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than two centuries ago to facilitate
navigation by predicting the motion
of heavenly bodies and to offer guidance

MEGA" CZASUNIS = MARK KHITZMAN for games of chance. These systems

obey relatively simple rules. Today, we

are challenged to predict outcomes that
D Av I D T u H K I N G T u “ are driven by far more complex systems,
such as the dynamics of social behavior.
Researchers have come to recognize that
classical statistics cannot accommodate
the complexity of social dynamics; they
have therefore turned to the emergent
field of machine learning. But they also
struggle with machine learning algorithms
because these algorithms are often
opaque and unintuitive, and they lack a
theoretical core. This book offers another
way forward—a way that is theoretically

grounded, transparent, and intuitive.
This path forward requires a new
perspective. We must view data as
experiences and think of variables as
attributes for describing those
experiences. And we must recognize that
some experiences are more relevant than
others. Indeed, determining relevance is
the essence of prediction. The authors
provide a guided tour of this
groundbreaking insight, from its
foundations in information theory to its
central role in forecasting. They reveal the
specific components of relevance and
show how to measure them, not only in
concept but with mathematical precision.

classical statistics originated more

There is a practical reward to this journey.

You will learn that the prediction from a
THE IMPORTANCE OF linear regression equation is equivalent to
a relevance-weighted average of past

outcomes. This critical insight enables
U B s E B V A T I 0 N you to form more reliable predictions

from a subset of the most relevant
observations, using an approach called
partial sample regression. And you will
learn how to judge the unique reliability of
an individual prediction separately from

(continued on back flap)
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Timeline of Innovations

elevance 1s the centerpiece of our approach to prediction.
The key concepts that give rise to relevance were introduced

over the past three centuries, as illustrated in this timeline.

In Chapter 8, we offer more detail about the people who made these
groundbreaking discoveries.

(1733) de Moivre derives formula
for normal distribution

(circa 1795) Gauss invents
method of least squares

1700

+

1710 1720 1730 1740 1750

(1810) Laplace derives
Central Limit Theorem

-
v

1760 1770 1780 1790

(1899) Galton discovers
regression to the mean
and correlation

¢ <
1800 1810 1820 1830 1840 1850 1860 1870 1880 1890
(1920) Pearson formalizes
correlation
(1921) Fisher introduces ANOVA|
s o g 4 +
1900 1910 1920 1930 1940 1950 1960 1970 1980 1990

(1936) Mahalanacbis introduces
distance measure

information theory

(1948) Shannon creates

X
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Essential Concepts

his book introduces a new approach to prediction, which

requires a new vocabulary—not new words, but new inter-

pretations of words that are commonly understood to have
other meanings. Therefore, to facilitate a quicker understanding of
what awaits you, we define some essential concepts as they are used
throughout this book. And rather than follow the convention of
presenting them alphabetically, we present them in a sequence that
matches the progression of 1deas as they unfold in the following pages.

Observation: One element among many that are described by a com-
mon set of attributes, distributed across time or space, and which
collectively provide guidance about an outcome that has yet to be
revealed. Classical statistics often refers to an observation as a multi-
variate data point.

Attribute: A recorded value that is used individually or alongside other
attributes to describe an observation. In classical statistics, attributes
are called independent variables.

Outcome: A measurement of interest that is usually observed alongside
other attributes, and which one wishes to predict. In classical statistics,
outcomes are called dependent variables.

Arithmetic average: A weighted summation of the values of attributes
or outcomes that efficiently aggregates the information contained in
a sample of observations. Depending on the context and the weights
that are used, the result may be interpreted as a typical value or as a
prediction of an unknown outcome.

Spread: The pairwise distance between observations of an attribute,
measured in units of surprise. We compute this distance as the average
of half the squared difference in values across every pair of observa-
tions. In classical statistics, the same quantity is usually computed as

X1
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the average of squared deviations of observations from their mean and
is referred to as variance. However, the equivalent evaluation of pair-
wise spreads reveals why we must divide by N — 1 rather than N to
obtain an unbiased estimate of a sample’s variance; it is because the
zero distance of an observation with itself (the diagonal in a matrix of
pairs) conveys no information.

Information theory: A unified mathematical theory of communi-
cation, created by Claude Shannon, which expresses messages as
sequences of Os and 1s and, based on the inverse relationship of
information and probability, prescribes the optimal redundancy of
symbols to manage the speed and accuracy of transmission.

