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Machines to explain the mind

I propose to consider the question, “Can machines think?”

This should begin with definitions of the meaning of the terms
“machine” and “think.”

Alan M. Turing (1950)

This book is an attempt to explain cognition—thought, perception,
emotion, experience—in terms of a machine: that is, using a cognitive
architecture. While this approach has gained acceptance in the cogni-
tive sciences, it seemingly runs against many of our intuitions on how to
understand the mind. As Gottfried Wilhelm Leibniz put it:

Perception, and what depends on it, is inexplicable in a
mechanical way, that is, using figures and motions. Suppose

there would be a machine, so arranged as to bring forth thoughts,
experiences and perceptions; it would then certainly be possible to
imagine it to be proportionally enlarged, in such a way as to allow
entering it, like into a mill. This presupposed, one will not find
anything upon its examination besides individual parts, pushing
each other—and never anything by which a perception could be
explained. (Leibniz 1714 [translation by the author])

Cognitive architectures are indeed Leibnizean Mills: machines that are
designed to bring forth the feats of cognition, and built to allow us to
enter them, to examine them, and to watch their individual parts in
motion, pushing and pulling at each other, and thereby explaining how
a mind works.
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Our particular cognitive architecture is based with a formal theory of
human psychology, the Psr theory, which will be detailed in the follow-
ing chapters. This theory has been turned into a computational model,
called MicroPs1, which has been partially implemented as a computer
program. The machine—the computer program and its formal specifi-
cation—is subject to continuing research, while the Psi theory acts as its
blueprint. The lessons that are learned from the workings and failures of
the machine do, in turn, lead to improvements in the theory.

But before we discuss theory and implementation, let us note that
computational models of the mind are still subject of philosophical
and methodological controversies; just as in Leibniz’ times, many phi-
losophers and psychologists hotly disagree with the idea of interpret-
ing cognition as the workings of a (computational) mill. Thus, it will
be worthwhile to have a look at our main theme—cognition—first, and
reflect on the methodological and some of the philosophical foundations
of cognitive architectures.

When Leibniz tried to sketch the supposed activity of his mill, he used
several related terms (perception, experience, and thought) to hint at
what we now call cognition. Even today, cognition is not a strictly defined
and concisely circumferenced subject. In fact, different areas in the cog-
nitive sciences tend to understand it in quite different ways. In computer
science, for instance, the terms “cognitive systems” and specifically “cog-
nitive robotics” (Lespérance, Levesque et al. 1994) often refer loosely to
situated, sometimes behavior-based agent architectures, or to the inte-
gration of sensory information with knowledge. In philosophy, cognition
usually relates to intentional phenomena, which in functionalist terms
are interpreted as mental content and the processes that are involved
with its manipulation. The position that intentional phenomena can be
understood as mental representations and operations performed upon
them is by no means shared by all of contemporary and most traditional
philosophy; often it is upheld that intentionality may not possibly be nat-
uralized (which usually means reduced to brain functions). However, the
concept that intentional states can be explained using a representational
theory of the mind is relatively widespread and in some sense the foun-
dation of most of cognitive science.

In psychology, cognition typically refers to a certain class of men-
tal phenomena—sometimes involving all mental processes, sometimes
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limited to “higher functions” above the motivational and emotional level,
but often including these. Cognitive psychology acknowledges that the
mind is characterized by internal states and makes these an object of
investigation, and thus tends to be somewhat in opposition to behavior-
ist stances. Neuropsychology sometimes focuses on cognitive processing,
and a substantial part of contemporary cognitive science deals with the
examination of the biological processes and information processing of
the brain and central nervous system. On the other hand, some psychol-
ogists argue that the neurobiological phenomena themselves take place
on a functional level different from cognition (Mausfeld, 2003), and that
although cognition is facilitated by brain processes and neurobioclogical
correlates to mental (cognitive) processes have been identified, this rela-
tionship is spurious and should not mislead research into focusing on the
wrong level of description. In this view, the relationship between cogni-
tion and neurobiological processes might be similar to the one between
a car engine and locomotion. Of course, a car’s locomotion is facilitated
mainly by its engine, but the understanding of the engine does not aid
much in finding out where the car goes. To understand the locomotion
of the car, the integration of its parts, the intentions of the driver and
even the terrain might be more crucial than the exact mode of operation

of the engine. We will briefly revisit this discussion in the next section.

Traditionally, psychology tended to exclude emotion and motivation
from the realm of cognition and even saw these as being in opposition.
This distinction is now seen as largely artificial, and much research in
cognitive psychology is devoted to these areas, as well as to higher level
cognition (self-monitoring and evaluation, meta-cognition). Yet, the dis-
tinction is often still reflected on the terminological level, when refer-
ence is made to “cognitive and motivational processes” to distinguish, for
instance, the propositional reasoning from action control.

Often it is argued that the cognitive processes of an organism do not
only span brain and body, but also the environment—to understand
cognition is to understand the interplay of all three. There are several
reasons for this: for one thing, because cognition might be seen as a con-
tinuum from low-level physical skills to more abstract mental faculties
(van Gelder & Port, 1995, p. viii—ix): Just as the motion of a limb might
not be properly understood without looking at the nature of the environ-
ment of the organism, cognitive processes derive their semantics largely
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from environmental interaction. Furthermore, the cognitive processes
are not entirely housed within the substrate of the organism’s nervous
system, but, in part, literally in the interaction context with its habitat.
While sometimes relevant aspects of the environment may be modeled
within the organism (in the form of a neural “simulator”), these repre-
sentations will tend to be incomplete and just sufficient for interaction,
so parts of cognition will not work without the proper environmental
functionality (Clark & Grush, 1999). It has also been argued that the
acquired representations within the organism should be seen less as a
part of the organism than of the environment to which it adapts (Simon
1981, p. 53). And finally, an organism might use tools that are specif-
ically designed to interact with its cognitive core functionality, thus a

part of the environment might become part of a mind.?

I.I' From psychology to computational modeling

Aswesee, itis difficult to put a fence around cognition. Why is the notion
of cognition so immensely heterogeneous?—I believe this is because the
term intends to capture the notion of mental activity, of what the mind
does and how it gets it done. Because there is no narrow, concise under-
standing of what constitutes mental activity and what is part of men-
tal processes, much less what has to be taken into regard to understand
them, cognition, the cognitive sciences and the related notions span a
wide and convoluted terrain. It might come as a surprise that most of
this terrain now lies outside psychology, the science that originally sub-
scribed to studying the mind. This methodological discrepancy can only
be understood in the context of the recent history of psychology.

