":1 (c)
Fe =e :num I'Fey=é):num
— (5.10d)
I' - plus(e;; ;) = plus(e]; e;) : num
FFey=e :str I'Fex=e;:str
- (5.10e)
I' - cat(e;; e2) = cat(e);e)) : str
F'tFer=e;:1y Thx:mibe=eé:t
1 1 1 1 : 2 : 2 2 (5,10f)
' let(e;;x.e2) = let(e|;x.€5) 1 T2
ny +noisn nat
I' - plus(num[n;]; num[n,]) = num[n] : num (5.10g)
5178 =5 str (5.10h)
I' - cat(str[s;];str[s2]) = str[s] : str ’
[let(e;;x.ex) =[er/xler: (5.101)

Rules (5.10a) through (5.10c) state that definitional equality is an equivalence relation.
Rules (5.10d) through (5.10f) state that it is a congruence relation, which means that
it is compatible with all expression-forming constructs in the language. Rules (5.10g)
through (5.10i) specify the meanings of the primitive constructs of E. We say thatrules (5.10)
define the strongest congruence closed under rules (5.10g), (5.10h), and (5.101).

Rules (5.10) suffice to calculate the value of an expression by a deduction similar to that
used in high school algebra. For example, we may derive the equation

letxbel+2inx+3+4=10:num

by applying rules (5.10). Here, as in general, there may be many different ways to derive
the same equation, but we need find only one derivation in order to carry out an evaluation.

Definitional equality is rather weak in that many equivalences that we might intuitively
think are true are not derivable from rules (5.10). A prototypical example is the putative
equivalence

X1 :num, x> : num - x; 4+ x2 = x» + x; : num, (5.11)

46 Dynamics

which, intuitively, expresses the commutativity of addition. Although we shall not prove
this here, this equivalence is not derivable from rules (5.10). And yet we may derive all of
its closed instances,

ny + n> =n> +np : num, (5.12)

where n; nat and n, nat are particular numbers.

The “gap” between a general law, such as Equation (5.11), and all of its instances,
given by Equation (5.12), may be filled by enriching the notion of equivalence to include a
principle of proof by mathematical induction. Such a notion of equivalence is sometimes
called semantic equivalence, because it expresses relationships that hold by virtue of the
dynamics of the expressions involved. (Semantic equivalence is developed rigorously for a
related language in Chapter 46.)

Theorem 5.5. For the expression language E, the relation ¢ = ¢’ : t holds iff there exists
ey val such that e —* ¢y and e’ —* ¢.

Proof The proof from right to left is direct, because every transition step is a valid
equation. The converse follows from the following, more general, proposition, which
is proved by induction on rules (5.10): if x; : 7y,...,x, : T, b e=¢" : t, then when
el T, e’l ITi, ..., €, 1 Ty, €, 0 Ty, if foreach 1 <i < n the expressions ¢; and e} evaluate
to a common value v;, then there exists ey val such that

e,e,/x1, ... x,]e —" ¢
and
lef, ... eh/xt, ... xnle —" ep. O
5.5 Notes

The use of transition systems to specify the behavior of programs goes back to the early
work of Church and Turing on computability. Turing’s approach emphasized the concept
of an abstract machine consisting of a finite program together with unbounded memory.
Computation proceeds by changing the memory in accordance with the instructions in the
program. Much early work on the operational semantics of programming languages, such
as the SECD machine (Landin, 1965), emphasized machine models. Church’s approach
emphasized the language for expressing computations and defined execution in terms of the
programs themselves, rather than in terms of auxiliary concepts such as memories or tapes.
Plotkin’s elegant formulation of structural operational semantics (Plotkin, 1981), which we
use heavily throughout this book, was inspired by Church’s and Landin’s ideas (Plotkin,
2004). Contextual semantics, which was introduced by Felleisen and Hieb (1992), may
be seen as an alternative formulation of structural semantics in which “search rules” are
replaced by “context matching.” Computation viewed as equational deduction goes back
to the early work of Herbrand, Gédel, and Church.

47 Exercises

Exercises

5.1. Prove thatif s —* s’ and s’ —* s, then s —* 5",
5.2. Complete the proof of Theorem 5.1 along the lines suggested there.
5.3. Complete the proof of Theorem 5.5 along the lines suggested there.

Type Safety

Most programming languages are safe (or, type safe, or strongly typed). Informally, this
means that certain kinds of mismatches cannot arise during execution. For example, type
safety for E states that it will never arise that a number is added to a string, or that two
numbers are concatenated, neither of which is meaningful.

In general, type safety expresses the coherence between the statics and the dynamics.
The statics may be seen as predicting that the value of an expression will have a certain form
so that the dynamics of that expression is well-defined. Consequently, evaluation cannot
*get stuck™ in a state for which no transition is possible, corresponding in implementation
terms to the absence of “illegal instruction” errors at execution time. Safety is proved by
showing that each step of transition preserves typability and by showing that typable states
are well-defined. Consequently, evaluation can never “go off into the weeds” and, hence,
can never encounter an illegal instruction.

Type safety for the language E is stated precisely as follows:

Theorem 6.1 (Type Safety).

