PRINCIPLES AND PRACTICE OF

BIG DATA

PREPARING, SHARING, AND ANALYZING COMPLEX INFORMATION
SECOND EDITION

Principles and Practice
of Big Data

Preparing, Sharing, and Analyzing
Complex Information

Second Edition

Jules J. Berman

ACADEMIC PRESS
An imprint of Elsevier

ELSEVIER

Academic Press is an imprint of Elsevier

125 London Wall, London EC2Y 5AS, United Kingdom

525 B Street, Suite 1650, San Diego, CA 92101, United States

50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States

The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom

© 2018 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or any information storage and
retrieval system, without permission in writing from the publisher. Details on how to seek permission,
further information about the Publisher’s permissions policies and our arrangements with
organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be
found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the
Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience
broaden our understanding, changes in research methods, professional practices, or medical
treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in
evaluating and using any information, methods, compounds, or experiments described herein.

In using such information or methods they should be mindful of their own safety and the safety of
others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume
any liability for any injury and/or damage to persons or property as a matter of products liability,
negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas
contained in the material herein.

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

ISBN: 978-0-12-815609-4

For information on all Academic Press publications
visit our website at https:/ /www.elsevier.com/books-and-journals

T | A8 orow libraries in
asoer | Book fid - developing countries

po— Working together
e orking togethe

www.elsevier.com ¢ www.bookaid.org

Publisher: Mara Conner

Acquisition Editor: Mara Conner

Editorial Project Manager: Mariana L. Kuhl

Production Project Manager: Punithavathy Govindaradjane
Cover Designer: Matthew Limbert

Typeset by SPi Global, India

Contents

About the Author xix
Author’s Preface to Second Edition xxi
Author’s Preface to First Edition xxv

Introduction

Section 1.1. Definition of Big Data
Section 1.2. Big Data Versus Small Data
Section 1.3. Whence Comest Big Data?

Section 1.4. The Most Common Purpose of Big Data
Is to Produce Small Data

Section 1.5. Big Data Sits at the Center of the Research
Universe

Glossary

References

Providing Structure to Unstructured Data

Section 2.1. Nearly All Data Is Unstructured
and Unusable in Its Raw Form

Section 2.2. Concordances
Section 2.3. Term Extraction
Section 2.4. Indexing
Section 2.5. Autocoding

Section 2.6. Case Study: Instantly Finding the Precise Location
of Any Atom in the Universe (Some Assembly Required)
Section 2.7. Case Study (Advanced): A Complete Autocoder
(in 12 Lines of Python Code)

Section 2.8. Case Study: Concordances as Transformations
of Text

-

[6) B O T

13

15

15
16
19
22
24

29

31

34

ix

x CONTENTS

Section 2.9. Case Study (Advanced): Burrows Wheeler

Transform (BWT)
Glossary

References

Identification, Deidentification, and Reidentification

Section 3.1. What Are Identifiers?

Section 3.2. Difference Between an Identifier
and an Identifier System

Section 3.3. Generating Unique Identifiers
Section 3.4. Really Bad Identifier Methods
Section 3.5. Registering Unique Object Identifiers
Section 3.6. Deidentification and Reidentification
Section 3.7. Case Study: Data Scrubbing

Section 3.8. Case Study (Advanced): Identifiers
in Image Headers

Section 3.9. Case Study: One-Way Hashes
Glossary
References

Metadata, Semantics, and Triples

Section 4.1. Metadata

Section 4.2. eXtensible Markup Language
Section 4.3. Semantics and Triples

Section 4.4. Namespaces

Section 4.5. Case Study: A Syntax for Triples
Section 4.6. Case Study: Dublin Core
Glossary

References

36
39
50

53
53

55
58
60
63
66
69

71
74
76
82

85
85
85
87
88
90
93
94
95

Contents xi

5. Classifications and Ontologies 97
Section 5.1. It's All About Object Relationships 97
Section 5.2. Classifications, the Simplest of Ontologies 101
Section 5.3. Ontologies, Classes With Multiple Parents 104
Section 5.4. Choosing a Class Model 106
Section 5.5. Class Blending 110
Section 5.6. Common Pitfalls in Ontology Development 111
Section 5.7. Case Study: An Upper Level Ontology 114
Section 5.8. Case Study (Advanced): Paradoxes 115
Section 5.9. Case Study (Advanced): RDF Schemas and Class

Properties 117
Section 5.10. Case Study (Advanced): Visualizing Class

Relationships 120
Glossary 125
References 134

6. Introspection 137
Section 6.1. Knowledge of Self 137
Section 6.2. Data Objects: The Essential Ingredient

of Every Big Data Collection 140
Section 6.3. How Big Data Uses Introspection 142
Section 6.4. Case Study: Time Stamping Data 145
Section 6.5. Case Study: A Visit to the TripleStore 147
Section 6.6. Case Study (Advanced): Proof That Big Data

Must Be Object-Oriented 152
Glossary 153
References 154

7. Standards and Data Integration 155
Section 7.1. Standards 155

Section 7.2. Specifications Versus Standards 160

Xii

CONTENTS

10.

Section 7.3. Versioning

Section 7.4. Compliance Issues

Section 7.5. Case Study: Standardizing the Chocolate Teapot
Glossary

References

Immutability and Immortality

Section 8.1. The Importance of Data That Cannot Change
Section 8.2. Immutability and Identifiers

Section 8.3. Coping With the Data That Data Creates

Section 8.4. Reconciling Identifiers Across Institutions
Section 8.5. Case Study: The Trusted Timestamp

Section 8.6. Case Study: Blockchains and Distributed Ledgers

Section 8.7. Case Study (Advanced): Zero-Knowledge
Reconciliation

Glossary

References

Assessing the Adequacy of a Big Data Resource
Section 9.1. Looking at the Data

Section 9.2. The Minimal Necessary Properties of Big Data
Section 9.3. Data That Comes With Conditions

Section 9.4. Case Study: Utilities for Viewing and Searching
Large Files

Section 9.5. Case Study: Flattened Data
Glossary

References

Measurement
Section 10.1. Accuracy and Precision

Section 10.2. Data Range

162
164
165
166
167

169
169
170
173
174
176
176

179
181
183

185
185
192
197

198
200
201
205

207
207
209

11.

12.

Contents xiii

Section 10.3. Counting

Section 10.4. Normalizing and Transforming Your Data
Section 10.5. Reducing Your Data

Section 10.6. Understanding Your Control

Section 10.7. Statistical Significance Without Practical
Significance

Section 10.8. Case Study: Gene Counting

Section 10.9. Case Study: Early Biometrics, and the
Significance of Narrow Data Ranges

Glossary
References

Indispensable Tips for Fast and Simple Big Data Analysis
Section 11.1. Speed and Scalability

Section 11.2. Fast Operations, Suitable for Big Data, That Every
Computer Supports

Section 11.3. The Dot Product, a Simple and Fast Correlation
Method

Section 11.4. Clustering

Section 11.5. Methods for Data Persistence (Without Using
a Database)

Section 11.6. Case Study: Climbing a Classification
Section 11.7. Case Study (Advanced): A Database Example
Section 11.8. Case Study (Advanced): NoSQL

Glossary

References

Finding the Clues in Large Collections of Data
Section 12.1. Denominators
Section 12.2. Word Frequency Distributions

Section 12.3. Outliers and Anomalies

211
215
219
222

223
224

225
226
228

231
231

237

243
245

247
249
251
252
253
256

259
259
260
264

xiv. CONTENTS

13.

14.

Section 12.4. Back-of-Envelope Analyses

Section 12.5. Case Study: Predicting User Preferences
Section 12.6. Case Study: Multimodality in Population Data
Section 12.7. Case Study: Big and Small Black Holes
Glossary

References

Using Random Numbers to Knock Your Big Data Analytic
Problems Down to Size

Section 13.1. The Remarkable Utility of (Pseudo)Random
Numbers

Section 13.2. Repeated Sampling
Section 13.3. Monte Carlo Simulations
Section 13.4. Case Study: Proving the Central Limit Theorem

Section 13.5. Case Study: Frequency of Unlikely String of
Occurrences

Section 13.6. Case Study: The Infamous Birthday Problem
Section 13.7. Case Study (Advanced): The Monty Hall Problem
Section 13.8. Case Study (Advanced): A Bayesian Analysis
Glossary

References

Special Considerations in Big Data Analysis
Section 14.1. Theory in Search of Data
Section 14.2. Data in Search of Theory
Section 14.3. Bigness Biases

Section 14.4. Data Subsets in Big Data: Neither Additive Nor
Transitive

Section 14.5. Additional Big Data Pitfalls
Section 14.6. Case Study (Advanced): Curse of Dimensionality
Glossary

References

266
268
270
271
271
275

277

277
283
288
291

293
294
295
297
299
301

303
303
304
305

310
311
314
316
318

Contents xv

15. Big Data Failures and How to Avoid (Some of) Them 321
Section 15.1. Failure Is Common 321
Section 15.2. Failed Standards 323
Section 15.3. Blaming Complexity 326
Section 15.4. An Approach to Big Data That May Work for You 328
Section 15.5. After Failure 337
Section 15.6. Case Study: Cancer Biomedical Informatics

Grid, a Bridge Too Far 339
Section 15.7. Case Study: The Gaussian Copula Function 344
Glossary 345
References 347

16. Data Reanalysis: Much More Important Than Analysis 351
Section 16.1. First Analysis (Nearly) Always Wrong 351

Section 16.2. Why Reanalysis Is More Important Than Analysis 354
Section 16.3. Case Study: Reanalysis of Old JADE Collider Data 356

Section 16.4. Case Study: Vindication Through Reanalysis 357
Section 16.5. Case Study: Finding New Planets From Old Data 357
Glossary 359
References 359
17. Repurposing Big Data 363
Section 17.1. What Is Data Repurposing? 363
Section 17.2. Dark Data, Abandoned Data, and Legacy Data 365

Section 17.3. Case Study: From Postal Code to Demographic
Keystone 367
Section 17.4. Case Study: Scientific Inferencing From
a Database of Genetic Sequences 368

Section 17.5. Case Study: Linking Global Warming
to High-Intensity Hurricanes 369

xvi CONTENTS

18.

19.

Section 17.6. Case Study: Inferring Climate Trends
With Geologic Data

Section 17.7. Case Study: Lunar Orbiter Image Recovery Project

Glossary

References

Data Sharing and Data Security

Section 18.1. What Is Data Sharing, and Why Don’t We
Do More of It?

Section 18.2. Common Complaints

Section 18.3. Data Security and Cryptographic Protocols
Section 18.4. Case Study: Life on Mars

Section 18.5. Case Study: Personal Identifiers

Glossary

References

Legalities

Section 19.1. Responsibility for the Accuracy and
Legitimacy of Data

Section 19.2. Rights to Create, Use, and Share the Resource

Section 19.3. Copyright and Patent Infringements
Incurred by Using Standards

Section 19.4. Protections for Individuals

Section 19.5. Consent

Section 19.6. Unconsented Data

Section 19.7. Privacy Policies

Section 19.8. Case Study: Timely Access to Big Data
Section 19.9. Case Study: The Havasupai Story
Glossary

References

369
370
371
372

373

373
374
381
387
388
390
391

395

395
398

400
402
404
409
411
412
413
415
416

Contents xvii

20. Societal Issues
Section 20.1. How Big Data Is Perceived by the Public

Section 20.2. Reducing Costs and Increasing Productivity
With Big Data

Section 20.3. Public Mistrust

Section 20.4. Saving Us From Ourselves

Section 20.5. Who Is Big Data?

Section 20.6. Hubris and Hyperbole

Section 20.7. Case Study: The Citizen Scientists
Section 20.8. Case Study: 1984, by George Orwell
Glossary

References

Index 445

419
419

422
424
425
428
434
437
440
441
442

This page intentionally left blank

About the Author

Jules J. Berman received two baccalaureate degrees
from MIT; in Mathematics, and in Earth and Planetary
Sciences. He holds a PhD from Temple University, and
an MD, from the University of Miami. He was a graduate
student researcher in the Fels Cancer Research Institute,
at Temple University, and at the American Health Foun-
dation in Valhalla, New York. His postdoctoral studies
were completed at the US National Institutes of Health,
and his residency was completed at the George
Washington University Medical Center in Washington,
DC. Dr. Berman served as Chief of Anatomic Pathology,
Surgical Pathology, and Cytopathology at the Veterans
Administration Medical Center in Baltimore, Maryland,
where he held joint appointments at the University of Maryland Medical Center and at the
Johns Hopkins Medical Institutions. In 1998, he transferred to the US National Institutes of
Health, as a Medical Officer, and as the Program Director for Pathology Informatics in the
Cancer Diagnosis Program at the National Cancer Institute. Dr. Berman is a past president
of the Assaciation for Pathology Informatics, and the 2011 recipient of the Association’s
Lifetime Achievement Award. He has first-authored over 100 scientific publications and
has written more than a dozen books in the areas of data science and disease biology.
Several of his most recent titles, published by Elsevier, include:

Taxonomic Guide to Infectious Diseases: Understanding the Biologic Classes of
Pathogenic Organisms (2012)

Principles of Big Data: Preparing, Sharing, and Analyzing Complex Information (2013)
Rare Diseases and Orphan Drugs: Keys to Understanding and Treating the Common
Diseases (2014)

Repurposing Legacy Data: Innovative Case Studies (2015)

Data Simplification: Taming Information with Open Source Tools (2016)

Precision Medicine and the Reinvention of Human Disease (2018)

Xix

This page intentionally left blank

Author’s Preface to Second Edition

Everything has been said before, but since nobody listens we have to keep
going back and beginning all over again.
Andre Gide

Good science writers will always jump at the chance to write a second edition of an earlier
work. No matter how hard they try, that first edition will contain inaccuracies and mislead-
ing remarks. Sentences that seemed brilliant when first conceived will, with the passage of
time, transform into examples of intellectual overreaching. Points too trivial to include in
the original manuscript may now seem like profundities that demand a full explanation.
A second edition provides rueful authors with an opportunity to correct the record.

When the first edition of Principles of Big Data was published in 2013 the field was very
young and there were few scientists who knew what to do with Big Data. The data that kept
pouring in was stored, like wheat in silos, throughout the planet. It was obvious to data
managers that none of that stored data would have any scientific value unless it was prop-
erly annotated with metadata, identifiers, timestamps, and a set of basic descriptors.
Under these conditions, the first edition of the Principles of Big Data stressed the proper
and necessary methods for collecting, annotating, organizing, and curating Big Data. The
process of preparing Big Data comes with its own unique set of challenges, and the First
Edition was peppered with warnings and exhortations intended to steer readers clear of
disaster.

It is now five years since the first edition was published and there have since been hun-
dreds of books written on the subject of Big Data. As a scientist, it is disappointing to me
that the bulk of Big Data, today;, is focused on issues of marketing and predictive analytics
(e.g., “Who is likely to buy product x, given that they bought product y two weeks previ-
ously?”); and machine learning (e.g., driverless cars, computer vision, speech recognition).
Machine learning relies heavily on hyped up techniques such as neural networks and deep
learning; neither of which are leading to fundamental laws and principles that simplify
and broaden our understanding of the natural world and the physical universe. For the
most part, these techniques use data that is relatively new (i.e., freshly collected), poorly
annotated (i.e., provided with only the minimal information required for one particular
analytic process), and not deposited for public evaluation or for re-use. In short, Big Data
has followed the path of least resistance, avoiding most of the tough issues raised in the
first edition of this book; such as the importance of sharing data with the public, the value
of finding relationships (not similarities) among data objects, and the heavy, but inescap-
able, burden of creating robust, immortal, and well-annotated data.

xxii AUTHOR’S PREFACE TO SECOND EDITION

It was certainly my hope that the greatest advances from Big Data would come as
fundamental breakthroughs in the realms of medicine, biology, physics, engineering,
and chemistry. Why has the focus of Big Data shifted from basic science over to machine
learning? It may have something to do with the fact that no book, including the first edition
of this book, has provided readers with the methods required to put the principles of Big
Data into practice. In retrospect, it was not sufficient to describe a set of principles and
then expect readers to invent their own methodologies.

Consequently, in this second edition, the publisher has changed the title of the book
from “The Principles of Big Data,” to “The Principles AND PRACTICE of Big Data.” Hence-
forth and herein, recommendations are accompanied by the methods by which those
recommendations can beimplemented. The reader will find that all of the methods forimple-
menting Big Data preparation and analysis are really quite simple. For the most part, com-
puter methods require some basic familiarity with a programming language, and, despite
misgivings, Python was chosen as the language of choice. The advantages of Python are:

— Pythonisano-cost, opensource, high-level programming language thatis easy to acquire,
install, learn, and use, and is available for every popular computer operating system.

— Python is extremely popular, at the present time, and its popularity seems to be
increasing.

— Python distributions (such as Anaconda) come bundled with hundreds of highly useful
modules (such as numpy, matplot, and scipy).

— Python has alarge and active user group that has provided an extraordinary amount of
documentation for Python methods and modules.

— Python supports some object-oriented techniques that will be discussed in this new
edition

As everything in life, Python has its drawbacks:

— The most current versions of Python are not backwardly compatible with earlier
versions. The scripts and code snippets included in this book should work for most
versions of Python 3.x, but may not work with Python versions 2.x and earlier, unless
the reader is prepared to devote some time to tweaking the code. Of course, these short
scripts and snippets are intended as simplified demonstrations of concepts, and must
not be construed as application-ready code.

— The built-in Python methods are sometimes maximized for speed by utilizing Random
Access Memory (RAM) to hold data structures, including data structures built through
iterative loops. Iterations through Big Data may exhaust available RAM, leading to the
failure of Python scripts that functioned well with small data sets.

— Python’s implementation of object orientation allows multiclass inheritance (i.e., a
class can be the subclass of more than one parent class). We will describe why this is
problematic, and the compensatory measures that we must take, whenever we use our
Python programming skills to understand large and complex sets of data objects.

The core of every algorithm described in the book can be implemented in a few lines of
code, using just about any popular programming language, under any operating system,

Author’s Preface to Second Edition xxiii

on any modern computer. Numerous Python snippets are provided, along with descrip-
tions of free utilities that are widely available on every popular operating system. This
book stresses the point that most data analyses conducted on large, complex data sets
can be achieved with simple methods, bypassing specialized software systems (e.g., par-
allelization of computational processes) or hardware (e.g., supercomputers). Readers who
are completely unacquainted with Python may find that they can read and understand
Python code, if the snippets of code are brief, and accompanied by some explanation
in the text. In any case, readers who are primarily concerned with mastering the principles
of Big Data can skip the code snippets without losing the narrative thread of the book.
This second edition has been expanded to stress methodologies that have been over-
looked by the authors of other books in the field of Big Data analysis. These would include:

— Data preparation.

How to annotate data with metadata and how to create data objects composed of triples.
The concept of the triple, as the fundamental conveyor of meaning in the computational
sciences, is fully explained.

— Data structures of particular relevance to Big Data

Concepts such as triplestores, distributed ledgers, unique identifiers, timestamps, concor-
dances, indexes, dictionary objects, data persistence, and the roles of one-way hashes and
encryption protocols for data storage and distribution are covered.

— Classification of data objects

How to assign data objects to classes based on their shared relationships, and the com-
putational roles filled by classifications in the analysis of Big Data will be discussed at
length.

— Introspection

How to create data objects that are self-describing, permitting the data analyst to group
objects belonging to the same class and to apply methods to class objects that have been
inherited from their ancestral classes.

— Algorithms that have special utility in Big Data preparation and analysis

How to use one-way hashes, unique identifier generators, cryptographic techniques, tim-
ing methods, and time stamping protocols to create unique data objects that are immu-
table (never changing), immortal, and private; and to create data structures that facilitate a
host of useful functions that will be described (e.g., blockchains and distributed ledgers,
protocols for safely sharing confidential information, and methods for reconciling iden-
tifiers across data collections without violating privacy).

— Tips for Big Data analysis

How to overcome many of the analytic limitations imposed by scale and dimensionality,
using a range of simple techniques (e.g., approximations, so-called back-of-the-envelope

xxiv. AUTHOR’S PREFACE TO SECOND EDITION

tricks, repeated sampling using a random number generator, Monte Carlo simulations,
and data reduction methods).

— Data reanalysis, data repurposing, and data sharing

Why the first analysis of Big Data is almost always incorrect, misleading, or woefully
incomplete, and why data reanalysis has become a crucial skill that every serious Big Data
analyst must acquire. The process of data reanalysis often inspires repurposing of Big Data
resources. Neither data reanalysis nor data repurposing can be achieved unless and until
the obstacles to data sharing are overcome. The topics of data reanalysis, data repurpos-
ing, and data sharing are explored at length.

Comprehensive texts, such as the second edition of the Principles and Practice of Big
Data, are never quite as comprehensive as they might strive to be; there simply is no way to
fully describe every concept and method that is relevant to a multi-disciplinary field, such
as Big Data. To compensate for such deficiencies, there is an extensive Glossary section for
every chapter, that defines the terms introduced in the text, providing some explanation of
the relevance of the terms for Big Data scientists. In addition, when techniques and
methods are discussed, a list of references that the reader may find useful, for further read-
ing on the subject, is provided. Altogether, the second edition contains about 600 citations
to outside references, most of which are available as free downloads. There are over 300
glossary items, many of which contain short Python snippets that readers may find useful.

As a final note, this second edition uses case studies to show readers how the principles
of Big Data are put into practice. Although case studies are drawn from many fields of sci-
ence, including physics, economics, and astronomy, readers will notice an overabundance
of examples drawn from the biological sciences (particularly medicine and zoology). The
reason for this is that the taxonomy of all living terrestrial organisms is the oldest and best
Big Data classification in existence. All of the classic errors in data organization, and in
data analysis, have been committed in the field of biology. More importantly, these errors
have been documented in excruciating detail and most of the documented errors have
been corrected and published for public consumption. If you want to understand how
Big Data can be used as a tool for scientific advancement, then you must look at case
examples taken from the world of biology, a well-documented field where everything that
can happen has happened, is happening, and will happen. Every effort has been made to
limit Case Studies to the simplest examples of their type, and to provide as much back-
ground explanation as non-biologists may require.

Principles and Practice of Big Data, Second Edition, is devoted to the intellectual con-
viction that the primary purpose of Big Data analysis is to permit us to ask and answer a
wide range of questions that could not have been credibly approached with small sets of
data. There is every reason to hope that the readers of this book will soon achieve scientific
breakthroughs that were beyond the reach of prior generations of scientists. Good luck!

Author’s Preface to First Edition

We can’t solve problems by using the same kind of thinking we used when we
created them.
Albert Einstein

Data pours into millions of computers every moment of every day. It is estimated that the
total accumulated data stored on computers worldwide is about 300 exabytes (that's 300
billion gigabytes). Data storage increases at about 28% per year. The data stored is peanuts
compared to data that is transmitted without storage. The annual transmission of data is
estimated at about 1.9 zettabytes or 1,900 billion gigabytes [1]. From this growing tangle of
digital information, the next generation of data resources will emerge.

As we broaden our data reach (i.e., the different kinds of data objects included in the
resource), and our data timeline (i.e., accruing data from the future and the deep past), we
need to find ways to fully describe each piece of data, so that we do not confuse one data
item with another, and so that we can search and retrieve data items when we need them.
Astute informaticians understand that if we fully describe everything in our universe, we
would need to have an ancillary universe to hold all the information, and the ancillary uni-
verse would need to be much larger than our physical universe.

In the rush to acquire and analyze data, it is easy to overlook the topic of data prepa-
ration. If the data in our Big Data resources are not well organized, comprehensive, and
fully described, then the resources will have no value. The primary purpose of this book is
to explain the principles upon which serious Big Data resources are built. All of the data
held in Big Data resources must have a form that supports search, retrieval, and analysis.
The analytic methods must be available for review, and the analytic results must be avail-
able for validation.

Perhaps the greatest potential benefit of Big Data is its ability to link seemingly dispa-
rate disciplines, to develop and test hypothesis that cannot be approached within a single
knowledge domain. Methods by which analysts can navigate through different Big Data
resources to create new, merged data sets, will be reviewed.

What exactly, is Big Data? Big Data is characterized by the three V’s: volume (large
amounts of data), variety (includes different types of data), and velocity (constantly accu-
mulating new data) [2]. Those of us who have worked on Big Data projects might suggest
throwing a few more v’s into the mix: vision (having a purpose and a plan), verification
(ensuring that the data conforms to a set of specifications), and validation (checking that
its purpose is fulfilled).

xxvi AUTHOR’S PREFACE TO FIRST EDITION

Many of the fundamental principles of Big Data organization have been described in
the “metadata” literature. This literature deals with the formalisms of data description (i.e.,
how to describe data); the syntax of data description (e.g., markup languages such as
eXtensible Markup Language, XML); semantics (i.e., how to make computer-parsable
statements that convey meaning); the syntax of semantics (e.g., framework specifications
such as Resource Description Framework, RDE and Web Ontology Language, OWL); the
creation of data objects that hold data values and self-descriptive information; and the
deployment of ontologies, hierarchical class systems whose members are data objects.

The field of metadata may seem like a complete waste of time to professionals who
have succeeded very well, in data-intensive fields, without resorting to metadata formal-
isms. Many computer scientists, statisticians, database managers, and network specialists
have no trouble handling large amounts of data, and they may not see the need to create a
strange new data model for Big Data resources. They might feel that all they really need is
greater storage capacity, distributed over more powerful computers that work in parallel
with one another. With this kind of computational power, they can store, retrieve, and ana-
lyze larger and larger quantities of data. These fantasies only apply to systems that use
relatively simple data or data that can be represented in a uniform and standard format.
When data is highly complex and diverse, as found in Big Data resources, the importance
of metadata looms large. Metadata will be discussed, with a focus on those concepts that
must be incorporated into the organization of Big Data resources. The emphasis will be on
explaining the relevance and necessity of these concepts, without going into gritty details
that are well covered in the metadata literature.

When data originates from many different sources, arrives in many different forms,
grows in size, changes its values, and extends into the past and the future, the game shifts
from data computation to data management. I hope that this book will persuade readers
that faster, more powerful computers are nice to have, but these devices cannot compen-
sate for deficiencies in data preparation. For the foreseeable future, universities, federal
agencies, and corporations will pour money, time, and manpower into Big Data efforts.
If they ignore the fundamentals, their projects are likely to fail. On the other hand, if they
pay attention to Big Data fundamentals, they will discover that Big Data analyses can be
performed on standard computers. The simple lesson, that data trumps computation, will
be repeated throughout this book in examples drawn from well-documented events.

There are three crucial topics related to data preparation that are omitted from virtually
every other Big Data book: identifiers, immutability, and introspection.

Athoughtful identifier system ensures that all of the datarelated to a particular data object
will be attached to the correct object, through its identifier, and to no other object. It seems
simple, and it is, but many Big Data resources assign identifiers promiscuously, with the end
result that information related to a unique object is scattered throughout the resource,
attached to other objects, and cannot be sensibly retrieved when needed. The concept of
objectidentificationis of such overriding importance that a Big Data resource can be usefully
envisioned as a collection of unique identifiers to which complex data is attached.

Author’s Preface to First Edition xxvii

Immutability is the principle that data collected in a Big Data resource is permanent,
and can never be modified. At first thought, it would seem that immutability is a ridiculous
and impossible constraint. In the real world, mistakes are made, information changes, and
the methods for describing information changes. This is all true, but the astute Big Data
manager knows how to accrue information into data objects without changing the pre-
existing data. Methods for achieving this seemingly impossible trick will be described
in detail.

Introspection is a term borrowed from object-oriented programming, not often found
in the Big Data literature. It refers to the ability of data objects to describe themselves when
interrogated. With introspection, users of a Big Data resource can quickly determine the
content of data objects and the hierarchical organization of data objects within the Big
Data resource. Introspection allows users to see the types of data relationships that can
be analyzed within the resource and clarifies how disparate resources can interact with
one another.

Another subject covered in this book, and often omitted from the literature on Big Data,
is data indexing. Though there are many books written on the art of the science of so-
called back-of-the-book indexes, scant attention has been paid to the process of preparing
indexes for large and complex data resources. Consequently, most Big Data resources have
nothing that could be called a serious index. They might have a Web page with a few links
to explanatory documents, or they might have a short and crude "help" index, but it would
be rare to find a Big Data resource with a comprehensive index containing a thoughtful
and updated list of terms and links. Without a proper index, most Big Data resources have
limited utility for any but a few cognoscenti. It seems odd to me that organizations willing
to spend hundreds of millions of dollars on a Big Data resource will balk at investing a few
thousand dollars more for a proper index.

Aside from these four topics, which readers would be hard-pressed to find in the exist-
ing Big Data literature, this book covers the usual topics relevant to Big Data design, con-
struction, operation, and analysis. Some of these topics include data quality, providing
structure to unstructured data, data deidentification, data standards and interoperability
issues, legacy data, data reduction and transformation, data analysis, and software issues.
For these topics, discussions focus on the underlying principles; programming code and
mathematical equations are conspicuously inconspicuous. An extensive Glossary covers
the technical or specialized terms and topics that appear throughout the text. As each
Glossary term is "optional" reading, I took the liberty of expanding on technical or math-
ematical concepts that appeared in abbreviated form in the main text. The Glossary pro-
vides an explanation of the practical relevance of each term to Big Data, and some readers
may enjoy browsing the Glossary as a stand-alone text.

The final four chapters are non-technical; all dealing in one way or another with the
consequences of our exploitation of Big Data resources. These chapters will cover legal,
social, and ethical issues. The book ends with my personal predictions for the future of
Big Data, and its impending impact on our futures. When preparing this book, I debated
whether these four chapters might best appear in the front of the book, to whet the reader’s

xxviii AUTHOR'S PREFACE TO FIRST EDITION

appetite for the more technical chapters. I eventually decided that some readers would be
unfamiliar with some of the technical language and concepts included in the final
chapters, necessitating their placement near the end.

Readers may notice that many of the case examples described in this book come from
the field of medical informatics. The healthcare informatics field is particularly ripe for
discussion because every reader is affected, on economic and personal levels, by the
Big Data policies and actions emanating from the field of medicine. Aside from that, there
is a rich literature on Big Data projects related to healthcare. As much of this literature is
controversial, I thought it important to select examples that I could document from
reliable sources. Consequently, the reference section is large, with over 200 articles from
journals, newspaper articles, and books. Most of these cited articles are available for free
Web download.