3 See, for instance, Clark (2002): “The sailor armed with hooey and alidade can
achieve feats of navigation that would baffle the naked brain (...). And—perhaps more
importantly for this discussion—the way such tools work is by affording the kinds of
inner reasoning and outer manipulation that fit our brains, bodies and evolutionary
heritage. Our visual acuity and pattern-matching skills, for example, far outweigh our
capacities to perform sequences of complex arithmetical operations. The slide rule is
a tool which transforms the latter (intractable) kind of task into a more homely one of
visual cognition. Tools can thus reduce intractable kinds of problems to ones we already
know how to solve. A big question about tools, of course, is how did they get here? If
tools are tricks for pressing increased functionality out of biologically basic strategies,
what kinds of minds can make the tools that make new kinds of minds?”
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Psychology, which originally had its roots as a natural science in the
psychophysics of Fechner and Helmholtz, became an independent disci-
pline when Helmholtz’ pupil Wilhelm Wundt founded his experimental
laboratory at the University of Leipzigin 1874 (Boring, 1929). The under-
standing of psychology as an experimental science was later challenged,
especially by the psychoanalytic movement, starting in the 1890s, and
because of the speculative nature of the psychoanalytic assumptions,
psychology came under heavy fire from positivists and empiricists in
the first half of the twentieth century (see Gellner 1985, Griinbaum
1984). The pendulum swung backwards so violently that the psycholog-
ical mainstream turned away from structuralism and confined itself to
the study of directly observable behavior. Behaviorism, as proposed by
John B. Watson (1913) became very influential, and in the form of radi-
cal behaviorism (Skinner, 1938) not only neglected the nature of mental
entities as on object of inquiry, but denied their existence altogether.
At the same time, this tendency to deny the notion of mental states any
scientific merit was supported by the advent of ordinary language phi-
losophy (Wittgenstein, 1953, see also Ryle, 1949). Obviously, the negli-
gence of internal states of the mind makes it difficult to form conclusive
theories of cognition, especially with respect to imagination, language
(Chomsky, 1959) and consciousness, so radical behaviorism eventually
lost its foothold. Yet, methodological behaviorism is still prevalent, and
most contemporary psychology deals with experiments of quantitative
nature (Kuhl, 2001). Unlike physics, where previously unknown enti-
ties and mechanisms involving these entities are routinely postulated
whenever warranted by the need to explain empirical facts, and then
evidence is sought in favor of or against these entities and mechanisms,
psychology shuns the introduction of experimentally ungrounded, but
technically justified concepts. Thus, even cognitive psychology shows
reluctance when it comes to building unified theories of mental pro-
cesses. While Piaget’s work (especially Piaget, 1954) might be one of the
notable exceptions that prove the rule, psychology as a field has a prefer-
ence for small, easily testable microtheories (Anderson, 1993, p. 69).

Psychology tends to diverge along the lines of the individual modeled
fields into areas like developmental psychology, motivational psychology,
linguistic development, personality theories and so on. Not that these
disciplines would be invalidated by their restricted approach! Indeed,
much of their credibility is even due to their focus on an area that allows
a homogenous methodology and thus, the growth and establishment
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of scientific routines, communities, and rules of advancement. But this
strictness comes at a price: the individual fields tend to diverge, not just
in the content that they capture, but also in the ways they produce and
compare results. Thus, it not only becomes difficult to bridge the termi-
nological gaps and methodological differences in order to gain an inte-
grative understanding of an individual phenomenon—the results from
different disciplines might completely resist attempts at translation
beyond a shallow and superficial level.

It is not surprising that influences that lead to the study of genuinely
mental entities and structures within psychology came from different
fields of science: from information sciences and cybernetics, and from
formal linguistics. They fostered an understanding that mental activity
amounts to information processing, and that information processing can
be modeled as a complex function—an algorithm—working over states
that encode representations. In my view, the most important contri-
bution of the information sciences to psychology was the extension of
philosophical constructivism into functionalism and the resulting meth-
odological implications.

Functionalist constructivism is based on the epistemological posi-
tion of philosophical constructivism (see, for instance, von Foerster &
von Glasersfeld, 1999) that all our knowledge about the world is based
on what is given at our systemic interface. At this interface, we do not
receive a description of an environment, but features, certain patterns
over which we construct possible orderings. These orderings are func-
tional relationships, systems of categories, feature spaces, objects, states,
state transitions, and so on. We do not really recognize the given objects
of our environment; we construct them over the regularities in the infor-
mation that presents itself at the systemic interface of our cognitive
system.

For example: if we take a glance out of the window on a cloudless day,
we do not simply perceive the sun as given by nature, rather, we identify
something we take as a certain luminance and gestalt in what we take to
be a certain direction, relatively to what we take to be a point in time.
A certain direction is understood as something we take as a character-
istic body alignment to something we take as a certain place and which
makes a certain set of information accessible that we take to be a certain
field of view. In such a way, we may decompose all our notions into the
functional features that are the foundation of their construction. Thus,
all our notions are just attempts at ordering patterns: we take sets of
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features, classify them according to mechanisms that are innate within
our interpretational system and relate them to each other. This is how
we construct our rea]ity.

To perceive means on one hand to find order over patterns; these
orderings are what we call objects. On the other hand, it amounts to the
identification of these objects by their related patterns—this is intui-
tively described as the recognition of an object by its features, just as if
we would observe the objects themselves instead of constructing them.

An opponent of this view (arguing, for instance, from an essentialist
or realist perspective) might suggest that we intuitively do have access to
physical objects in the world; but this argument may be tackled using a
simple thought experiment: if someone would remove one of the objects
of our world and just continue to send the related patterns to our sys-
temic interface (for instance, to our retina) that correspond to the contin-
ued existence of the object and its interaction to what we conceptualize
as other physical objects, we would still infer the same properties, and
no difference could be evident. If, for instance, all electrons in the world
would be replaced by entities that behave in just the same way, batteries
would continue to supply electrical energy, atoms would not collapse
and so on: no difference could ever become evident.* Now imagine the
removal of the complete environment. Instead, we (the observers) are
directly connected (for instance, by our sensory nerves) to an intricate
pattern generator that is capable of producing the same inputs (i.e., the
same patterns and regularities) as the environment before—we would
still conceptualize und recognize the same objects, the same world
as we did in the hypothetical world of “real” objects. There can be no
difference, because everything that is given is the set of regularities
(re-occurrence and seeming dependencies between the patterns).®

4 A similar example is supplied by Hilary Putnam (1975): Individuals in a hypothet-
ical twin-world to earth on which all water has been replaced by a chemical compound
XYZ with identical properties would arrive at the same observations and conceptual-
izations. Thus, the content of a concept that is encoded in a mental state refers to the
functional role of the codified object.

5 This should be immediately clear to anyone who is familiar with controlling a
robot: for the control program of the robot, the environment will present itself as vec-
tors of data, attributable to sensory modalities by the different input channels. For all
practical purposes, the world beyond the sensors is a pattern generator; nothing more,
nothing less. The patterns will show regularities (some of these regularities may even
be interpretable as feedback to motor actions), but the identification of structure and
objects from these patterns happens due to the activity of the robot control program,
not because of the specifics of the pattern origin. If the world is replaced by an artificial
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The same restriction applies, of course, to the mental phenomena of
the observer. The observer does not have an exclusive, intimate access to
the objects of its cognition and representation that would enable it to wit-
ness “real” mental states. What we know about ourselves, including our
first-person-perspective, we do not know because we have it available on
“our side of the interface.” Everything we know about ourselves is a sim-
ilar ordering we found over features available at the interface; we know
of mental phenoma only insofar as they are explicitly accessible patterns
or constructed over these patterns. Even though our cognitive processes
are responsible for the functionality of ordering/conceptualization and
recognition, they are—insofar as they are objects of our examination—
“out there” and only available as regularities over patterns (over those
patterns that we take to be aspects of the cognitive processes).