1. Ife:tande— €, thene': 1.

2. Ife: 1, then either e val, or there exists ¢’ such that e —> ¢’

The first part, called preservation, says that the steps of evaluation preserve typing; the
second, called progress, ensures that well-typed expressions are either values or can be
further evaluated. Safety is the conjunction of preservation and progress.

We say that an expression e is stuck iff it is not a value, yet there is no ¢’ such that
¢ — ¢’. It follows from the safety theorem that a stuck state is necessarily ill-typed. Or,
putting it the other way around, that well-typed states do not get stuck.

6.1 Preservation

The preservation theorem for E defined in Chapters 4 and 5 is proved by rule induction on
the transition system (rules (5.4)).

Theorem 6.2 (Preservation). Ife : 7 and e — €', then e’ : t.

51 6.3 Run-Time Errors

it to be used in the denominator of a quotient. It is difficult to do this without ruling out too
many programs as ill-formed. We cannot predict statically whether an expression will be
non-zero when evaluated, so the second approach is most often used in practice.

The overall idea is to distinguish checked from unchecked errors. An unchecked error
is one that is ruled out by the type system. No run-time checking is performed to ensure
that such an error does not occur, because the type system rules out the possibility of it
arising. For example, the dynamics need not check, when performing an addition, that its
two arguments are, in fact, numbers, as opposed to strings, because the type system ensures
that this is the case. On the other hand, the dynamics for quotient must check for a zero
divisor, because the type system does not rule out the possibility.

One approach to modeling checked errors is to give an inductive definition of the judg-
ment ¢ err stating that the expression e incurs a checked run-time error, such as division by
zero. Here are some representative rules that would be present in a full inductive definition
of this judgment:

e, val

div(e;; num[0]) err (6.1a)
__aer -
div(e;; ez) err (6.1b)
aval_eerr 610

div(e;;er) err

Rule (6.1a) signals an error condition for division by zero. The other rules propagate this
error upwards: if an evaluated sub-expression is a checked error, then so is the overall
expression.

Once the error judgment is available, we may also consider an expression, error, which
forcibly induces an error, with the following static and dynamic semantics:

(6.2a)

I'Herror:t

(6.2b)

error err

The preservation theorem is not affected by checked errors. However, the statement (and
proof) of progress is modified to account for checked errors.

Theorem 6.5 (Progress With Error). If ¢ : t, then either e err, or e val, or there exists ¢’
such that e — ¢’.

Proof The proof is by induction on typing, and proceeds similarly to the proof given
ecarlier, except that there are now three cases to consider at each point in the proof. O

52 Type Safety

6.4 Notes
I

The concept of type safety was first formulated by Milner (1978), who invented the slogan
“well-typed programs do not go wrong.” Whereas Milner relied on an explicit notion of
“going wrong” to express the concept of a type error, Wright and Felleisen (1994) observed
that we can instead show that ill-defined states cannot arise in a well-typed program, giving
rise to the slogan “well-typed programs do not get stuck.” However, their formulation relied
on an analysis showing that no stuck state is well-typed. The progress theorem, which relies
on the characterization of canonical forms in the style of Martin-L6f (1980), eliminates this
analysis.

Exercises

6.1. Complete the proof of Theorem 6.2 in full detail.
6.2. Complete the proof of Theorem 6.4 in full detail.

6.3. Give several cases of the proof of Theorem 6.5 to illustrate how checked errors are
handled in type safety proofs.

Evaluation Dynamics

In Chapter 5, we defined evaluation of expressions in E using a structural dynamics.
Structural dynamics is very useful for proving safety, but for some purposes, such as writing
auser manual, another formulation, called evaluation dynamics, is preferable. An evaluation
dynamics is a relation between a phrase and its value that is defined without detailing the
step-by-step process of evaluation. A cost dynamics enriches an evaluation dynamics with
a cost measure specifying the resource usage of evaluation. A prime example is time,
measured as the number of transition steps required to evaluate an expression according to
its structural dynamics.

7.1 Evaluation Dynamics

An evaluation dynamics consists of an inductive definition of the evaluation judgmente |} v
stating that the closed expression e evaluates to the value v. The evaluation dynamics of E
is defined by the following rules:

num[n] | num[n] (7.1a)
str[s] | strls] (7.1b)
e, | num[n] e> |} num[na] ny; +noisn nat (7.1¢)
plus(e;;ez) | num(n] e

e; | strls;] e § strls;] s s =5 str
cat(ei:er) || str[s] (7.1d)

e || str[s] |s|=nnat

Ten(e) J num(n] (7.1¢)
[er/x]es | va (7.16)

let(er;x.e2) J v

The value of a let expression is determined by substitution of the binding into the body.
The rules are not syntax-directed, because the premise of rule (7.1f) is not a sub-expression
of the expression in the conclusion of that rule.