Circumstance: A set of attribute values that collectively describes an
observation.

Informativeness: A measure of the information conveyed by the cir-
cumstances of an observation, based on the inverse relationship of
information and probability. For an observation of a single attribute,
it is equal to the observed distance from the average, squared. For an
observation of two or more uncorrelated attributes, it is equal to the
sum of each individual attribute’s informativeness. For an observation
of two or more correlated attributes—the most general case—it is
given by the Mahalanobis distance of the observation from the aver-
age of the observations. Informativeness is a component of relevance.
It does not depend on the units of measurement.

Co-occurrence: The degree of alignment between two attributes for a
single observation. It ranges between —1 and +1 and does not depend
on the units of measurement.

Correlation: The average co-occurrence of a pair of attributes across
all observations, weighted by the informativeness of each observation.
In classical statistics, it is known as the Pearson correlation coefficient.

Covariance matrix: A symmetric square matrix of numbers that con-
cisely summarizes the spreads of a set of attributes along with the signs
and strengths of their correlation. Each element pertains to a pair of
attributes and is equal to their correlation times their respective stan-
dard deviations (the square root of variance or spread).

Mahalanobis distance: A standardized measure of distance or surprise
for a single observation across many attributes, which incorporates all
the information from the covariance matrix. The Mahalanobis dis-
tance of a set of attribute values (a circumstance) from the average of
the attribute values measures the informativeness of that observation.

Page xii
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Half of the negative of the Mahalanobis distance of one circumstance
from another measures the similarity between them.

Similarity: A measure of the closeness between one circumstance and
another, based on their attributes. It is equal to the opposite (nega-
tive) of half the Mahalanobis distance between the two circumstances.
Similarity is a component of relevance.

Relevance: A measure of the importance of an observation to forming
a prediction. Its components are the informativeness of past circum-
stances, the informativeness of current circumstances, and the similar-
ity of past circumstances to current circumstances.

Partial sample regression: A two-step prediction process in which
one first identifies a subset of observations that are relevant to the pre-
diction task and, second, forms the prediction as a relevance-weighted
average of the historical outcomes in the subset. When the subset
from the first step equals the full-sample, this procedure converges to
classical linear regression.

Asymmetry: A measure of the extent to which predictions differ when
they are formed from a partial sample regression that includes the most
relevant observations compared to one that includes the least relevant
observations. It is computed as the average dissimilarity of the pre-
dictions from these two methods. Equivalently, it may be computed
by comparing the respective fits of the most and least relevant subsets
of observations to the cross-fit between them. The presence of asym-
metry causes partial sample regression predictions to differ from those
of classical linear regression. The minimum amount of asymmetry is
zero, in which case the predictions from full-sample and partial-sample
regression match.

Fit: The average alignment between relevance and outcomes across all
observation pairs for a single prediction. It is normalized by the spreads
of relevance and outcomes, and while the alignment for one pair of
observations may be positive or negative, their average always falls
between zero and one. A large value indicates that observations that
are similarly relevant have similar outcomes, in which case one should
have more confidence in the prediction. A small value indicates that
relevance does not line up with the outcomes, in which case one
should view the prediction more cautiously.

Bias: The artificial inflation of fit resulting from the inclusion of the
alignment of each observation with itself. This bias is addressed by
partitioning fit into two components—outlier influence, which is the
fit of observations with themselves, and agreement, which is the fit of



Trim Size: 6in x 9in @ Kritzman#95589 fbetw.tex VI1-04/11/2022 3:03 PM. Page xiv

xiv Essential Concepts

observations with their peers—and using agreement to give an unbi-
ased measure of fit.

Outlier influence: The fit of observations with themselves. It is always
greater than zero, owing to the inherent bias of comparing obser-
vations with themselves, and it is larger to the extent that unusual
circumstances coincide with unusual outcomes.

Agreement: The fit of observations with their peers. It may be positive,
negative, or zero, and is not systematically biased.

Precision: The inverse of the extent to which the randomness of his-
torical observations (often referred to as noise) introduces uncertainty
to a prediction.

Focus: The choice to form a prediction from a subset of relevant obser-
vations even though the smaller subset may be more sensitive to noise
than the full sample of observations, because the consistency of the rel-
evant subset improves confidence in the prediction more than noise
undermines confidence.

Reliability: The average fit across a set of prediction tasks, weighted by
the informativeness of each prediction circumstance. For a full sample
of observations, it may be computed as the average alignment of
pairwise relevance and outcomes and is equivalent to the classical
R -squared statistic.