From such a point of view, the Cartesian “cogito ergo sum” is a quite
problematic statement. “Cogito” is just the expression of the belief of
being in a certain state—and necessarily on the basis of certain perceived
features. And naturally, these features may have been caused by some-
thing different than a cognitive process. The presupposition of a cogni-
tive process is already an interpretation of procedurality, past, distribution
and structure of these features. If we want to discover something about
our minds, we will have to go beyond our Cartesian intuition and ask:
what properties make up our respective concepts? What is the relation-
ship between these concepts?

What the universe makes visible to science (and any observer) is what
we might call functionality. Functionality, with respect to an object, is-
loosely put—the set of causally relevant properties of its feature vec-
tor.® Features reduce to information, to discernible differences, and the
notions we process in our perception and imagination are systematically
structured information, making up a dynamic system. The description
of such systems is the domain of cybernetics or systems science (Wiener,

1948; Ashby, 1956; von Bertalanffy, 1968; Bischof, 1968; Bateson, 1972;

pattern generator (a simulated environment), so that the input data show the same sta-
tistical properties with respect to the interpretation, the control program cannot know
of any difference.

6 To be more accurate, the notion of causality should be treated with more care,
because it is an attribution, not an intrinsic property of features. Because causality is an
attributed structural property, functionality itself is constructed, even though the reg-
ularities classified as causality are not.
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Klir, 1992). Systems science is a description of the constructive methods
that allow the representation of functionality.

Thus, to understand our concept of mind, we have to ask how a sys-
tem capable of constructing has to be built, what features and interrela-
tions determine the relevant functionality. The idea of describing the
mind itself as a functional system has had an enormous impact on a cer-
tain area on psychology and philosophy that has consequently been asso-
ciated with the term functionalism (Fodor, 1987; Putnam, 1975, 1988).
If a functionalist subscribes to representationalism (the view that the
functional prevalence of a mental state entails its representation within a
representing system) a functionalist model of cognitive processes might
be implemented as a computer program (computationalism) and per-
haps even verified this way, so functionalism often goes hand in hand
with computer science’s proposal of Artificial Intelligence.” Even if
mental processes could not be modeled as a computational model—any
detailed, formal theory on how the mind works certainly can (Johnson-
Laird, 1988, p. 9).

The idea of a full-featured model of the crucial components of human
cognition was advanced by Alan Newell and Herbert Simon as a con-
sequence of the physical symbol system hypothesis (Newell & Simon,
1976). According to this hypothesis, a physical symbol system, that is,
an implemented Turing machine, “has the necessary and sufficient means
for general intelligent action. By “necessary” we mean that any system
that exhibits general intelligence will prove upon analysis to be a phys-
ical symbol system. By “sufficient” we mean that any physical symbol
system of sufficient size can be organized further to exhibit general

intelligence”® (Newell, 1987, p. 41).

7 Even though computationalism usually entails functionalism and representation-
alism, some philosophers maintain that it is possible to be a computationalist without
being a functionalist (Block, 1995).

8 Is the physical symbol systems hypothesis equivalent to: “Iron ore is necessary and
sufficient for building a locomotive?” On the surface, it goes way beyond that, because
not every system built by intricately arranging iron molecules can be extended to pull
a train. The physical symbol system hypothesis really refers to a functional, not a mate-
rial relationship; a better metaphor might be that a steam engine has the necessary and
sufficient means to drive a (steam) locomotive; that a steam engine will be found at the
core of every steam locomotive, and that every conveniently sized steam engine could
be suitably extended. Let’s bear in mind, though, that the notion of computation is far
more general than the principles of a steam engine. Colloquially speaking, it does not
engender much more than systematic regularity.



12 Principles of Synthetic Intelligence

A system capable of fulfilling the breadth of cognitive tasks required
for general intelligence is a model of a unified theory of cognition (Newell,
1987), an implementation of a so-called cognitive architecture.

The development of cognitive architectures follows a different par-
adigm than strict experimental psychology: instead of posing an indi-
vidual question, designing an experiment to find evidence for or against
a possible answer and performing a study with a group of subjects, the
cognitive modeler asks how a certain set of cognitive feats (for instance,
in problem solving) could be possibly achieved and suggests a solution.
This solution integrates previous research and might be even detailed
enough to make specific predictions on task performance or neural cor-
relates, which allow experimental falsification, either by behavioral
studies or by neurobiological examinations (for instance brain imag-
ing). Because the entities that are proposed in a cognitive architecture
are usually not all empirically accessible, they have, to put it loosely,
to be engineered into the system: the validity of the model depends
on whether it works, in accordance to available empirical data, and
whether it is sparse, compared to other available models explaining the
same data.

This approach to understanding cognition equals the adoption of
what Aaron Sloman has called the constructionist stance (Sloman, 2000),
and bears a slight similarity to Daniel Dennett’s suggestion of the design
stance: “knowing how to design something like X is a requirement for
understanding how X works,” (Sloman & Chrisley, 2005).

In principle, a system might be described by identifying its physical
makeup—this is what Dennett would term the “physical stance.” With
respect to the mind, such a description might entail a complete depic-
tion of brain processes, which is usually regarded as unwieldy, perhaps
even infeasible, and probably alludes to the wrong level of functionality,
just as a thermodynamic description of air molecules might not be help-
ful to a meteorologist when forecasting tomorrow’s weather. A differ-
ent view is lent by the “design stance,” which examines the components
making up an artifact, such as buttons, levers, insulators, and so on. Such
components might be replaced by other components that serve the same
purpose. In a way, this engineering viewpoint is a teleological one, and
it might also be applied to biological organisms with respect to organs
and the roles they play within the organism. Dennett adds the “inten-
tional stance”, which is the description of a system in terms of attributed
intentional states, such as beliefs, attitudes, desires and so on (Dennett,
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1971). The intentional stance allows predictions about the behavior
of the system, but is by no means a complete systematicdescription,
because it does not explain how the intentional properties are realized.
(Dennett himself does not maintain that the intentional description is
always a functional description. Rather, it is an attribution, used by an
external observer to characterize the system.”) Of course, the descrip-
tions of a thing as either physical, designed or intentional are not mutu-
ally exclusive—it can be all these things at the same time, and the stance
just marks a different way of looking at it. The physical properties of the
system realize the properties of the abstract components that are part
of its design, and the intentional properties of the system are eventually
realized by the physical properties as well. To find a design description, a
structural arrangement of components that realizes the intentional sys-
tem of a mind might not be a bad description of what the creator of a
cognitive architecture is up to.

The goal of building cognitive architectures is to achieve an under-
standing of mental processes by constructing testable information pro-
cessing models. Every implementation that does not work, that is, does
not live up to the specifications that it is meant to fulfill, points out gaps
in understanding. The integration of regularities obtained in experimen-
tal psychology into the architecture is not just a re-formulation of what
is already known but requires an additional commitment to a way this
regularity is realized, and thus a more refined hypothesis, which in turn
makes further predictions that can be taken into the lab of the experi-
mental psychologist.