Who should read this book? This book is written for professionals who manage Big Data
resources and for students in the fields of computer science and informatics. Data
management professionals would include the leadership within corporations and funding
agencies who must commit resources to the project, the project directors who must deter-
mine a feasible set of goals and who must assemble a team of individuals who, in
aggregate, hold the requisite skills for the task: network managers, data domain special-
ists, metadata specialists, software programmers, standards experts, interoperability
experts, statisticians, data analysts, and representatives from the intended user commu-
nity. Students of informatics, the computer sciences, and statistics will discover that the
special challenges attached to Big Data, seldom discussed in university classes, are often
surprising; sometimes shocking.

By mastering the fundamentals of Big Data design, maintenance, growth, and valida-
tion, readers will learn how to simplify the endless tasks engendered by Big Data resources.
Adept analysts can find relationships among data objects held in disparate Big Data
resources if the data is prepared properly. Readers will discover how integrating Big Data
resources can deliver benefits far beyond anything attained from stand-alone databases.

References

[1] Martin Hilbert M, Lopez P. The world’s technological capacity to store, communicate, and compute
information. Science 2011;332:60-5.

[2] Schmidt S. Data is exploding: the 3V’s of Big Data. Business Computing World; 2012. May 15.

]:::

Introduction

OUTLINE

Section 1.1. Definition of Big Dataccciiriciiecnis e ssss s sa s s s s 1
Section 1.2. Big Data Versus SMall Datacccooooioienceieeeeeee e ses e e e e e asssss e ee e e e e e smesasenens 3
Section 1.3. Whence Comest Big Data?ccceeeiiueenininieisieeissesissmsessessssssssssesssssssnsssnsassssssssansssssnsns 5
Section 1.4. The Most Common Purpose of Big Data Is to Produce Small Datacccccceviieennes 7
Section 1.5. Big Data Sits at the Center of the Research Universeccccoeeeeceecnisiensseenisnnnnnes 8
GlOSSATY <.ttt ettt b e b e a e e et e b et et et e et et e e et e e nnne et nnneeneans O
RETEIENCES ...t sttt e st ae b et sn e seneeis 13

Section 1.1. Definition of Big Data

It’s the data, stupid.
Jim Gray

Back in the mid 1960s, my high school held pep rallies before big games. At one of these
rallies, the head coach of the football team walked to the center of the stage carrying a
large box of printed computer paper; each large sheet was folded flip-flop style against
the next sheet and they were all held together by perforations. The coach announced that
the athletic abilities of every member of our team had been entered into the school’s com-
puter (we were lucky enough to have our own IBM-360 mainframe). Likewise, data on our
rival team had also been entered. The computer was instructed to digest all of this infor-
mation and to produce the name of the team that would win the annual Thanksgiving Day
showdown. The computer spewed forth the aforementioned box of computer paper; the
very last output sheet revealed that we were the pre-ordained winners. The next day, we
sallied forth to yet another ignominious defeat at the hands of our long-time rivals.

Fast-forward about 50 years to a conference room at the National Institutes of Health
(NIH), in Bethesda, Maryland. A top-level science administrator is briefing me. She explains
that disease research has grown in scale over the past decade. The very best research initia-
tives are now multi-institutional and data-intensive. Funded investigators are using high-
throughput molecular methods that produce mountains of data for every tissue sample
in a matter of minutes. There is only one solution; we must acquire supercomputers and
a staff of talented programmers who can analyze all our data and tell us what it all means!

The NIH leadership believed, much as my high school coach believed, that if you have a
really big computer and you feed it a huge amount of information, then you can answer
almost any question.

Principles and Practice of Big Data. https://doi.org/10.1016/B978-0-12-815609-4.00001-7 1
© 2018 Elsevier Inc. All rights reserved.

2 PRINCIPLES AND PRACTICE OF BIG DATA

That day, in the conference room at the NIH, circa 2003, I voiced my concerns, indi-
cating that you cannot just throw data into a computer and expect answers to pop out.
I pointed out that, historically, science has been a reductive process, moving from com-
plex, descriptive data sets to simplified generalizations. The idea of developing an expen-
sive supercomputer facility to work with increasing quantities of biological data, at higher
and higher levels of complexity, seemed impractical and unnecessary. On that day, my
concerns were not well received. High performance supercomputing was a very popular
topic, and still is. [Glossary Science, Supercomputer]

Fifteen years have passed since the day that supercomputer-based cancer diagnosis
was envisioned. The diagnostic supercomputer facility was never built. The primary diag-
nostic tool used in hospital laboratories is still the microscope, a tool invented circa 1590.
Today, we augment microscopic findings with genetic tests for specific, key mutations; but
we do not try to understand all of the complexities of human genetic variations. We know
that it is hopeless to try. You can find a lot of computers in hospitals and medical offices,
but the computers do not calculate your diagnosis. Computers in the medical workplace
are relegated to the prosaic tasks of collecting, storing, retrieving, and delivering medical
records. When those tasks are finished, the computer sends you the bill for services
rendered.

Before we can take advantage of large and complex data sources, we need to think
deeply about the meaning and destiny of Big Data.

Big Data is defined by the three V’s:

1. Volume—Ilarge amounts of data;.

2. Variety—the data comes in different forms, including traditional databases,
images, documents, and complex records;.

3. Velocity—the content of the data is constantly changing through the

absorption of complementary data collections, the introduction of previously

archived data or legacy collections, and from streamed data arriving from

multiple sources.

It is important to distinguish Big Data from “lotsa data” or “massive data.” In a Big Data
Resource, all three V's must apply. It is the size, complexity, and restlessness of Big Data
resources that account for the methods by which these resources are designed, operated,
and analyzed. [Glossary Big Data resource, Data resource]

The term “lotsa data” is often applied to enormous collections of simple-format
records. For example: every observed star, its magnitude and its location; the name and
cell phone number of every person living in the United States; and the contents of the
Web. These very large data sets are sometimes just glorified lists. Some “lotsa data” col-
lections are spreadsheets (2-dimensional tables of columns and rows), so large that we
may never see where they end.

Big Data resources are not equivalent to large spreadsheets, and a Big Data resource is
never analyzed in its totality. Big Data analysis is a multi-step process whereby data is
extracted, filtered, and transformed, with analysis often proceeding in a piecemeal, some-
times recursive, fashion. As you read this book, you will find that the gulf between “lotsa
data” and Big Data is profound; the two subjects can seldom be discussed productively
within the same venue.

Chapter 1 * Introduction 3

Section 1.2. Big Data Versus Small Data

Actually, the main function of Big Science is to generate massive amounts of reliable
and easily accessible data.... Insight, understanding, and scientific progress are gen-

erally achieved by ‘small science.’
Dan Graur, Yichen Zheng, Nicholas Price, Ricardo Azevedo, Rebecca Zufall, and Eran Elhaik [1].

Big Data is not small data that has become bloated to the point that it can no longer fiton a
spreadsheet, nor is it a database that happens to be very large. Nonetheless, some profes-
sionals who customarily work with relatively small data sets, harbor the false impression
that they can apply their spreadsheet and database know-how directly to Big Data
resources without attaining new skills or adjusting to new analytic paradigms. As they
see things, when the data gets bigger, only the computer must adjust (by getting faster,
acquiring more volatile memory, and increasing its storage capabilities); Big Data poses
no special problems that a supercomputer could not solve. [Glossary Database]

This attitude, which seems to be prevalent among database managers, programmers,
and statisticians, is highly counterproductive. It will lead to slow and ineffective software,
huge investment losses, bad analyses, and the production of useless and irreversibly
defective Big Data resources.

Let us look at a few of the general differences that can help distinguish Big Data and
small data.

- Goals

small data—Usually designed to answer a specific question or serve a particular goal.

Big Data—Usually designed with a goal in mind, but the goal is flexible and the ques-
tions posed are protean. Here is a short, imaginary funding announcement for Big Data
grants designed “to combine high quality data from fisheries, coast guard, commercial
shipping, and coastal management agencies for a growing data collection that can be used
to support a variety of governmental and commercial management studies in the Lower
Peninsula.” In this fictitious case, there is a vague goal, but it is obvious that there really is
no way to completely specify what the Big Data resource will contain, how the various
types of data held in the resource will be organized, connected to other data resources,
or usefully analyzed. Nobody can specify, with any degree of confidence, the ultimate
destiny of any Big Data project; it usually comes as a surprise.

— Location

small data—Typically, contained within one institution, often on one computer, some-
times in one file.

Big Data—Spread throughout electronic space and typically parceled onto multiple
Internet servers, located anywhere on earth.

— Data structure and content

small data—Ordinarily contains highly structured data. The data domain is restricted
to a single discipline or sub-discipline. The data often comes in the form of uniform
records in an ordered spreadsheet.

4 PRINCIPLES AND PRACTICE OF BIG DATA

Big Data—Must be capable of absorbing unstructured data (e.g., such as free-text doc-
uments, images, motion pictures, sound recordings, physical objects). The subject matter
of the resource may cross multiple disciplines, and the individual data objects in the
resource may link to data contained in other, seemingly unrelated, Big Data resources.
[Glossary Data object]

— Data preparation

small data—In many cases, the data user prepares her own data, for her own purposes.
Big Data—The data comes from many diverse sources, and it is prepared by many peo-
ple. The people who use the data are seldom the people who have prepared the data.

— Longevity

small data—When the data project ends, the data is kept for a limited time (seldom
longer than 7 years, the traditional academic life-span for research data); and then
discarded.

Big Data—Big Data projects typically contain data that must be stored in perpetuity.
Ideally, the data stored in a Big Data resource will be absorbed into other data resources.
Many Big Data projects extend into the future and the past (e.g., legacy data), accruing
data prospectively and retrospectively. [Glossary Legacy datal

— Measurements

small data—Typically, the data is measured using one experimental protocol, and the
data can be represented using one set of standard units. [Glossary Protocol]

Big Data—Many different types of data are delivered in many different electronic for-
mats. Measurements, when present, may be obtained by many different protocols. Veri-
fying the quality of Big Data is one of the most difficult tasks for data managers. [Glossary
Data Quality Act]

— Reproducibility

small data—Projects are typically reproducible. If there is some question about the
quality of the data, the reproducibility of the data, or the validity of the conclusions drawn
from the data, the entire project can be repeated, yielding a new data set. [Glossary
Conclusions]

Big Data—Replication of a Big Data project is seldom feasible. In general, the most that
anyone can hope for is that bad data in a Big Data resource will be found and flagged
as such.

— Stakes

small data—Project costs are limited. Laboratories and institutions can usually recover
from the occasional small data failure.

Big Data—Big Data projects can be obscenely expensive [2,3]. A failed Big Data effort
can lead to bankruptcy, institutional collapse, mass firings, and the sudden disintegration

Chapter 1 * Introduction 5

of all the data held in the resource. As an example, a United States National Institutes of
Health Big Data project known as the “NCI cancer biomedical informatics grid” cost at
least $350 million for fiscal years 2004-10. An ad hoc committee reviewing the resource
found that despite the intense efforts of hundreds of cancer researchers and information
specialists, it had accomplished so little and at so great an expense that a project mora-
torium was called [4]. Soon thereafter, the resource was terminated [5]. Though the costs
of failure can be high, in terms of money, time, and labor, Big Data failures may have some
redeeming value. Each failed effort lives on as intellectual remnants consumed by the next
Big Data effort. [Glossary Grid]

— Introspection

small data—Individual data points are identified by their row and column location
within a spreadsheet or database table. If you know the row and column headers, you
can find and specify all of the data points contained within. [Glossary Data point]

Big Data—Unless the Big Data resource is exceptionally well designed, the contents
and organization of the resource can be inscrutable, even to the data managers. Complete
access to data, information about the data values, and information about the organization
of the data is achieved through a technique herein referred to as introspection. Introspec-
tion will be discussed at length in Chapter 6. [Glossary Data manager, Introspection]

— Analysis

small data—In most instances, all of the data contained in the data project can be ana-
lyzed together, and all at once.

Big Data—With few exceptions, such as those conducted on supercomputers or in parallel
on multiple computers, Big Data is ordinarily analyzed in incremental steps. The data are ex-
tracted, reviewed, reduced, normalized, transformed, visualized, interpreted, and re-analyzed
using a collection of specialized methods. [Glossary Parallel computing, MapReduce]

Section 1.3. Whence Comest Big Data?

All I ever wanted to do was to paint sunlight on the side of a house.
Edward Hopper

Often, the impetus for Big Data is entirely ad hoc. Companies and agencies are forced to
store and retrieve huge amounts of collected data (whether they want to or not). Generally,
Big Data come into existence through any of several different mechanisms:

— Anentity has collected a lot of data in the course of its normal activities and seeks to
organize the data so that materials can be retrieved, as needed.

The Big Data effort is intended to streamline the regular activities of the entity. In this case,
the data is just waiting to be used. The entity is not looking to discover anything or to do
anything new. It simply wants to use the data to accomplish what it has always been doing;

6 PRINCIPLES AND PRACTICE OF BIG DATA

only better. The typical medical center is a good example of an “accidental” Big Data
resource. The day-to-day activities of caring for patients and recording data into hospital
information systems results in terabytes of collected data, in forms such as laboratory
reports, pharmacy orders, clinical encounters, and billing data. Most of this information
is generated for a one-time specific use (e.g., supporting a clinical decision, collecting pay-
ment for a procedure). It occurs to the administrative staff that the collected data can be
used, in its totality, to achieve mandated goals: improving quality of service, increasing
staff efficiency, and reducing operational costs. [Glossary Binary units for Big Data, Binary
atom count of universe]

— Anentity has collected a lot of data in the course of its normal activities and decides
that there are many new activities that could be supported by their data.

Consider modern corporations; these entities do not restrict themselves to one
manufacturing process or one target audience. They are constantly looking for new oppor-
tunities. Their collected data may enable them to develop new products based on the pref-
erences of their loyal customers, to reach new markets, or to market and distribute items via
the Web. These entities will become hybrid Big Data/manufacturing enterprises.

— An entity plans a business model based on a Big Data resource.

Unlike the previous examples, this entity starts with Big Data and adds a physical compo-
nent secondarily. Amazon and FedEx may fall into this category, as they began with a plan
for providing a data-intense service (e.g., the Amazon Web catalog and the FedEx package
tracking system). The traditional tasks of warehousing, inventory, pick-up, and delivery,
had been available all along, but lacked the novelty and efficiency afforded by Big Data.

— An entity is part of a group of entities that have large data resources, all of whom
understand that it would be to their mutual advantage to federate their data
resources [6].

An example of a federated Big Data resource would be hospital databases that share elec-
tronic medical health records [7].

— An entity with skills and vision develops a project wherein large amounts of data are
collected and organized, to the benefit of themselves and their user-clients.

An example would be a massive online library service, such as the U.S. National Library of
Medicine’s PubMed catalog, or the Google Books collection.

— An entity has no data and has no particular expertise in Big Data technologies, but it
has money and vision.

The entity seeks to fund and coordinate a group of data creators and data holders, who will
build a Big Data resource that can be used by others. Government agencies have been the
major benefactors. These Big Data projects are justified if they lead to important discov-
eries that could not be attained at a lesser cost with smaller data resources.

Chapter 1 * Introduction 7

Section 1.4. The Most Common Purpose of Big Data Is to
Produce Small Data

If I had known what it would be like to have it all, I might have been willing to settle

for less.
Lily Tomlin

Imagine using a restaurant locater on your smartphone. With a few taps, it lists the Italian
restaurants located within a 10-block radius of your current location. The database being
queried is big and complex (a map database, a collection of all the restaurants in the world,
their longitudes and latitudes, their street addresses, and a set of ratings provided by
patrons, updated continuously), but the data that it yields is small (e.g., five restaurants,
marked on a street map, with pop-ups indicating their exact address, telephone number,
and ratings). Your task comes down to selecting one restaurant from among the five, and
dining thereat.

In this example, your data selection was drawn from a large data set, but your ultimate
analysis was confined to a small data set (i.e., five restaurants meeting your search cri-
teria). The purpose of the Big Data resource was to proffer the small data set. No analytic
work was performed on the Big Data resource; just search and retrieval. The real labor of
the Big Data resource involved collecting and organizing complex data, so that the
resource would be ready for your query. Along the way, the data creators had many deci-
sions to make (e.g., Should bars be counted as restaurants? What about take-away only
shops? What data should be collected? How should missing data be handled? How will
data be kept current? [Glossary Query, Missing data]

Big Data is seldom, if ever, analyzed in toto. There is almost always a drastic filtering
process that reduces Big Data into smaller data. This rule applies to scientific analyses.
The Australian Square Kilometre Array of radio telescopes [8], WorldWide Telescope,
CERN'’s Large Hadron Collider and the Pan-STARRS (Panoramic Survey Telescope
and Rapid Response System) array of telescopes produce petabytes of data every
day. Researchers use these raw data sources to produce much smaller data sets for
analysis [9]. [Glossary Raw data, Square Kilometer Array, Large Hadron Collider, World-
Wide Telescope]

Here is an example showing how workable subsets of data are prepared from Big Data
resources. Blazars are rare super-massive black holes that release jets of energy that move
at near-light speeds. Cosmologists want to know as much as they can about these strange
objects. A first step to studying blazars is to locate as many of these objects as possible.
Afterwards, various measurements on all of the collected blazars can be compared, and
their general characteristics can be determined. Blazars seem to have a gamma ray signa-
ture that is not present in other celestial objects. The WISE survey collected infrared data
on the entire observable universe. Researchers extracted from the Wise data every celestial
body associated with an infrared signature in the gamma ray range that was suggestive of
blazars; about 300 objects. Further research on these 300 objects led the researchers to

8 PRINCIPLES AND PRACTICE OF BIG DATA

believe that about half were blazars [10]. This is how Big Data research often works; by
constructing small data sets that can be productively analyzed.

Because a common role of Big Data is to produce small data, a question that data man-
agers must ask themselves is: “Have I prepared my Big Data resource in a manner that
helps it become a useful source of small data?”

Section 1.5. Big Data Sits at the Center of the Research
Universe

Physics is the universe's operating system.
Steven R Garman

In the past, scientists followed a well-trodden path toward truth: hypothesis, then exper-
iment, then data, then analysis, then publication. The manner in which a scientist ana-
lyzed his or her data was crucial because other scientists would not have access to the
same data and could not re-analyze the data for themselves. Basically, the results and con-
clusions described in the manuscript was the scientific product. The primary data upon
which the results and conclusion were based (other than one or two summarizing tables)
were not made available for review. Scientific knowledge was built on trust. Customarily,
the data would be held for 7 years, and then discarded. [Glossary Results]

In the Big data paradigm the concept of a final manuscript has little meaning. Big Data
resources are permanent, and the data within the resource is immutable (See Chapter 6).
Any scientist’s analysis of the data does not need to be the final word; another scientist can
access and re-analyze the same data over and over again. Original conclusions can be val-
idated or discredited. New conclusions can be developed. The centerpiece of science has
moved from the manuscript, whose conclusions are tentative until validated, to the Big
Data resource, whose data will be tapped repeatedly to validate old manuscripts and
spawn new manuscripts. [Glossary Immutability, Mutability]

Today, hundreds or thousands of individuals might contribute to a Big Data resource.
The data in the resource might inspire dozens of major scientific projects, hundreds of
manuscripts, thousands of analytic efforts, and millions or billions of search and retrieval
operations. The Big Data resource has become the central, massive object around which
universities, research laboratories, corporations, and federal agencies orbit. These orbit-
ing objects draw information from the Big Data resource, and they use the information to
support analytic studies and to publish manuscripts. Because Big Data resources are per-
manent, any analysis can be critically examined using the same set of data, or re-analyzed
anytime in the future. Because Big Data resources are constantly growing forward in time
(i.e., accruing new information) and backward in time (i.e., absorbing legacy data sets), the
value of the data is constantly increasing.

Big Data resources are the stars of the modern information universe. All matter in the
physical universe comes from heavy elements created inside stars, from lighter elements.
All data in the informational universe is complex data built from simple data. Just as stars

Chapter 1 * Introduction 9

can exhaust themselves, explode, or even collapse under their own weight to become
black holes; Big Data resources can lose funding and die, release their contents and burst
into nothingness, or collapse under their own weight, sucking everything around them
into a dark void. It is an interesting metaphor. In the following chapters, we will see
how a Big Data resource can be designed and operated to ensure stability, utility, growth,
and permanence; features you might expect to find in a massive object located in the cen-
ter of the information universe.

Glossary

Big Data resource A Big Data collection that is accessible for analysis. Readers should understand that
there are collections of Big Data (i.e., data sources that are large, complex, and actively growing) that
are not designed to support analysis; hence, not Big Data resources. Such Big Data collections might
include some of the older hospital information systems, which were designed to deliver individual
patient records upon request; but could not support projects wherein all of the data contained in
all of the records were opened for selection and analysis. Aside from privacy and security issues, open-
ing a hospital information system to these kinds of analyses would place enormous computational
stress on the systems (i.e., produce system crashes). In the late 1990s and the early 2000s data ware-
housing was popular. Large organizations would collect all of the digital information created within
their institutions, and these data were stored as Big Data collections, called data warehouses. If an
authorized person within the institution needed some specific set of information (e.g., emails sent
or received in February, 2003; all of the bills paid in November, 1999), it could be found somewhere
within the warehouse. For the most part, these data warehouses were not true Big Data resources
because they were not organized to support a full analysis of all of the contained data. Another type
of Big Data collection that may or may not be considered a Big Data resource are compilations of sci-
entific data that are accessible for analysis by private concerns, but closed for analysis by the public. In
this case a scientist may make a discovery based on her analysis of a private Big Data collection, but the
research data is not open for critical review. In the opinion of some scientists, including myself, if the
results of a data analysis are not available for review, then the analysis is illegitimate. Of course, this
opinion is not universally shared, and Big Data professionals hold various definitions for a Big Data
resource.

Binary atom count of universe There are estimated to be about 1080 atoms in the universe. Log2(10) is
3.32192809, so the number of atoms in the universe is 2 80*3.32192809 or 2 266 atoms.

Binary units for Big Data Binary sizes are named in 1000-fold intervals: 1 bit = binary digit (0 or 1);
1 byte = 8 bits (the number of bits required to express an ascii character); 1000 bytes = 1 kilobyte;
1000 kilobytes = 1 megabyte; 1000 megabytes = 1 gigabyte; 1000 gigabytes = 1 terabyte; 1000
terabytes = 1 petabyte; 1000 petabytes = 1 exabyte; 1000 exabytes = 1 zettabyte; 1000 zettabytes =
1 yottabyte.

Conclusions Conclusions are the interpretations made by studying the results of an experiment or a set of
observations. The term “results” should never be used interchangeably with the term “conclusions.”
Remember, results are verified. Conclusions are validated [11].

Data Quality Act In the United States the data upon which public policy is based must have quality and
must be available for review by the public. Simply put, public policy must be based on verifiable data.
The Data Quality Act of 2002 requires the Office of Management and Budget to develop government-
wide standards for data quality [12].

Data manager This book uses “data manager” as a catchall term, without attaching any specific
meaning to the name. Depending on the institutional and cultural milieu, synonyms and plesionyms
(i.e., near-synonyms) for data manager would include: technical lead, team liaison, data quality
manager, chief curator, chief of operations, project manager, group supervisor, and so on.

10 PRINCIPLES AND PRACTICE OF BIG DATA

Data object As used in this book, a data object consists of a unique object identifier along with all of the
data/metadata pairs that rightly belong to the object identifier, and that includes one data/metadata
pair that tells us the object’s class.

75898039563441
name G. Willikers
gender male
age 35

is_a class member cowboy

In this example, the object identifier, 75898039563441, is followed by its data/metadata pairs, includ-
ing the one pair that tells us that the object (a 35-year-old man named G. Willikers) belongs to the class
of individuals known as “cowboy.”

The utility of data objects, in the field of Big Data, is discussed in Section 6.2.

Data point The singular form of data is datum. Strictly speaking, the term should be datum point or
datumpoint. Most information scientists, myself included, have abandoned consistent usage rules
for the word “data.” In this book, the term “data” always refers collectively to information, numeric
or textual, structured or unstructured, in any quantity.

Data resource A collection of data made available for data retrieval. The data can be distributed over
servers located anywhere on earth or in space. The resource can be static (i.e., having a fixed set of
data), or in flux. Plesionyms for data resource are: data warehouse, data repository, data archive,
and data store.

Database A software application designed specifically to create and retrieve large numbers of data
records (e.g., millions or billions). The data records of a database are persistent, meaning that the
application can be turned off, then on, and all the collected data will be available to the user.

Grid A collection of computers and computer resources (typically networked servers) that is coordinated
to provide a desired functionality. In the most advanced Grid computing architecture, requests can be
broken into computational tasks that are processed in parallel on multiple computers and transpar-
ently (from the client’s perspective) assembled and returned. The Grid is the intellectual predecessor of
Cloud computing. Cloud computing is less physically and administratively restricted than Grid
computing

Immutability Immutability is the principle that data collected in a Big Data resource is permanent and
can never be modified. At first thought, it would seem that immutability is a ridiculous and impossible
constraint. In the real world, mistakes are made, information changes, and the methods for describing
information changes. This is all true, but the astute Big Data manager knows how to accrue informa-
tion into data objects without changing the pre-existing data. Methods for achieving this seemingly
impossible trick are described in Chapter 8.

Introspection Well-designed Big Data resources support introspection, a method whereby data objects
within the resource can be interrogated to yield their properties, values, and class membership.
Through introspection the relationships among the data objects in the Big Data resource can be exam-
ined and the structure of the resource can be determined. Introspection is the method by which a data
user can find everything there is to know about a Big Data resource without downloading the complete
resource.

Large Hadron Collider The Large Hadron Collider is the world’s largest and most powerful particle accel-
erator and is expected to produce about 15 petabytes (15 million gigabytes) of data annually [13].
Legacy data Data collected by an information system that has been replaced by a newer system, and
which cannot be immediately integrated into the newer system’s database. For example, hospitals reg-
ularly replace their hospital information systems with new systems that promise greater efficiencies,
expanded services, or improved interoperability with other information systems. In many cases, the
new system cannot readily integrate the data collected from the older system. The previously collected

Chapter 1 ¢ Introduction 11

data becomes a legacy to the new system. In such cases, legacy data is simply “stored” for some arbi-
trary period of time in case someone actually needs to retrieve any of the legacy data. After a decade or
so the hospital may find itself without any staff members who are capable of locating the storage site of
the legacy data, or moving the data into a modern operating system, or interpreting the stored data, or
retrieving appropriate data records, or producing a usable query output.

MapReduce A method by which computationally intensive problems can be processed on multiple com-
puters, in parallel. The method can be divided into a mapping step and a reducing step. In the mapping
step a master computer divides a problem into smaller problems that are distributed to other com-
puters. In the reducing step the master computer collects the output from the other computers.
Although MapReduce is intended for Big Data resources, and can hold petabytes of data, most Big Data
problems do not require MapReduce.

Missing data Most complex data sets have missing data values. Somewhere along the line data elements
were not entered, records were lost, or some systemic error produced empty data fields. Big Data,
being large, complex, and composed of data objects collected from diverse sources, is almost certain
to have missing data. Various mathematical approaches to missing data have been developed; com-
monly involving assigning values on a statistical basis; so-called imputation methods. The underlying
assumption for such methods is that missing data arises at random. When missing data arises non-
randomly, there is no satisfactory statistical fix. The Big Data curator must track down the source
of the errors and somehow rectify the situation. In either case the issue of missing data introduces
a potential bias and it is crucial to fully document the method by which missing data is handled. In
the realm of clinical trials, only a minority of data analyses bothers to describe their chosen method
for handling missing data [14].

Mutability Mutability refers to the ability to alter the data held in a data object or to change the identity of
a data object. Serious Big Data is not mutable. Data can be added, but data cannot be erased or altered.
Big Data resources that are mutable cannot establish a sensible data identification system, and cannot
support verification and validation activities. The legitimate ways in which we can record the changes
that occur in unique data objects (e.g., humans) over time, without ever changing the key/value data
attached to the unique object, is discussed in Section 8.2.

For programmers, it is important to distinguish data mutability from object mutability, as it applies in
Python and other object-oriented programming languages. Python has two immutable objects: strings
and tuples. Intuitively, we would probably guess that the contents of a string object cannot be changed,
and the contents of a tuple object cannot be changed. This is not the case. Immutability, for program-
mers, means that there are no methods available to the object by which the contents of the object can
be altered. Specifically, a Python tuple object would have no methods it could call to change its own
contents. However, a tuple may contain a list, and lists are mutable. For example, a list may have an
append method that will add an item to the list object. You can change the contents of a list contained
in a tuple object without violating the tuple’s immutability.

Parallel computing Some computational tasks can be broken down and distributed to other computers,
to be calculated “in parallel.” The method of parallel programming allows a collection of desktop com-
puters to complete intensive calculations of the sort that would ordinarily require the aid of a super-
computer. Parallel programming has been studied as a practical way to deal with the higher
computational demands brought by Big Data. Although there are many important problems that
require parallel computing, the vast majority of Big Data analyses can be easily accomplished with
a single, off-the-shelf personal computer.

Protocol A set of instructions, policies, or fully described procedures for accomplishing a service, oper-
ation, or task. Protocols are fundamental to Big Data. Data is generated and collected according to pro-
tocols. There are protocols for conducting experiments, and there are protocols for measuring the
results. There are protocols for choosing the human subjects included in a clinical trial, and there
are protocols for interacting with the human subjects during the course of the trial. All network

12 PRINCIPLES AND PRACTICE OF BIG DATA

communications are conducted via protocols; the Internet operates under a protocol (TCP-IP, Trans-
mission Control Protocol-Internet Protocol).