Complexity: The presence of nonlinearities or other conditional fea-
tures that undermine the efficacy of linear prediction models. The
conventional approach for addressing complexity is to apply machine
learning algorithms, but one must counter the tendency of these algo-
rithms to overfit the data. In addition, it can be difticult to interpret
the inner workings of machine learning models. A simpler and more
transparent approach to complexity is to filter observations by rele-
vance. The two approaches can also be combined.
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quest for intuition. But mostly we are motivated by a stubborn refusal
to stop asking the question: Why?

Practitioners have difficult problems to solve and often too little time.
Those on the front lines may struggle to absorb everything that technical
training has to offer. And there are bound to be many useful 1deas, often
published in academic articles and books, that are widely available yet
seldom used, perhaps because they are new, complex, or just hard to find.

Most of the ideas we present in this book are new to us, meaning
that we have never encountered them in school courses or publications.
Nor are we aware of their application in practice, even though investors
clearly thrive on the quality of their predictions. But we are not so much
concerned with precedence as we are with gaining and sharing a bet-
ter understanding of the process of data-driven prediction. We would,
therefore, be pleased to learn of others who have already come to the
insights we present in this book, especially if they have advanced them
further than we do 1in this book.

Page xvii
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Introduction

e rely on experience to shape our view of the unknown,

with the notable exception of religion. But for most

practical purposes we lean on experience to guide us
through an uncertain world. We process experiences both naturally
and statistically; however, the way we naturally process experiences
often diverges from the methods that classical statistics prescribes. Our
purpose in writing this book is to reorient common statistical thinking
to accord with our natural instincts.

Let us first consider how we naturally process experience. We record
experiences as narratives, and we store these narratives in our memory
or in written form. Then when we are called upon to decide under
uncertainty, we recall past experiences that resemble present circum-
stances, and we predict that what will happen now will be like what
happened following similar past experiences. Moreover, we instinctively
focus more on past experiences that were exceptional rather than ordi-
nary because they reside more prominently in our memory.

Now, consider how classical statistics advises us to process experi-
ence. It tells us to record experiences not as narratives, but as data. It
suggests that we form decisions from as many observations as we can
assemble or from a subset of recent observations, rather than focus on

Page 1
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PREDICTION REVISITED

observations that are like current circumstances. And it advises us to view
unusual observations with skepticism. To summarize:

Natural Process
e Records experiences as narratives.
e Focuses on experiences that are like current circumstances.

e Focuses on experiences that are unusual.

Classical Statistics
e Record experiences as data.

e Include observations irrespective of their similarity to current circum-
stances.

e Treat unusual observations with skepticism.

The advantage of the natural process is that it is intuitive and sensi-
ble. The advantage of classical statistics is that by recording experiences
as data we can analyze experiences more rigorously and efficiently than
would be allowed by narratives. Our purpose is to reconcile classical
statistics with our natural process in a way that secures the advantages of
both approaches.

‘We accomplish this reconciliation by shifting the focus of prediction
away from the selection of variables to the selection of observations. As
part of this shift in focus from variables to observations, we discard the
term variable. Instead, we use the word attribute to refer to an indepen-
dent variable (something we use to predict) and the word outcome to refer
to a dependent variable (something we want to predict). Our purpose
is to induce you to think foremost of experiences, which we refer to as
observations, and less so of the attributes and outcomes we use to mea-
sure those experiences. This shift in focus from variables to observations
does not mean we undervalue the importance of choosing the right vari-
ables. We accept its importance. We contend, however, that the choice
of variables has commanded disproportionately more attention than the
choice of observations. We hope to show that by choosing observations
as carefully as we choose variables, we can use data to greater effect.

Relevance

The underlying premise of this book is that some observations are
relevant, and some are not—a distinction that we argue receives far

&
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less attention than it deserves. Moreover, of those that are relevant,
some observations are more relevant than others. By separating relevant
observations from those that are not, and by measuring the comparative
relevance of observations, we can use data more effectively to guide our
decisions. As suggested by our discussion thus far, relevance has two
components: similarity and unusualness. We formally refer to the latter
as informativeness. This component of relevance is less intuitive than
similarity but is perhaps more foundational to our notion of relevance;
therefore, we tackle it first.