The difference to behaviorism is quite obvious. While the cognitive
modeling of functionalist psychology is reluctant to propose and support
entities that are not necessary to achieve a certain observable behavior
(including everything that can be observed using behavioral and neu-
roscientific methods), functionalist psychology is essentially compatible
with the ideas of scientific positivism, because it makes empirically falsi-
fiable predictions of two kinds:

9 The intentional stance is permissive—for instance, a system has a belief in case
its behavior can be predicted by treating it as a believer. This “maximally permissive
understanding” (Dennett 1998, p. 331) makes no specific claims about inner structure
or organization. Rather, Dennett suggests that the properties of a cognitive system are
brought forth by a broad collection of “mind tools” which individually need not bear
relationships to the outwardly interpretable functionality.



14 Principles of Synthetic Intelligence

— The proposed model is capable of producing a specific behavior
(or test subjects will show a previously unknown property of
behavior predicted by the model).

— The model is the sparsest, simplest one that shows the specific

behavior with respect to available observations.

If the predictions of the model are invalidated by observations or a more
concise model is found, the original model will have to be revised or
abandoned. Because cognitive architectures have many free variables, it
is often possible to revise an obsolete model to fit conflicting data, so the
methodological implications and criticisms arising are by no means triv-
ial. As a result, cognitive architectures as theories do not behave as pro-
posed by classical proponents of positivist methodology: they are often
less predictive than integrative (Newell, 1973). But then, large scientific
theories rarely do. Just as the extensive theoretical bodies of physics,
chemistry, and so on, the unified theories of cognition are not isolated
statements that are discarded when one of their predictions is being
refuted. Rather, they are paradigms, viewpoints that direct a research
program, and their adoption or abandonment depends on whether
they can be characterized as what Imre Lakatos has called a “progressive
research paradigm” (Lakatos, 1965); that is, if the shifts in their assump-
tions lead to more predictions that are substantiated with evidence
instead of necessitating further repairs.’”

The functionalist view on mental phenomena is by no means undisputed
in philosophy (Block, 1978; Putnam, 1988). Attacks come from many
directions. Especially famous is the position of John Searle, who attacks
functionalism by claiming that mental processes, especially conscious-

ness, would be a “causally emergent property” of the physical organism

10 These requirements are not reflected by all cognitive architectures. For instance,
while Alan Newell claimed for his Soar architecture that it was Lakatosian in nature
(Newell, 1990), he also stated: “There is no essential Soar, such that if it changes we no
longer have the Soar theory. [ ...] The theory consists of whatever conceptual elements
[...] it has at a given historical moment. It must evolve to be a successful theory at
each moment, eliminating some components and tacking on others. [...] As long as
each incremental change produces a viable [ ...] theory from the existing Soar theory,
it will still and always be Soar.” (Newell, 1992). T will not embark on this aspect of
methodological discussion, the interested reader may consult (Cooper et al., 1996) for
an introduction into the debate of methodological criticisms of cognitive architectures.
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and stem from certain properties provided only by biological neurons
(Searle, 1992, p. 112). Thereby, Searle ascribes properties to biological
neurons that go beyond their otherwise identifiable functionality, that is,
an artificial replacement for a neuron that would show the same reactions
to neurochemicals and the same interactions with other neurons would
not be capable of a contribution to consciousness, and thus, his argu-
ment marks an essentialist position (Laurence & Margolis, 1999) that is
already incompatible with functionalism on epistemological grounds.!!
If an entity has to have a property that is not empirical itself (and being
biological is not an empirical property per se) to contribute to some func-
tionality, then this entity is conceptually inadequate to capture empir-
ical phenomena in the eyes of a functionalist. Daniel Dennett, in an
introduction to Gilbert Ryle’s classic “Ghost in the machine” (Dennett,
2002), introduces the idea of a “zombank” to illustrate this. A zombank
would be something that looks and acts like a financial institution,
where people could have an account, store and withdraw money and so
on, but which is not a real bank, because it lacks some invisible essence
beneath its interface and functionality that makes a bank a bank. Just as
the notion of a zombank strikes us absurd (after all, a bank is commonly
and without loss of generality defined by its interface and functionality),
Dennett suggests that the idea of a philosophical “zombie,” a cognitive
system that just acts as if it had a mind, including the ability for dis-
course, creative problem solving, emotional expression and so on, but
lacks some secret essence, is absurd.

Physicalism (or materialism, the philosophical idea that everything is
either material or supervenes on the material) is often associated with
functionalism—there is not much controversy between functionalists
and materialists, functionalists are usually proponents of physicalism
(Maslin, 2001, p. 184; Kim 1998).12

11 See Preston and Bishop (2002); a point that deserves particular recognition may
be Searle’s claim that semantics is something which is not reducible to syntax, and that
symbol processing systems can only ever know syntax, while intentionality is about
semantics (Searle, 1980).

12 Functionalism does not have materialism as a strong requirement, at least not
in the sense that states the necessity of matter as a res extensa in the Cartesian sense
(Block, 1980). For functionalism to work it is sufficient to have a computational system,
and assumptions about the nature of this system beyond its capabilities with respect
to computationability are entirely superfluous and speculative. There is also a func-
tionalist emergentist proposal that attempts to construct a non-physical functionalism
(Koons, 2003). On the other hand, the position usually called type physicalism opposes
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If we choose to depict the mind as a dynamic system of functional
dependencies, we are not necessarily at an agreement of what to model and
how to do it. There are many possible positions that might be taken with
regard to the level of modeling, the entities on that level, and of course, to
the question as to what makes up a mind. However, the path of designing,
implementing, and experimentally testing cognitive architectures seems
to be the only productive way to extend philosophy of mind beyond its
given bi-millennial heritage, which constrains each theory to the mental
capability of an individual thinker. The knowledge embodied in the mate-
rials, structure, and assembly of almost any complex industrial artifact
like a car, a notebook computer, or a skyscraper goes way beyond of what
an individual designer, material scientist, planner, or construction worker
may conceive of or learn in their lifetime, but is the result of many inter-
locking and testable sub-theories within sub-domains and on different
levels of abstraction, and the same applies to the large theoretical bodies in
physics, biology, computer programming, and so on. Yet in the field of the
philosophy of mind, theories are typically associated with and constrained
to individual thinkers. If understanding the mind is not much simpler than
the design of the plumbing of a skyscraper, then there may be reason to
believe that any theory of mental functioning that fits into a single philos-
opher’s mind and is derived and tested solely by her or his observations and
thought-experiments is going to be gravely inadequate. Pouring theories
of mental functioning into formal models and testing these by implement-
ing them may soon become a prerequisite to keep philosophy of mind rel-
evant in an age of collaborative and distributed expertise.

On the other hand, cognitive modeling is lacking approaches that are
broad enough to supply a foundation for theoretical bodies of a philos-
ophy of mind. Broad and not too shallow theories of cognition will be a
requirement for substantial progress in understanding the mind.

.2 Classes of cognitive models

Models of cognition can be classified in various ways (Logan, 1998; Pew &
Mavor 1998; Elkind et al., 1989; Morrison, 2003; Ritter et al., 2002).

functionalism and instead maintains that mental states are identical to physical states
(Fodor, 1974; Papineau, 1996).
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Architectures that attempt to model mental faculties form several
methodological groups.
They might be divided into

— Classical (symbolic) architectures, which are essentially
rule-based. These sprang up after Newell’s call for a revival
of unified theories in psychology (Newell, 1973a, 1987).
Classical architectures concentrate on symbolic reasoning,
bear influences of a relatively strict language of thought
concept, as suggested by Fodor, and are often implemented
as production based language interpreters. Gradually, these
architectures have been modified to allow for concept retrieval
by spreading activation, the formation of networks from the
initial rules and have occasionally even been implemented
based on neural elements.