Query The term “query” usually refers to a request, sent to a database, for information (e.g., Web pages,
documents, lines of text, images) that matches a provided word or phrase (i.e., the query term). More
generally a query is a parameter or set of parameters that are submitted as input to a computer pro-
gram that searches a data collection for items that match or bear some relationship to the query
parameters. In the context of Big Data the user may need to find classes of objects that have properties
relevant to a particular area of interest. In this case, the query is basically introspective, and the output
may yield metadata describing individual objects, classes of objects, or the relationships among
objects that share particular properties. For example, “weight” may be a property, and this property
may fall into the domain of several different classes of data objects. The user might want to know
the names of the classes of objects that have the “weight” property and the numbers of object instances
in each class. Eventually the user might want to select several of these classes (e.g., including dogs and
cats, but excluding microwave ovens) along with the data object instances whose weights fall within a
specified range (e.g., 20-30 pound). This approach to querying could work with any data set that has
been well specified with metadata, but it is particularly important when using Big Data resources.

Raw data Raw data is the unprocessed, original data measurement, coming straight from the instrument
to the database with no intervening interference or modification. In reality, scientists seldom, if ever,
work with raw data. When an instrument registers the amount of fluorescence emitted by a hybridi-
zation spot on a gene array, or the concentration of sodium in the blood, or virtually any of the mea-
surements that we receive as numeric quantities, the output is produced by an algorithm executed by
the measurement instrument. Pre-processing of data is commonplace in the universe of Big Data, and
data managers should not labor under the false impression that the data received is “raw,” simply
because the data has not been modified by the person who submits the data.

Results The term “results” is often confused with the term “conclusions.” Interchanging the two concepts
is a source of confusion among data scientists. In the strictest sense, “results” consist of the full set of
experimental data collected by measurements. In practice, “results” are provided as a small subset of
data distilled from the raw, original data. In a typical journal article, selected data subsets are packaged
as a chart or graph that emphasizes some point of interest. Hence, the term “results” may refer, erro-
neously, to subsets of the original data, or to visual graphics intended to summarize the original data.
Conclusions are the inferences drawn from the results. Results are verified; conclusions are validated.

Science Of course, there are many different definitions of science, and inquisitive students should be
encouraged to find a conceptualization of science that suits their own intellectual development.
For me, science is all about finding general relationships among objects. In the so-called physical sci-
ences the most important relationships are expressed as mathematical equations (e.g., the relationship
between force, mass and acceleration; the relationship between voltage, current and resistance). In the
so-called natural sciences, relationships are often expressed through classifications (e.g., the classifi-
cation of living organisms). Scientific advancement is the discovery of new relationships or the discov-
ery of a generalization that applies to objects hitherto confined within disparate scientific realms (e.g.,
evolutionary theory arising from observations of organisms and geologic strata). Engineering would be
the area of science wherein scientific relationships are exploited to build new technology.

Square Kilometer Array The Square Kilometer Array is designed to collect data from millions of con-
nected radio telescopes and is expected to produce more than one exabyte (1 billion gigabytes) every
day [8].

Supercomputer Computers that can perform many times faster than a desktop personal computer. In
2015 the top supercomputers operate at about 30 petaflops. A petaflop is 10 to the 15 power floating
point operations per second. By my calculations a 1 petaflop computer performs about 250,000 oper-
ations in the time required for my laptop to finish one operation.

Chapter 1 « Introduction 13

WorldWide Telescope A Big Data effort from the Microsoft Corporation bringing astronomical maps,

imagery, data, analytic methods, and visualization technology to standard Web browsers. More infor-
mation is available at: http://www.worldwidetelescope.org/Home.aspx

References

(1]

(2

(3]

3

(91
(10]

(11]

(12]

[13]

(14]

Graur D, Zheng Y, Price N, Azevedo RB, Zufall RA, Elhaik E. On the immortality of television sets:
“function” in the human genome according to the evolution-free gospel of ENCODE. Genome Biol
Evol 2013;5:578-90.

Whittaker Z. UK’s delayed national health IT programme officially scrapped. ZDNet, September 22,
2011.

Kappelman LA, McKeeman R, Lixuan Zhang L. Early warning signs of IT project failure: the dominant
dozen. Information Systems Management 2006;23:31-6.

An assessment of the impact of the NCI cancer Biomedical Informatics Grid (caBIG). Report of the
Board of Scientific Advisors Ad Hoc Working Group. National Cancer Institute; March 2011.

Komatsoulis GA. Program announcement to the CaBIG community. National Cancer Institute.
https://cabig.nci.nih.gov/program_announcement [viewed August 31, 2012].

Freitas A, Curry E, Oliveira]G, O'Riain S. Querying heterogeneous datasets on the linked data web:
challenges, approaches, and trends. IEEE Internet Computing 2012;16:24-33.

Drake TA, Braun J, Marchevsky A, Kohane IS, Fletcher C, Chueh H, et al. A system for sharing routine
surgical pathology specimens across institutions: the Shared Pathology Informatics Network (SPIN).
Hum Pathol 2007;38:1212-25.

Francis M. Future telescope array drives development of exabyte processing. Ars Technica; 2012,
April 2.

Markoff]. A deluge of data shapes a new era in computing. The New York Times; 2009. December 15.

Harrington JD, Clavin W. NASA's WISE mission sees skies ablaze with blazars. NASA Release 12-109;
2002. April 12.

Committee on Mathematical Foundations of Verification, Validation, and Uncertainty
Quantification; Board on Mathematical Sciences and Their Applications, Division on Engineering
and Physical Sciences, National Research Council. Assessing the reliability of complex models: math-
ematical and statistical foundations of verification, validation, and uncertainty quantification.
National Academy Press; 2012. Available from: http://www.nap.edu/catalog.php?record_id—=13395.
[viewed January 1, 2015].

Data Quality Act. 67 Fed. Reg. 8,452, February 22, 2002, addition to FY 2001 Consolidated Appropri-
ations Act (Pub. L. No. 106-554. Codified at 44 U.S.C. 3516).

Worldwide LHC Computing Grid. European Organization for Nuclear Research. Available from:
http://public.web.cern.ch/public/en/lhc/Computing-en.html; 2008 [viewed September 19, 2012].

Carpenter JR, Kenward MG. Missing data in randomised control trials: a practical guide. November
21. Available from:http://www.hta.nhs.uk/nihrmethodology/reports/1589.pdf; 2007.

This page intentionally left blank

N

Providing Structure to
Unstructured Data

OUTLINE

Section 2.1. Nearly All Data Is Unstructured and Unusable in Its Raw Formccccccvnninenicnnnns 15
SeCtion 2.2. CONCOITANCESoeciieeeceiecieriieiieirseeseeaeeassntasesae s e smsmsaeeeeesasssssnsasesssnsnsassenssarsnnsrensaneras 16
Section 2.3. Term EXTraction ... e st e e s e s s s am e ae s s msm e e e ee e s s snannmsnnneas 19
Section 2.4. INAEXING ..ot s 22
Section 2.5. AUTOCOAING .ot s s s s 24
Section 2.6. Case Study: Instantly Finding the Precise Location of Any Atom in the

Universe (Some Assembly RequUired)cccccceiiiiiiiininins e es s s ssssssssssssssssnsssess sesssnans 29
Section 2.7. Case Study (Advanced): A Complete Autocoder (in 12 Lines of Python Code) 31
Section 2.8. Case Study: Concordances as Transformations of Textcccoevevcirecniccensieesrsnnns 34
Section 2.9. Case Study (Advanced): Burrows Wheeler Transform (BWT)cccceceiirenrrenrncnnns 36
(€1 L0137 o TSSOSO PPRR S SPRSTRRRC 1
Y (=] (=] g o= TR USRNSSR 1 |

Section 2.1. Nearly All Data Is Unstructured and Unusable
in Its Raw Form

I was working on the proof of one of my poems all the morning, and took out a

comma. In the afternoon I put it back again.
Oscar Wilde

In the early days of computing, data was always highly structured. All data was divided into
fields, the fields had a fixed length, and the data entered into each field was constrained to a
pre-determined set of allowed values. Data was entered into punch cards with pre-
configured rows and columns. Depending on the intended use of the cards, various entry
and read-out methods were chosen to express binary data, numeric data, fixed-size text, or
programming instructions. Key-punch operators produced mountains of punch cards. For
many analytic purposes, card-encoded data sets were analyzed without the assistance of a
computer; all that was needed was a punch card sorter. If you wanted the data card on all
males, over the age of 18, who had graduated high school, and had passed their physical
exam, then the sorter would need to make 4 passes. The sorter would pull every card listing
a male, then from the male cards it would pull all the cards of people over the age of 18, and
from this double-sorted sub-stack, it would pull cards that met the next criterion, and so on.

Principles and Practice of Big Data. https://doi.org/10.1016/B978-0-12-815609-4.00002-9 15
© 2018 Elsevier Inc, All rights reserved.

16 PRINCIPLES AND PRACTICE OF BIG DATA

As a high school student in the 1960s, I loved playing with the card sorters. Back then, all
data was structured data, and it seemed to me, at the time, that a punch-card sorter was
all that anyone would ever need to analyze large sets of data. [Glossary Binary data]

How wrong I was! Today, most data entered by humans is unstructured in the form of
free-text. The free-text comes in email messages, tweets, and documents. Structured data
has not disappeared, but it sits in the shadows cast by mountains of unstructured text.
Free-text may be more interesting to read than punch cards, but the venerable punch card,
in its heyday, was much easier to analyze than its free-text descendant. To get much infor-
mational value from free-text, it is necessary to impose some structure. This may involve
translating the text to a preferred language; parsing the text into sentences; extracting and
normalizing the conceptual terms contained in the sentences; mapping terms to a stan-
dard nomenclature; annotating the terms with codes from one or more standard nomen-
clatures; extracting and standardizing data values from the text; assigning data values to
specific classes of data belonging to a classification system; assigning the classified data to
a storage and retrieval system (e.g., a database); and indexing the data in the system. All of
these activities are difficult to do on a small scale and virtually impossible to do on a large
scale. Nonetheless, every Big Data project that uses unstructured data must deal with
these tasks to yield the best possible results with the resources available. [Glossary Parsing,
Nomenclature, Nomenclature mapping, Thesaurus, Indexes, Plain-text]

Section 2.2. Concordances

The limits of my language are the limits of my mind. All I know is what I have words

for. (Die Grenzen meiner Sprache bedeuten die Grenzen meiner Welt.)
Ludwig Wittgenstein

A concordance is a list of all the different words contained in a text with the locations in the
text where each word appears. Concordances have been around for a very long time,
painstakingly constructed from holy scriptures thought to be of such immense value that
every word deserved special attention. Creating a concordance has always been a straight-
forward operation. You take the first word in the text and you note its location (i.e., word 1,
page 1); then onto the second word (word 2 page 1), and so on. When you come to a
word that has been included in the nascent concordance, you add its location to the exist-
ing entry for the word. Continuing thusly, for a few months or so, you end up with a con-
cordance that you can be proud of. Today a concordance for the Bible can be constructed
in a small fraction of a second. [Glossary Concordance]

Without the benefit of any special analyses, skimming through a book’s concordance
provides a fairly good idea of the following:

— The topic of the text based on the words appearing in the concordance. For example, a
concordance listing multiple locations for “begat” and “anocinted” and “thy” is most
likely to be the Old Testament.

Chapter 2 » Providing Structure to Unstructured Data 17

— The complexity of the language. A complex or scholarly text will have a larger
vocabulary than a romance novel.

— Aprecise idea of the length of the text, achieved by adding all of the occurrences of each
of the words in the concordance. Knowing the number of items in the concordance,
multiplied by the average number of locations of concordance items, provides a rough
estimate of the total number of words in the text.

— The care with which the text was prepared, achieved by counting the misspelled words.

Here, in a short Python script, concord_gettysbu.py, that builds a concordance for the Get-
tysburg address, located in the external file “gettysbu.txt”: [Glossary Script]

import re, string
word list=[];word dict={};key list=[]
count=0; word=""
in text string =cpen('gettysbu.txt', "r").read().lower ()
word list = re.split(r'[a-zA-z_\-]1+',in text string)
for word in word list:
count = count + 1
if word in word_dict:
word_dict [word] = word_dict [word] + ',' + str(count)
else:
word dict [word] = str (count)
key list = list (word_dict)
key list.sort()
for key in key_list:
print (key + " " + word dict [key])

The first few lines of output are shown:

al4,36,59,70,76,104,243
above 131

add 136

advanced 185

ago 6

all 26

altogether 93

and 3,20,49,95,122,248
any 45

are 28,33,56

as 75

battlefield 61

be 168,192

before 200

birth 245

18 PRINCIPLES AND PRACTICE OF BIG DATA

brave 119

brought 9

but 102,151

by 254

can 52,153

cannot 108,111,114

The numbers that follow each item in the concordance correspond to the locations
(expressed as the nth words of the Gettysburg address) of each word in the text.

At this point, building a concordance may appear to an easy, but somewhat pointless

exercise. Does the concordance provide any functionality beyond that provided by the
ubiquitous “search” box. There are five very useful properties of concordances that you
might not have anticipated.

You can use a concordance to rapidly search and retrieve the locations where single-
word terms appear.

You can always reconstruct the original text from the concordance. Hence, after you've
built your concordance, you can discard the original text.

You can merge concordances without forfeiting your ability to reconstruct the
original texts, provided that you tag locations with some character sequence that
identifies the text of origin.

With a little effort a dictionary can be transformed into a universal concordance (i.e., a
merged dictionary/concordance of every book in existence) by attaching the book
identifier and its concordance entries to the corresponding dictionary terms.

You can easily find the co-locations among words (i.e., which words often precede or
follow one another).

You can use the concordance to retrieve the sentences and paragraphs in which a
search word or a search term appears, without having access to the original text. The
concordance alone can reconstruct and retrieve the appropriate segments of text,
on-the-fly, thus bypassing the need to search the original text.

A concordance provides a profile of the book and can be used to compute a similarity
score among different books.

There is insufficient room to explore all of the useful properties of concordances, but let us
examine a script, concord_reverse.py, that reconstructs the original text, in lowercase,
from the concordance. In this case, we have pasted the output from the concord_get-
tysbu.py script (vida supra) into the external file, “concordance.txt”.

import re, string

concordance hash = {} ; location array = []

in_text = open('concordance.txt', "r")

for line in in text:
line = line.replace ("\n","")
location word, separator, location positions=1line.partition(" ")
location array = location positions.split(",")

Chapter 2 Providing Structure to Unstructured Data 19

location array = [int (x) for x in location_arrayl
for location in location_array:
concordance hash([location] = location word
forn in range (300) :
if n in concordance_hash:
print ((concordance hash([n]), end="")

Here is the familiar output:

four score and seven years ago our fathers brought forth on this continent a new
nation conceived in liberty and dedicated to the proposition that all men are created
equal now we are engaged in a great civil war testing whether that nation or any
nation so conceived and so dedicated can long endure we are met on a great bat-
tlefield of that war we have come to dedicate a portion of that field as a final
resting-place for those who here gave their lives that that nation might live it is alto-
gether fitting and proper that we should do this but in a larger sense we cannot ded-
icate we cannot consecrate we cannot hallow this ground the brave men living and
dead who struggled here have consecrated it far above our poor power to add or
detract the world will little note nor long remember what we say here but it can
never forget what they did here it is for us the living rather to be dedicated here
to the unfinished work which they who fought here have thus far so nobly advanced
it is rather for us to be here dedicated to the great task remaining before us—that
from these honored dead we take increased devotion to that cause for which they
gave the last full measure of devotion—that we here highly resolve that these dead
shall not have died in vain that this nation under god shall have a new birth of
freedom and that government of the people by the people for the people shall not
perish from the earth

Had we wanted to write a script that produces a merged concordance, for multiple doc-
uments, we could have simply written a loop that repeated the concordance-building pro-
cess for each text. Within the loop, we would have tagged each word location with a short
notation indicating the particular source book. For example, locations from the Gettys-
burg address could have been prepended with “G:” and locations from the Bible might
have been prepended with a “B:".

We have not finished with the topic of concordances. Later in this chapter (Section 2.8),
we will show how concordances can be transformed to speed-up search and retrieval
operations on large bodies of text.

Section 2.3. Term Extraction

There’s a big difference between knowing the name of something and knowing

something.
Richard Feynman

20 PRINCIPLES AND PRACTICE OF BIG DATA

One of my favorite movies is the parody version of “Hound of the Baskervilles,” starring
Peter Cooke as Sherlock Holmes and Dudley Moore as his faithful hagiographer, Dr. Wat-
son. Sherlock, preoccupied with his own ridiculous pursuits, dispatches Watson to the
Baskerville family manse, in Dartmoor, to undertake urgent sleuth-related activities.
The hapless Watson, standing in the great Baskerville Hall, has no idea how to proceed
with the investigation. After a moment of hesitation, he turns to the incurious maid
and commands, “Take me to the clues!”

Building an index is a lot like solving a fiendish crime; you need to know how to find the
clues. For informaticians, the terms in the text are the clues upon which the index is built.
Terms in a text file do not jump into your index file; you need to find them. There are sev-
eral available methods for finding and extracting index terms from a corpus of text [1], but
no method is as simple, fast, and scalable as the “stop word” method [2]. [Glossary Term
extraction algorithm, Scalable]

The “stop word” method presumes that text is composed of terms that are somehow
connected into sequences known as sentences. [Glossary Sentence]

Consider the following:

The diagnosis is chronic viral hepatitis.

This sentence contains two very specific medical concepts: “diagnosis” and “chronic viral
hepatitis.” These two concepts are connected to form a sentence, using grammatical bric-
a-brac such as “the” and “is”, and the sentence delimiter, “.”. These grammatical bric-a-
brac are found liberally sprinkled in every paragraph you are likely to read.
A term can be defined as a sequence of one or more uncommon words that are demar-
cated (i.e., bounded on one side or another) by the occurrence of one or more very com-
woan w wn wn

mon words (e.g., “and”, “the”, “a”, “of”) and phrase delimiters (e.g., “.”, “,”, and “;")
Consider the following:

An epidural hemorrhage can occur after a lucid interval.

The medical concepts “epidural hemorrhage” and “lucid interval” are composed of
uncommon words. These uncommon word sequences are bounded by common words
(i.e., “the”, “an”, “can”, “a”) or a sentence delimiter (i.e., “.”).

If we had alist of all the words that were considered common, we could write a program
that extracts the all the concepts found in any text of any length. The concept terms would
consist of all sequences of uncommon words that are uninterrupted by common words.

Here is an algorithm for extracting terms from a sentence:

1. Read the first word of the sentence. If it is a common word, delete it. If it is an
uncommon word, save it.

2. Read the next word. If it is a common word, delete it, and place the saved word (from
the prior step, if the prior step saved a word) into our list of terms found in the text. If it

Chapter 2 » Providing Structure to Unstructured Data 21

is an uncommon word, concatenate it with the word we saved in step one, and save
the 2-word term. If it is a sentence delimiter, place any saved term into our list of
terms, and stop the program.

3. Repeat step two.

This simple algorithm, or something much like it, is a fast and efficient method to build a
collection of index terms. The following list of common words might be useful: “about,
again, all, almost, also, although, always, among, an, and, another, any, are, as, at, be,
because, been, before, being, between, both, but, by, can, could, did, do, does, done, due,
during, each, either, enough, especially, etc, for, found, from, further, had, has, have, having,
here, how, however, i, if, in, into, is, it, its, itself, just, kg, km, made, mainly, make, may, mg,
might, ml, mm, most, mostly, must, nearly, neither, no, nor, obtained, of, often, on, our,
overall, perhaps, pmid, quite, rather, really, regarding, seem, seen, several, should, show,
showed, shown, shows, significantly, since, so, some, such, than, that, the, their, theirs,
them, then, there, therefore, these, they, this, those, through, thus, to, upon, use, used, using,
various, very, was, we, were, what, when, which, while, with, within, without, would.”

Such lists of common words are sometimes referred to as “stop word” lists or “barrier
word” lists, as they demarcate the beginnings and endings of extraction terms. Let us look
at a short Python script (terms.py) that uses our list of stop words (contained in the file
stop.txt) and extracts the terms from the sentence: “Once you have a method for extracting
terms from sentences the task of creating an index associating a list of locations with each
term is child’s play for programmers”

import re, string
stopfile = open("stop.txt",'r"')
stop list = stopfile.readlines()
stopfile.close ()
item list = []
line = "Once you have a method for extracting terms from \
sentences the task of creating an index associatinga list \
of locations with each term is child's play for programmers"
for stopword in stop_ list:

stopword = re.sub(r'\n', ", stopword)

line = re.sub(r' *\b' + stopword + r'\b *', '\n', line)
item list.extend(line.split ("\n"))
item list = sorted(set (item list))
for itemin item list:

print (item)

Here is the output:

Once
child's play
creating

22 PRINCIPLES AND PRACTICE OF BIG DATA

extracting terms
index associating
list

locations

method
programmers
sentences

task

term

Extracting terms is the first step in building a very crude index. Indexes built directly from
term extraction algorithms always contain lots of unnecessary terms having little or no
informational value. For serious indexers, the collection of terms extracted from a corpus,
along with their locations in the text, is just the beginning of an intellectual process that
will eventually lead to a valuable index.

Section 2.4. Indexing

Knowledge can be public, yet undiscovered, if independently created fragments are

logically related but never retrieved, brought together, and interpreted.
Donald R. Swanson [3]

Individuals accustomed to electronic media tend to think of the Index as an inefficient
or obsolete method for finding and retrieving information. Most currently available
e-books have no index. It is far easier to pull up the “Find” dialog box and enter a word
or phrase. The e-reader can find all matches quickly, providing the total number of
matches, and bringing the reader to any or all of the pages containing the selection. As
more and more books are published electronically, the book Index, as we have come to
know it, may cease to be.

It would be a pity if indexes were to be abandoned by computer scientists. A well-
designed book index is a creative, literary work that captures the content and intent of
the book and transforms it into a listing wherein related concepts are collected under
common terms, and keyed to their locations. It saddens me that many people ignore
the book index until they want something from it. Open a favorite book and read the index,
from A to Z, as if you were reading the body of the text. You will find that the index refreshes
your understanding of the concepts discussed in the book. The range of page numbers
after each term indicates that a concept has extended its relevance across many different
chapters. When you browse the different entries related to a single term, you learn how the
concept represented by the term applies itself to many different topics. You begin to
understand, in ways that were not apparent when you read the book as a linear text,
the versatility of the ideas contained in the book. When you have finished reading the
index, you will notice that the indexer exercised great restraint when selecting terms.

Chapter 2 Providing Structure to Unstructured Data 23

Most indexes are under 20 pages. The goal of the indexer is not to create a concordance
(i.e., a listing of every word in a book, with its locations), but to create a keyed encapsu-
lation of concepts, sub-concepts and term relationships.

The indexes we find in today’s books are generally alphabetized terms. In prior decades
and prior centuries, authors and editors put enormous effort into building indexes, some-
times producing multiple indexes for a single book. For example, a biography might con-
tain a traditional alphabetized term index, followed by an alphabetized index of the names
of the people included in the text. A zoology book might include an index specifically for
animal names, with animals categorized according to their taxonomic order. A geography
index might list the names of localities sub-indexed by country, with countries sub-
indexed by continent. A single book might have 5 or more indexes. In nineteenth century
books, it was not unusual to publish indexes as stand-alone volumes. [Glossary Taxonomy,
Systematics, Taxa, Taxon]

You may be thinking that all this fuss over indexes is quaint, but it cannot apply to Big
Data resources. Actually, Big Data resources that lack a proper index cannot be utilized to
their full potential. Without an index, you never know what your queries are missing.
Remember, in a Big Data resource, it is the relationship among data objects that are the keys
to knowledge. Data by itself, even in large quantities, tells only part of a story. The most
useful Big Data resources have electronic indexes that map concepts, classes, and terms
to specific locations in the resource where data items are stored. An index imposes order
and simplicity on the Big Data resource. Without an index, Big Data resources can easily
devolve into vast collections of disorganized information. [Glossary Class]

The best indexes comply with international standards (ISO 999) and require creativity
and professionalism [4]. Indexes should be accepted as another device for driving down
the complexity of Big Data resources. Here are a few of the specific strengths of an index
that cannot be duplicated by “find” operations on terms entered into a query box:

— Anindex can be read, like a book, to acquire a quick understanding of the contents and
general organization of the data resource.

— Index lookups (i.e., searches and retrievals) are virtually instantaneous, even for very
large indexes (see Section 2.6 of this chapter, for explanation).

— Indexes can be tied to a classification. This permits the analyst to know the
relationships among different topics within the index, and within the text. [Glossary
Classification]

— Many indexes are cross-indexed, providing relationships among index terms that
might be extremely helpful to the data analyst.

— Indexes from multiple Big Data resources can be merged. When the location entries for
index terms are annotated with the name of the resource, then merging indexes is
trivial, and index searches will yield unambiguously identified locators in any of the Big
Data resources included in the merge.

— Indexes can be created to satisfy a particular goal; and the process of creating a made-
to-order index can be repeated again and again. For example, if you have a Big Data

24 PRINCIPLES AND PRACTICE OF BIG DATA

resource devoted to ornithology, and you have an interest in the geographic location of
species, you might want to create an index specifically keyed to localities, or you might
want to add a locality sub-entry for every indexed bird name in your original index.
Such indexes can be constructed as add-ons, as needed. [Glossary Ngrams]

— Indexes can be updated. If terminology or classifications change, there is nothing
stopping you from re-building the index with an updated specification. In the specific
context of Big Data, you can update the index without modifying your data.
[Glossary Specification]

— Indexes are created after the database has been created. In some cases, the data
manager does not envision the full potential of the Big Data resource until after it is
created. The index can be designed to facilitate the use of the resource in line with the
observed practices of users.

— Indexes can serve as surrogates for the Big Data resource. In some cases, all the data
user really needs is the index. A telephone book is an example of an index that serves its
purpose without being attached to a related data source (e.g., caller logs, switching
diagrams).

Section 2.5. Autocoding

The beginning of wisdom is to call things by their right names.
Chinese proverb

Coding, as used in the context of unstructured textual data, is the process of tagging terms
with an identifier code that corresponds to a synonymous term listed in a standard
nomenclature. For example, a medical nomenclature might contain the term renal cell
carcinoma, a type of kidney cancer, attaching a unique identifier code for the term, such
as “C9385000.” There are about 50 recognized synonyms for “renal cell carcinoma.” A few
of these synonyms and near-synonyms are listed here to show that a single concept can be
expressed many different ways, including: adenocarcinoma arising from kidney, adeno-
carcinoma involving kidney, cancer arising from kidney, carcinoma of kidney, Grawitz
tumor, Grawitz tumour, hypernephroid tumor, hypernephroma, kidney adenocarcinoma,
renal adenocarcinoma, and renal cell carcinoma. All of these terms could be assigned the
same identifier code, “C9385000”. [Glossary Coding, Identifier]

The process of coding a text document involves finding all the terms that belong to a
specific nomenclature, and tagging each term with the corresponding identifier code.

A nomenclature is a specialized vocabulary, usually containing terms that comprehen-
sively cover a knowledge domain. For example, there may be a nomenclature of diseases,
of celestial bodies, or of makes and models of automobiles. Some nomenclatures are
ordered alphabetically. Others are ordered by synonymy, wherein all synonyms and ple-
sionyms (near-synonyms) are collected under a canonical (i.e., best or preferred) term.
Synonym indexes are always corrupted by the inclusion of polysemous terms (i.e., terms
with multiple meanings). In many nomenclatures, grouped synonyms are collected under

Chapter 2 Providing Structure to Unstructured Data 25

a so-called code (i.e., a unique alphanumeric string) assigned to all of the terms in
the group.

Nomenclatures have many purposes: to enhance interoperability and integration, to
allow synonymous terms to be retrieved regardless of which specific synonym is entered
as a query, to support comprehensive analyses of textual data, to express detail, to tag
information in textual documents, and to drive down the complexity of documents by
uniting synonymous terms under a common code. Sets of documents held in more than
one Big Data resource can be harmonized under a nomenclature by substituting or
appending a nomenclature code to every nomenclature term that appears in any of the
documents. [Glossary Interoperability, Data integration, Plesionymy, Polysemy, Vocabu-
lary, Uniqueness, String]

In the case of “renal cell carcinoma,” if all of the 50+ synonymous terms, appearing
anywhere in a medical text, were tagged with the code “C938500,” then a search engine
could retrieve documents containing this code, regardless of which specific synonym
was queried (e.g., a query on Grawitz tumor would retrieve documents containing the
word “hypernephroid tumor”). To do so the search engine would simply translate the
query word, “Grawitz tumor” into its nomenclature code “C938500” and would pull every
record that had been tagged by the code.

Traditionally, nomenclature coding, much like language translation, has been consid-
ered a specialized and highly detailed task that is best accomplished by human beings. Just
as there are highly trained translators who will prepare foreign language versions of pop-
ular texts, there are highly trained coders, intimately familiar with specific nomenclatures,
who create tagged versions of documents. Tagging documents with nomenclature codes is
serious business. If the coding is flawed the consequences can be dire. In 2009 the Depart-
ment of Veterans Affairs sent out hundreds of letters to veterans with the devastating news
that they had contracted Amyotrophic Lateral Sclerosis, also known as Lou Gehrig’s dis-
ease, a fatal degenerative neurologic condition. About 600 of the recipients did not, in fact,
have the disease. The VA retracted these letters, attributing the confusion to a coding error
[5]. Coding text is difficult. Human coders are inconsistent, idiosyncratic, and prone to
error. Coding accuracy for humans seems to fall in the range of 85%-90% [6]. [Glossary
Accuracy versus precision]

When dealing with text in gigabyte and greater quantities, human coding is simply out
of the question. There is not enough time or money or talent to manually code the textual
data contained in Big Data resources. Computerized coding (i.e., autocoding) is the only
practical solution.

Autocoding is a specialized form of machine translation, the field of computer science
wherein meaning is drawn from narrative text. Not surprisingly, autocoding algorithms
have been adopted directly from the field of machine translation, particularly algorithms
for natural language processing. A popular approach to autocoding involves using the nat-
ural rules of language to find words or phrases found in text and matching them to nomen-
clature terms. Ideally the terms found in text are correctly matched to their equivalent
nomenclature terms, regardless of the way that the terms were expressed in the text.