Informativeness

Informativeness is related to information theory, the creation of Claude
Shannon, arguably the greatest genius of the twentieth century.! As
we discuss in Chapter 2, information theory posits that information is
inversely related to probability. In other words, observations that are
unusual contain more information than those that are common. We
could stop here and rest on Shannon’s formidable reputation to vali-
date our inclusion of informativeness as one of the two components of
relevance. But it never hurts to appeal to intuition. Therefore, let us
consider the following example.

Suppose we would like to measure the relationship between the
performance of the stock market and a collection of economic attributes
(think variables) such as inflation, interest rates, energy prices, and
economic growth. Our initial thought might be to examine how stock
returns covary with changes in these attributes. If these economic
attributes behaved in an ordinary way, it would be difficult to tell which
of the attributes were driving stock returns or even if the performance
of the stock market was instead responding to hidden forces. However,
if one of the attributes behaved in an unusual way, and the stock market
return we observed was also notable, we might suspect that these two
occurrences are linked by more than mere coincidence. It could be
evidence of a fundamental relationship. We provide a more formal
explanation of informativeness in Chapter 2, but for now let us move
on to similarity.

! Some might prefer to assign this accolade to Albert Einstein, but why quibble? Both were
pretty smart.
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Observing Information

ur journey into data-driven prediction begins with some

basic ideas. In this chapter, we set forth principles which

may at first seem obvious, but which, upon deeper inspec-
tion, have profound implications. These ideas lay the foundation for
everything that follows.

Observing Information Conceptually

Whenever we approach a new dataset the first order of business is to get
our bearings. We have before us a series of observations, each of which
is described by a set of attributes. The observations could be of people,
described by attributes like age, health, education, salary, and place of
residence. They could be times at-bat for a major league baseball player,
with attributes of runs-batted-in, home runs, walks, strikeouts, weather
conditions, and where the game took place. Or the observations could
be periods of economic performance measured by attributes such as
growth in output, inflation, interest rates, unemployment, stock market
returns, and perhaps the political parties in power at the time. What
matters is that we have a set of observations characterized by a consistent
collection of attributes. A conventional statistics approach would have us
focus on these attributes and refer to them as variables, but as we stated
earlier, we ask that you indulge us as we focus mainly on how we observe
these attributes.
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of what he called a quincunx.! It generates a histogram of the normal
probability curve by allowing pellets to cascade down a lattice of pins,
falling randomly to the left or right of each pin. Few fall to the far left or
to the far right; most cluster near the middle. Galton famously used this
contraption to show, right before one’s eyes, that the normal curve arises
time and again from nothing more than the aggregation of the simplest
random outcomes. With a bit more patience and even less technology,
you can observe the same thing by tallying the number of heads you get
from a sequence of coin flips. It 1s plausible that this is what the French
mathematician Abraham de Moivre had in mind as he worked on his
book The Doctrine of Chances in London, after having fled religious per-
secution and imprisonment in France. In 1733 de Moivre published his
finding that for the sum of many binomial outcomes, such as coin flips,
the occurrence of large deviations from average decays exponentially as a
function of the distance squared. Though this discovery was a triumph,
it was not well-known nor widely applied until much later.

In the 1770s, Pierre-Simon Laplace confronted similar ideas but in
a more general context than just the coin flip equivalent. Though aware
of de Moivre’s work, Laplace appears to have been somewhat tormented
for decades by the question of what curve best reflects the rarity of
extreme events. After multiple false starts, he presented the essence of
the Central Limit Theorem in 1810. It was a profound breakthrough.

Meanwhile, in 1805, another French mathematician named
Adrien-Marie Legendre was actively promoting his method of least
squares for solving the day’s most pressing problems in astronomy.
Departing from tradition, he blended noise-prone measurements
together in what would later be seen as a form of linear regression
analysis. The widespread attention he gained led to a conflict with Carl
Friedrich Gauss, who argued he had invented the same method a decade
earlier, although he did not publish his result at the time. Nonetheless,
Gauss eventually outdid Legendre by connecting the method of least
squares to the normal distribution in his 1809 book about the orbits of
heavenly bodies around the sun.

Gauss’s reference to the normal distribution was a minor side note
at the end of his book. He was fond of using the arithmetic average
of observations to mitigate measurement errors, and he asked himself:

! This curious term derives originally from the Roman word for five-twelfths, often depicted
on currency as five dots. The term came to mean an arrangement of five dots in a lattice,
such as on the side of a die, and eventually to describe such a lattice pattern in general.
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