— Parallel distributed processing (PDP) (subsymbolic)
architectures. This term was introduced by James McClelland
(Rumelhart, McClelland et al., 1986); here, it is used to
refer to nonsymbolic distributed computing (usually based
on some or several types of recurrent neural networks).
Where classical architectures strive to attain the necessary
complexity by carefully adding computational mechanisms,
PDP systems are inspired by biological neural systems. Their
contemporary forms essentially work by constraining a
chaotic system enough to elicit orderly behavior. While PDP
architectures do not necessarily differ in computational power
from classical architectures, it is difficult to train them to
perform symbolic calculations, which seem to be crucial for
language and planning. On the other hand, they seem to be a
very productive paradigm to model motor control and many
perceptual processes.

— Hybrid architectures may use different layers for different
tasks: a reasoning layer that performs rule-based calculations,
and a distributed layer to learn and execute sensory-motor
operations. Hybrid architectures are usually heterogenous (i.e.,
they consist of different and incompatible representational and
computational paradigms that communicate with each other
through a dedicated interface), or they could be homogenous
(using a single mode of representation for different tasks). The
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latter group represents a convergence of classical and PDP
architectures, and our own approach follows this direction.

— Biologically inspired architectures, which try to directly mimic
neural hardware—either for a complete (simple) organism, or
as a layer within a hybrid approach.

— In my view, emotion and motivation are vital parts of a
cognitive system, but this distinction does not take care of
how they are introduced into the system. This is because most
existing models either ignore them or treat them as separate
entities, situated and discussed outside the core of the model.
Exceptions to the rule exist, of course, for instance Clarion
(Sun, 2003, 2005), PURR-PUSS (Andreae, 1998) and of
course the Psi theory, which all treat emotion and motivation
as integral aspects of the cognitive system. For many other
cognitive architectures, separate additions exist, which provide
an emotional or motivational module that interfaces with the
cognitive system (Belavkin, Ritter, & Elliman, 1999; Norling &
Ritter, 2004; Franceschini, McBride, & Sheldon, 2001; Gratch
& Marsella, 2001; Jones, 1998; Rosenbloom, 1998).

As noted before, cognitive modeling is not constrained to the realm of
psychology, yet most existing approaches have their origins in psycho-
logical theory. Many interesting contributions, however, came from
Artificial Intelligence (AI). Al as a field arguably does not seem much
concerned with full-blown models of cognition (Anderson, 1983, p.
43), and most Al architectures do not attempt to model human per-
formance, but strive to solve engineering problems in robotics, multi-
agent systems, or human-computer interaction. On the other hand,
contemporary Al architectures tend to start out from an agent meta-
phor, building an autonomous system that acts on its own behalf and
is situated in an environment, whereas low-level architectures in psy-
chology usually deal with isolated or connected modules for problem
solving, memory, perception and action, but leave out motivation and
personality. There are psychological theories of motivation and person-
ality, of course (Kuhl, 2001; Lorenz, 1965, 1978), but they rarely visit
the lowly realms of computational models. There is no strict bound-

ary between Al architectures and cognitive architectures in psycholo
y g psy gy,
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however, and most of the latter are based on representational mecha-
nisms, description languages, memory models, and interfaces that have
been developed within Al

L.LI" Symbolic systems and the Language of Thought Hypothesis

Research in the field of cognitive architectures traditionally focused on
symbolic models of cognition, as opposed to subsymbolic, distributed
approaches. Classical, symbolic architectures are systems that represent
and manipulate propositional knowledge. If there are things to be rep-
resented and manipulated that are not considered propositional knowl-
edge, they are nonetheless represented in the form of propositional rules
(productions). Let us make the philosophical commitment behind this
approach more explicit: symbolic architectures are proponents of a sym-
bolic Language of Thought (LOT).

The Language of Thought Hypothesis (LOTH) is usually attributed to
Jerry Fodor (1975), and it strives to explain how a material thing can
have semantic properties, and how a material thing could be rational (in
the sense of how the state transitions of a physical system can preserve
semantic properties). (A summary is given by Aydede, 1998.)

Fodor gives the following answers:

— Thought and thinking take place in a mental language. Thus,
thought processes are symbolic, and thinking is syntactic
symbol manipulation.

— Thoughts are represented using a combinatorial syntax and
semantics.

— The operations on these representations depend on syntactic
properties.

LOTH is, by the way, not concerned with questions like “how could
anything material have conscious states?” “what defines phenomenal
experience?,” or “how may qualia be naturalized?”

Fodor did not exactly state something new in 1975, and thus did not
open up a new research paradigm in cognitive science. Rather, he spelled
out the assumptions behind artificial intelligence models and cybernetic
models in psychology: Perception is the fixation of beliefs, the learning
of concepts amounts to forming and confirming hypotheses, and deci-
sion making depends on representing and evaluating the consequences of

actions depending on a set of preferences. If all these aspects of cognition
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can be seen as computations over certain representations, then there
must be a language over which these computations are defined—a lan-
guage of thought. Fodor was also not the first to express this idea (see,
for instance, Ryle, 1949), but he narrowed it down to an argument that
sparked a debate about the nature of the language of thought, a debate
that is far from over.

The Language of Thought Hypothesis makes three main assumptions:

First, the representational theory of the mind (Field, 1978, p. 37,
Fodor, 1987, p. 17), which consists of two claims—the representational
theory of thought (i.e., thoughts are mental representations), and the
representational theory of thinking (the processes that operate on the
thoughts are causal sequences of instantiations, or tokenings, of mental
representations), in other words: thinking consists in processing mental
representations in an algorithmic manner.

Second, LOTH asks that these representations reside somehow in the
subject’s physical makeup. This amounts to functionalist materialism
(i.e., mental representations are realized by physical properties of the
subject, or, colloquially put, mental representations are somehow and
only stored in the physical structures of the brain and body). This
does not necessarily imply that all propositional attitudes need to be
represented explicitly (Dennett, 1981, p. 107); it is sufficient if they are
functionally realized. On the other hand, not all explicit representations
within a cognitive system need to be propositional attitudes (because
not all of them are in a proper psychological relation to the subject; see
Fodor, 1987, p. 23-26).