26 PRINCIPLES AND PRACTICE OF BIG DATA

For instance, the term “adenocarcinoma of lung” has much in common with alternate
terms that have minor variations in word order, plurality, inclusion of articles, terms split
by a word inserted for informational enrichment, and so on. Alternate forms would be
“adenocarcinoma of the lung,” “adenocarcinoma of the lungs,” “lung adenocarcinoma,”
and “adenocarcinoma found in the lung.” A natural language algorithm takes into account
grammatical variants, allowable alternate term constructions, word roots (i.e., stemming),
and syntax variation. Clever improvements on natural language methods might include
string similarity scores, intended to find term equivalences in cases where grammatical
methods come up short. [Glossary Algorithm, Syntax, Machine translation, Natural
language processing]

A limitation of the natural language approach to autocoding is encountered when syn-
onymous terms lack etymologic commonality. Consider the term “renal cell carcinoma.”
Synonyms include terms that have no grammatical relationship with one another. For
example, hypernephroma, and Grawitz tumor are synonyms for renal cell carcinoma. It
is impossible to compute the equivalents among these terms through the implementation
of natural language rules or word similarity algorithms. The only way of obtaining ade-
quate synonymy is through the use of a comprehensive nomenclature that lists every syn-
onym for every canonical term in the knowledge domain.

Setting aside the inability to construct equivalents for synonymous terms that share no
grammatical roots, the best natural language autocoders are pitifully slow. The reason for
the slowness relates to their algorithm, which requires the following steps, at a minimum:
parsing text into sentences; parsing sentences into grammatical units; re-arranging the
units of the sentence into grammatically permissible combinations; expanding the com-
binations based on stem forms of words; allowing for singularities and pluralities of words,
and matching the allowable variations against the terms listed in the nomenclature.
A typical natural language autocoder parses text at about 1 kilobyte per second, which
is equivalent to a terabyte of text every 30 years. Big Data resources typically contain many
terabytes of data; thus, natural language autocoding software is unsuitable for translating
Big Data resources. This being the case, what good are they?

Natural language autocoders have value when they are employed at the time of data
entry. Humans type sentences at a rate far less than 1 kilobyte per second, and natural
language autocoders can keep up with typists, inserting codes for terms, as they are typed.
They can operate much the same way as auto-correct, auto-spelling, look-ahead, and
other commonly available crutches intended to improve or augment the output of plod-
ding human typists.

— Recoding and speed

It would seem that by applying the natural language parser at the moment when the
data is being prepared, all of the inherent limitations of the algorithm can be overcome.
This belief, popularized by developers of natural language software, and perpetuated
by a generation of satisfied customers, ignores two of the most important proper-
ties that must be preserved in Big Data resources: longevity, and curation. [Glossary
Curator]

Chapter 2 » Providing Structure to Unstructured Data 27

Nomenclatures change over time. Synonymous terms and the codes will vary from year
to year as new versions of old nomenclature are published and new nomenclatures are
developed. In some cases, the textual material within the Big Data resource will need
to be annotated using codes from nomenclatures that cover informational domains that
were not anticipated when the text was originally composed.

Most of the people who work within an information-intensive society are accustomed
to evanescent data; data that is forgotten when its original purpose is served. Do we really
want all of our old e-mails to be preserved forever? Do we not regret our earliest blog posts,
Facebook entries, and tweets? In the medical world, a code for a clinic visit or a biopsy
diagnosis, or a reportable transmissible disease will be used in a matter of minutes or
hours; maybe days or months. Few among us place much value on textual information
preserved for years and decades. Nonetheless, it is the job of the Big Data manager to pre-
serve resource data over years and decades. When we have data that extends back, over
decades, we can find and avoid errors that would otherwise reoccur in the present, and
we can analyze trends that lead us into the future.

To preserve its value, data must be constantly curated, adding codes that apply to cur-
rently available nomenclatures. There is no avoiding the chore; the entire corpus of textual
data held in the Big Data resource needs to be recoded again and again, using modified
versions of the original nomenclature, or using one or more new nomenclatures. This
time, an autocoding application will be required to code huge quantities of textual data
(possibly terabytes), quickly. Natural language algorithms, which depend heavily on regex
operations (i.e., finding word patterns in text) are too slow to do the joh. [Glossary RegEx]

A faster alternative is so-called lexical parsing. This involves parsing text, word by word,
looking for exact matches between runs of words and entries in a nomenclature. When a
match occurs, the words in the text that matched the nomenclature term are assigned the
nomenclature code that corresponds to the matched term. Here is one possible algorith-
mic strategy for autocoding the sentence: “Margins positive malignant melanoma.” For
this example, you would be using a nomenclature that lists all of the tumors that occur
in humans. Let us assume that the terms “malignant melanoma,” and “melanoma” are
included in the nomenclature. They are both assigned the same code, for example
“(Q5673013,” because the people who wrote the nomenclature considered both terms to
be biologically equivalent.

Let us autocode the diagnostic sentence, “Margins positive malignant melanoma”:

1. Begin parsing the sentence, one word at a time. The first word is “Margins.” You check
against the nomenclature, and find no match. Save the word “margins.” We will use it in
step 2.

2. You go to the second word, “positive” and find no matches in the nomenclature. You
retrieve the former word “margins” and check to see if there is a 2-word term, “margins
positive.” There is not. Save “margins” and “positive” and continue.

3. You go to the next word, “malignant.” There is no match in the nomenclature. You
check to determine whether the 2-word term “positive malignant” and the 3-word term
“margins positive malignant” are in the nomenclature. They are not.

28 PRINCIPLES AND PRACTICE OF BIG DATA

4. You go to the next word, “melanoma.” You check and find that melanoma is in the
nomenclature. You check against the two-word term “malignant melanoma,” the
three-word term “positive malignant melanoma,” and the four-word term “margins
positive malignant melanoma.” There is a match for “malignant melanoma” but it
yields the same code as the code for “melanoma.”

5. Theautocoder appends the code, “Q5673013" to the sentence, and proceeds to the next
sentence, where it repeats the algorithm.

The algorithm seems like a lot of work, requiring many comparisons, but it is actually much
more efficient than natural language parsing. A complete nomenclature, with each
nomenclature term paired with its code, can be held in a single variable, in volatile
memory. Look-ups to determine whether a word or phrase is included in the nomenclature
are also fast. As it happens, there are methods that will speed things along. In Section 2.7, we
will see a 12-line autocoder algorithm that can parse through terabytes of text ata rate that is
much faster than commercial-grade natural language autocoders [7]. [Glossary Variable]

Another approach to the problem of recoding large volumes of textual data involves
abandoning the attempt to autocode the entire corpus, in favor of on-the-fly autocoding,
when needed. On-the-fly autocoding involves parsing through a text of any size, and
searching for all the terms that match one particular concept (i.e., the search term).

Here is a general algorithm on-the-fly coding [8]. This algorithm starts with a query
term and seeks to find every synonym for the query term, in any collection of Big Data
resources, using any convenient nomenclature.

1. The analyst starts with a query term submitted by a data user. The analyst chooses a
nomenclature that contains his query term, as well as the list of synonyms for the term.
Any vocabulary is suitable, so long as the vocabulary consists of term/code pairs, where
a term and its’ synonyms are all paired with the same code.

2. All of the synonyms for the query term are collected together. For instance the
2004 version of a popular medical nomenclature, the Unified Medical
Language System, had 38 equivalent entries for the code C0206708, nine of
which are listed here:

C0206708|Cervical Intraepithelial Neoplasms
C0206708|Cervical Intraepithelial Neoplasm
C0206708|Intraepithelial Neoplasm, Cervical
C0206708|Intraepithelial Neoplasms, Cervical
C0206708 |Neoplasm, Cervical Intraepithelial
C0206708 |Necplasms, Cervical Intraepithelial
C0206708|Intraepithelial Neoplasia, Cervical
C0206708 |Neoplasia, Cervical Intraepithelial
C0206708|Cervical Intraepithelial Neoplasia

If the analyst had chosen to search on “Cervial Intraepithelial Neoplasia,” his
term will be attached to the 38 synonyms included in the nomenclature.

Chapter 2 Providing Structure to Unstructured Data 29

3. One-by-one, the equivalent terms are matched against every record in every Big Data
resource available to the analyst.

4. Records are pulled that contain terms matching any of the synonyms for the term
selected by the analyst.

In the case of the example, this would mean that all 38 synonymous terms for “Cervical
Intraepithelial Neoplasms” would be matched against the entire set of data records. The
benefit of thiskind of search is that data records that contain any search term, orits nomen-
clature equivalent, can be extracted from multiple data sets in multiple Big Data resources,
as they are needed, in response to any query. There is no pre-coding, and there is no need to
match against nomenclature terms that have no interest to the analyst. The drawback of
this method is that it multiplies the computational task by the number of synonymous
terms being searched, 38-fold in this example. Luckily, there are published methods for
conducting simple and fast synonym searches, using precompiled concordances [8].

Section 2.6. Case Study: Instantly Finding the Precise Location
of Any Atom in the Universe (Some Assembly Required)

There’s as many atoms in a single molecule of your DNA as there are stars in the

typical galaxy. We are, each of us, a little universe.
Neil deGrasse Tyson, Cosmos

If you have sat through an introductory course in Computer Science, you are no doubt
familiar with three or four sorting algorithms. Indeed, most computer science books
devote a substantial portion of their texts to describing sorting algorithms. The reason
for this infatuation with sorting is that all sorted lists can be searched nearly instantly,
regardless of the size of the list. The so-called binary algorithm for searching a sorted list
is incredibly simple. For the sake of discussion, let us consider an alphabetically sorted list
of 1024 words. I want to determine if the word “kangaroo” is in the list; and, if so, its exact
location in the list. Here is how a binary search would be conducted.

1. Go to the middle entry of the list.

2. Compare the middle entry to the word “kangaroo.” If the middle entry comes earlier in
the alphabet than “kangaroo,” then repeat step 1, this time ignoring the first half of the
list and using only the second half of the list (i.e., going to the middle entry of the
second half of the file). Otherwise, go to step 1, this time ignoring the second half of the
list and using only the first half.

These steps are repeated until you come to the location where kangaroo resides, or until
you have exhausted the list without finding your kangaroo.

Each cycle of searching cuts the size of the list in half. Hence, a search through a sorted
list of 1024 items would involve, at most, 10 cycles through the two-step algorithm
(because 1024 = 2°10).

30 PRINCIPLES AND PRACTICE OF BIG DATA

Every computer science student is expected to write her own binary search script. Here
is a simple script, binary.py, that does five look-ups through a sorted numeric list, report-
ing on which items are found, and which items are not.

def Search(search list, search item) :
first item=0
last_item = len(search_list) -1
found = False
while (first_item <= last_item) and not found:
middle = (first_item + last_item)//2
if search_list[middle] == search_item:
found = True
else:
if search item < search list[middle]:
last _item = middle - 1
else:
first item=middle +1
return found
sorted list = [4, 5, 8, 15, 28, 29, 30, 45, 67, 82, 99, 101, 1002]
for item in [3, 7, 28, 31, 45, 1002] :
print (Search(scrted list, item))

output:
False
False
True
False
True
True

Let us say, just for fun, we wanted to search through a sorted list of every atom in the uni-
verse. First we would take each atom in the universe and assign it a location. Then we
would sort the locations based on their distances from the center of the center of the uni-
verse, which is apparently located at the tip of my dog’s left ear. We could then substitute
the sorted atom list for the sorted_list in the binary.py script, shown above.

How long would it take to search all the atoms of the universe, using the binary.py
script. As it happens, we could find the list location for any atom in the universe, almost
instantly. The reason is that there are only about 2 260 atoms in the known universe. This
means that the algorithm would required, at the very most, 260 2-step cycles. Each cycle is
very fast, requiring only that we compare the search atom’s distance from my dog’s ear,
against the middle atom of the list.

Of course, composing the list of atom locations may pose serious difficulties, and we
might need another universe, much larger than our own, to hold the sorted list that we

Chapter 2 » Providing Structure to Unstructured Data 31

create. Nonetheless, a valid point emerges; that binary searches are fast, and the time to
completion of a binary search is not significantly lengthened by any increase in the num-
ber of items in the list. Had we chosen, we could have annotated the items of sorted_list
with any manner of information (e.g., locations in a file, nomenclature code, links to web
addresses, definitions of the items, metadata), so that our binary searches would yield
something more useful than the location of the item in the list.

Section 2.7. Case Study (Advanced): A Complete Autocoder
(in 12 Lines of Python Code)

Software is a gas; it expands to fill its container.
Nathan Myhrvold

This script requires two external files:

1. The nomenclature file that will be converted into a Python dictionary, wherein each
term is a dictionary key, and each nomenclature code is a value assigned to a term.
[Glossary Dictionary]

Here are a few sample lines from the nomenclature file (nomenclature_dict.txt, in
this case):

oropharyngeal adenoid cystic adenocarcinoma , C6241000
peritoneal mesothelioma , C7633000

benign tumour arising from the exocrine pancreas , C4613000
basaloid penile squamous cell cancer , C6980000

cns malignant soft tissue tumor , C6758000

digestive stromal tumour of stomach , C5806000

bone withmalignancy , C4016000

benign mixed tumor arising from skin , C4474000

2. The file containing a corpus of sentences that will be autocoded by the script.
Here are a few sample lines from the corpus file (tumorabs.txt, in this case):

local versus diffuse recurrences of meningiomas factors correlated
to the extent of the recurrence

the effect of an unplanned excision of a soft tissue sarcoma on
prognosis
obstructive jaundice associated burkitt lymphoma mimicking

pancreatic carcinoma

efficacy of zoledronate in treating persisting isolated tumor
cells in bone marrow in patients with breast cancer a phase ii pilot
study

32 PRINCIPLES AND PRACTICE OF BIG DATA

metastatic lymph node number in epithelial ovarian carcinoma does it
have any clinical significance

extended three dimensional impedance map methods for identifying
ultrasonic scattering sites

aberrant expressionof connexin 26 isassociatedwith lungmetastasis
of colorectal cancer

The 19-line python script, autocode.txt, produces a sentence-by-sentence list of extracted
autocoded terms:

outfile = open("autocoded.txt", "w")
literalhash = {}
with open("nomenclature dict.txt") as f:
for line in f:
(key, val) = line.split (" , ")
literalhash[key] = val
corpus file = open("tumorabs.txt", "r")
for line in corpus_file:
sentence = line.rstrip()
outfile.write("\n" + sentence[0] .upper () + sentence[l:] + "." +
" \nn)
sentence array = sentence.split (" ")
length = len (sentence_array)
for i in range (length) :
for place_length in range (len(sentence_array)) :
last_element = place length + 1

phrase = ' ' .join(sentence array[0:last element])
if phrase in literalhash:
outfile.write (phrase + " " + literalhash[phrase])

sentence array.pop (0)

The first seven lines of code are housekeeping chores, in which the external nomenclature
is loaded into a Python dictionary (literalhash, in this case), and an external file composed
of lines, with one sentence on each line, is opened and prepared for reading, and which
another external file, autocoded.txt, is created to accept the script’s output. We will not
count these first seven lines as belonging to our autocoder because, in all fairness, they
are not doing any of the work of autocoding. The meat of the script is the next twelve lines,
beginning with “for line in corpus_file.”
Here is a sample of the output:

Obstructive jaundice associated burkitt lymphoma mimicking pancreatic
carcinoma.
burkitt lymphoma C7188000

Chapter 2 Providing Structure to Unstructured Data 33

lymphoma C7065000
pancreatic carcinoma C3850000
carcinoma C2000000

Littoral cell angioma of the spleen.
littoral cell angioma C8541100
littoral cell angioma of the spleen C8541100
angioma C3085000
angioma of the spleen C8541000

Isolated b cell lymphoproliferative disorder at the dura mater with b
cell chronic lymphocytic leukemia immunophenotype.
lymphoproliferative disorder C4727100
b cell chronic lymphocytic leukemia C3163000
chronic lymphocytic leukemia C3163000
lymphocytic leukemia C7539000
leukemia C3161000

By observing a few samples of autocoded lines of text, we can see that the autocoder
extracts all cancer terms, and supplies its nomenclature code, regardless of whether a term
is contained within a longer term.

For example, the autocoder managed to find four terms within the sentence “Littoral
cell angioma of the spleen,” these being: littoral cell angioma, littoral cell angioma of the
spleen, angioma, and angioma of the spleen. The ability to extract every valid term, even
when they are subsumed by larger terms, guarantees that a query term and all its syno-
nyms will always be retrieved, if the query term happens to be a valid nomenclature term.

This short autocoding script comes with a few advantages that are of particular interest
to Big Data professionals:

— Scalable to any size

All nomenclatures are small. Most of us have a working vocabulary of a few thousand
words. Most dictionaries are smaller, containing maybe 60,000 words. The most extreme
case of verbiage about verbiage is The 20-volume Oxford English Dictionary, which con-
tains about 170,000 entries. Even in this case, slurping the entire list of Oxford English dic-
tionary items would be a simple matter for any modern computer.

Most importantly, the autocoding algorithm imposes no limits on the size of the Big
Data corpus. The software proceeds line-by-line until the task is complete. Memory
requirements and other issues of scalability are not a problem.

— Fast

On my modest desktop computer, the 12-line autocoding algorithm processes text at the
rate of 1 megabyte every two seconds. A fast and powerful computer, using the same algo-
rithm, would be expected to parse at rates of 1 gigabytes of text per second, or greater.

34 PRINCIPLES AND PRACTICE OF BIG DATA

— Repeatable

Code a gigabyte of data in the morning. Do it all over again in the afternoon. Use another
version of the nomenclature, or use a different nomenclature, entirely. Recoding is not a
problem.

— Simple and adaptable, with easily maintained code

The larger the program, the more difficult it is to find bugs, or to recover from errors pro-
duced when the code is modified. It is nearly impossible to inflict irreversible damage
upon a simple, 12-line script. As a general rule, tiny scripts are seldom a problem if
you maintain records of where the scripts are located, how the scripts are used, and
how the scripts are modified over time.

— Reveals the dirty little secret that every programmer knows, but few are willing
to admit.

Virtually all useful algorithms can be implemented in a few lines of code; autocoders
are no exception. The thousands, or millions, of lines of code in just about any
commercial software application are devoted, in one way or another, to the graphic user
interface.

Section 2.8. Case Study: Concordances as Transformations
of Text

Interviewer: Is there anything from home that you brought over with you to set up for
yourself? Creature comforts?

Hawkeye: I brought a book over.

Interviewer: What book?

Hawkeye: The dictionary. I figure it’s got all the other books in it.
Interview with the character Hawkeye, played by Alan Alda, from television show M*A*S*H

A transform is a mathematical operation that takes a function, a signal, or a set of data and
changes it into something else, that is easier to work with than the original data. The con-
cept of the transform is a simple but important idea that has revolutionized many scien-
tific fields including electrical engineering, digital signal processing, and data analysis. In
the field of digital signal processing, data in the time domain (i.e., wherein the amplitude
of a measurement varies over time, as in a signal), is commonly transformed into the fre-
quency domain (i.e., wherein the original data can be assigned to amplitude values for a
range of frequencies). There are dozens, possibly hundreds, of mathematical transforms
that enable data analysts to move signal data between forward transforms (e.g., time
domain to frequency domain), and their inverse counterparts (e.g., frequency domain
to time domain). [Glossary Transform, Signal, Digital signal, Digital Signal Processing,
DSP, Fourier transform, Burrows-Wheeler transform]

Chapter 2 Providing Structure to Unstructured Data 35

A concordance is transform, for text. A concordance takes a linear text and transforms it
a word-frequency distribution list; which can reversed as needed. Like any good trans-
form, we can expect to find circumstances when it is easier to perform certain types of
operations on the transformed data than on the original data. [Glossary Concordance]

Here is an example, from the Python script proximate_words.py, where we use a con-
cordance to list the words in close proximity to the concordance entries (i.e., the words
contained in the text). In this script, we use the previously constructed (vida supra) con-
cordance of the Gettysburg address.

import string
infile = open ("concordance.txt", "r")
places = []
word_array = []
concordance hash = {}
words hash = {}
for 1line in infile:
line = line.rstrip()
line array = line.split (" ")
word = line array[0]
places = line array[1]
places array = places.split(",")
words_hash [word] = places_array
for word position in places_array:
concordance hash [word position] = word
for k, vinwords hash.items () :

print (k, end=" - \n")
for items in v:
n=0

whilen<5:
nextone = str(int (items) + n)
if nextone in concordance_hash:
print (concordance hash[nextone], end=" ")
n=n+1
print ()
print ()

The script produces a list of the words from the Gettysburg address, along with short
sequences of the text that follow each occurrence of the word in the text, as shown in this
sampling from the output file:

to -
to the proposition that all
to dedicate a portion of

36 PRINCIPLES AND PRACTICE OF BIG DATA

to add or detract. The

to be dedicated here to

to the unfinished work which
to be here dedicated to

to the great task remaining
to that cause for which

dedicated -

dedicated to the proposition that
dedicated can long endure. We
dedicated here to the unfinished
dedicated to the great task

Inspecting some of the output, we see that the word “to” appears 8 times in the Gettysburg
address. We used the concordance to reconstruct four words that follow the word “to”
wherever it occurs in the text. Likewise we see that the word “dedicated” occurs 4 times
in the text, and the concordance tells us the four words that follow at each of the locations
where “dedicated” appears. We can construct these proximity phrases very quickly,
because the concordance tells us the exact location of the words in the text. If we were
working from the original text, instead of its transform (i.e., the concordance), then our
algorithm would run much more slowly, because each word would need to be individually
found and retrieved, by parsing every word in the text, sequentially.

Section 2.9. Case Study (Advanced): Burrows Wheeler
Transform (BWT)

All parts should go together without forcing. You must remember
that the parts you are reassembling were disassembled by you. Therefore,
if you can't get them together again, there must be a reason. By all

means, do not use a hammer.
IBM Manual, 1925

One of the most ingenious transforms in the field of data science is the Burrows Wheeler
transform. Imagine an algorithm that takes a corpus of text and creates an output string con-
sisting of a transformed text combined with its own word index, in a format that can be com-
pressed to a smaller size than the compressed original file. The Burrows Wheeler Transform
does all this, and more [9,10]. A clever informatician may find many ways to use the BWT
transform in search and retrieval algorithms and in data merging projects [11]. Using the
BWT file, you can re-compose the original file, or you can find any portion of a file preceding
or following any word from the file [12]. [Glossary Data merging, Data fusion)]

Excellent discussions of the algorithm are available, along with implementations in
several languages [9,10,13]. The Python script, bwt.py, shown here, is a modification of
a script available on Wikipedia [13]. The script executes the BWT algorithm in just three

Chapter 2 » Providing Structure to Unstructured Data 37

lines of code. In this example, the input string is a excerpt from Lincoln’s Gettysburg
address [12].

input = "four score and seven years ago our fathers brought forth upon"
input = input + " this continent a new nation conceived in liberty and"
input = input + "\0"

table = sorted (input [i:] + input[:i] for i in range (len(input)))

last _column = [row[-1:] for row in table]

print ("".join(last_column))

Here is the transformed output:

dtsyesnsrtdnwaordnhn efni n snenryvcvnhbsn uatttgl tthe oioe caai
eogipccc
fr fuuuobaeoerri nhra naro ooieet

Admittedly, the output does not look like much. Let us juxtapose our input string and our
BWT’s transform string:

four score and seven years ago our fathers brought forth upon this
continent a new nation conceived in liberty and
dtsyesnsrtdnwaordnhn efni n snenryvcvnhbsn uatttgl tthe oioe caail
eogipcccfr fuuucbaecerri nhra naro ocoieet

We see that the input string and the transformed output string both have the same length,
so there doesn't seem to be any obvious advantage to the transform. If we look a bit closer,
though, we see that the output string consists largely of runs of repeated individual char-
acters, repeated substrings, and repeated spaces (e.g., “ttt” “uuu”). These frequent repeats
in the transform facilitate compression algorithms that hunt for repeat patterns. BWT’s
facility for creating runs of repeated characters accounts for its popularity in compression
software (e.g., the Bunzip compression utility).

The Python script, bwt_inverse.py, computes the inverse BWT to re-construct the orig-
inal input string. Notice that the inverse algorithm is implemented in just the last four
lines of the python code (the first five lines re-created the forward BWT transform) [12]

input = "four score and seven years agc our fathers brought forth upon"
input = input + " this continent a new nation conceived in liberty and"
input = input + "\0"

table = sorted(input [i:] + input[:i] for i in range (len(input)))
last column = [row[-1:] for row in table]
#The first lines re-created the bwt transform

#The next four lines compute the inverse transform
table = [""] * len(last_ column)
for i in range (len(last column)) :
table =sorted(last column[i] + table[i] for i inrange (len(input)))
print ([row for row in table if row.endswith ("\0")] [0])

38 PRINCIPLES AND PRACTICE OF BIG DATA

As we would expect, the output of the bwt_inverse.py script, is our original input
string:

four score and seven years ago our fathers brought forth upon this
continent a new nation conceived in liberty and

The charm of the BWT transform is demonstrated when we create an implementation that
parses the input string word-by-word; not character-by-character.

Here is the Python script, bwt_trans_inv.py, that transforms an input string, word-by-
word, producing its transform; then reverses the process to yield the original string, as an
array of words. As an extra feature, the script produces the first column, as an array, of the
transform table [12]. [Glossary Numpy]

import numpy as np
input = "\ 0 four score and seven years ago our fathers brought forthupon"
input = input + " this continent a new nation conceived in liberty and"
word_list = input.rsplit ()
table = sorted(word list[i:] + word list[:i] for i in range(len
(word_list)))
last column = [row[-1:] for row in table]
first column = [row[:1] for row in table]
print ("First column of the transform table:\n" + str(first column) +
"\n")
table = [""] * len(last column)
for i in range (len(last column)) :

table = sorted(str(last_column(i]) + " " + str(table[i]) for i in
range (len(word list)))
original = [row for row in table] [0]
print ("Inverse transform, as a word array:\n" + str(original))

Here is the output of the bwt_trans_inv.py script. Notice once more that the word-by-word
transform was implemented in 3 lines of code, and the inverse transform was implemen-
ted in four lines of code.

First column of the transform table:

[['\x00'], ['a']l, ['ago']l, ['and'], ['and'], ['brought'],
['conceived'], ['continent'], ['fathers'], ['forth'], ['four'],
["in'], ['liberty'], ['nation'], ['new'], ['our'], ['score'],
['seven'], ['this'], ['upon'], ['years']]

Inverse transform, as a word array:

['\x00'] ['four'] ['score'] ['and'] ['seven'] ['years'] ['ago']
['our'] ['fathers'] ['brought'] ['forth'] ['upon'] ['this']
['continent'] ['a'] ['new'] ['nation'] ['conceived'] ['in']
["liberty'] ['and']

Chapter 2 Providing Structure to Unstructured Data 39

The first column of the transform, created in the forward BWT, is a list of the words in the
input string, in alphabetic order. Notice that words that occurred more than one time in
the input text were repeated in the first column of the transform table (i.e., [and], [and] in
the example sentence). Hence, the transform yields all the words from the original input,
along with their frequency of occurrence in the text. As expected, the inverse of the trans-
form yields our original input string.

Glossary

Accuracy versus precision Accuracy measures how close your data comes to being correct. Precision pro-
vides a measurement of reproducibility (i.e., whether repeated measurements of the same quantity
produce the same result). Data can be accurate but imprecise. If you have a 10 pound object, and
you report its weight as 7.2376 pounds, on every occasion when the object is weighed, then your pre-
cision is remarkable, but your accuracy is dismal.

Algorithm An algorithm is a logical sequence of steps that lead to a desired computational result. Algo-
rithms serve the same function in the computer world as production processes serve in the
manufacturing world and as pathways serve in the world of biology. Fundamental algorithms can
be linked to one another, to create new algorithms (just as biological pathways can be linked). Algo-
rithms are the most important intellectual capital in computer science. In the past half century, many
brilliant algorithms have been developed for the kinds of computation-intensive work required for Big
Data analysis [14,15].

Binary data Computer scientists say that there are 10 types of people. Those who think in terms of binary
numbers, and those who do not. Pause for laughter and continue. All digital information is coded as
binary data. Strings of 0s and 1s are the fundamental units of electronic information. Nonetheless,
some data is more binary than other data. In text files, 8-bite sequences are converted into decimals
in the range of 0-256, and these decimal numbers are converted into characters, as determined by the
ASCII standard. In several raster image formats (i.e., formats consisting of rows and columns of pixel
data), 24-bit pixel values are chopped into red, green and blue values of 8-bits each. Files containing
various types of data (e.g., sound, movies, telemetry, formatted text documents), all have some kind of
low-level software that takes strings of 0s and 1s and converts them into data that has some particular
meaning for a particular use. So-called plain-text files, including HTML files and XML files are distin-
guished from binary data files and referred to as plain-text or ASCII files. Most computer languages
have an option wherein files can be opened as “binary,” meaning that the 0s and 1s are available to
the programmer, without the intervening translation into characters or stylized data.

Burrows-Wheeler transform Abbreviated as BWT, the Burrows-Wheeler transform produces a com-
pressed version of an original file, along with a concordance to the contents of the file. Using a reverse
BWT, you can reconstruct the original file, or you can find any portion of a file preceding or succeeding
any location in the file. The BWT transformation is an amazing example of simplification, applied to
informatics. A detailed discussion of the BWT is found in Section 2.9, “Case Study (Advanced): Burrows
Wheeler Transform.”

Class A class is a group of objects that share a set of properties that define the class and that distinguish
the members of the class from members of other classes. The word “class,” lowercase, is used as a gen-
eral term. The word “Class,” uppercase, followed by an uppercase noun (e.g., Class Animalia), repre-
sents a specific class within a formal classification.

Classification A system in which every object in a knowledge domain is assigned to a class within a hier-
archy of classes. The properties of superclasses are inherited by the subclasses. Every class has one
immediate superclass (i.e., parent class), although a parent class may have more than one immediate
subclass (i.e., child class). Objects do not change their class assignment in a classification, unless there

40 PRINCIPLES AND PRACTICE OF BIG DATA

was a mistake in the assignment. For example, a rabbit is always a rabbit, and does not change into a
tiger. Classifications can be thought of as the simplest and most restrictive type of ontology, and serve
to reduce the complexity of a knowledge domain [16].

