' . e
0010110410000101101010101 1007 11
0600T101101040101100111010

[1101100001011016101011001 11010

. " = |
100101101 100001011010101011001 11016 00K
001011010101G1100111010100401 10100 #1019 101010

UNDERGRADUATE TOPICS
in COMPUTER SCIENCE

Principles of
Programming
Languages

@ Springer uTiCS

Gilles Dowek

Principles
of Programming
Languages

@ Springer

Gilles Dowek
Ecole Polytechnique
France

Series editor
Tan Mackie, Ecole Polytechnique, France

Advisory board

Samson Abramsky, University of Oxford, UK

Chris Hankin, Imperial College London, UK

Dexter Kozen, Cornell University, USA

Andrew Pitts, University of Cambridge, UK

Hanne Riis Nielson, Technical University of Denmark, Denmark
Steven Skiena, Stony Brook University, USA

Tain Stewart, University of Durham, UK

David Zhang, The Hong Kong Polytechnic University, Hong Kong

Undergraduate Topics in Computer Science ISSN 1863-7310
ISBN: 978-1-84882-031-9 e-ISBN: 978-1-84882-032-6
DOI: 10.1007/978-1-84882-032-6

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2008943965

Based on course notes by Gilles Dowek published in 2006 by L’Ecole Polytechnique with the following
title: “Les principes des langages de programmation.”

(© Springer-Verlag London Limited 2009

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be repro-
duced, stored or transmitted, in any form or by any means, with the prior permission in writing of the
publishers, or in the case of reprographic reproduction in accordance with the terms of licenses issued
by the Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be
sent to the publishers.

The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of
a specific statement, that such names are exempt from the relevant laws and regulations and therefore
free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the infor-
mation contained in this book and cannot accept any legal responsibility or liability for any errors or
omissions that may be made.

Printed on acid-free paper

Springer Science+Business Media
springer.com

1

Imperative Core

1.1 Five Constructs

Most programming languages have, among others, five constructs: assignment,
variable declaration, sequence, test, and loop. These constructs form the im-
perative core of the language.

1.1.1 Assignment

The assignment construct allows the creation of a statement with a variable x
and an expression t. In Java, this statement is written as x = t;. Variables are
identifiers which are written as one of more letters. Ezpressions are composed
of variables and constants with operators, such as +, -, *, / — division — and
% — modulo.

Therefore, the following statements

x =y %3

X =%,

y =3

X =x + 1;

G. Dowek, Principles of Programming Languages, 1

Undergraduate Topics in Computer Science, DOI 10.1007/978-1-84882-032-6_ 1,
(©) Springer-Verlag London Limited 2009

2 1. Imperative Core

are all proper Java statements, while

y+3=x;

X+ 2=y + 5;

are not.

To understand what happens when you execute the statement x = t; sup-
pose that within the recesses of your computer’s memory, there is a com-
partment labelled x. Executing the statement x = t; consists of filling this
compartment with the value of the expression t. The value previously contained
in compartment x is erased. If the expression t is a constant, for example 3,
its value is the same constant. If it is an expression with no variables, such as
3 + 4, its value is obtained by carrying out mathematical operations, in this
case, addition. If expression t contains variables, the values of these variables
must be looked up in the computer’s memory. The whole of the contents of the
computer’s memory is called a state.

Let us consider, initially, that expressions, such as x + 3, and statements,
such as y = x + 3;, form two disjoint categories. Later, however, we shall be
brought to revise this premise.

In these examples, the values of expressions are integers. Computers can
only store integers within a finite interval. In Java, integers must be between
-2%1 and 2% - 1, so there are 2%? possible values. When a mathematical op-
eration produces a value outside of this interval, the result is kept within the
interval by taking its modulo 232 remainder. Thus, by adding 1 to 23! - 1, that
is to say 2147483647, we leave the interval and then return to it by removing
232 which gives -2% or -2147483648.

Exercise 1.1
What is the value of the variable x after executing the following state-
ment?

x = 2 * 1500000000;

In Caml, assignment is written x := t. In the expression t, we designate
the value of x, not with the expression x itself, but with the expression 'x. Thus,
in Caml we writey := 'x + 1 while in Java we writey = x + 1;.

In C, assignment 1s written as it is in Java.

1.1 Five Constructs 3

1.1.2 Variable Declaration

Before being able to assign values to a variable x, it must be declared, which
associates the name x to a location in the computer’s memory.

Variable declaration is a construct that allows the creation of a statement
composed of a variable, an expression, and a statement. In Java, this statement
is written {int x = t; p} where p is a statement, for example {int x = 4;
x = x + 1;}. The variable x can then be used in the statement p, which is
called the scope of variable x.