54 Evaluation Dynamics

Rule (7.1f) specifies a by-name interpretation of definitions. For a by-value interpretation,
the following rule should be used instead:

et Lvr [vi/xlez vz

let(er;x.e2) | v (7.2)

Because the evaluation judgment is inductively defined, we prove properties of it by rule
induction. Specifically, to show that the property P(e || v) holds, it is enough to show that
‘P is closed under rules (7.1):

1. Show that P(num[n] | num[n]).

2. Show that P(str[s] | str[s]).

3. Show that P(plus(e;;ez) |} num[n]), if Ple; | num[n,]), P(e; | num[n,]), and
ny + nyisn nat.

4, Show that P(cat(ej:ez) | str[s]), if Ple; | str[s;]), Pler | str[s;]), and
51" 82 = 5 str.

5. Show that P(let(e;; x.€2) | v2), if P(le;/x]ex | vp).

This induction principle is not the same as structural induction on e itself, because the
evaluation rules are not syntax-directed.

Lemma 7.1. Ife | v, then v val.

Proof By induction on rules (7.1). All cases except rule (7.1f) are immediate. For the latter
case, the result follows directly by an appeal to the inductive hypothesis for the premise of
the evaluation rule. U

7.2 Relating Structural and Evaluation Dynamics

We have given two different forms of dynamics for E. It is natural to ask whether they
are equivalent, but to do so first requires that we consider carefully what we mean by
equivalence. The structural dynamics describes a step-by-step process of execution, whereas
the evaluation dynamics suppresses the intermediate states, focusing attention on the initial
and final states alone. This remark suggests that the right correspondence is between
complete execution sequences in the structural dynamics and the evaluation judgment in
the evaluation dynamics.

Theorem 7.2. For all closed expressions e and values v, e —* v iffe | v.

How might we prove such a theorem? We will consider each direction separately. We
consider the easier case first.

Lemma 7.3. Ife | v, then e —>* v.

55 7.3 Type Safety, Revisited

Proof By induction on the definition of the evaluation judgment. For example, suppose
that plus(e;; e;) || num[n] by the rule for evaluating additions. By induction, we know that
e —>" num|[n] and e> — " num|[n>]. We reason as follows:

plus(ej;e;) +——* plus(num|n,];e;)
+——" plus(num[n;];num|n;])
— num[n; + n-]

Therefore, plus(e;;er) —>* num[n; + nz], as required. The other cases are handled
similarly. O

For the converse, recall from Chapter 5 the definitions of multi-step evaluation and
complete evaluation. Because v |} v when v val, it suffices to show that evaluation is closed
under converse evaluation:'

Lemma 7.4. Ifer— ¢ andeée’ || v, thene || v.

Proof By induction on the definition of the transition judgment. For example, suppose that
plus(e;; e2) — plus(e]; ez), where ¢; — €. Suppose further that plus(e}; e2) | v, s0
that ¢} | num[n,], and e, || num[n,], and n; + n7 isn nat, and v is num[n]. By induction
¢; |} num[n,], and hence plus(e;;ez) | num[n], as required. O

7.3 Type Safety, Revisited
B |

Type safety is defined in Chapter 6 as preservation and progress (Theorem 6.1). These
concepts are meaningful when applied to a dynamics given by a transition system, as
we shall do throughout this book. But what if we had instead given the dynamics as an
evaluation relation? How is type safety proved in that case?

The answer, unfortunately, is that we cannot. Although there is an analog of the preserva-
tion property for an evaluation dynamics, there is no clear analog of the progress property.
Preservation may be stated as saying that if ¢ |} v and e : 7, then v : 7. It can be readily
proved by induction on the evaluation rules. But what is the analog of progress? We might
be tempted to phrase progress as saying that if ¢ : 7, then e | v for some v. Although
this property is true for E, it demands much more than just progress—it requires that every
expression evaluate to a value! If E were extended to admit operations that may result in
an error (as discussed in Section 6.3), or to admit non-terminating expressions, then this
property would fail, even though progress would remain valid.

One possible attitude towards this situation is to conclude that type safety cannot be
properly discussed in the context of an evaluation dynamics, but only by reference to a
structural dynamics. Another point of view is to instrument the dynamics with explicit
checks for dynamic type errors, and to show that any expression with a dynamic type fault
must be statically ill-typed. Re-stated in the contrapositive, this means that a statically
well-typed program cannot incur a dynamic type error. A difficulty with this point of view

58

Evaluation Dynamics

7.4. Augment the evaluation dynamics with checked errors, along the lines sketched in

7.5

Chapter 5, using e err to say that e incurs a checked (or an unchecked) error. What
remains unsatisfactory about the type safety proof? Can you think of a better alterna-
tive?

Consider generic hypothetical judgments of the form

xidv,...,dvbelv

where v; val, ..., v, val, and v val. The hypotheses, written A, are called the en-
vironment of the evaluation; they provide the values of the free variables in e. The
hypothetical judgment A F e |} v is called an environmental evaluation dynamics.
Give a hypothetical inductive definition of the environmental evaluation dynamics
without making any use of substitution. In particular, you should include the rule

AxlvEx v

defining the evaluation of a free variable.
Show that x; | vy, ...,x, $ v, e J viff [vg, ..., v, /x1,...,x,]e | v (using
the by-value form of evaluation).

Note

1 Converse evaluation is also known as head expansion.