Classifications can be easily modeled in an object-oriented programming language and are non-chaotic
(i.e., calculations performed on the members and classes of a classification should yield the same out-
put, each time the calculation is performed). A classification should be distinguished from an ontology.
In an ontology a class may have more than one parent class and an object may be a member of more
than one class. A classification can be considered a special type of ontology wherein each class is lim-
ited to a single parent class and each object has membership in one and only one class.

Coding The term “coding” has three very different meanings depending on which branch of science influ-
ences your thinking. For programmers, coding means writing the code that constitutes a computer
programmer. For cryptographers, coding is synonymous with encrypting (i.e., using a cipher to encode
amessage). For medics, coding is calling an emergency team to handle a patient in extremis. For infor-
maticians and library scientists, coding involves assigning a alphanumeric identifier, representing a
concept listed in a nomenclature, to a term. For example, a surgical pathology report may includes
the diagnosis, “Adenocarcinoma of prostate.” A nomenclature may assign a code C4863000 that
uniquely identifies the concept “Adenocarcinoma.” Coding the report may involve annotating every
occurrence of the work “Adenocarcinoma” with the “C4863000” identifier. For a detailed explanation
of coding, and its importance for searching and retrieving data, see the full discussion in Section 3.4,
“Autoencoding and Indexing with Nomenclatures.”

Concordance A concordance is an index consisting of every word in the text, along with every location
wherein each word can be found. It is computationally trivial to reconstruct the original text from
the concordance. Before the advent of computers, concordances fell into the provenance of religious
scholars, who painstakingly recorded the locations of the all words appearing in the Bible, ancient
scrolls, and any texts whose words were considered to be divinely inspired. Today, a concordance
for a Bible-length book can be constructed in about a second. Furthermore, the original text can be
reconstructed from the concordance, in about the same time.

Curator The word “curator” derives from the latin, “curatus,” the same root for “curative,” indicating that
curators “take care of” things. A data curator collects, annotates, indexes, updates, archives, searches,
retrieves, and distributes data. Curator is another of those somewhat arcane terms (e.g., indexer, data
archivist, lexicographer) that are being rejuvenated in the new millennium. It seems that if we want to
enjoy the benefits of a data-centric world, we will need the assistance of curators, trained in data
organization.

DSP Abbreviation for Digital Signal Processing.

Data fusion Data fusion is very closely related to data integration. The subtle difference between the two
concepts lies in the end result. Data fusion creates a new and accurate set of data representing the
combined data sources. Data integration is an on-the-fly usage of data pulled from different domains
and, as such, does not yield a residual fused set of data.

Data integration The process of drawing data from different sources and knowledge domains in a man-
ner that uses and preserves the identities of data objects and the relationships among the different data
objects. The term “integration” should not be confused with a closely related term, “interoperability.”
An easy way to remember the difference is to note that integration applies to data; interoperability
applies to software.

Data merging A nonspecific term that includes data fusion, data integration, and any methods that facil-
itate the accrual of data derived from multiple sources.

Dictionary In general usage a dictionary is a word list accompanied by a definition for each item. In
Python a dictionary is a data structure that holds an unordered list of key/value pairs. A dictionary,
as used in Python, is equivalent to an associative array, as used in Perl.

Digital Signal Processing Digital Signal Processing (DSP) is the field that deals with creating, transform-
ing, sending, receiving, and analyzing digital signals. Digital signal processing began as a specialized

Chapter 2 » Providing Structure to Unstructured Data 41

subdiscipline of signal processing, another specialized subdiscipline. For most of the twentieth cen-
tury, many technologic advances came from converting non-electrical signals (temperature, pressure,
sound, and other physical signals) into electric signals that could be carried via electromagnetic waves,
and later transformed back into physical actions. Because electromagnetic waves sit at the center of so
many transform process, even in instances when the input and outputs are non-electrical in nature,
the field of electrical engineering and signal processing have paramount importance in every field of
engineering. In the past several decades the intermediate signals have been moved from the analog
domain (i.e., waves) into the digital realm (i.e., digital signals expressed as streams of 0s and 1s). Over
the years, as techniques have developed by which any kind of signal can be transformed into a digital
signal, the subdiscipline of digital signal processing has subsumed virtually all of the algorithms once
consigned to its parent discipline. In fact, as more and more processes have been digitized (e.g., telem-
etry, images, audio, sensor data, communications theory), the field of digital signal processing has
come to play a central role in data science.

Digital signal A signal is a description of how one parameter varies with some other parameter. The most
familiar signals involve some parameter varying over time (e.g., sound is air pressure varying over
time). When the amplitude of a parameter is sampled at intervals, producing successive pairs of values,
the signal is said to be digitized.

Fourier transform A transform is a mathematical operation that takes a function or a time series (e.g.,
values obtained at intervals of time) and transforms it into something else. An inverse transform takes
the transform function and produces the original function (Fig. 2.1). Transforms are useful when there
are operations that can be more easily performed on the transformed function than on the original
function. Possibly the most useful transform is the Fourier transform, which can be computed with
great speed on modern computers, using a modified form known as the fast Fourier Transform. Peri-
odic functions and waveforms (periodic time series) can be transformed using this method. Opera-
tions on the transformed function can sometimes eliminate repeating artifacts or frequencies that
occur below a selected threshold (e.g., noise). The transform can be used to find similarities between
two signals. When the operations on the transform function are complete, the inverse of the transform
can be calculated and substituted for the original set of data (Fig. 2.2).

Identifier A string that is associated with a particular thing (e.g., person, document, transaction, data
object), and not associated with any other thing [17]. In the context of Big Data, identification usually
involves permanently assigning a seemingly random sequence of numeric digits (0-9) and alphabet
characters (a-z and A-Z) to a data object. The data object can be a class of objects.

Indexes Every writer must search deeply into his or her soul to find the correct plural form of “index”. Is it
“indexes” oris it “indices”? Latinists insist that “indices” is the proper and exclusive plural form. Gram-
marians agree, reserving “indexes” for the third person singular verb form; “The student indexes his
thesis.” Nonetheless, popular usage of the plural of “index,” referring to the section at the end of a
book, is almost always “indexes,” the form used herein.

JO=[s e

f(z)= f J(€) e de

FIG. 2.1 The Fourier transform and itsinverse. In this representation of the transform, x represents time in seconds and
the transform variable zeta represents frequency in hertz.

42 PRINCIPLES AND PRACTICE OF BIG DATA

FIG.2.2 Asquare wave is approximated by a single sine wave, the sum of two sine waves, three sine waves, and so on.
As more components are added, the representation of the original signal or periodic set of data, is more closely
approximated. From Wikimedia Commons.

Interoperability It is desirable and often necessary to create software that operates with other software,
regardless of differences in hardware, operating systems and programming language. Interoperability,
though vital to Big Data science, remains an elusive goal.

Machine translation Ultimately, the job of machine translation is to translate text from one language into
another language. The process of machine translation begins with extracting sentences from text,
parsing the words of the sentence into grammatical parts, and arranging the grammatical parts into
an order that imposes logical sense on the sentence. Once this is done, each of the parts can be trans-
lated by a dictionary that finds equivalent terms in a foreign language, then re-assembled as a foreign

Chapter 2 Providing Structure to Unstructured Data 43

language sentence by applying grammatical positioning rules appropriate for the target language.
Because these steps apply the natural rules for sentence constructions in a foreign language, the pro-
cess is often referred to as natural language machine translation. It is important to note that nowhere
in the process of machine translation is it necessary to find meaning in the source text, or to produce
meaning in the output. Good machine translation algorithms preserve ambiguities, without attempt-
ing to impose a meaningful result.

Natural language processing A field broadly concerned with how computers interpret human language
(i.e., machine translation). At its simplest level this may involve parsing through text and organizing
the grammatical units of individual sentences (i.e., tokenization). For example, we might assign the fol-
lowing tokens to the grammatical parts of a sentence: A = adjective, D = determiner, N = noun, P = prep-
osition, V= main verb. A determiner is a word such as “a” or “the”, which specifies the noun [18].
Consider the sentence, “The quick brown fox jumped over lazy dogs.” This sentence can be grammat-
ically tokenized as:

the:D
quick::A
brown::A
fox:N
jumped::V
over::P
the:D
lazy:A
dog::N

We can express the sentence as the sequence of its tokens listed in the order of occurrence in the sentence:
DAANVPDAN. This does not seem like much of a breakthrough, but imagine having a large collection
of such token sequences representing every sentence from alarge text corpus. With such a data set, we
could begin to understand the rules of sentence structure. Commonly recurring sequences, like
DAANVPDAN, might be assumed to be proper sentences. Sequences that occur uniquely in a large
text corpus are probably poorly constructed sentences. Before long, we might find ourselves construct-
ing logic rules for reducing the complexity of sentences by dropping subsequences which, when
removed, yield a sequence that occurs more commonly than the original sequence. For example,
our table of sequences might indicate that we can convert DAANVPDAN into NVPAN (i.e., “Fox jumped
over lazy dog”), without sacrificing too much of the meaning from the original sentence and preserving
a grammatical sequence that occurs commonly in the text corpus.

This short example serves as an overly simplistic introduction to natural language processing. We can
begin to imagine that the grammatical rules of a language can be represented by sequences of tokens
that can be translated into words or phrases from a second language, and re-ordered according to
grammatical rules appropriate to the target language. Many natural language processing projects
involve transforming text into a new form, with desirable properties (e.g., other languages, an index,
a collection of names, a new text with words and phrases replaced with canonical forms extracted from
anomenclature) [18]. When we use natural language rules to autocode text, the grammatical units are
trimmed, reorganized, and matched against concept equivalents in a nomenclature.

Ngrams Ngrams are subsequences of text, of length n words. A complete collection of ngrams consists of
all of the possible ordered subsequences of words in a text. Because sentences are the basic units of
statements and ideas, when we speak of ngrams, we are confining ourselves to ngrams of sentences.
Let us examine all the ngrams for the sentence, “Ngrams are ordered word sequences.”

Ngrams (l-gram)
are (l-gram)
ordered (l-gram)
word (l-gram)

44 PRINCIPLES AND PRACTICE OF BIG DATA

sequences (1l-gram)

Ngrams are (2-gram)

are ordered (2-gram)
ordered word (2-gram)

word sequences (2-gram)

Ngrams are ordered (3-gram)

are ordered word (3-gram)

ordered word sequences (3-gram)
Ngrams are ordered word (4-gram)
are ordered word sequences (4-gram)
Ngrams are ordered word sequences (5-gram)

Here is a short Python script, ngram.py, that will take a sentence and produce a list of all the contained
ngrams.

import string

text = "ngrams are ordered word sequences"

partslist = []

ngramlist = {}

text list = text.split(" ")

while(len(text list) > 0):
partslist.append(" ".join(text list))
del text 1list[0]

for part in partslist:

previous = ""
wordlist = part.split (" ")
while (len(wordlist) > 0):
ngramlist[(" ".join(wordlist))] =""
firstword = wordlist [0]
del wordlist [0]
ngramlist [firstword] = ""
previous = previous + " " + firstword
previous = previous.strip()
ngramlist [previous] = ""
for key in sorted (ngramlist) :
print (key)
exit

output:

are

are ordered

are ordered word

are ordered word sequences
ngrams

ngrams are

ngrams are ordered

ngrams are ordered word
ngrams are ordered word seguences
ordered

ordered word

ordered word sequences
sequences

Chapter 2 Providing Structure to Unstructured Data 45

word
word sequences

The ngram.py script can be easily modified to parse through all the sentences of any text, regardless of
length, building the list of ngrams as it proceeds.

Google has collected ngrams from scanned literature dating back to 1500. The public can enter their own
ngrams into Google's ngram viewer, and receive a graph of the published occurrences of the phrase,
through time [18]. We can use the Ngram viewer to find trends (e.g., peaks, valleys and periodicities) in
data. Consider the Google Ngram Viewer results for the two-word ngram, “yellow fever” (Fig. 2.3).

We see that the term “yellow fever” (a mosquito-transmitted hepatitis) appeared in the literature begin-
ning about 1800, with several subsequent peaks. The dates of the peaks correspond roughly to out-
breaks of yellow fever in Philadelphia (epidemic of 1793), New Orleans (epidemic of 1853), with
United States construction efforts in the Panama Canal (1904-14), and with well-documented WWII
Pacific outbreaks (about 1942). Following the 1942 epidemic an effective vaccine was available, and the
incidence of yellow fever, as well as the literature occurrences of the “yellow fever” n-gram, dropped
precipitously. In this case, a simple review of n-gram frequencies provides an accurate chart of historic
yellow fever outbreaks [19,18].

Nomenclature A nomenclatures is a listing of terms that cover all of the concepts in a knowledge domain.
A nomenclature is different from a dictionary for three reasons: 1) the nomenclature terms are not anno-
tated with definitions, 2) nomenclature terms may be multi-word, and 3) the terms in the nomenclature
are limited to the scope of the selected knowledge domain. In addition, most nomenclatures group syn-
onyms under a group code. For example, a food nomenclature might collect submarine sandwich,
hoagie, po’ boy, grinder, hero, and torpedo under an alphanumeric code such as “F63958.” Nomencla-
tures simplify textual documents by uniting synonymous terms under a common code. Documents that
have been coded with the same nomenclature can be integrated with other documents that have been
similarly coded, and queries conducted over such documents will yield the same results, regardless of
which term is entered (i.e., a search for either hoagie, or po’ boy will retrieve the same information, if both
terms have been annotated with the synonym code, “F63948"). Optimally, the canonical concepts listed
in the nomenclature are organized into a hierarchical classification [20,21,12].

Nomenclature mapping Specialized nomenclatures employ specific names for concepts that are
included in other nomenclatures, under other names. For example, medical specialists often preserve
their favored names for concepts that cross into different fields of medicine. The term that pathologists
use for a certain benign fibrous tumor of the skin is “fibrous histiocytoma,” a term spurned by

M Yellow fever

0.0004000% |

0.0003500%

0.0003000% |

0.0002500%

0.0002000%

0.0001500%

0.0001000% |

0.0000500%

0.0000000% -
1700 1720 1740 1760 1780 1800 1820 1840 1880 1880 1900 1920 1940 1960 1980 2000

FIG. 2.3 Google Ngram for the phrase "yellow fever,” counting occurrences of the term in a large corpus, from
the years 1700-2000. Peaks roughly correspond to yellow fever epidemics. Source: Google Ngram viewer, with
permission from Google.

46 PRINCIPLES AND PRACTICE OF BIG DATA

dermatologists, who prefer to use “dermatofibroma” to describe the same tumor. As another horrifying
example, the names for the physiologic responses caused by a reversible cerebral vasoconstricitve
event include: thunderclap headache, Call-Fleming syndrome, benign angiopathy of the central ner-
vous system, postpartum angiopathy, migrainous vasospasm, and migraine angiitis. The choice of
term will vary depending on the medical specialty of the physician (e.g., neurologist, rheumatologist,
obstetrician). To mitigate the discord among specialty nomenclatures, lexicographers may undertake a
harmonization project, in which nomenclatures with overlapping concepts are mapped to one
another.

Numpy Numpy (Numerical Python) is an open source extension to Python that supports matrix opera-
tions, as well as a rich assortment of mathematical functions. Numpy can be easily downloaded from
sourceforge.net: http://sourceforge.net/projects/numpy/. Here is a short Python script, numpy_dot.
py, that creates a 3x3 matrix, inverts the matrix, and calculates the dot produce of the matrix and its
inverted counterpart.

import numpy

from numpy.linalg import inv

a =numpy.array([[1,4,6], [9,15,55], [62,-5, 4]])
print (a)

print (inv(a))

¢ = numpy.dot (a, inv(a))

print (numpy.round (c))

The numpy_dot.py script employs numpy, numpy’s linear algebra module, and numpy’s matrix inversion
method, and the numpy dot product method. Here is the output of the script, displaying the original
matrix, its inversion, and the dot product, which happens to be the unity matrix:

c:\ftp\py>numpy dot.py

[[1 4 6]
[915 55]
[62 -5 4]]

[[4.19746899e-02 -5.76368876e-03 1.62886856e-02]
[4.22754041e-01 -4.61095101e-02 -1.25297582e-04]
[-1.22165142e-01 3.17002882e-02 -2.63124922e-03]]

[[1.0.0.]
[0. 1. 0.]
[0. 0. 1.]]

Parsing Much of computer programming involves parsing; moving sequentially through a file or some
sort of data structure and performing operations on every contained item, one item at a time. For files,
this might mean going through a text file line by line, or sentence by sentence. For a data file, this might
mean performing an operation on each record in the file. For in-memory data structures, this may
mean performing an operation on each item in a list or a tuple or a dictionary.

The parse_directory.py script prints all the file names and subdirectory names in a directory tree.

import os
for root, dirs, files inos.walk(".", topdown=False) :
for filename in files:
print (os.path.join(root, filename))
for dirname in dirs:
print (os.path.join(root, dirname))

Plain-text Plain-text refers to character strings or files that are composed of the characters accessible
to a typewriter keyboard. These files typically have a “.txt” suffix to their names. Plain-text files
are sometimes referred to as 7-bit ascii files because all of the familiar keyboard characters have

Chapter 2 » Providing Structure to Unstructured Data 47

ASCII vales under 128 (i.e., can be designated in binary with, just seven 0s and ls. In practice,
plain-text files exclude 7-bit ascii symbols that do not code for familiar keyboard characters. To
further confuse the issue, plain-text files may contain ascii characters above 7 bits (i.e., characters
from 128 to 255) that represent characters that are printable on computer monitors, such as accented
letters.

Plesionymy Nearly synonymous words, or pairs of words that are sometimes synonymous; other times
not. For example, the noun forms of “smell” and “odor” are synonymous. As verb forms, “smell”
applies, but odor does not. You can small a fish, but you cannot odor a fish. Smell and odor are ple-
sionyms. Plesionymy is another challenge for machine translators.

Polysemy Occurs when a word has more than one distinct meaning. The intended meaning of a word can
sometimes be determined by the context in which the word is used. For example, “She rose to the
occasion,” and “Her favorite flower is the rose.” Sometimes polysemy cannot be resolved. For example,
“Eats shoots and leaves.”

RegEx Short for Regular Expressions, RegEx is a syntax for describing patterns in text. For example, if
I wanted to pull all lines from a text file that began with an uppercase “B” and contained at least
one integer, and ended with the a lowercase x, then I might use the regular expression: “ B.*[0-9].
*x$”. This syntax for expressing patterns of strings that can be matched by pre-built methods available
to a programming language is somewhat standardized. This means that a RegEx expression in Perl will
match the same pattern in Python, or Ruby, or any language that employs RegEx. The relevance of
RegEx to Big Data is several-fold. RegEx can be used to build or transform data from one format to
another; hence creating or merging data records. It can be used to convert sets of data to a desired
format; hence transforming data sets. It can be used to extract records that meet a set of characteristics
specified by a user; thus filtering subsets of data or executing data queries over text-based files or text-
based indexes. The big drawback to using RegEx is speed: operations that call for many RegEx oper-
ations, particularly when those operations are repeated for each parsed line or record, will reduce soft-
ware performance. RegEx-heavy programs that operate just fine on megabyte files may take hours,
days or months to parse through terabytes of data.

A12-line python script, file_search.py, prompts the user for the name of a text file to be searched, and then
prompts the user to supply a RegEx pattern. The script will parse the text file, line by line, displaying
those lines that contain a match to the RegEx pattern.

import sys, string, re
print ("What is file would you like to search?")
filename = sys.stdin.readline()
filename = filename.rstrip()
print ("Enter a word, phrase or regular expression to search.")
word to search = (sys.stdin.readline()).rstrip()
infile = open (filename, "r")
regex_object = re.compile (word_to_search, re.I)
for line in infile:

m= regex_object.search(line)

if m:

print (line)

Scalable Software is scalable if it operates smoothly, whether the data is small or large. Software programs
that operate by slurping all data into a RAM variable (i.e., a data holder in RAM memory) are not scal-
able, because such programs will eventually encounter a quantity of data that is too large to store in
RAM. As a rule of thumb, programs that process text at speeds less than a megabyte per second are not
scalable, as they cannot cope, in a reasonable time frame, with quantities of data in the gigabyte and
higher range.

Script A script is a program that is written in plain-text, in a syntax appropriate for a particular program-
ming language, that needs to be parsed through that language’s interpreter before it can be compiled

48 PRINCIPLES AND PRACTICE OF BIG DATA

and executed. Scripts tend to run a bit slower than executable files, but they have the advantage that
they can be understood by anyone who is familiar with the script’s programming language.

Sentence Computers parse files line by line, not sentence by sentence. If you want a computer to perform
operations on a sequence of sentences found in a corpus of text, then you need to include a subroutine
in your scripts that list the sequential sentences. One of the simplest ways to find the boundaries of
sentences is to look for a period followed by one or more spaces, followed by an uppercase letter. Here's
a simple Python demonstration of a sentence extractor, using a few famous lines from the Lewis Carroll
poem, Jabberwocky.

import re

all_text =\

"And, has thou slain the Jabberwock? Come \

tomy arms, my beamish boy! O frabjous \

day! Callooh! Callay! He chortled in his \

joy. Lewis Carroll, excerpted from \

Jabberwocky" ;

sentence list =re.split(r'[\.\!\?] +(?=[A-2])', all_text)
print ("\n".join(sentence list))

Here is the output:

And, has thou slain the Jabberwock

Come to my arms, my beamish boy

0 frabjous day

Callooh

Callay

He chortled in his joy

Lewis Carroll, excerpted from Jabberwocky

The meat of the script is the following line of code, which splits lines of text at the boundaries of sentences:
sentence list =re.split(r'[\.\!\?] +(?=[A-Z])',in_text string)

This algorithm is hardly foolproof, as periods are used for many purposes other than as sentence termi-
nators. But it may suffice for most purposes.

Signal In averyloose sense a signal is a way of gauging how measured quantities (e.g., force, voltage, or pres-
sure) change in response to, or along with, other measured quantities (e.g., time). A sound signal is caused
by the changes in pressure, exerted on our eardrums, over time. A visual signal is the change in the pho-
tons impinging on our retinas, over time. An image is the change in pixel values over a two-dimensional
grid. Because much of the data stored in computers consists of discrete quantities of describable
objects, and because these discrete quantities change their values, with respect to one another, we
can appreciate that a great deal of modern data analysis is reducible to digital signal processing.

Specification A specification is a method for describing objects (physical objects such as nuts and bolts or
symbolic objects such as numbers). Specifications do not require specific types of information, and do
not impose any order of appearance of the data contained in the document. Specifications do not gen-
erally require certification by a standards organization. They are generally produced by special interest
arganizations, and their legitimacy depends on their popularity. Examples of specifications are RDF
(Resource Description Framework) produced by the W3C (WorldWide Web Consortium), and TCP/
IP (Transfer Control Protocol/Internet Protocol), maintained by the Internet Engineering Task Force.

String A string is a sequence of characters. Words, phrases, numbers, and alphanumeric sequences (e.g.,
identifiers, one-way hash values, passwords) are strings. A book is a long string. The complete
sequence of the human genome (3 billion characters, with each character an A, T,G, or C) is a very long
string. Every subsequence of a string is another string.

Chapter 2 Providing Structure to Unstructured Data 49

Syntax Syntax is the standard form or structure of a statement. What we know as English grammar is
equivalent to the syntax for the English language. If I write, “Jules hates pizza,” the statement would
be syntactically valid, but factually incorrect. If write, “Jules drives to work in his pizza,” the statement
would be syntactically valid but nonsensical. For programming languages, syntax refers to the
enforced structure of command lines. In the context of triplestores, syntax refers to the arrangement
and notation requirements for the three elements of a statement (e.g., RDF format or N3 format).
Charles Mead distinctly summarized the difference between syntax and semantics: “Syntax is struc-
ture; semantics is meaning” [22].

Systematics The term “systematics” is, by tradition, reserved for the field of biology that deals with tax-
onomy (i.e., the listing of the distinct types of organisms) and with classification (i.e., the classes of
organisms and their relationships to one another). There is no reason why biologists should lay exclu-
sive claim to the field of systematics. As used herein, systematics equals taxonomics plus classification,
and this term applies just as strongly to stamp collecting, marketing, operations research, and object-
oriented programming as it does to the field of biology.

Taxa Plural of taxon.

Taxon A taxon is a class. The common usage of “taxon” is somewhat inconsistent, as it sometimes refers to
the class name, and at other times refers to the instances (i.e., members) of the class. In this book, the
term “taxon” is abandoned in favor of “class,” the plesionym used by computer scientists. Hence, the
term “class” is used herein in the same manner that it is used in modern object oriented programming
languages.

Taxonomy When we write of “taxonomy” as an area of study, we refer to the methods and concepts
related to the science of classification, derived from the ancient Greek taxis, “arrangement,” and
nomia, “method.” When we write of “a taxonomy,” as a construction within a classification, we are
referring to the collection of named instances (class members) in the classification. To appreciate
the difference between a taxonomy and a classification, it helps to think of taxonomy as the scientific
field that determines how different members of a classification are named. Classification is the scien-
tific field that determines how related members are assigned to classes, and how the different classes
are related to one another. A taxonomy is similar to a nomenclature; the difference is that in a taxon-
omy, every named instance must have an assigned class.

Term extraction algorithm Terms are phrases, most often noun phrases, and sometimes individual
words, that have a precise meaning within a knowledge domain. For example, “software
validation,” “RDF triple,” and “WorldWide Telescope” are examples of terms that might appear in
the index or the glossary of this book. The most useful terms might appear up to a dozen times in
the text, but when they occur on every page, their value as a searchable item is diminished; there
are just too many instances of the term to be of practical value. Hence, terms are sometimes described
as noun phrases that have low-frequency and high information content. Various algorithms are avail-
able to extract candidate terms from textual documents. The candidate terms can be examined by a
curator who determines whether they should be included in the index created for the document from
which they were extracted. The curator may also compare the extracted candidate terms against a
standard nomenclature, to determine whether the candidate terms should be added to the nomencla-
ture. For additional discussion, see Section 2.3, “Term Extraction.”

Thesaurus Avocabulary that groups together synonymous terms. A thesaurus is very similar to a nomen-
clature. There are two minor differences. Nomenclatures do not always group terms by synonymy; and
nomenclatures are often restricted to a well-defined topic or knowledge domain (e.g., names of stars,
infectious diseases, etc.).

Transform (noun form) There are three truly great conceptual breakthroughs that have brought with
them great advances to science and to civilization. The first two to be mentioned are well known to
everyone: equations and algorithms. Equations permit us to relate variable quantities in a highly spe-
cific and repeatable way. Algorithms permit us to follow a series of steps that always produce the same

50 PRINCIPLES AND PRACTICE OF BIG DATA

results. The third conceptual breakthrough, less celebrated but just as important, is the transforma-
tion; a way of changing things to yield a something new, with properties that provide an advantage
over the original item. In the case of reversible transformation, we can return the transformed item
to its original form, and often in improved condition, when we have completed our task.

It should be noted that this definition applies only to the noun form of “transform.” The meaning of the
verb form of transform is to change or modify, and a transformation is the closest noun form equiv-
alent of the verb form, “to transform.”

Uniqueness Uniqueness is the quality of being separable from every other thing in the universe. For data
scientists, uniqueness is achieved when data is bound to a unique identifier (i.e., a randomly chosen
string of alphanumeric characters) that has not, and will never be, assigned to any data. The binding of
data to a permanent and inseparable identifier constitutes the minimal set of ingredients for a data
object. Uniqueness can apply to two or more indistinguishable objects, if they are assigned unique
identifiers (e.g., unique product numbers stamped into identical auto parts).

Variable In algebra, a variable is a quantity, in an equation, that can change; as opposed to a constant
quantity, that cannot change. In computer science, a variable can be perceived as a container that
can be assigned a value. If you assign the integer 7 to a container named “x,” then “x” equals 7, until
you re-assign some other value to the container (i.e., variables are mutable). In most computer lan-
guages, when you issue a command assigning a value to a new (undeclared) variable, the variable auto-
matically comes into existence to accept the assignment. The process whereby an object comes into
existence, because its existence was implied by an action (such as value assignment), is called
reification.

Vocabulary A comprehensive collection of the words used in a general area of knowledge. The term
“vocabulary” and the term “nomenclature” are nearly synonymous. In common usage, a vocabulary
is a list of words and typically includes a wide range of terms and classes of terms. Nomenclatures typ-
ically focus on a class of terms within a vocabulary. For example, a physics vocabulary might contain
the terms “quark, black hole, Geiger counter, and Albert Einstein”; a nomenclature might be devoted to
the names of celestial bodies.

References

[1] Krauthammer M, Nenadic G. Term identification in the biomedical literature.] Biomed Inform
2004;37:512-26.

[2] Berman JJ. Methods in medical informatics: fundamentals of healthcare programming in Perl,
Python, and Ruby. Boca Raton: Chapman and Hall; 2010.

[3] Swanson DR. Undiscovered public knowledge. Libr Q) 1986;56:103-18.
[4] Wallis E, Lavell C. Naming the indexer: where credit is due. The Indexer 1995;19:266-8.

[5] Hayes A. VA to apologize for mistaken Lou Gehrig’s disease notices. CNN; 2009. August 26. Available
from: http://www.cnn.com/2009/POLITICS/08/26/veterans.letters.disease [viewed September 4,
2012].

Hall PA, Lemoine NR. Comparison of manual data coding errors in 2 hospitals. J Clin Pathol
1986;39:622-6.

Berman JJ. Doublet method for very fast autocoding. BMC Med Inform Decis Mak 2004;4:16.

Berman JJ. Nomenclature-based data retrieval without prior annotation: facilitating biomedical data
integration with fast doublet matching. In Silico Biol 2005;5:0029.

(6

(7
8

(9

Burrows M, Wheeler D]J. a block-sorting lossless data compression algorithm. SRC Research Report
124, May 10, 1994.

[10] Berman JJ. Perl programming for medicine and biology. Sudbury, MA: Jones and Bartlett; 2007.

(11]

(12]

[13]

(14]
(15]

(16]

(17]
(18]
(19]

[20]
(21]

(22]

Chapter 2 » Providing Structure to Unstructured Data 51

Healy J, Thomas EE, Schwartz JT, Wigler M. Annotating large genomes with exact word matches.
Genome Res 2003;13:2306-15.

Berman JJ. Data simplification: taming information with open source tools. Waltham, MA: Morgan
Kaufmann; 2016.