It is also possible to declare a variable without giving it an initial value,
for example, {int x; x = y + 4;}. We must of course be careful not to use
a variable which has been declared without an initial value and that has not
been assigned a value. This produces an error.

Apart from the int type, Java has three other integer types that have
different intervals. These types are defined in Table 1.1. When a mathematical
operation produces a value outside of these intervals, the result is returned to
the interval by taking its remainder, modulo the size of the interval.

In Java, there are also other scalar types for decimal numbers, booleans,
and characters. These types are defined in Table 1.1. Operations allowed in the
construction of expressions for each of these types are described in Table 1.2.

Variables can also contain objects that are of composite types, like arrays
and character strings, which we will address later. Because we will need them
shortly, character strings are described briefly in Table 1.3.

The integers are of type byte, short, int or long corresponding to the
intervals [-27, 27 - 11, [-2'%, 2% _ 1], [-2%, 23! - 1] and [-2%,
253 _ 1], Respectively. Constants are written in base 10, for example, -666.
Decimal numbers are of type float or double. Constants are written in sci-
entific notation, for example 3.14159, 666 or 6.02E23.

Booleans are of type boolean. Constants are written as false and true.

Characters are of type char. Constants are written between apostrophes, for
example ‘b?.

Table 1.1 Scalars types in Java

To declare a variable of type T, replace the type int with T. The general
form of a declaration is thus {T x = t; p}.

4 1. Imperative Core

The basic operations that allow for arithmetical expressions are +, -, *, /
division — and % — modulo.

When one of the numbers a or b is negative, the number a / b is the quotient
rounded towards 0. So the result of a / b is the quotient of the absolute values
of a and b, and is positive when a and b have the same sign, and negative if
they have different signs. The numbher a % bisa - b * (a / b).So (-29) /
4 equals -7 and (-29) % 4 equals -1.

The operations for decimal numbers are +, -, *, /. along with some transcen-
dental functions: Math.sin, Math.cos, ...

The operations allowed in boolean expressions are ==, = — different —, <,
> <=, >= & — and —, &&, | or —, || and ! not.

For all data types, the expression (b) 7 t : u evaluates to the value of t if

the boolean expression b has the value true, and evaluates to the value of u
if the boolean expression b has the value false.

Table 1.2 Expressions in Java

Character strings are of type String. Constants are written inside quotation
marks, for example "Principles of Programming Languages".

Table 1.3 Character strings in Java

In Caml, variable declaration is written as let x = ref t in p and it isn't
necessary to explicitly declare the variable’s type. It is not possible in Caml to
declare a variable without giving it an initial value.

In C, like in Java, declaration is written {T x = t; p}. It is possible to
declare a variable without giving it an initial value, and in this case, it could
have any value.

In Java and in C, it is impossible to declare the same variable twice, and
the following program is not valid.

int y = 4;
int x = 5;
int x = 6;
y =%

In contrast, nothing in Caml stops you from writing

1.1 Five Constructs 5

let y = ref 4

in let x = ref 5
in let x = ref 6
iny := Ix

and this program assigns the value 6 to the variable y, so it is the most recent
declaration of x that is used. We say that the first declaration of x is hidden by
the second.

Java, Caml and C allow the creation of variables with an initial value that
can never be changed. This type of variable is called a constant variable. A
variable that is not constant is called a mutable variable. Java assumes that
all variables are mutable unless you specify otherwise. To declare a constant
variable in Java, you precede the variable type with the keyword final, for
example

final int x = 4;
y=x+ 1;

The following statement is not valid, because an attempt is made to alter the
value of a constant variable

final int x = 4;
x = b;

In Caml, to indicate that the variable x is a constant variable, write let x
=t in p instead of writing let x = ref t in p. When using constant vari-
ables, you do not write 'x to express its value, but simply x. So, you can write
let x = 4 in y := x + 1, while the statement let x = 4 in x := b is in-
valid. In C, you indicate that a variable is a constant variable by preceding its
type with the keyword const.

1.1.3 Sequence

A sequence is a construct that allows a single statement to be created out of two
statements p; and ps. In Java, a sequence is written as {p; p2}. The statement
{p: {p2 { ... pa} ...}} can also be written as {p; p2 ... put-

To execute the statement {p; ps} in the state s, the statement p; is first
executed in the state s, which produces a new state s’. Then the statement ps
is executed in the state s’.

In Caml, a sequence is written as py; pz. In C, il is written the same as
is in Java.

8 1. Imperative Core

Exercise 1.3

Write a Java program that reads an integer n from the keyboard, and
outputs a boolean indicating whether the number is prime or not.