The next assumption of LOTH is, at least as far as cognitive science
is concerned, the most controversial one: Mental representations have a
combinatorial syntax and semantics, with structurally simple, atomic con-
stituents making up structurally complex, molecular representations in
a systematic way, whereby the semantics of the complex representations
is a function of the semantics of the atomic constituents and their formal
structure. This claim about represented mental content is complemented
by a claim about operations over this content: the operations on mental
representations are causally sensitive to the formal structure defined by
the combinatorial syntax; the semantics follow formal, combinatorial
symbol manipulation.
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According to LOTH, a thinking system is characterized by representational
states (the “thoughts”) and semantically preserving transitions between
them (the “thought processes™), which can be described as a formal lan-
guage with combinatorial syntax, that is, a computational engine. This
immediately raises the question: How does the representational structure
of a Language of Thought acquire its meaning? This is commonly called
the symbol grounding problem (Harnad, 1987, 1990; Newton 1996). LOTH
proponents respond in two ways: either, the atomic symbols can somehow
be assumed to have a meaning, and the molecular symbols inherit theirs by
a Tarski-style definition of truth conditions according to the syntactic opera-
tions that make them up of atomic components (Field, 1972; Tarski, 1956),
or the semantics arise from the constraints that are imposed by the compu-
tational roles the individual components assume in the syntactic structure.’3
(For a critical discussion, see Haugeland, 1981, and Putnam, 1988))

How does Fodor back up the strong claim that mental representations
are following the rules of a formal language with combinatorial syntax?
Obviously, a system may represent and compute things without obey-
ing the requirement of combinatorial syntax (i.e., nonsymbolic) or with
limited structural complexity. Fodor (1987, see also Fodor & Pylyshyn,
1988) points out that:

1. Thinking is productive. While one can only have a finite
number of thoughts in their lifetime (limited performance),
the number of possible thoughts is virtually infinite
(unbounded competence). This can be achieved by
systematically arranging atomic constituents, especially
in a recursive fashion.

2. Thoughts are systematic and compositional. Thoughts come in
clusters, and they are usually not entertained and understood
in isolation, but because of other thoughts they are based
on and related to. Thoughts are usually not atomic, but are
syntactically made up of other elements in a systematic way.
Systematically related thoughts are semantically related, too.

13 Ifacognitive system is temporarily or permanently disconnected from its external
environment, does its mental content cease to be meaningful? If not, then the semantics
will have to reside entirely within the conceptual structure, i.e. they are determined by
the constraints that individual representational components impose onto each other via
their syntactic relationships.
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3. Thinking itself is systematic (argument from inferential
coherence). For instance, if a system can infer A from A and B,
then it is likely to be able to infer C from C and D, so thoughts
are obviously not just organized according to their content,
but also according to their structure. A syntactically operating
system takes care of that.

The mindset behind the Language of Thought Hypothesis clearly sets
the scene for symbolic architectures. Their task consists of defining data
structures for the different kinds of mental representations, distinguish-
ing and defining the relations that these data structures have within the
system (laying out an architecture that handles beliefs, desires, anticipa-
tions and so on), and specifying the set of operations over these represen-
tations (the different kinds of cognitive processes).

LOTH also provides a watershed between symbolic and connection-
ist approaches: Not all theorists of cognitive modeling, even though they
tend to accept functionalist materialism and the representational theory
of mind, agree with Fodor’s proposal. Many connectionists argue that
symbolic systems lack the descriptive power to capture cognitive pro-
cesses (for a review, see Aydede, 1995). Yet they will have to answer to
the requirements posed by productivity, systematicity, and inferential
coherence by providing an architecture that produces these aspects of
mental processes as an emergent property of nonsymbolic processing.
Fodor (Fodor & Pylyshyn, 1988) maintains that a connectionist architec-
ture capable of productivity, systematicity and inferential coherence will
be a functional realization of a symbolic system (i.e., the connectionist
implementation will serve as a substrate for a symbolic architecture).

A weighty argument in favor of connectionism is the fact that low-
level perceptual and motor processes—which may be regarded as sub-
cognitive (Newell, 1987)—arebest described asdistributed, nonsymbolic
systems, and that the principles governing these levels might also apply
to propositional thinking (Derthick & Plaut, 1986). Are Language of
Thought systems just too symbolic? A connectionist description might
be better suited to capture the ambiguity and fuzziness of thought,
where a symbolic architecture turns brittle, fails to degrade gracefully in
the face of damage or noise, does not cope well with soft constraints, and
has problems integrating with perceptual pattern recognition.

Connectionists might either deny strict systematicity and composi-

tionality of thought (Smolensky, 1990, 1995; see also Chalmers, 1990,
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1993), or regard them as an emergent by-product of connectionist pro-
cessing (Aizawa, 1997).

This is the line where classical and connectionist models of cognition
fall apart. Where Fodor states that because of the productivity, syste-
maticity and compositionality of thought, symbolic languages are the
right level of functional description, connectionists point at the vague-
ness of thought and argue that the level of symbolic processes is not
causally closed (i.e., cannot be described without resorting to nonsym-
bolic, distributed operations) and is therefore not the proper level of
functionality (see: Rumelhart & McClelland, 1986; Fodor & Pylyshyn,
1988; Horgan & Tienson, 1996; Horgan, 1997; McLaughlin & Warfield,
1994; Bechtel & Abrahamsen, 2002; Marcus, 2002).

Are classicist and connectionist approaches equivalent? Of course, all
computational operations that can be performed with a connectionist
system can be implemented in a symbol manipulation paradigm, and it is
possible to hard-wire an ensemble of connectionist elements to perform
arbitrary symbol manipulation, but the difference in the stance remains:
symbolic processes (especially recursion), which seem to be essential for
language, planning, and abstract thought, are difficult to model with
a connectionist architecture, and many relations that are easy to cap-
ture in a connectionist system are difficult to translate into a symbolic,
rule-based system, without emulating the connectionist architecture. In
practice, however, the line between classical and connectionist models is
not always clear, because some classical models may represent rule sets
as spreading activation networks, use distributed representations and
even neural learning, and some connectionist systems may employ local-
ist representations for high-level, abstract operations.

Hybrid systems may combine connectionist and symbolic architec-
tures, either by interfacing a symbolic control layer with subsymbolic
perceptual and motor layers (Konolidge, 2002; Feldman, 2006), or by
using a common (semi-symbolic) mode of representation that allows
for both kinds of operations (Sun, 1993; Wermter, Palm et al., 2005).
The latter method treats symbolic representations as a special (highly

localized) case of distributed representations, and because the author
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believes that both are required in a unified framework, our own approach
(Pst and MicroPsi) also falls into this category.

.2.2 Cognition without representation?

Apart from the connectionist attack, there is another front against Fodor's
proposal in cognitive science, which denies the second assumption of the
Language of Thought Theory—representationalism. This position is
exemplified in earlier works of Rodney Brooks (Brooks, 1986, 1989, 1991,
1994; Brooks and Stein 1993) and denies Fodor’s dictum of “no cogni-
tion without representation” (1975), by stating that “the world is its own best
model” and the relevant functional entities of cognitive processes would
not be information structures stored in the nervous system of an indi-
vidual, but emergent properties of the interaction between the individ-
ual and its environment. Therefore, a functional cognitive model either
requires the inclusion of a sufficiently complex model of the environment,
or the integration of the model of mental information processing with a
physical (or even social) environment (Dreyfus, 1992). The proponents
of behavior-based robotics (Beer, 1995; Arkins, 1998; Christaller, 1999;
Pfeifer & Bongard, 2006) sometimes reject the former option and insist
on a physical environment, either because of objections to functionalism
(i.e., because they think that the simulation of a physical environment is
in principle an impossibility), or just because they consider a sufficiently
complex environmental simulation to be practically impossible. Taken to
the extreme, behavior-based approaches even become behaviorist and
deny the functional relevance of mental representations altogether, treat-
ing them as an irrelevant epi-phenomenon (Brooks, 1992; van Gelder,
1995; Beer, 1995; Thelen & Smith, 1994). Even in their nonradical for-
mulation, behavior-based approaches sometimes deny that the study of
cognition may be grounded on a separation of system and environment
at the level of the nervous system. Without the inclusion of an environ-
ment into the model, the low level configurations of the nervous system
do not make any sense, and because high-level configurations are inevita-
bly based on these low-level structures, a study of cognition that draws a
systemic line at the knowledge level, at the neural level, or at the interface
to the physical world, is doomed from the start.