Burrows-Wheeler transform. Wikipedia. Available at: https://en.wikipedia.org/wiki/Burrows%E2%
80%93Wheeler_transform [viewed August 18, 2015].

Cipra BA. The best of the 20th century: editors name top 10 algorithms. SIAM News May 2000;33(4).

Wu X, Kumar V, Quinlan JR, Ghosh J, Yang Q, Motoda H, et al. Top 10 algorithms in data mining. Knowl
Inf Syst 2008;14:1-37.

Patil N, Berno AJ, Hinds DA, Barrett WA, Doshi JM, Hacker CR, et al. Blocks of limited haplotype diver-
sity revealed by high-resolution scanning of human chromosome 21. Science 2001;294:1719-23.

Paskin N. Identifier interoperability: a report on two recent ISO activities. D-Lib Mag 2006;12:1-23.
Berman JJ. Repurposing legacy data: innovative case studies. Waltham, MA: Morgan Kaufmann; 2015.

Berman JJ. Principles of big data: preparing, sharing, and analyzing complex information. Waltham,
MA: Morgan Kaufmann; 2013.

Berman JJ. Tumor classification: molecular analysis meets Aristotle. BMC Cancer 2004;4:10.

Berman JJ. Tumor taxonomy for the developmental lineage classification of neoplasms. BMC Cancer
2004;4:88.

Mead CN. Data interchange standards in healthcare IT-computable semantic interoperability: now
possible but still difficult, do we really need a better mousetrap?] Healthc Inf Manag 2006;20:71-8.

This page intentionally left blank

EEE

EENE
ldentification, Deidentification,
OUTLINE
Section 3.1. What Are [dentifiers?ccvierrmmsssssssssssssssnsssssssssmsssssssssssssrsssrsssmsssmsssssssss sressnsenns 53
Section 3.2. Difference Between an Identifier and an Identifier Systemccccooveviiiiieviinnnnns 55
Section 3.3. Generating Unique Identifiers ... 58
Section 3.4. Really Bad Identifier Methodsccoiiiiiniiiisniniceenie e sses s sns e sse e 60
Section 3.5. Registering Unique Object Identifiers ... 63
Section 3.6. Deidentification and Reidentificationcccccieiciiriiiiinisicie e e 66
Section 3.7. Case Study: Data Scrubbing ... s 69
Section 3.8. Case Study (Advanced): Identifiers in Image Headerscccoiiiiiicniiiniciicnccenns 71
Section 3.9. Case Study: One-Way HAshesccccecriiruiinieiisniimesesessrsssssseesesssssnsssmsessssssssansnsssns 74
LT oL T OSSO USUPPSSRRSPSRPRRY | -
20 =T =T ol =S UROSOORRPSPRNSRRSTR : 7.

Section 3.1. What Are Identifiers?
Where is the ‘any’ key?

Homer Simpson, in response to his computer’s instruction to “Press any key”

Let us begin this chapter with ariddle. “Is the number 5 a data object?” If you are like most
people, you will answer “yes” because “5” is an integer and therefore it is represents
numeric data, and “5” is an object because it exists and is different from all the other
numbers. Therefore “5” is a data object. This line of reasoning happens to be completely
erroneous. Five is not a data object. As a pure abstraction with nothing binding it to a
physical object (e.g., 5 pairs of shoes, 5 umbrellas), it barely qualifies as data.

When we speak of a data object, in computer science, we refer to something that is
identified and described. Consider the following statements:

<£183136d-3051-4c95-9%9e32-66844971afcS ><name><Baltimore>
<f183136d-3051-4c95-9e32-66844971afc5><class ><city>
<£183136d-3051-4c95-9e32-66844971afch><population><620,961>

Without knowing much about data objects (which we will be discussing in detail in
Section 6.2), we can start to see that these three statements are providing information
about Baltimore. They tell us that Baltimore is a city of population 620,961, and that

Principles and Practice of Big Data. https://doi.org/10.1016/B978-0-12-815609-4.00003-0 53
© 2018 Elsevier Inc. All rights reserved.

54 PRINCIPLES AND PRACTICE OF BIG DATA

Baltimore has been assigned an alphanumeric sequence, “f183136d-3051-4c95-9e32-
66844971afc5,” to which all our available information about Baltimore has been attached.
Peeking ahead into Chapter 6, we can now surmise that a data object consists of a unique
alphanumeric sequence (the object identifier) plus the descriptive information associated
with the identifier (e.g., name, population number, class). We will see that there are
compelling reasons for storing all information contained in Big Data resources within
uniquely identified data objects. Consequently, one of the most important tasks for data
managers is the creation of a dependable identifier system [1]. In this chapter, we will
be focusing our attention on the unique identifier and how it is created and utilized in
the realm of Big Data.

Identification issues are often ignored by data managers who are accustomed to
working on small data projects. It is worthwhile to list, up front, the most important ideas
described in this chapter, many of which are counterintuitive and strange to those whose
careers are spent outside the confusing realm of Big Data.

— All Big Data resources can be imagined as identifier systems to which we attach
our data.

— Without an adequate identification system, a Big Data resource has no value. In this
case, the data within the resource cannot be sensibly analyzed.

— Data deidentification is a process whereby links to the public name of the subject of the
record are removed.

— Deidentification should not be confused with the act of stripping a record of an
identifier. A deidentified record, like any valid data object, must always have an
associated identifier.

— Deidentification should not be confused with data scrubbing. Data scrubbers remove
unwanted information from a data record, including information of a personal nature,
and any information that is not directly related to the purpose of the data record.
[Glossary Data cleaning, Data scrubbing]

— Reidentification is a concept that specifically involves personal and private data
records. It involves ascertaining the name of the individual who is associated with a
deidentified record. Reidentification is sometimes necessary to verify the contents
of arecord, or to provide information that is necessary for the well-being of the subject
of a deidentified data record. Ethical reidentification always requires approval and
oversight.

— Where there is no identification, there can be no deidentification and no
reidentification.

— When a deidentified data set contains no unique records (i.e., every record has one
or more additional records from which it cannot be distinguished, aside from its
assigned identifier sequence), then it becomes impossible to maliciously uncover a
deidentified record’s public name.

Chapter 3 » Identification, Deidentification, and Reidentification 55

Section 3.2. Difference Between an Identifier and an Identifier
System

Many errors, of a truth, consist merely in the application the wrong names of things.
Baruch Spinoza

Data identification is among the most underappreciated and least understood Big Data
issue. Measurements, annotations, properties, and classes of information have no infor-
mational meaning unless they are attached to an identifier that distinguishes one data
object from all other data objects, and that links together all of the information that
has been or will be associated with the identified data object. The method of identification
and the selection of objects and classes to be identified relates fundamentally to the orga-
nizational model of the Big Data resource. If data identification is ignored or implemented
improperly, the Big Data resource cannot succeed. [Glossary Annotation]

This chapter will describe, in some detail, the available methods for data identification,
and the minimal properties of identified information (including uniqueness, exclusivity,
completeness, authenticity, and harmonization). The dire consequences of inadequate iden-
tification will be discussed, along with real-world examples. Once data objects have been
properly identified, they can be deidentified and, under some circumstances, reidentified.
The ability to deidentify data objects confers enormous advantages when issues of confi-
dentiality, privacy, and intellectual property emerge. The ability to reidentify deidentified
data objects is required for error detection, error correction, and data validation. [Glossary
Deidentification, Re-identification, Privacy versus confidentiality, Intellectual property]

Returning to the title of this section, let us ask ourselves, “What s the difference between
an identifier and an identifier system?” To answer, by analogy, it is like the difference
between having a $100 dollar bill in your pocket and having a savings account with $100
credited to the account. In the case of the $100 bill, anyone in possession of the bill can
use it to purchase items. In the case of the $100 credit, there is a system in place for uniquely
assigning the $100 to one individual, until such time as that individual conducts an account
transaction that increases or decreases the account value. Likewise, an identifier system
creates a permanent environment in which the identifiers are safely stored and used.

Every good information system is, at its heart, an identification system: a way of nam-
ing data objects so that they can be retrieved by their name, and a way of distinguishing
each object from every other object in the system. If data managers properly identified
their data, and did absolutely nothing else, they would be producing a collection of data
objects with more informational value than many existing Big Data resources.

The properties of a good identifier system are the following:

— Completeness

Every unique object in the big data resource must be assigned an identifier.

56 PRINCIPLES AND PRACTICE OF BIG DATA

— Uniqueness

Each identifier is a unique sequence.

— Exclusivity

Each identifier is assigned to a unique object, and to no other object.
— Authenticity

The objects that receive identification must be verified as the objects that they are
intended to be. For example, if a young man walks into a bank and claims to be Richie
Rich, then the bank must ensure that he is, in fact, who he says he is.

— Aggregation

The Big Data resource must have a mechanism to aggregate all of the data that is properly
associated with the identifier (i.e., to bundle all of the data that belongs to the uniquely
identified objected). In the case of a bank, this might mean collecting all of the transac-
tions associated with an account holder. In a hospital, this might mean collecting all of the
data associated with a patient’s identifier: clinic visit reports, medication transactions,
surgical procedures, and laboratory results. If the identifier system performs properly,
aggregation methods will always collect all of the data associated with an object and will
never collect any data that is associated with a different object.

— Permanence

The identifiers and the associated data must be permanent. In the case of a hospital sys-
tem, when the patient returns to the hospital after 30 years of absence, the record system
must be able to access his identifier and aggregate his data. When a patient dies, the
patient’s identifier must not perish.

— Reconciliation

There should be a mechanism whereby the data associated with a unique, identified
object in one Big Data resource can be merged with the data held in another resource,
for the same unique object. This process, which requires comparison, authentication,
and merging is known as reconciliation. An example of reconciliation is found in health
record portability. When a patient visits a hospital, it may be necessary to transfer her elec-
tronic medical record from another hospital. Both hospitals need a way of confirming the
identity of the patient and combining the records. [Glossary Electronic medical record|

— Immutability

In addition to being permanent (i.e., never destroyed or lost), the identifier must never
change (see Chapter 6) [2]. In the event that two Big Data resources are merged, or that
legacy data is merged into a Big Data resource, or that individual data objects from two
different Big Data resources are merged, a single data object will be assigned two

Chapter 3 * Identification, Deidentification, and Reidentification 57

identifiers; one from each of the merging systems. In this case, the identifiers must be pre-
served as they are, without modification. The merged data object must be provided with
annotative information specifying the origin of each identifier (i.e., clarifying which iden-
tifier came from which Big Data resource).

— Security

The identifier system is vulnerable to malicious attack. A Big Data resource with an
identifier system can be irreversibly corrupted if the identifiers are modified. In the case
of human-based identifier systems, stolen identifiers can be used for a variety of
malicious activities directed against the individuals whose records are included in the
resource.

— Documentation and Quality Assurance

A system should be in place to find and correct errors in the identifier system. Protocols
must be written for establishing the identifier system, for assigning identifiers, for protect-
ing the system, and for monitoring the system. Every problem and every corrective action
taken must be documented and reviewed. Review procedures should determine whether
the errors were corrected effectively; and measures should be taken to continually
improve the identifier system. All procedures, all actions taken, and all modifications of
the system should be thoroughly documented. This is a big job.

— Centrality

Whether the information system belongs to a savings bank, an airline, a prison system, or a
hospital, identifiers play a central role. You can think of information systems as a scaffold
of identifiers to which data is attached. For example, in the case of a hospital information
system, the patient identifier is the central key to which every transaction for the patient is
attached.

— Autonomy

An identifier system has a life of its own, independent of the data contained in the Big Data
resource. The identifier system can persist, documenting and organizing existing and
future data objects even if all of the data in the Big Data resource were to suddenly vanish
(i.e., when all of the data contained in all of the data objects are deleted).

In theory, identifier systems are incredibly easy to implement. Here is exactly how it is
done:

1. Generate a unique character sequence, such as UUID, or a long random number.
[Glossary UUID, Randomness]

2. Assign the unique character sequence (i.e., identifier) to each new object, at the
moment that the object is created. In the case of a hospital a patient chart is created at
the moment he or she is registered into the hospital information system. In the case ofa
bank a customer record is created at the moment that he or she is provided with an

58 PRINCIPLES AND PRACTICE OF BIG DATA

account number. In the case of an object-oriented programming language, such as
Ruby, this would be the moment when the “new” method is sent to a class object,
instructing the class object to create a class instance. [Glossary Object-oriented
programming, Instance]

3. Preserve the identifier number and bind it to the object. In practical terms, this means
that whenever the data object accrues new data, the new data is assigned to the
identifier number. In the case of a hospital system, this would mean that all of the lab
tests, billable clinical transactions, pharmacy orders, and so on, are linked to the
patient’s unique identifier number, as a service provided by the hospital information
system. In the case of a banking system, this would mean that all of the customer’s
deposits and withdrawals and balances are attached to the customer’s unique
account number.

Section 3.3. Generating Unique Identifiers

A UUID is 128 bits long, and can guarantee uniqueness across space and time.
P Leach, M. Mealling and R. Salz [3]

Uniqueness is one of those concepts that everyone intuitively understands; explanations
would seem unnecessary. Actually, uniqueness in the computational sciences is a some-
what different concept than uniqueness in the natural world. In computational sciences,
uniqueness is achieved when a data object is associated with an unique identifier (i.e., a
character string that has not been assigned to any other data object). Most of us, when
we think of a data object, are probably thinking of a data record, which may consist of
the name of a person followed by a list of feature values (height, weight, and age), or a
sample of blood followed by laboratory values (e.g., white blood cell count, red cell
count, and hematocrit). For computer scientists a data object is a holder for data values
(the so-called encapsulated data), descriptors of the data, and properties of the holder
(i.e., the class of objects to which the instance belongs). Uniqueness is achieved when
the data object is permanently bound to its own identifier sequence. [Glossary
Encapsulation]
Unique objects have three properties:

— A unique object can be distinguished from all other unique objects.

— A unique object cannot be distinguished from itself.

— Uniqueness may apply to collections of objects (i.e., a class of instances can be
unique).

UUID (Universally Unique IDentifier) is an example of one type of algorithm that creates
unique identifiers, on command, at the moment when new objects are created (i.e., during
the run-time of a software application). A UUID is 128 bits long and reserves 60 bits for a
string computed directly from a computer time stamp, and is usually represented by a
sequence of alphanumeric ASCII characters [3]. UUIDs were originally used in the Apollo

Chapter 3 » Identification, Deidentification, and Reidentification 59

Network Computing System and were later adopted in the Open Software Foundation’s
Distributed Computing Environment [4]. [Glossary Time stamp, ASCII]

Linux systems have a built-in UUID utility, “uuidgen.exe,” that can be called from the
system prompt.

Here are a few examples of output values generated by the “uuidgen.exe” utility: [Glos-
sary Command line utility, Utility]

$ uuidgen.exe
312e60c9-3d00-4e3f-a013-0d6cbhblc9a9fe
$ uuidgen.exe
822df73c-8e54-45b5-9632-e2676d178664
$ uuidgen.exe
8f8633e1-8161-4364-9e88-£df37205df2¢f
$ uuidgen.exe
83951b71-1e5e-4c56-bd28-c0c45f52chb8a
$ uuidgen -t
e6325fb6-5c65-11e5-b0el-0ceee6e0b993
$ uuidgen -r
5d74e36a-4ccb-42f7-9223-84eed03291£9

Notice that each of the final two examples has a parameter added to the “uuidgen” command
(i.e., “-t” and “-r"). There are several versions of the UUID algorithm that are available. The
“-t” parameter instructs the utility to produce a UUID based on the time (measured in sec-
onds elapsed since the first second of October 15, 1582, the start of the Gregorian calendar).
The “-r” parameter instructs the utility to produce a UUID based on the generation of a pseu-
dorandom number. In any circumstance, the UUID utility instantly produces a fixed length
character string suitable as an objectidentifier. The UUID utility is trusted and widely used by
computer scientists. Independent-minded readers can easily design their own unique object
identifiers, using pseudorandom number generators, or with one-way hash generators.
[Glossary One-way hash, Pseudorandom number generator]

Python has its own UUID generator. The uuid module is included in the standard
python distribution and can be called directly from the script.

import uuid
print (uuid.uuid4 ())

When discussing UUIDs the question of duplicates (so-called collisions, in the computer
science literature) always arises. How can we be certain thata UUID is unique? Isn't it possible
that the algorithm that we use to create a UUID may, at some point, produce the same
sequence on more than one occasion? Yes, but the odds are small. It has been estimated that
duplicate UUIDs are produced, on average, once every 2.71 quintillion (i.e., 2.71 * 10A18)
executions [5]. It seems that reports of UUID collisions, when investigated, have been
attributed to defects in the implementation of the UUID algorithms. The general consensus
seems to be that UUID collisions are not worth worrying about, even in the realm of Big Data.

60 PRINCIPLES AND PRACTICE OF BIG DATA

Section 3.4. Really Bad Identifier Methods

I always wanted to be somebody, but now I realize I should have been mare specific.
Lily Tomlin

Names are poor identifiers. First off, we can never assume that any name is unique. Sur-
names such as Smith, Zhang, Garcia, Lo, and given names such as John and Susan are very
common. In Korea, five last names account for nearly 50% of the population [6]. Moreover,
if we happened to find an individual with a truly unique name (e.g., Mr. Mxyzptlk), there
would be no guarantee that some other unique individual might one day have the same
name. Compounding the non-uniqueness of names, there is the problem of the many var-
iant forms of a single name. The sources for these variations are many. Here is a partial
listing:

1. Modifiers to the surname (du Bois, DuBois, Du Bois, Dubois, Laplace, La Place, van de
Wilde, Van DeWilde, etc.).

2. Accents that may or may not be transcribed onto records (e.g., acute accent, cedilla,
diacritical comma, palatalized mark, hyphen, diphthong, umlaut, circumflex, and a
host of obscure markings).

3. Special typographic characters (the combined “ae”).

4. Multiple “middle names” for an individual, that may not be transcribed onto records.
Individuals who replace their first name with their middle name for common usage,
while retaining the first name for legal documents.

5. Latinized and other versions of a single name (Carl Linnaeus, Carl von Linne, Carolus
Linnaeus, Carolus a Linne).

6. Hyphenated names that are confused with first and middle names (e.g., Jean-Jacques
Rousseau, or Jean Jacques Rousseau; Louis-Victor-Pierre-Raymond, 7th duc de
Broglie, or Louis Victor Pierre Raymond Seventh duc deBroglie).

7. Cultural variations in name order that are mistakenly rearranged when transcribed
onto records. Many cultures do not adhere to the Western European name order (e.g.,
given name, middle name, surname).

8. Name changes; through marriage or other legal actions, aliasing, pseudonymous
posing, or insouciant whim.

Aside from the obvious consequences of using names as record identifiers (e.g., corrupt
database records, forced merges between incompatible data resources, impossibility of
reconciling legacy record), there are non-obvious consequences that are worth consider-
ing. Take, for example, accented characters in names. These word decorations wreak
havoc on orthography and on alphabetization. Where do you put a name that contains
an umlauted character? Do you pretend the umlaut is not there, and alphabetize it accord-
ing to its plain characters? Do you order based on the ASCII-numeric assignment for the
character, in which the umlauted letter may appear nowhere near the plain-lettered words
in an alphabetized list. The same problem applies to every special character. [Glossary
American Standard Code for Information Interchange, ASCII]

Chapter 3 » Identification, Deidentification, and Reidentification 61

A similar problem exists for surnames with modifiers. Do you alphabetize de Broglie
under “D” or under “d” or under “B”? If you choose B, then what do you do with the
concatenated form of the name, “deBroglie”? When it comes down to it, it is impossible
to satisfactorily alphabetize a list of names. This means that searches based on proximity
in the alphabet will always be prone to errors.

I have had numerous conversations with intelligent professionals who are tasked with
the responsibility of assigning identifiers to individuals. At some point in every conversa-
tion, they willfind it necessary to explain that although an individual's name cannot serve as
anidentifier, the combination of name plus date of birth provides accurate identification in
almost every instance. They sometimes get carried away, insisting that the combination of
name plus date of birth plus social security number provides perfect identification, as no
two people will share all three identifiers: same name, same date of birth, same social secu-
rity number. This argument rises to the height of folly and completely misses the point of
identification. As we will see, it is relatively easy to assign unique identifiers to individuals
and to any data object, for that matter. For managers of Big Data resources, the larger prob-
lem is ensuring that each unique individual has only one identifier (i.e., denying one object
multiple identifiers). [Glossary Social Security Number]

Let us see what happens when we create identifiers from the name plus the birthdate.
We will examine name + birthdate + social security number later in this section.

Consider this example. Mary Jessica Meagher, born June 7, 1912 decided to open a sep-
arate bank account in each of 10 different banks. Some of the banks had application forms,
which she filled out accurately. Other banks registered her account through a teller, who
asked her a series of questions and immediately transcribed her answers directly into a
computer terminal. Ms. Meagher could not see the computer screen and could not review
the entries for accuracy.

Here are the entries for her name plus date of birth:

Marie Jessica Meagher, June 7, 1912 (the teller mistook Marie for Mary).

Mary J. Meagher, June 7, 1912 (the form requested a middle initial, not name).

Mary Jessica Magher, June 7, 1912 (the teller misspelled the surname).

Mary Jessica Meagher, Jan 7, 1912 (the birth month was constrained, on the form, to

three letters; Jun, entered on the form, was transcribed as Jan).

5. Mary Jessica Meagher, 6/7/12 (the form provided spaces for the final two digits of the
birth year. Through a miracle of modern banking, Mary, born in 1912, was re-born a
century later).

6. Mary Jessica Meagher, 7/6/2012 (the form asked for day, month, year, in that order, as

is common in Europe).

Mary Jessica Meagher, June 1, 1912 (on the form, a 7 was mistaken for a 1).

8. Mary Jessie Meagher, June 7, 1912 (Marie, as a child, was called by the informal form
of her middle name, which she provided to the teller).

9. Mary Jesse Meagher, June 7, 1912 (Marie, as a child, was called by the informal form of

her middle name, which she provided to the teller, and which the teller entered as the

male variant of the name).

PWN=2

N

62 PRINCIPLES AND PRACTICE OF BIG DATA

10. Marie Jesse Mahrer, 1/1/12 (an underzealous clerk combined all of the mistakes on
the form and the computer transcript, and added a new orthographic variant of the
surname).

For each of these ten examples, a unique individual (Mary Jessica Meagher) would be
assigned a different identifier at each of 10 banks. Had Mary re-registered at one bank,
ten times, the outcome may have been the same.

If you toss the social security number into the mix (name + birth date + social security
number) the problem is compounded. The social security number for an individual is any-
thing but unique. Few of us carry our original social security cards. Our number changes
due to false memory (“You mean I've been wrong all these years?”), data entry errors
(“Character transpositoins, I mean transpositions, are very common”), intention to
deceive (“I don't want to give those people my real number”), or desperation (“I don’t have
a number, so I'll invent one”), or impersonation (“I don’t have health insurance, so I'll use
my friend’s social security number”). Efforts to reduce errors by requiring patients to pro-
duce their social security cards have not been entirely beneficial.

Beginning in the late 1930s, the E. H. Ferree Company, a manufacturer of wallets, pro-
moted their product’s card pocket by including a sample social security card with each
wallet sold. The display card had the social security number of one of their employees.
Many people found it convenient to use the card as their own social security number. Over
time, the wallet display number was claimed by over 40,000 people. Today, few institutions
require individuals to prove their identity by showing their original social security card.
Doing so puts an unreasonable burden on the honest patient (who does not happen to
carry his/her card) and provides an advantage to criminals (who can easily forge a card).

Entities that compel individuals to provide a social security number have dubious legal
standing. The social security number was originally intended as a device for validating a
person’s standing in the social security system. More recently, the purpose of the social
security number has been expanded to track taxable transactions (i.e., bank accounts, sal-
aries). Other uses of the social security number are not protected by law. The Social Secu-
rity Act (Section 208 of Title 42 U.S. Code 408) prohibits most entities from compelling
anyone to divulge his/her social security number.

Considering the unreliability of social security numbers in most transactional settings,
and considering the tenuous legitimacy of requiring individuals to divulge their social
security numbers, a prudently designed medical identifier system will limit its reliance
on these numbers. The thought of combining the social security number with name
and date of birth will virtually guarantee that the identifier system will violate the strict
one-to-a-customer rule.

Most identifiers are not purely random numbers; they usually contain some embedded
information that can be interpreted by anyone familiar with the identification system. For
example, they may embed the first three letters of the individual’s family name in the iden-
tifier. Likewise, the last two digits of the birth year are commonly embedded in many types
of identifiers. Such information is usually included as a crude “honesty” check by people
“in the know.” For instance, the nine digits of a social security number are divided into an

Chapter 3 » Identification, Deidentification, and Reidentification 63

area code (first three digits), a group number (the next two digits), followed by a serial
number (last four digits). People with expertise in the social security numbering system
can pry considerable information from a social security number, and can determine
whether certain numbers are bogus, based on the presence of excluded sub-sequences.
Seemingly inconsequential information included in an identifier can sometimes be
used to discover confidential information about individuals. Here is an example. Suppose
every client transaction in a retail store is accessioned under a unique number, consisting
of the year of the accession, followed by the consecutive count of accessions, beginning
with the first accession of the new year. For example, accession 2010-3518582 might rep-
resent the 3,518,582nd purchase transaction in the year 2010. Because each number is
unique, and because the number itself says nothing about the purchase, it may be assumed
that inspection of the accession number would reveal nothing about the transaction.
Actually, the accession number tells you quite a lot. The prefix (2010) tells you the year
of the purchase. If the accession number had been 2010-0000001, then you could safely
say that accession represented the first item sold on the first day of business in the year
2010. For any subsequent accession number in 2010, simply divide the suffix number (in
this case 3,518,582) by the last accession number of the year, and multiply by 365 (the
number of days in a non-leap year), and you have the approximate day of the year that
the transaction occurred. This day can easily be converted to a calendar date.
Unimpressed? Consider this scenario. You know that a prominent member of the Pres-
ident’s staff had visited a Washington, D.C. Hospital on February 15, 2005, for the purpose of
having a liver biopsy. You would like to know the results of that biopsy. You go to a Web site
that lists the deidentified pathology records for the hospital, for the years 2000-2010.
Though no personal identifiers are included in these public records, the individual records
are sorted by accession numbers. Using the aforementioned strategy, you collect all of the
surgical biopsies performed on orabout February 15, 2010. Of these biopsies, only three are
liver biopsies. Of these three biopsies, only one was performed on a person whose gender
and age matched the President’s staff member. The report provides the diagnosis. You man-
aged to discover some very private information without access to any personal identifiers.
The alphanumeric character string composing the identifier should not expose the
patient’s identity. For example, a character string consisting of a concatenation of the
patient’s name, birth date, and social security number might serve to uniquely identify
an individual, but it could also be used to steal an individual’s identity. The safest identi-
fiers are random character strings containing no information whatsoever.

Section 3.5. Registering Unique Object Identifiers
It isn’t that they can’t see the solution. It’s that they can’t see the problem.

G. K. Chesterton

Registries are trusted services that provide unique identifiers to objects. The idea is that
everyone using the object will use the identifier provided by the central registry. Unique
object registries serve a very important purpose, particularly when the object identifiers

64 PRINCIPLES AND PRACTICE OF BIG DATA

are persistent. It makes sense to have a central authority for Web addresses, library acqui-
sitions, and journal abstracts. Such registries include:

— DOI, Digital object identifier

— PMID, PubMed identification number

— LSID (Life Science Identifier)

— HL7 OID (Health Level 7 Object Identifier)

— DICOM (Digital Imaging and Communications in Medicine) identifiers
— ISSN (International Standard Serial Numbers)

— Social Security Numbers (for United States population)

— NPI, National Provider Identifier, for physicians

— Clinical Trials Protocol Registration System

— Office of Human Research Protections FederalWide Assurance number
— Data Universal Numbering System (DUNS) number

— International Geo Sample Number

— DNS, Domain Name Service

— URL, Unique Resource Locator [Glossary URL)]

— URN, Unique Resource Name [Glossary URN]

In some cases the registry does not provide the full identifier for data objects. The registry
may provide a general identifier sequence that will apply to every data object in the
resource. Individual objects within the resource are provided with a non-unique registry
number. A unique suffix sequence is appended locally (i.e., not by a central registrar). Life
Science Identifiers (LSIDs) serve as a typical example of a registered identifier. Every LSIDs
is composed of the following 5 parts: Network Identifier, root DNS name of the issuing
authority, name chosen by the issuing authority, a unique object identifier assigned
locally, and an optional revision identifier for versioning information.

In the issued LSID identifier, the parts are separated by a colon, as shown:

urn:lsid:pdb.org:1AFT:1

This identifies the first version of the 1AFT protein in the Protein Data Bank. Here are a
few LSIDs:

urn:lsid:ncbi.nlm.nih.gov:pubmed:12571434

This identifies a PubMed citation

urn:sid:ncbi.nlm.nig.gov:GenBank:T48601:2

This refers to the second version of an entry in GenBank

An OID, short for Object Identifier, is a hierarchy of identifier prefixes. Successive num-
bers in the prefix identify the descending order of the hierarchy. Here is an example of an
OID from HL7, an organization that deals with health data interchanges:

1.3.6.1.4.1.250

Each node is separated from the successor by a dot, Successively finer registration
detail leads to the institutional code (the final node). In this case the institution identified
by the HL7 OID happens to be the University of Michigan.

Chapter 3 » Identification, Deidentification, and Reidentification 65

The final step in creating an OID for a data object involves placing a unique identifier
number at the end of the registered prefix. OID organizations leave the final step to the
institutional data managers.

The problem with this approach is that the final within-institution data object
identifier is sometimes prepared thoughtlessly, corrupting the OID system [7]. Here is
an example. Hospitals use an OID system for identifying images, part of the DICOM
(Digital Imaging and Communications in Medicine) image standard. There is a prefix
consisting of a permanent, registered code for the institution and the department, and
a suffix consisting of a number generated for an image as it is created.

A hospital may assign consecutive numbers to its images, appending these numbers to
an OID that is unique for the institution and the department within the institution. For
example, the first image created with a CI-scanner might be assigned an identifier
consisting of the OID (the assigned code for institution and department) followed by a
separator such as a hyphen, followed by “1.”