Graphical constructs that allow drawings to be displayed are fairly complex
in Java. But, the class Ppl contains some simple constructions to produce
graphics. The statement Ppl.initDrawing(s,x,y,w,h); creates a window
with the title s, of width w and of height h, positioned on the screen at co-
ordinates (x,y). The statement Ppl.drawLine(x1l,y1,x2,y2); draws a line
segment with endpoints (x1,y1) and (x2,y2). The statement Ppl.drawCircle
(x,y,r); draws a circle with centre (x,y) and with radius r. The state-
ment Ppl.paintCircle(x,y,r); draws a filled circle and the statement
Ppl.eraseCircle(x,y,r); allows you to erase it.

1.3 The Semantics of the Imperative Core

We can, as we have below, express in English what happens when a statement
is executed. While this is possible for the simple examples in this chapter, such
explanations quickly become complicated and imprecise. Therefore, we shall
introduce a theoretical framework that might seem a bit too comprehensive at
first, but its usefulness will become clear shortly.

1.3.1 The Concept of a State

We define an infinite set Var whose elements are called variables. We also define
the set Val of values which are integers, booleans, etc. A state is a function that
associates elements of a finite subset of Var to elements of the set Val.

For example, the state [x = 5, y = 6] associates the value 5 to the vari-
able x and the value 6 to the variable y. On the set of states, we define an
update function + such that the state s + (x = v) is identical to the state s,
except for the variable x, which now becomes associated with the value v. This
operation is always defined, whether x is originally in the domain of s or not.

We can then simply define a function called @, which for each pair (t,s)
composed of an expression t and a state s, produces the value of this expression
in this state. For example, ©(x + 3,[x = 5, y = 6]) = 8.

This is a partial function, because a state is a function with a finite domain
while the set of variables is infinite. For example, the expression z + 3 has no

1.3 The Semantics of the Imperative Core 9

value in the state [x = 5, y = 6]. In practice, this means that attempting
to compute the value of the expression z + 3 in the state [x = 5, y = 6]
produces an error.

Executing a statement within a state produces another state, and we define
what happens when a statement is executed using a function called Y. X' has a
statement p, an initial state s and produces a new state, 3 (p,s). This is also
a partial function. X' (p,s) is undefined when executing the statement p in the
state s produces an error or does not terminate.

In the case of a statement p having the form x = t;, the X function is
defined as follows

2(x =1t;,8) = s+ (x=06(,s)).

For example, ¥(x = x + 1;,[x = 5]) = [x = 6]. This is equivalent to
saying ‘Executing the statement x = t; loads the memory location x with the
value of expression t’.

1.3.2 Decomposition of the State

A state s is a function that maps a finite subset of Var to the set Val. It will be
helpful for the next chapter if we decompose this function as the composition
of two other functions of finite domains: the first is known as the environment,
which maps a finite subset of the set Var to an intermediate set Ref, whose
elements are called references and the second, is called the memory state, which
maps a finite subset of the set Ref to the set Val.

YERVERY

|
\J‘\\ T ‘
This brings us to propose two infinite sets, Var and Ref, and a set Val of

values. The set of environments is defined as the set of functions that map a
finite subset of the set Var to the set Ref. The set of memory states is defined as
the set of functions mapping a finite subset of the set Ref to the set Val. For the
set of environments, we define an update function + such that the environment
e + (x = r) isidentical to e, except at x, which now becomes associated with

10 1. Imperative Core

the reference r. For the set of memory states, we define an update function +
such that the memory state m + (r = v) is identical to m, except at r, which
now bhecomes associated with the value v.

However, constant variables complicate things a little bit. For one, the envi-
ronment must keep track of which variables are constant and which are mutable.
So, we define an environment to be a function mapping a finite subset of the
set Var to the set {constant, mutable} x Ref. We will, however, continue
to write e(x) to mean the reference associated to x in the environment e.

Then, at the point of execution of the declaration of a constant variable
x, we directly associate the variable to a value in the environment, instead of
associating it to a reference which is then associated to a value in the mem-
ory state. The idea is that the memory state contains information that can be
modified by an assignment, while the environment contains information that
cannot. To avoid having a target set for the environment function that is overly
complicated, we propose that Ref is a subset of Val, which brings us to pro-
pose that the environment is a function that maps a finite subset of Var to
{constant, mutable} x Val and the memory state is a function that maps
a finite subset of Ref to Val.

val

1.3.3 A Visual Representation of a State

It can be helpful to visualise states with a diagram. Each reference is represented
with a box. Two boxes placed in different positions always refer to separate

references.

Then, we represent the environment by adding one or more labels to certain
references.