By highlighting low-level control of interaction with a physical envi-
ronment, behavior-based systems achieve fascinating results, such as
passive walkers (e.g., Kuo, 1999; Pfeifer, 1998; Collins et al., 2005),
which produce two-legged walking patterns without the intervention of
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a cognitive system. The credo of such approaches might be summarized
as “physics is cognition’s best friend,” and they sometimes see cognition
primarily as an extension of such low-level control problems (Cruse,
Dean, & Ritter, 1998; Cruse, 1999).

[ see two objections to radical behavior-based approaches, which in
my view limit their applicability to the study of cognitive phenomena:
First, while a majority of organisms (Drosophila, the fruitfly, for instance)
manages to capitalize on its tight integration with physical properties
of its environment, only a small minority of these organisms exhibits
what we might call cognitive capabilities. And second, this majority of
tightly integrated organisms apparently fails to include famous physicist
Stephen Hawking, who is struck with the dystrophic muscular disease
ALS and interacts with the world through a well-defined mechatronic
interface—his friendship with physics takes place on an almost entirely
knowledge-based level. In other words, tight sensor-coupling with a rich
physical environment seems neither a sufficient nor a necessary condi-
tion for cognitive capabilities.

Also, dreaming and contemplation are being best understood as cog-
nitive phenomena; and they take place in isolation from a physical envi-
ronment. The physical environment may have been instrumental in
building the structures implementing the cognitive system and forging
the contents of cognition, and yet, after these contents are captured, it
does not need to play a role any more in defining the semantics of thought
during dreaming, meditation, and serendipitous thinking. Even when
high-level cognitive processing is coupled with the environment, it does
not follow that the nature of that coupling has a decisive influence on

this processing.!

14 Andy Clark and Josefa Toribio (2001), in a commentary on O'Reagan and Noé'‘s
“sensorimotor account of vision and visual consciousness”, have denounced the view
that conscious processing could only be understood in conjunction with environmen-
tal coupling as “sensorimotor chauvinism.” They point out the example of a ping-pong
playing robot (Andersson, 1988), which does not know visual experience, and yet per-
forms the task—and on the other hand, they argue that it is implausible that all changes
to our low-level perception, for instance, in the speed of saccadic movement, would
influence conscious experience. Because there seems to be no a-priori reason to believe
that this is the case, actual environmental coupling is not only an insufficient condition,
but likely also not a necessary condition for high-level cognition and consciousness.
For high-level mental activity, higher level mechanisms (Prinz, 2000) such as memory
retrieval, planning, and reasoning should be constitutive. Of course, this view contra-
dicts a lot of contemporary arguments in the area of behavior-based robotics.
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For reasons of technical complexity, it might be easier to couple a cog-
nitive model with a physical environment instead of a simulation, and
a lot may be learned from the control structures that emerge from that
connection. And yet, the organization and structuring of a cognitive sys-
tem might be an entirely different story, according to which the division
of the modeled system and the given environment at the somatic level or
even above the neural level might be just as appropriate as the intuitions

of symbolic and sub-symbolic cognitivists suggest.

.3 Machines of cognition

“Every intelligent ghost must contain a machine.”
Aaron Sloman (2002)

Cognitive architectures define computational machines as models of
parts of the mind, as part of the interaction between cognitive functions
and an environment, or as an ongoing attempt to explain the full range of
cognitive phenomena as computational activity. This does not, of course,
equate the human mind with a certain computer architecture, just as a
computational theory of cosmology—a unified mathematical theory of
physics—maintains that the universe is possessed by a certain computer
architecture. It is merely a way of expressing the belief that scientific
theories of the mind, or crucial parts of research committed to a better
understanding of the mind, may be expressed as laws, as rules, as sys-
tematized regularities, that these regularities can be joined to a system-
atic, formal theory, and that this theory can be tested and expanded by
implementing and executing it as a computer program.

1.3.1' Cognitive science and the computational theory of mind

If we take a step back from the narrow issue of whether we should use
a symbolic computational engine to describe cognition, or if we should
aim at specifying a symbolic computational engine that describes a
nonsymbolic architecture that takes care of producing cognitive func-
tionality (and this is, in my view, what the question boils down to),
the fact remains that cognitive modeling is committed to a computa-
tional theory of mind (see Luger, 1995 for an introduction). There are

two viewpoints in cognitive science with respect to the computational
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theory of mind (i.e., that the mind can be described as a computational
engine). The theory may be seen as an ontological commitment (in the
form that either the universe itself is a computational process (e.g.,
Wolfram, 2002), and thus everything within it—such as minds—is
computational too, or that at least mental processes amount to infor-
mation processing). But even if one does not subscribe to such a strong
view, the theory of mind may be treated as a methodological commit-
ment. This second view, which I would like to call the “weak computa-
tional theory,” has been nicely formulated by Johnson-Laird, when he
said:

Is the mind a computational phenomenon? No one knows. It may
be; or it may depend on operations that cannot be captured by any
sort of computer. (...) Theories of the mind, however, should not
be confused with the mind itself, any more than theories about
the weather should be confused with rain or sunshine. And what
is clear is that computability provides an appropriate conceptual
apparatus for theories of the mind. This apparatus takes nothing
for granted that is not obvious. (...) any clear and explicit account
of, say, how people recognize faces, reason deductively, create
new ideas or control skilled actions can always be modelled by a
computer program. (Johnson-Laird, 1988)

Indeed, cognitive models can be seen as the attempt
to elucidate the workings of the mind by treating them as
computations, not necessarily of the sort carried out by the
amiliar digital computer, but of a sort that lies within the
broader framework of computation (ibid, p. 9).°

15 This does not mean that a digital computer is incapable of performing the com-
putations in question. Here, Johnson-Laird hints at parallel distributed processing as
opposed to sequential binary operations in a von-Neumann computer. The operations
that are carried out by a parallel distributed system can be emulated on a digital com-
puter with sufficient speed and memory with arbitrary precision. Computationally,
parallel distributed operations do not fall into a different class than those executed
by a traditional von-Neumann computer; both are instances of deterministic Turing
machines with finite memory. An exception would be a system that employs certain
quantum effects (non-locality and simultaneous superposition of states). Such a quan-
tum computer may be in more than one state at once and thus execute some parallel
algorithms which a deterministic Turing machine performs in non-polynomial time
in linear time (Deutsch, 1985). Indeed, some theorists maintain that such quantum
processes play a role in the brain and are even instrumental in conscious processes
(Lockwood, 1989; Penrose, 1989, 1997; Stapp, 1993; Mari & Kunio, 1995). However,
there is little evidence both for quantum computing facilities in the human brain or
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Thus, a complete explanation of cognition would consist of a compu-
tational model that, if implemented as a program, would produce the
breadth of phenomena that we associate with cognition. In that sense,
the computational theory of mind is an empirical one: it predicts that
there may be such a program. Unfortunately, this does not mean that the
computational model of the mind could be falsified based on its predic-
tions in any strict sense: If there is no computational model of the mind,
it may just mean that it is not there yet. This lack of falsifiability has
often been criticized (Fetzer, 1991). But does this mean that the com-
putational theory of mind is of no empirical consequence at all and does
not have any explanative power, as for instance, Roger Binnick (1990)
states? Binnick applies the same criticism to Chomsky’s theory of lan-
guage (1968), even though

linguistics constitutes (apart from the theory of vision and
perhaps a few corners of neuropsychology) just about the only
cognitive system for which we can say we have something like a
formal and explicit theory of its structure, function, and course of
development in the organism (S. R. Anderson, 1989, p. 810)