In a worst-case scenario, different instruments may assign consecutive numbers to
images, independently of one another. This means that the CT-scanner in room A may
be creating the same identifier (OID + image number) as the CT-scanner in Room B;
for images on different patients. This problem could be remedied by constraining each
CT-scanner to avoid using numbers assigned by any other CT-scanner. This remedy
can be defeated if there is a glitch anywhere in the system that accounts for image
assignments (e.g., if the counters are re-set, broken, replaced or simply ignored).

When image counting is done properly, and the scanners are constrained to assign unique
numbers (not previously assigned by other scanners in the same institution), each image may
indeed have a unique identifier (OID prefix + image number suffix). Nonetheless, the use of
consecutive numbers for images will create havoc over time. Problems arise when the image
service is assigned to another department in the institution, or when departments or insti-
tutions merge. Each of these shifts produces a change in the OID (the institutional and
departmental prefix) assigned to the identifier. If a consecutive numbering system is used,
then you can expect to create duplicate identifiers if institutional prefixes are replaced after
the merge. The old records in both of the merging institutions will be assigned the same prefix
and will contain replicate (consecutively numbered) suffixes (e.g., image 1, image 2, etc.).

Yet another problem may occur if one unique object is provided with multiple different
unique identifiers. A software application may be designed to ignore any previously
assigned unique identifier and to generate its own identifier, using its own assignment
method. Doing so provides software vendors with a strategy that insulates the vendors
from bad identifiers created by their competitor’s software, and locks the customer to a
vendor’s software, and identifiers, forever.

In the end the OID systems provide a good set of identifiers for the institution, but the
data objects created within the institution need to have their own identifier systems. Here
is the HL7 statement on replicate OIDs:

Though HL7 shall exercise diligence before assigning an OID in the HL7 branch to third
parties, given the lack of a global OID registry mechanism, one cannot make absolutely
certain that there is no preexisting OID assignment for such third-party entity [8].

66 PRINCIPLES AND PRACTICE OF BIG DATA

It remains to be seen whether any of the registration identifier systems will be used and
supported with any serious level of permanence (e.g., over decades and centuries).

Section 3.6. Deidentification and Reidentification

Never answer an anonymous letter.
Yogi Berra

For scientists, deidentification serves two purposes:

— To protect the confidentiality and the privacy of the individual (when the data
concerns a particular human subject), and

— To remove information that might bias the experiment (e.g., to blind the
experimentalist to patient identities).

Deidentification involves stripping information from a data record that might link the
record to the public name of the record’s subject. In the case of a patient record, this would
involve stripping any information from the record that would enable someone to connect
the record to the name of the patient. The most obvious item to be removed in the dei-
dentification process is the patient’s name. Other information that should be removed
would be the patient’s address (which could be linked to the name), the patient’s date
of birth (which narrows down the set of individuals to whom the data record might per-
tain), and the patient’s social security number. In the United States, patient privacy reg-
ulations include a detailed discussion of record deidentification and this discussion
recommends 18 patient record items for exclusion from deidentified records [9].

Before going any further, it is important to clarify that deidentification is not achieved
by removing an identifier from a data object. In point of fact, nothing good is ever achieved
by simply removing an identifier from a data object; doing so simply invalidates the data
object (i.e., every data object, identified or deidentified, must have an identifier). Deiden-
tification involves removing information contained in the data object that reveals some-
thing about the publicly known name of the data object. This kind of information is often
referred to as identifying information, but it would be much less confusing if we used
another term for such data, such as “name-linking information.” The point here is that
we do not want to confuse the identifier of a data object with information contained in
a data object that can link the object to its public name.

It may seem counterintuitive, but there is very little difference between an identifier
and a deidentifier; under certain conditions the two concepts are equivalent. Here is
how a dual identification/deidentification system might work:

1. Collect data on unique object. “Joe Ferguson’s bank account contains $100.”

2. Assign a unique identifier. “Joe Ferguson’s bank account is 7540038947134.”

3. Substitute name of object with its assigned unique identifier: “754003894713 contains
$100.".

Chapter 3 * Identification, Deidentification, and Reidentification 67

4. Consistently use the identifier with data.
5. Do not let anyone know that Joe Ferguson owns account “754003894713."

The dual use of an identifier/deidentifier is a tried and true technique. Swiss bank
accounts are essentially unique numbers (identifiers) assigned to a person. You access
the bank account by producing the identifier number. The identifier number does not pro-
vide information about the identity of the bank account holder (i.e., it is a deidentifier and
an identifier).

The purpose of an identifier is to tell you that whenever the identifier is encountered, it
refers to the same unique object, and whenever two different identifiers are encountered,
they refer to different objects. The identifier, by itself, should contain no information that
links the data object to its public name.

It is important to understand that the process of deidentification can succeed only
when each record is properly identified (i.e., there can be no deidentification without
identification). Attempts to deidentify a poorly identified data set of clinical information
will result in replicative records (multiple records for one patient), mixed-in records (sin-
gle records composed of information on multiple patients), and missing records (uniden-
tified records lost in the deidentification process).

The process of deidentification is best understood as an algorithm performed on-the-fly,
in response to a query from a data analyst. Here is how such an algorithm might proceed.

1. The data analyst submits a query requesting a record from a Big Data resource. The
resource contains confidential records that must not be shared, unless the records are
deidentified.

2. The Big Data resource receives the query and retrieves the record.

3. A copy of the record is parsed and any of the information within the data record that
might link the record to the public name of the subject of the record (usually the name
of an individual) is deleted from the copy. This might include the aforementioned
name, address, date of birth, and social security number.

4, A pseudo-identifier sequence is prepared for the deidentified record. The pseudo-
identifier sequence might be generated by a random number generator, by encrypting
the original identifier, through a one-way hash algorithm, or by other methods chosen
by the Big Data manager. [Glossary Encryption|

5. A transaction record is attached to the original record that includes the pseudo-
identifier, the deidentified record, the time of the transaction, and any information
pertaining to the requesting entity (e.g., the data analyst who sent the query) that is
deemed fit and necessary by the Big Data resource data manager.

6. A record is sent to the data analyst that consists of the deidentified record (i.e., the
record stripped of its true identifier and containing no data that links the record to a
named person) and the unique pseudo-identifier created for the record.

Because the deidentified record, and its unique pseudo-identifier are stored with the orig-
inal record, subsequent requests for the pseudo-identified record can be retrieved and

68 PRINCIPLES AND PRACTICE OF BIG DATA

provided, at the discretion of the Big Data manager. This general approach to data deiden-
tification will apply to requests for a single record or to millions of records.

At this point, you might be asking yourself the following question, “What gives the data
manager the right to distribute parts of a confidential record, even if it happens to be
deidentified?” You might think that if you tell someone a secret, under the strictest con-
fidence, then you would not want any part of that secret to be shared with anyone else. The
whole notion of sharing confidential information that has been deidentified may seem
outrageous and unacceptable.

We will discuss the legal and ethical issues of Big Data in Chapters 18 and 19. For now,
readers should know that there are several simple and elegant principles that justify shar-
ing deidentified data.

Consider the statement “Jules Berman has a blood glucose level of 85.” This would be
considered a confidential statement because it tells people something about my medical
condition.

Consider the phrase, “Blood glucose 85.”

When the name “Jules Berman” is removed, we are left with a disembodied piece of
data. “Blood glucose 85” is no different from “Temperature 98.6” or “Apples 2" or
“Terminator 3.” They are simply raw data belonging to nobody in particular. The act of
removing information linking data to a person renders the data harmless. Because the
use of properly deidentified data poses no harm to human subjects, United States Regu-
lations allow the unrestricted use of such data for research purposes [9,10]. Other coun-
tries have similar provisions.

— Reidentification

Because confidentiality and privacy concerns always apply to human subject data, it
would seem imperative that deidentification should be an irreversible process (i.e., the
names of the subjects and samples should be held a secret, forever).

Scientific integrity does not always accommodate irreversible deidentification. On
occasion, experimental samples are mixed-up; samples thought to come from a certain
individual, tissue, record, or account, may in fact come from another source. Sometimes
major findings in science need to be retracted when a sample mix-up has been shown to
occur [11,12,13,14,15]. When samples are submitted, without mix-up, the data is some-
times collected improperly. For example, reversing electrodes on an electrocardiogram
may yield spurious and misleading results. Sometimes data is purposefully fabricated
and otherwise corrupted, to suit the personal agendas of dishonest scientists. When data
errors occur, regardless of reason, it is important to retract the publications [16,17]. To pre-
serve scientific integrity, it is sometimes necessary to discover the identity of deidentified
records.

In some cases, deidentification stops the data analyst from helping individuals whose
confidentiality is being protected. Imagine you are conducting an analysis on a collection
of deidentified data, and you find patients with a genetic marker for a disease that is cur-
able, if treated at an early stage; or you find a new biomarker that determines which

Chapter 3 » Identification, Deidentification, and Reidentification 69

patients would benefit from surgery and which patients would not. You would be com-
pelled to contact the subjects in the database to give them information that could poten-
tially save their lives. Having an irreversibly deidentified data sets precludes any
intervention with subjects; nobody knows their identities.

Deidentified records can, under strictly controlled circumstances, be reidentified. Rei-
dentification is typically achieved by entrusting a third party with a confidential list that
maps individuals to their deidentified records. Obviously, reidentification can only occur if
the Big Data resource keeps a link connecting the identifiers of their data records to the
identifiers of the corresponding deidentified record (what we've been calling pseudo-
identifiers). The act of assigning a public name to the deidentified record must always
involve strict oversight. The data manager must have in place a protocol that describes
the process whereby approval for reidentification is obtained. Reidentification provides
an opportunity whereby confidentiality can be breached and human subjects can be
harmed. Consequently, stewarding the reidentification process is one of the most serious
responsibilities of Big Data managers [18].

Section 3.7. Case Study: Data Scrubbing

It is a sin to believe evil of others but it is seldom a mistalke.
Garrison Keillor

The term “data scrubbing” is sometimes used, mistakenly, as a synonym for deidentifica-
tion. It is best to think of data scrubbing as a process that begins where deidentification
ends. A data scrubber will remove unwanted information from a data record, including
information of a personal nature and any information that is not directly related to the
purpose of the data record. For example, in the case of a hospital record a data scrubber
might remove the names of physicians who treated the patient; the names of hospitals or
medical insurance agencies; addresses; dates; and any textual comments that are inappro-
priate, incriminating, irrelevant, or potentially damaging. [Glossary Data munging, Data
scraping, Data wrangling]

In medical data records, there is a concept known as “minimal necessary” that applies
to shared confidential data [9]. It holds that when records are shared, only the minimum
necessary information should be released. Any information not directly relevant to the
intended purposes of the data analyst should be withheld. The process of data scrubbing
gives data managers the opportunity to render a data record that is free of information that
would link the record to its subject and free of extraneous information that the data ana-
lyst does not actually require. [Glossary Minimal necessary]

There are many methods for data scrubbing. Most of these methods require that data
managers develop an exception list of items that should not be included in shared records
(e.g., cities, states, zip codes, and names of people). The scrubbing application moves
through the records, extracting unnecessary information along the way. The end product
is cleaned, but not sterilized. Though many undesired items can be successfully removed,

70 PRINCIPLES AND PRACTICE OF BIG DATA

this approach never produces a perfectly scrubbed set of data. In a Big Data resource, it is
simply impossible for the data manager to anticipate every objectionable item and to
include it in an exception list. Nobody is that smart.

There is, however, a method whereby data records can be cleaned, without error. This
method involves creating a list of data (often in the form of words and phrases) that is
acceptable for inclusion in a scrubbed and deidentified data set. Any data that is not in
the list of acceptable information is automatically deleted. Whatever is left is the scrubbed
data. This method can be described as a reverse scrubbing method. Everything is in the
data set is automatically deleted, unless it is an approved “exception.”

This method of scrubbing is very fast and can produce an error-free deidentified and
scrubbed output [4,19,20]. An example of the kind of output produced by such a scrubber
is shown:

Since the time when * * * * * * * * his own * and the * * * *, the anomalous * * have
been * and persistent * * *; and especially * true of the construction and functions of
the human *, indeed, it was the anomalous that was * * * in the * the attention, * *
that were * to develop into the body * * which we now * *. As by the aid * * * * * * % * *
our vision into the * * * has emerged *, we find * * and even evidence of *. To the high-
est type of * * it is the * the ordinary * * * * * * ta such, no less than to the most *, * * * is
of absorbing interest, and it is often * * that the * * the mast * into the heart of the
mystery of the ordinary. * * been said, * * * * * ** dermoid cysts, for example, we seem
to* * * the secret * of Nature, and * out into the * * of her clumsiness, and * of her * * *
*, %, * tell us much of * * * used by the vital * * * * even the silent * * * upon the * * *.

The reverse-scrubber requires the preexistence of a set of approved terms. One of the sim-
plest methods for generating acceptable terms involves extracting them from a nomen-
clature that comprehensively covers the terms used in a knowledge domain. For
example, a comprehensive listing of living species will not contain dates or zip codes
or any of the objectionable language or data that should be excluded from a scrubbed data
set. In a method that I have published a list of approved doublets (approximately 200,000
two-word phrases collected from standard nomenclatures) are automatically collected for
the scrubbing application [4]. The script is fast, and its speed is not significantly reduced
by the size of the list of approved terms.

Here is a short python script. scrub.py, that will take any line of text and produce a
scrubbed output. It requires an external file, doublets.txt, containing an approved list
of doublet terms.

import sys, re, string
doub file = open("doublets.txt", "r")
doub_hash = {}
for line in doub_file:
line = line.rstrip()
doub_hash([line] =" "

Chapter 3 » Identification, Deidentification, and Reidentification 71

doub file.close ()

print ("What would you like to scrub?")
line = sys.stdin.readline()

line = line.lower ()

line = line.rstrip()

linearray = re.split(xr' +', line)
lastword = "*"

for i in range (0, len(linearray)):

doublet =" " . join(linearray[i:1i+2])
if doublet in doub hash:

print (" " + linearray[i], end="")

lastword =" " + linearray[i+1]
else:

print (lastword, end="")

lastword = " *"

if (1 == len(linearray) + 1):
print (lastword, end="")

Section 3.8. Case Study (Advanced): Identifiers in Image
Headers

Plus ca change, plus c'est la meme chose.
Old French saying (“The more things change, the more things stay the same.”)

Asithappens, nothing is ever as simple as it ought to be. In the case of an implementation of
systems that employ long sequence generators to produce unique identifiers, the most com-
mon problem involves indiscriminate reassignment of additional unique identifiers to the
same data object, thus nullifying the potential benefits of the unique identifier systems.

Let us look at an example wherein multiple identifiers are redundantly assigned to the
same image, corrupting the identifier system. In Section 4.3, we discuss image headers,
and we provide examples wherein the ImageMagick “identify” utility could extract the
textual information included in the image header. One of the header properties created,
inserted, and extracted by ImageMagick’s “identify” is an image-specific unique string.
[Glossary ImageMagick]

When ImageMagick is installed in our computer, we can extract any image's unique
string, using the “identify” utility and the “-format” attribute, on the following system
command line: [Glossary Command line]

c:\>identify -verbose -format "%#" eqgn. jpg

Here, the image file we are examining is “eqn.jpg”. The “%#” character string is ImageMa-
gick’s special syntax indicating that we would like to extract the image identifier from the
image header. The output is shown.

72 PRINCIPLES AND PRACTICE OF BIG DATA

219e41b4c76ledbb04fbde7f71cc84cde6aes3a26639d4bf33155a5f62ee36e33

We can repeat the command line whenever we like, for this image; and the same image-
specific unique sequence of characters will be produced.

Using ImageMagick, we can insert text into the “comment” section of the header, using
the “-set” attribute. Let us add the text, “I'm modifying myself”:

c:\ftp>convert eqn. jpg -set comment "I'm modifying myself" eqn.jpg

Now, let us extract the comment that we just added, to satisfy ourselves that the “-set”
attribute operated as we had hoped. We do this using the “-format” attribute and the
“%c” character string, which is ImageMagick’s syntax for extracting the comment section
of the header.

c:\ftp>identify -verbose -format "%c" eqn.jpg
The output of the command line is:
I'mmodifying myself

Now, let us run, one more time, the command line that produces the unique character
string that is unique for the eqn.jpg image file

c:\ftp>identify -verbose -format "%#" eqn.jpg
The output is:
cb448260d6eeeb2e9f2dcb925fa421b474021584e266d486a6190067a278639¢F

What just happened? Why has the unique character string specific for the eqn.jpg image
changed? Has our small modification of the file, which consisted of adding a text comment
to the image header, resulted in the production of a new image object, worthy of a new
unique identifier?

Before answering these very important questions, let us pose the following gedanken
question. Imagine you have a tree. This tree, like every living organism, is unique. It has a
unique history, a unique location, and a unique genome (i.e., a unique sequence of nucle-
otides composing its genetic material). In ten years, its leaves drop off and are replaced ten
times. Its trunk expands in size and its height increases. In the ten years of its existence,
has the identify of the tree changed? [Glossary Gedanken)]

You would probably agree that the tree has changed, but that it has maintained its iden-
tity (i.e., it is still the same tree, containing the descendants of the same cells that grew
within the younger version of itself).

In informatics, a newly created object is given an identifier, and this identifier is immu-
table (i.e., cannot be changed), regardless of how the object is modified. In the case of the
unique string assigned to an image by ImageMagick, the string serves as an authenticator,
not as an identifier. When the image is modified a new unique string is created. By com-
paring the so-called identifier string in copies of the image file, we can determine whether
any modifications have been made. That is to say, we can authenticate the file.

Chapter 3 » Identification, Deidentification, and Reidentification 73

Getting back to the image file in our example, when we modified the image by inserting
a text comment, ImageMagick produced a new unique string for the image. The identity of
the image had not changed, but the image was different from the original image (i.e., no
longer authentic). It seems that the string that we thought to be an identifier string was
actually an authenticator string. [Glossary Authentication]

If we want an image to have a unique identifier that does not change when the image is
maodified, we must create our own identifier that persists when the image is modified.

Here is a short Python script, image_id.py, that uses Python’s standard UUID method to
create an identifier, which is inserted into the comment section of the image’s header, and
flanking the identifier with XML tags. [Glossary XML, HTML)|

import sys, os, uuid

my id = "<image id>" + str(uuid.uuid4()) + "</image id>"
in command = "convert leaf.jpg -set comment \"" + my_id + "\" leaf.jpg"
os.system(in_command)

out_command = "identify -verbose -format \"%c\" leaf.jpg"
print ("\nHere's the unique identifier:")
os.system(out_command)

print ("\nHere's the unique authenticator:")
os.system("identify -verbose -format \"%#\" leaf.jpg")
os.system("convert leaf.jpg -resize 325x500! leaf.jpg")
print ("\nHere's the new authenticator:")
os.system("identify -verbose -format \"%#\" leaf.jpg")
print ("\nHere's the unique identifier:")
os.system(out_command)

Here is the output of the image_id.py script:

Here's the unique identifier:
<image id>b0836a26-8f0e-4a6b-842d-9b0dde2b3f59</image id>

Here's the unique authenticator:
98c9fe07e90ce43f49961ab6226cdlccffeebd48eddladseaddieas3adedld2lba

Here's the new authenticator:
017e401d80a4laafa289%ae9c2aladb7c00477£7a943143141912189499d69%ad2

Here's the unique identifier:
<image id>b0836a26-8f0e-4a6b-842d-9b0dde2b3f59</image_id>

What did the script do and what does it teach us? It employed the UUID utility to create a
unique and permanent identifier for the image (leaf.jpg, in this case), and inserted the
unique identifier into the image header. This identifier, “b0836a26-8f0e-4a6b-842d-
9b0dde2b3f59,” did not change when the image was subsequently modified. A new
authenticator string was automatically inserted into the image header, by ImageMagick,
when the image was modified. Hence, we achieved what we needed to achieve: a unique

74 PRINCIPLES AND PRACTICE OF BIG DATA

identifier that never changes, and a unique authenticator that changes when the image is
modified in any way.

If you have followed the logic of this section, then you are prepared for the following
question posed as an exercise for Zen Buddhists. Imagine you have a hammer. Over the
years, you have replaced its head, twice, and its handle, thrice. In this case, with nothing
remaining of the original hammer, has it maintained its identity (i.e., is it still the same
hammer?). The informatician would answer “Yes,” the hammer has maintained its unique
identity, but it is no longer authentic (i.e., it is what it must always be, though it has
become something different).

Section 3.9. Case Study: One-Way Hashes

I live on a one-way street that'’s also a dead end. I'm not sure how I got there.
Steven Wright

A one-way hash is an algorithm that transforms a string into another string is such a way
that the original string cannot be calculated by operations on the hash value (hence the
term “one-way” hash). Popular one-way hash algorithms are MD5 and Standard Hash
Algorithm (SHA). A one-way hash value can be calculated for any character string, includ-
ing a person’s name, or a document, or even another one-way hash. For a given input
string, the resultant one-way hash will always be the same.

Here are a few examples of one-way hash outputs performed on a sequential list of
input strings, followed by their one-way hash (md5 algorithm) output.

Jules Berman => Ri0oaVTIAilwnS8 +nvKhfA
"Whatever" => n2YtKKG6E4MyEZvUKyGWrw
Whatever => OkXaDVQFYjwkQ+MOC8dpOQ

jules berman => S1lnuYpmyn8VXLsxBWwO57Q
Jules J. Berman => 174wZ/CsIbxt3goH2aCS+A
Jules J Berman => yZQfImAf4dIYO6BA0gGZ7g
Jules Berman => R100aVTIAilwnS8 +nvKhfA

The one-way hash values are a seemingly random sequence of ASCII characters (the charac-
ters available on a standard keyboard). Notice that a small variation among input strings
(e.g., exchanging an uppercase for a lowercase character, adding a period or quotation mark)
produces a completely different one-way hash output. The first and the last entry (Jules Ber-
man) yield the same one-way hash output (Ri0oaVTIAilwnS8+nvKhfA) because the two
input strings are identical. A given string will always yield the same hash value, so long as
the hashing algorithm is not altered. Each one-way hash has the same length (22 characters
for this particular md5 algorithm) regardless of the length of the input term. A one-way hash
output of the same length (22 characters) could have been produced for a string or file or doc-
ument of any length. Once produced, there is no feasible mathematical algorithm that can
reconstruct the input string from its one-way hash output. In our example, there is no way
of examining the string “Ri0oaVTIAilwnS8 + nvKhfA” and computing the name Jules Berman.

Chapter 3 » Identification, Deidentification, and Reidentification 75

We see that the key functional difference between a one-way hash and a UUID
sequence is that the one-way hash algorithm, performed on a unique string, will always
yield the same random-appearing alphanumeric sequence. A UUID algorithm has no
input string; it simply produces unique alphanumeric output, and never (almost never)
produces the same alphanumeric output twice.

One-way hashes values can serve as ersatz identifiers, permitting Big Data resources
to accrue data, over time, to a specific record, even when the record is deidentified
(e.g., even when its UUID identifier has been stripped from the record). Here is how
it works [18]:

1. A data record is chosen, before it is deidentified, and a one-way hash is performed on
its unique identifier string.

2. The record is deidentified by removing the original unique identifier. The output of the
one-way hash (from step 1) is substituted for the original unique identifier.

3. The record is deidentified because nobody can reconstruct the original identifier from
the one-way hash that has replaced it.

4. The same process is done for every record in the database.

5. All of the data records that were associated with the original identifier will now have the
same one-way hash identifier and can be collected under this substitute identifier,
which cannot be computationally linked to the original identifier.

Implementation of one-way hashes carry certain practical problems. If anyone happens to
have a complete listing of all of the original identifiers, then it would be a simple matter to
perform one-way hashes on every listed identifier. This would produce a look-up table
that can match deidentified records back to the original identifier, a strategy known as
a dictionary attack. For deidentification to work, the original identifier sequences must
be kept secret.

One-way hash protocols have many practical uses in the field of information science
[21,18,4]. It is very easy to implement one-way hashes, and most programming languages
and operating systems come bundled with one or more implementations of one-way hash
algorithms. The two most popular one-way hash algorithms are md5 (message digest
version 5) and SHA (Secure Hash Algorithm). [Glossary HMAC, Digest, Message digest,
Check digit]

Here we use Cygwin’s own md5sum.exe utility on the command line to produce a
one-way hash for an image file, named dash.png:

c:\ftp>c:\cygwiné4\bin\mdSsum.exe dash.png
Here is the output:

db50dc33800904ab5f4ac90597d7b4ea *dash.png
We could call the same command line from a Python script:

import sys, os
os.system("c:/cygwiné4/bin/md5sum.exe dash.png")

76 PRINCIPLES AND PRACTICE OF BIG DATA

The output will always be the same, as long as the input file, dash.png, does not change:
db50dc33800904ab5f4ac90587d7b4ea *dash.png

OpenSSL contains several one-way hash implementations, including both md5 and sev-
eral variants of SHA.

One-way hashes on files are commonly used as a quick and convenient authentication
tool. When you download a file from a Web site, you are likely to see that the file distributor
has posted the file’s one-way hash value. When you receive the file, it is a good idea to cal-
culate the one-way hash on the file that you have received. If the one-way hash value is
equal to the posted one-way hash value, then you can be certain that the file received is
an exact copy of the file that was intentionally sent. Of course, this does not ensure that
the file that was intentionally sent was a legitimate file or that the website was an honest
file broker. We will be using our knowledge of one-way hashes when we discuss trusted time
stamps (Section 8.5), blockchains (Section 8.6) and data security protocols (Section 18.3).

Glossary

ASCII ASCII is the American Standard Code for Information Interchange, 1S0O-14962-1997. The ASCII
standard is a way of assigning specific 8-bit strings (a string of 0s and 1s of length 8) to the alphanu-
meric characters and punctuation. Uppercase letters are assigned a different string of 0s and 1s than
their matching lowercase letters. There are 256 ways of combining 0s and 1s in strings of length 8. This
means that that there are 256 different ASCII characters, and every ASCII character can be assigned a
number-equivalent, in the range of 0-255. The familiar keyboard keys produce ASCII characters that
happen to occupy ASCII values under 128. Hence, alphanumerics and common punctuation are repre-
sented as 8-bits, with the first bit, “0", serving as padding. Hence, keyboard characters are commonly
referred to as 7-bit ASCII, and files composed exclusively of common keyboard characters are referred
to as plain-text files or as 7-bit ASCII files.

These are the classic ASCII characters:

I"HS%&" () *+,-./0123456789: ;<=>
? @ABCDEFGHIJKLMNOPQRSTUVWXYZ
[\]"_“~abcdefghijklmnopgrstuvwxyz{|}~

Python has several methods for removing non-printable characters from text, including the
“printable” method, as shown in this short script, printable.py.

-*- coding: is0-8859-15 -*-

import string
in string = "prinliiéaaitable"

out_string = "".join(s for s inin string if s in string.printable)
print (cut_strung)

output :

printable

It is notable that the first line of code violates a fundamental law of Python programming; that the
pound sign signifies that a comment follows, and that the Python interpreter will ignore the pound

Chapter 3 ¢ Identification, Deidentification, and Reidentification 77

sign and any characters that follow the pound sign on the line in which they appear. For obscure rea-
sons, the top line of the snippet is a permitted exception to the rule. In nonpythonic language, the top
line conveys to the Python compiler that it may expect to find non-ASCII characters encoded in the iso-
8859-15 standard.

The end result of this strange snippet is that non-ASCII characters are stripped from input strings; a handy
script worth saving.

American Standard Code for Information Interchange Long form of the familiar acronym, ASCII.

Annotation Annotation involves describing data elements with metadata or attaching supplemental
information to data objects.

Authentication A process for determining if the data object that is received (e.g., document, file, image) is
the data object that was intended to be received. The simplest authentication protocol involves one-
way hash operations on the data that needs to be authenticated. Suppose you happen to know that a
certain file, named temp.txt will be arriving via email and that this file has an MD5 hash of
“a0869a42609af6c712caebad54f47429”. You receive the temp.txt file, and you perform an MD5 one-
way hash operation on the file.

In this example, we will use the md5 hash utility bundled into the CygWin distribution (i.e., the Linux emu-
lator for Windows systems). Any md5 implementation would have sufficed.

c:\cygwine4\bin>openssl md5 temp. txt
MDS (temp.txt)= a0869%a42609af6c712cacbad54£47429

We see that the md5 hash value generated for the received file is identical to the md5 hash value produced
on the file, by the file’s creator, before the file was emailed. This tells us that the received, temp.txt, is
authentic (i.e., it is the file that you were intended to receive) because no other file has the same MD5
hash. Additional implementations of one-way hashes are described in Section 3.9.

The authentication process, in this example, does not tell you who sent the file, the time that the file
was created, or anything about the validity of the contents of the file. These would require a protocol
that included signature, time stamp, and data validation, in addition to authentication. In common
usage, authentication protocols often include entity authentication (i.e., some method by which
the entity sending the file is verified). Consequently, authentication protocols are often confused with
signature verification protocols. An ancient historical example serves to distinguish the concepts of
authentication protocols and signature protocols. Since earliest of recorded history, fingerprints were
used as a method of authentication. When a scholar or artisan produced a product, he would press his
thumb into the clay tablet, or the pot, or the wax seal closing a document. Anyone doubting the
authenticity of the pot could ask the artisan for a thumbprint. If the new thumbprint matched the
thumbprint on the tablet, pot, or document, then all knew that the person creating the new thumb-
print and the person who had put his thumbprint into the object were the same individual. Hence,
ancient pots were authenticated. Of course, this was not proof that the object was the creation of
the person with the matching thumbprint. For all anyone knew, there may have been a hundred dif-
ferent pottery artisans, with one person pressing his thumb into every pot produced. You might argue
that the thumbprint served as the signature of the artisan. In practical terms, no. The thumbprint, by
itself, does not tell you whose print was used. Thumbprints could not be read, at least not in the same
way as a written signature. The ancients needed to compare the pot's thumbprint against the thumb-
print of the living person who made the print. When the person died, civilization was left with a bunch
of pots with the same thumbprint, but without any certain way of knowing whose thumb produced
them. In essence, because there was no ancient database that permanently associated thumbprints
with individuals, the process of establishing the identity of the pot-maker became very difficult once
the artisan died. A good signature protocol permanently binds an authentication code to a unique
entity (e.g., a person). Today, we can find a fingerprint at the scene of a crime; we can find a matching
signature in a database; and we can link the fingerprint to one individual. Hence, in modern times,

78 PRINCIPLES AND PRACTICE OF BIG DATA

fingerprints are true “digital” signatures, no pun intended. Modern uses of fingerprints include keying
(e.g., opening locked devices based on an authenticated fingerprint), tracking (e.g., establishing the
path and whereabouts of an individual by following a trail of fingerprints or other identifiers), and body
part identification (i.e., identifying the remains of individuals recovered from mass graves or from the
sites of catastrophic events based on fingerprint matches). Over the past decade, flaws in the vaunted
process of fingerprint identification have been documented, and the improvement of the science of
identification is an active area of investigation [22].

Check digit A checksum that produces a single digit as output is referred to as a check digit. Some of the
common identification codes in use today, such as ISBN numbers for books, come with a built-in
check digit. Of course, when using a single digit as a check value, you can expect that some transmitted
errors will escape the check, but the check digit is useful in systems wherein occasional mistakes are
tolerated; or wherein the purpose of the check digit is to find a specific type of error (e.g., an error pro-
duced by a substitution in a single character or digit), and wherein the check digit itself is rarely trans-
mitted in error.

Command line Instructions to the operating system, that can be directly entered as a line of text from the
a system prompt (e.g., the so-called C prompt, “c:\>", in Windows and DOS operating systems; the
so-called shell prompt, “$”, in Linux-like systems).

Command line utility Programs lacking graphic user interfaces that are executed via command line
instructions. The instructions for a utility are typically couched as a series of arguments, on the com-
mand line, following the name of the executable file that contains the utility.

Data cleaning More correctly, data cleansing, and synonymous with data fixing or data correcting. Data
cleaning is the process by which errors, spurious anomalies, and missing values are somehow handled.
The options for data cleaning are: correcting the error, deleting the error, leaving the error unchanged,
or imputing a different value [23]. Data cleaning should not be confused with data scrubbing.

Data munging Refers to a multitude of tasks involved in preparing data for some intended purpose (e.g.,
data cleaning, data scrubbing, and data transformation). Synonymous with data wrangling.

Data scraping Pulling together desired sections of a data set or text by using software.

Data scrubbing A term that is very similar to data deidentification and is sometimes used improperly as a
synonym for data deidentification. Data scrubbing refers to the removal of unwanted information
from data records. This may include identifiers, private information, or any incriminating or otherwise
objectionable language contained in data records, as well as any information deemed irrelevant to the
purpose served by the record.

Data wrangling Jargon referring to a multitude of tasks involved in preparing data for eventual analysis.
Synonymous with data munging [24].

Deidentification The process of removing all of the links in a data record that can connect the informa-
tion in the record to an individual. This usually includes the record identifier, demographic informa-
tion (e.g., place of birth), personal information (e.g., birthdate), and biometrics (e.g., fingerprints). The
deidentification strategy will vary based on the type of records examined. Deidentifying protocols exist
wherein deidentificated records can be reidentified, when necessary.

Digest Asused herein, “digest” is equivalent to a one-way hash algorithm. The word “digest” also refers to
the output string produced by a one-way hash algorithm.

Electronic medical record Abbreviated as EMR, or as EHR (Electronic Health Record). The EMR is the
digital equivalent of a patient’s medical chart. Central to the idea of the EMR is the notion that all
of the documents, transactions, and all packets of information containing test results and other infor-
mation on a patient are linked to the patient’s unique identifier. By retrieving all data linked to the
patient’s identifier, the EMR (i.e., the entire patient’s chart) can be assembled instantly.

Encapsulation The concept, from object oriented programming, that a data object contains its associated
data. Encapsulation is tightly linked to the concept of introspection, the process of accessing the data

4:::

Metadata, Semantics, and Triples

OUTLINE

Section 4.1, Metadata ...t e s s s s e s s e s ne s ne e e an e an e s anmnaenann 85
Section 4.2. eXtensible Markup LANQUAGE ...t et s s 85
Section 4.3. Semantics and THPIESuiiiiiiciiiiriicer e s s e as s sre s s assmr e saes s aeeernenens 87
SECLION 4.4, NAMESPACES ...ueeiiuiiaiiieairiise e it e ssssasasass s s st st e s sas s s iamees e £ raaesmsmesbes s smanamt e e s rna s n e e ennnnas 88
Section 4.5. Case Study: A Syntax for THPIEScccveiiiiisiecrieee s seas s e 90
Section 4.6. Case Study: DUblin COre ... e e s e 93
L] L0137 T S 94
2o =] = g Ve TP 95

Section 4.1. Metadata

Life is a concept.
Patrick Forterre [1]

When you think about it, numbers are meaningless. The number “8” has no connection to
anything in the physical realm until we attach some information to the number (e.g., 8
candles, 8 minutes). Some numbers, like “0” or “—5” have no physical meaning under
any set of circumstances. There really is no such thing as “0 dollars”; it is an abstraction
indicating the absence of a positive number of dollars. Likewise, there is no such thing as
“—5 walnuts”; it is an abstraction that we use to make sense of subtractions (5—10=-5).

When we write “8 walnuts,” “walnuts” is the metadata that tells us what is being
referred to by the data, in this case the number “8.”

When we write “8 o’clock”, “8” is the data and “o’clock” is the metadata.

Section 4.2. eXtensible Markup Language

The purpose of narrative is to present us with complexity and ambiguity.
Scott Turow

XML (eXtensible Markup Language) is a syntax for attaching descriptors (so-called
metadata) to data values. [Glossary Metadatal
In XML, descriptors are commonly known as tags.

Principles and Practice of Big Data. https://doi.org/10.1016/B978-0-12-815609-4.00004-2 85
© 2018 Elsevier Inc. All rights reserved.

Image
not
avallable

Chapter 4 « Metadata, Semantics, and Triples 89

A namespace is the metadata realm in which a metadata tag applies. The purpose of a
namespace is to distinguish metadata tags that have the same name, but different mean-
ing. For example, within a single XML file, the metadata term “date” may be used to signify
a calendar date, or the fruit, or the social engagement. To avoid confusion, the metadata
term is given a prefix that is associated with a Web document that defines the term within
an assigned Web location. [Glossary Namespace]

For example, an XML page might contain three date-related values, and their metadata
descriptors:

<calendar:date>June 16, 1904 </caldendar:date>
<agriculture:date>Thoory</agriculture:date>
<social:date>Pyramus and Thisbe<social:dates>

At the top of the XML document you would expect to find declarations for the namespaces
used in the XML page. Formal XML namespace declarations have the syntax:

xmlns:prefix="URI"

In the fictitious example used in this section, the namespace declarations might
appear in the “root” tag at the top of the XML page, as shown here (with fake web
addresses):

<root xmlns:calendar="http://www.calendercollectors.org/"
xmlns:agriculture="http://www.farmersplace.org/"
xmlns:social ="http://hearts_throbbing.com/" >

The namespace URIs are the web locations that define the meanings of the tags that reside
within their namespace.

The relevance of namespaces to Big Data resources relates to the heterogeneity of
information contained in or linked to a resource. Every description of a value must be pro-
vided a unique namespace. With namespaces, a single data object residing in a Big Data
resource can be associated with assertions (i.e., object-metadata-data triples) that include
descriptors of the same name, without losing the intended sense of the assertions.
Furthermore, triples held in different Big Data resources can be merged, with their proper
meanings preserved.

Here is an example wherein two resources are merged, with their data arranged as
assertion triples.

Big Data resource 1

29847575938125 calendar:date February 4, 1986
83654560466294 calendar:date June 16, 1904

Big Data resource 2

57839109275632 social:date Jack and Jill
83654560466294 social:date Pyramus and Thisbe

90 PRINCIPLES AND PRACTICE OF BIG DATA

Merged Big Data Resource 1 + 2

29847575938125 calendar:date February 4, 1986
57839109275632 social:date Jack and Jill
83654560466294 social:date Pyramus and Thisbe
83654560466294 calendar:date June 16, 1904

There you have it. The object identified as 83654560466294 is associated with a “date”
metadata tag in both resources. When the resources are merged, the unambiguous
meaning of the metadata tag is conveyed through the appended namespaces (i.e., social:
and calendar:)

Section 4.5. Case Study: A Syntax for Triples

I really do not know that anything has ever been more exciting than diagramming

sentences.
Gertrude Stein

If you want to represent data as triples, you will need to use a standard grammar and syn-
tax. RDF (Resource Description Framework) is a dialect of XML designed to convey triples.
Providing detailed instruction in RDF syntax, or its dialects, lies far outside the scope of
this book. However, every Big Data manager must be aware of those features of RDF that
enhance the value of Big Data resources. These would include:

1. The ability to express any triple in RDF (i.e., the ability to make RDF statements).
2. The ability to assign the subject of an RDF statement to a unique, identified, and
defined class of objects (i.e., that ability to assign the object of a triple to a class).

RDF is a formal syntax for triples. The subjects of triples can be assigned to classes of
objects defined in RDF Schemas and linked from documents composed of RDF triples.
RDF Schemas will be described in detail in Section 5.9.

When data objects are assigned to classes, the data analysts can discover new relation-
ships among the objects that fall into a class, and can also determine relationships among
different related classes (i.e., ancestor classes and descendant classes, also known as
superclasses and subclasses). RDF triples plus RDF Schemas provide a semantic structure
that supports introspection and reflection. [Glossary Child class, Subclass, RDF Schema,
RDFS, Introspection, Reflection]

3. The ability for all data developers to use the same publicly available RDF Schemas and
namespace documents with which to describe their data, thus supporting data
integration over multiple Big Data resources.

This last feature allows us to turn the Web into a worldwide Big Data resource composed of
RDF documents.

Chapter 4 « Metadata, Semantics, and Triples 91

We will briefly examine each of these three features in RDE First, consider the following
triple:

pubmed: 8718907 creator Bill Moore

Every triple consists of an identifier (the subject of the triple), followed by metadata, fol-
lowed by a value. In RDF syntax the triple is flanked by metadata indicating the beginning
and end of the triple. This is the <rdf:description > tag and its end-tag </rdf:description).
The identifier is listed as an attribute within the <rdf:description > tag, and is described
with the rdf:about tag, indicating the subject of the triple. There follows a metadata
descriptor, in this case <author >, enclosing the value, “Bill Moore.”

<rdf:description rdf:about="urn:pubmed:8718907">
<creator>Rill Moore</creator>
</rdf :descriptions>

The RDF triple tells us that Bill Moore wrote the manuscript identified with the PubMed
number 8718907. The PubMed number is the National library of Medicine’s unique iden-
tifier assigned to a specific journal article. We could express the title of the article in
another triple.

pubmed:8718907, title, "A prototype Internet autopsy database. 1625
consecutive fetal and neonatal autopsy facesheets spanning 20 years."

In RDE, the same triple is expressed as:

<rdf :description rdf:about="urn:pubmed:8718907">

<title>A prototype Internet autopsy database. 1625 consecutive
fetal and neonatal autopsy facesheets spanning 20 years</titles>
</rdf :descriptions>

RDF permits us to nest triples if they apply to the same unique object.

<rdf:description rdf:about="urn:pubmed:8718907">

<author>Bill Moore</author >

<title>A prototype Internet autopsy database. 1625 consecutive
fetal and necnatal autopsy facesheets spanning 20 years</title>
</rdf:descriptions>

Here we see that the PubMed manuscript identified as 8718907 was written by Bill Moore
(the first triple) and is titled “A prototype Internet autopsy database. 1625 consecutive fetal
and neonatal autopsy facesheets spanning 20 years” (a second triple).

What do we mean by the metadata tag “title”? How can we be sure that the metadata
term “title” refers to the name of a document and does not refer to an honorific (e.g., The
Count of Monte Cristo or the Duke of Earl). We append a namespace to the metadata.
Namespaces were described in Section 4.4.

92 PRINCIPLES AND PRACTICE OF BIG DATA

<rdf:description rdf:about="urn:pubmed:8718907">

<dc:creator>Bill Moore</dc:creator>

<dc:title>A prototype Internet autopsy database. 1625 consecutive
fetal and neonatal autopsy facesheets spanning 20 years</dc:title>
</rdf:descriptions>

In this case, we appended “dc:” to our metadata. By convention, “dc:” refers to the Dublin
Core metadata set at: http://dublincore.org/documents/2012/06/14/dces/.

We will be describing the Dublin Core in more detail, in Section 4.6. [Glossary Dublin
Core metadata].

RDF was developed as a semantic framework for the Web. The object identifier system
for RDF was created to describe Web addresses or unique resources that are available
through the Internet. The identification of unique addresses is done through the use of
a Uniform Resource Name (URN) [3]. In many cases the object of a triple designed for
the Web will be a Web address. In other cases the URN will be an identifier, such as the
PubMed reference number in the example above. In this case, we appended the “urn:”
prefix to the PubMed reference in the “about” declaration for the object of the triple.

<rdf:description rdf:about="urn:pubmed:8718907">
Let us create an RDF triple whose subject is an actual Web address.

<rdf:Description rdf :about ="http://www.usa.gov/" >

<dc:title>USA.gov: The U.S. Government's Official Web Portal </dc:
title>
</rdf :Description>

Here we created a triple wherein the object is uniquely identified by the unique Web
address http://www.usa.gov/, and the title of the Web page is “USA.gov: The U.S. Govern-
ment'’s Official Web Portal.” The RDF syntax for triples was created for the purpose of iden-
tifying information with its URI (Unique Resource Identifier). The URI is a string of
characters that uniquely identifies a Web resource (such as a unique Web address, or some
unique location at a Web address, or some unique piece of information that can be ulti-
mately reached through the Worldwide Web). In theory, using URIs as identifiers for triples
will guarantee that all triples will be accessible through the so-called “Semantic Web” (i.e.,
the Web of meaningful assertions) [3]. Using RDE Big Data resources can design a scaffold
for their information that can be understood by humans, parsed by computers, and shared
by other Big Data resources. This solution transforms every RDF-compliant Web page into
a an accessible database whose contents can be searched, extracted, aggregated, and inte-
grated along with all the data contained in every existing Big Data resource.

In practice, the RDF syntax is just one of many available formats for packaging triples,
and can be used with identifiers that have invalid URIs (i.e., that do not relate in any way to
Web addresses or Web resources). The point to remember is that Big Data resources that
employ triples can port their data into RDF syntax, or into any other syntax for triples, as
needed. [Glossary Notation 3, Turtle]

Image
not
avallable

Index

Note: Page numbers followed by findicate figures.

A

Abstraction, 144

Accuracy, 207-208

Apollo Lunar Surface Experiments Package

(ALSEP), 369-372, 370-371f

Apriori algorithm, 221

ASCII editor, 185

Autocoding
lexical parsing, 27-28
12 lines of Python code, 31-34
medical nomenclature, 24
natural language autocoders, 25-26
nomenclature coding, 24-25
on-the-fly autocoding, 28

B

Bayesian analysis, 297-301

Big Data
analysis, 5
data preparation, 4
data structure and content, 3
definition, 1-2
goals, 3
introspection, 5
location, 3
longevity, 4
measurements, 4
mechanisms, 5-6
purpose of, 7-8
reproducibility, 4
research universe, 8-13
stakes, 4

Big Data resources
analytic algorithm, 332
ASCII editor, 185
back-of-envelope analyses

estimation-only analyses, 266
mean-field averaging, 267

complete and representative data, 188
complexity
approximate/local solutions
unacceptable, 327
incremental, 328
model for reality, 328
random intervals, 327
simple design, 327
data description, 331
data flattening, 200-205
data objects identification and classification,
187
data plotting
data distribution, 190
Gnuplot, 190
Matplotlib, 190
normal/Gaussian distribution,
191-192
data properties
annotate with metadata, 193
data within data object, 195
immutable data, 196
introspective data, 196
membership in defined class, 196
scientific value, 193
simplified data, 197
time stamped data, 194
uniqueness/identity, 193
data reduction, 332
denominators, 259-260
formulated questions, 329
immutability (see Immutability)
large files, view and search, 198-200
multimodality, 270
number of records
catchment population, 186-187
data manager, 186
sample number/dimension dichotomy, 187

445

446 Index

Big Data resources (Continued)
outliers and anomalies, 264-266
preference prediction, 268-270
query output adequacy, 330
readme/index file, 186
reduce human errors
data entry errors, 426
identification errors, 426
medical errors, 427
motor vehicle accidents, 427
rocket launch errors, 427
reformulated questions, 330
resource builders
Big Data designers, 428
Big Data indexers, 429
data curators, 430
data managers, 430
domain experts, 429
metadata experts, 429
network specialists, 431
ontologists and classification experts,
429
security experts, 431
software programmers, 429
resource evaluation, 329
resource users
data analysts, 431
data reduction specialists, 433
data validators, 431
data visualizers, 433
free-lance Big Data consultants, 434
generalist problem solver, 432
scientists with minimal programming
skills, 433
results and conclusions, 335
security policy/restricted data, 197-198
self-descriptive information, 188
solution estimation, 192
validation, 336
word frequency distributions,
260-264
Big Data statistics
biomakers, 307
cancel-out hypothesis, 308
creating unbiased models, 303-304

credent results, 305-306
death certificates, 307-308
DNA sequences, 309
hypothesis, 304-305
multidimensionality, 314-317, 315f
overfitting, 309
pitfalls
ambiguity of system elements, 313
blending bias, 312
complexity bias, 313
misguided data, 311
statistical method bias, 313
Simpson’s paradox, 310-311
time-window bias, 306-307
Biomakers, 307
Black holes, 271-274
Blockchain
conditions, 177
creating, 177-178
properties, 178
time stamp, 179
triples, 177

Burrows Wheeler transform (BWT), 36-50

C
Cancel-out hypothesis, 308
Cancer Biomedical Informatics Grid
(CaBig™), 339-344
Central Limit Theorem, 291-293, 292f
Class blending, 110-111
Class hierarchy, 103-104
Classification, 101-104
Classifier algorithm, 247
Clustering algorithm
vs. classifiers, 247
drawbacks, 246
k-means algorithm, 246
operation, 246
purpose, 245
CODIS (Combined DNA Index System),
368-369
Compliance, 164-165
Concordances, 16-19, 34-36
Correlation method
dot product, 244-245, 244f

Index 447
Pearson correlation, 243-244, 243f look-up tables and pre-computed
Python'’s Scipy, 243 pointers, 235
Counting pay for smart speed, 237
gene, 224-225 persistent data, 233
medical error/counting errors, 212-213 proprietary software, 234
negations, 214 RegEx language, 236
systematic counting error, 211 software testing on data subset, 233
word counting rules, 211-213 solutions, 231-232
Cryptography, 381-387 turn-key application, 234
Cygwin, 199-200 unpredictable software, 236
utilities, 234
D SQLite, 251-252
Data analysis Data identification
classification, 249-250 advantages, 53-55
clustering algorithm data objects, naming, 55
vs. classifiers, 247 data scrubbing, 69-71
drawbacks, 246 deidentification, 66-68
k-means algorithm, 246 description, 53-54
operation, 246 identifier system, properties of, 55-58
purpose, 245 in image header, 71-74
correlation method one-way hash, 74-82
dot product, 244-245, 244f poor identifiers
Pearson correlation, 243-244, 243f accession number, 63
Python’s Scipy, 243 names, 60-61
data persistence methods, 247-249 social security number, 62
fast operation reidentification, 68-69
addition and multiplication, 238 unique identifier
cryptographic programs, beware of, life science identifiers, 64
241-242 object identifier, 64-66
inexact answers, 242 properties, 58
one-pass equation, 242-243, 242-243f registries, 63-64
one-way hashes, 238-240 UUID, 58-59
pseudorandom number generator, Data Quality Act, 397
240-241 Data range, 209-211
random access to files, 237 Data reanalysis
time stamps, 238 additional analyses and updating results,
NoSQL databases, 252-256 356
random number generator (see Random clarification and improved earlier studies,
number generator) 355
speed and scalability issues data and data documentation errors, 353
combinatorics, 237 data misinterpretation, 353
high-speed programming languages, data verification, 354-355
232 exoplanets, 357-359, 358f
iterative loops, system calls within, 234 extending original study, 356

line-by-line reading, 233 irreproducible results, 351-352

448 Index

Data reanalysis (Continued)
JADE collider data, 356-357
message framing, 353-354
outright fraud, 353
scientific misconduct, 354
validation, 355

vindication, 357

Data repurposing

abandoned data, 365-366

Apollo Lunar Surface Experiments Package

(ALSEP) data, 369-372, 370-371f
CODIS (Combined DNA Index System),
368-369
dark data, 365-367
Hadley data, 369
legacy data, 366-367
new uses for data, 363, 364f
novel data sets creation, 365
original research performance, 364
Plate Boundary Observatory data,
369-370
zip codes, 367-368
Data scrubbing, 69-71
Data security
decryption, 381-382, 385
encryption, 381-382, 384-385
no-cost solution, 384
personal identifiers, 388-391
public/private key cryptography
algorithm, 382
limitations, 384
for RSA encryption, 382-383
signature and authentication, 383-384
use, 382
redundancy, 385-386
time and money, 386
Data sharing
complaints
bureaucratic hurdles, 380
comply rules, 376
data compartmentalization, 379
data hackers, 378
data misinterpretation, 374
data protector, 375
flawed data, 377
legal ownership, 376

limited access to responsible
professionals, 375
missing data, 380
reimbursement, 377
research parasites, 374
research protocols, 379
universal data standards, 375
Labeled-Release data on life on mars,
387-388
reasons, 373-374
Denominators, 259-260
Digital Millennium Copyright Act of 1998
(DMCA), 399
Dot product, 244-245, 244f
Dublin Core, 93-95

E
Encapsulation, 143

F
Failure
abandonware, 338
approach to Big Data, 328-337
Big Data projects, 323
Cancer Biomedical Informatics Grid,
339-344
categories, 322
data managers, 322
failed standards
Ada 95, 323-324
BLOB, 323
data management principles, 326
instability, 325
metric system, 324
0§81, 323
triples, 326
Gaussian copula function, 344-347
hospital informatics, 322
National Biological Information
Infrastructure, 337, 338f
occurrence, 321-322
precautions
legacy data, preserving, 339
utilities, 338
random intervals, 327

Frequency distribution of words
categorical data, 260, 262
quantitative data, 260
Zipf distribution

cumulative index, 262-264, 264f
most frequent word, 261262
Pareto’s principle, 260

“stop” word, 261-262

G

Gaussian copula function, 344347
Gnuplot, 190

GraphViz, 120-122

H
Hadley data, 369

Havasupai Tribe v. Arizon Board of Regents,

413-416

1
Identifier. See Data identification;
Immutability and identifiers
ImageMagick, 71-72
Immutability and identifiers
blockchains and distributed ledgers,
176-179
coping with data, 173-174
immortal data objects, 173
metadata tags, 170-171

reconciliation across institutions, 174-175

replicative annotations, 171-172
trusted timestamp, 176
zero-knowledge reconciliation, 179-183
Indexing, 22-24, 29-31
Infamous birthday problem, 294-295, 294f
Inheritance, 143
Introspection, 5, 196
Big Data resources, 140, 152-154
data object, 140-142
object oriented programming
abstraction, 144
benefits, 144
encapsulation, 143
feature, 139-140
inheritance, 143

Index 449

objects, 138
polymorphism, 143-144
reflection, 144
Ruby, 138-139
time stamping, 145-147
triplestore, 147152

J
JADE collider data, 356-357

L
Labeled-Release study, 387-388
Legalities
accuracy and legitimacy, 395-397
consent
biases by consent process, 408
confidential consent status, 407
confidentiality, 404-405
confidentiality risk, 409
data managers, 404
divert responsibility, 410
informed consent, 404, 406
legally valid consent form, 405
preserving consent, 407
privacy, 405
records of actions, 408
retraction, 408
train staff on consent-related issues, 408
unintended purposes, 410
unmerited revenue source, 409
Havasupai tribe, 413-416
privacy policies, 411-412
protection
breaches, 402-403
identification theft, 403-404
tort, 402
resources, right to create, use and share
copyright laws, 398-399
data managers, suggestions for, 399-400
Digital Millennium Copyright Act of 1998,
399
No Electronic Theft Act of 1997, 399
standards
intellectual property, 401
license fee, 400-401
precautions using, 401-402

450 Index

Legalities (Continued)
timely access to data, 412-413
unconsented data, 409-411
Life science identifiers (LSID), 64
Lotsa data, 2

M
Matplotlib, 190
Measurement
accuracy, 207-208
biometrics, 225-226
control concept, 222-223
counting
gene, 224-225
medical error/counting errors,
212-213
negations, 214
systematic counting error, 211
word counting rules, 211-213
data range, 209-211
data reduction
Apriori algorithm, 221
gravitational forces, 219
process, 221
randomness, 220-221
redundancy, 219-220
narrow range data, 226
normalizing and transforming data
converting interval data set, 217, 218f
population difference, adjusting, 216
rendering data values dimensionless,
216, 217f
weighting, 218
precision, 207-208
statistical significance, 223-224
steganography, 208
Message digest version 5 (md5) algorithm,
74-75
Metadata
concept, 85
Dublin Core, 93-95
namespace, 88-90
semantics, 87-88
triples, 87-88, 90-92
XML, 85-87

Monte Carlo simulations, 288-291
Monty Hall problem, 295-297
Mutability. See Immutability and identifiers

N

Namespace, 88-90

Natural language autocoders, 25-26

No Electronic Theft Act of 1997 (NET Act),
399

Noisy class, 110-111

Nomenclature coding, 24-25

NoSQL databases, 252-256

o
Object by relationships, 97-101
Object by similarity, 98-100
Object identifier (OID)
creating, 64-65
HL7, 65-66
problem, 65
Object oriented programming, 116
abstraction, 144
benefits, 144
data object, assigning, 107
encapsulation, 143
feature, 139-140
inheritance, 143
multiclass inheritance, 107
objects, 138
polymorphism, 143-144
reflection, 144
Ruby, 138-139
syntax, 106-107
One-way hash algorithm, 74-82, 238-240
On-the-fly autocoding, 28
Ontologies
class blending (noisy class), 110-111
classification
Aristotle, 102
biological classifications, 101-102
data domain, 104
data objects hierarchy, 102
vs. identification system, 104
parent class, 103-104
taxonomy, 104

class model
Big Data resource, 108-109
complex ontology, 108-109
inheritance rules, 107
multiclass inheritance, 107-108
object oriented programming, 106-107
Python/Perl programming languages,

106

Ruby programming language, 106
simple classification, 109

class relationships visualization
classification of human neoplasms, 121,

122f

Class Object, 121, 121f
corrupted classification, 122, 123f
GraphViz, 120
RDF Schema, 123-124

multiple parent classes, 104-106

paradoxes, 115-116

pitfalls
classes and properties, 113
descriptive language, 113
miscellaneous classes, 112
transitive classes, 112

RDF Schema, 117-120

upper level ontology, 114-115

Outliers, 264266
Overfitting, 309

P

Pearson correlation, 243-244, 243f

Personal identifiers, 388-391

Plate Boundary Observatory data,

369-370

Polymorphism, 143-144

Precision, 207-208

Pseudorandom number generator, 240-241
calculus, 282-283, 282f
integration, 281-282, 281f
pi calculation, 279-280, 280f
sample, 278
simple simulation, 278-279

Python/Perl programming languages, 106-107

Python's Scipy, 243

Index 451

R
Random number generator
Bayesian analysis, 297-301
Central Limit Theorem, 291-293, 292f
frequency of unlikely occurrences,
293-294
infamous birthday problem, 294-295,
294f
Monte Carlo simulations, 288-291
Monty Hall problem, 295-297
pseudorandom number generator
calculus, 282-283, 282f
integration, 281-282, 281f
pi calculation, 279-280, 280f
sample, 278
simple simulation, 278-279
repeated sampling
output/conclusion, 287
power estimates, 288
random numbers generation,
285-286
repeated simulation, 286-287
sample size, 288
scalability, 287-288
shuffling, 284-285
statistical method, 284
Reflection, 144
Resource Description Framework (RDF)
Schema
and class properties, 117-120
features, 90
GraphViz, 123-124
syntax for triples, 91-92
Ruby programming language, 106-107,
138-139

S
Semantics, 87-88
Simpson’s paradox, 310-311
Small data, 3-5
Societal issues
anti-hypothesis, 421
Big Brother hypothesis, 420
Big Snoop hypothesis, 419
Borg invasion hypothesis, 420

452 Index

Societal issues (Continued)

Citizen Scientists, 437-440, 440f

decision-making algorithms, 425-428

Egghead heaven hypothesis, 421

Facebook hypothesis, 421

George Orwell’s 1984, 440-442

hubris and hyperbole, 434-437

Junkyard hypothesis, 420

public mistrust, 424-425

reduced cost and increased productivity,
422-424

resource builders, 428

resource users, 431

Scavenger hunt hypothesis, 421

Specification

complex, 161

compliance, 164

strength, 161

versioning, 161, 163

SQLite, 251-252

Standards

Chocolate Teapot, 165-167
coercion, 162

complex, 161

compliance, 164-165
construction rules, 160-161
creation, 157

Darwinian struggle, 162
filtering-out process, 156
measures, 162

new standards, 156
popular, 159

profit, 157

purpose of, 159

strength, 161

versioning, 161-164
Suggested Upper Merged Ontology (SUMO),
114-115

T

Term extraction, 19-22

Time stamping, 145-147, 176, 194, 238
Time-window bias, 306-307

Triples, 87-88, 90-92

Triplestore, 147-152

Trusted timestamp, 176

U

Unique identifier
life science identifiers, 64
object identifier, 64-66
properties, 58
registries, 6364
UUuID, 58-59

Universally unique identifier (UUID)
collisions, 59
Linux, 59
properties, 58
Python, 59

Vv
Versioning, 161-164

w

Word counting, 211-213

World Intellectual Property Organization
(WIPO), 401

X
XML (eXtensible Markup Language)
drawback, 86-87
importance, 86
properties, 86
syntax, 85-86
XML Schema, 86

z
Zero-knowledge reconciliation, 179-183