From the viewpoint of natural sciences, this criticism is surprising,
and in most cases may be assumed to originate in a misunderstanding of
the notion of computation. All theories that are expressed in such a way
that they may be completely translated into a strict formal language are
computational in nature. The ontological or methodological assumption
that is made by the computational theory of mind is not unique to cogni-
tive science, but ubiquitously shared by all nomothetic (Rickert, 1926)
sciences, that is, all areas that aim at theories that describe a domain
exhaustively using strict laws, rules, and relations. This is especially the
case for physics, chemistry, and molecular biology.

Of course, there are areas of scientific inquiry that do not produce
insights of such nature, but are descriptive or hermeneutic instead.
These sciences do not share the methodology of natural sciences. Indeed,
the rejection of a computational stance with respect to a subject marks
that the field of investigation is one of the cultural sciences (humani-
ties). To treat psychology as a natural science means to subscribe to the

the explanatory power of such states for cognitive processes or consciousness, which is
questionable.
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computational theory of mind—either in its weak or even in its strong
form (see also Dérner, 1999, p. 16).

This view has also been expanded upon by Aaron Sloman (see
Sloman & Scheutz, 2001; Sloman & Chrisley, 2005). Sloman character-
izes the task of describing the world as a quest for suitable ontologies,
which may or may not supervene on each other (Kim, 1998). When
describing systems that describe other systems, we will create second-
order ontologies. If such systems even describe their own descriptions,
recursive third-order ontologies will need to be employed (this is where
it ends—further levels are addressed by recursion within the third).
Conceptualizations of second order and third order ontologies are cre-
ations of virtual machines. A virtual machine is an architecture of caus-
ally related entities that captures the functionality of an information
processing subject or domain, and if mental phenomena can be described
as information processing, then a theory of cognition will be a complex
virtual machine.

Contrary to the intuition that machines are always artifacts, here, a
machine is simply seen as a system of interrelated parts that are defined
by their functionality with respect to the whole:

Machines need not be artificial: organisms are machines, in

the sense of “machine” that refers to complex functioning
wholes whose parts work together to produce effects. Even

a thundercloud is a machine in that sense. In contrast, each
organism can be viewed simultaneously as several machines

of different sorts. Clearly organisms are machines that can
reorganize matter in their environment and within themselves,
e.g. when growing. Like thunderclouds, windmills and dynamos,
animals are also machines that acquire, store, transform and use

energy. (Sloman & Chrisley, 2005)

For a given system (given by a functional description with respect
to its environment), however, it is not always clear what the functional
parts are—there is not even a guarantee that there is sufficient modu-
larity within the system to allow its separation into meaningful parts.
An ontology that specifies parts needs to be justified with respect to
completeness—that the parts together indeed provide the functionality
that is ascribed to the whole—and partitioning—that it does not miscon-
strue the domain. For example, if the gearbox of a car is described as the
part that takes a continuous rotational movement with a certain angular
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momentum from the crankshaft and transforms it into a variety of differ-
ent rotational movements with different momentums to drive the wheels,
this might be a good example for a functional element. If the gearbox is
removed and replaced by a different unit that provides the same conver-
sion, the function of the overall system—the car—might be preserved.
Such a separation is often successful in biological systems too. A kidney,
for instance, may be described as a system to filter certain chemicals from
the bloodstream. If the kidneys are replaced by an artificial contraption
that filters the same chemicals (during dialysis, for instance), the organ-
ism may continue to function as before. There are counterexamples,
too: a misconstrued ontology may specify the fuel of the car simply as an
energy source. If the fuel tank would be replaced by an arbitrarily chosen
energy source, such as an electrical battery, the car would cease to func-
tion, because fuel is not just an energy source—to be compatible with a
combustion engine, it needs to be a very specific agent that when mixed
with air and ignited shows specific expansive properties. The car’s fuel
may perhaps be replaced with a different agent that exhibits similar func-
tional properties, such as alcohol or natural gas, provided that the com-
patibility with the engine is maintained. Even then, there might be slight
differences in function that lead to failure of the system in the long run,
for instance, if the original fuel has been providing a lubricating function
that has been overlooked in the replacement. Similarly, the mind is not
just an information processing machine (for instance, a Turing Machine).
Still, it may in all likelihood be described as an information processing
machine as well, in the same way as fuel in a car may be depicted as an
energy source, but this description would be far too unspecific to be very
useful! The difficulty stems from the fact that there is little agreement
in cognitive science and psychology as towhat, exactly, defines men-
tal activity (i.e., what the properties of the whole should be). Even if we
limit our efforts to relatively clearly circumscribed domains, the ontolo-
gies that we are using to describe what takes place on different levels and
which supervene on each other are not necessarily causally closed.'® For

16 Causal closure may best be explained by an example: in graphical user interfaces,
widgets indicating similar functions may be implemented by different programming
libraries. Nevertheless, a click on the closing icon of a main window usually ends an
associated application, no matter which interface programming library realizes the
functionality. This allows for the user to neglect the programming level of the appli-
cation and use the abstraction of the interface when describing the system. But what
happens if clicking the closing icon fails to close the application? Sometimes, the reason
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instance, language processing may be difficult to study in isolation from
the representation of and abstraction over perceptual content (Feldman,
et al., 1996), perception may be impossible to study without looking at
properties of neural circuitry with respect to synchronization and bind-
ing (Engel & Singer, 2000; Singer, 2005), and even relatively basic per-
ceptual processing like the formation of color categories may depend on
language capabilities (Steels & Balpaeme, 2005).

The study of cognitive architecture somehow has to cope with these
difficulties—either by specifying a very complex, mainly qualitative
architecture that does not lend itself to quantitative experiments (see
Sloman & Scheutz, 2003; Baars, 1993; Franklin, Kelemen, & McCauley
1998), by attempting to simplify as much as possible by reducing the
architecture to a small set of organizational principles that can be
closely fitted to experimental data in narrow domains (Laird, Newell,
& Rosenbloom 1987; Anderson & Lebiére, 1998; Touretzky & Hinton,
1988; Smolensky, 1995), or by an attempt to find a middle ground (Sun,
2005, Dorner, 1999, Feldman, 2006).

1.3.2 Classical (symbolic) architectures: Soar and ACT-R

Alan Newell committed himself strongly to the Language of Thought
Hypothesis, when he stated his own version in 1976 (Newell & Simon,
1976): “A physical symbol system has the necessary and sufficient means
for general intelligent action,” a dictum that has since been known as
the Physical Symbol Systems Hypothesis (PSSH). According to Newell, a

symbol system is made up of

— memory, which contains the symbol information

— symbols, which supply patterns to index information and give
references to it

— operators, to manipulate the symbols

— interpretations, which specify the operations over the symbols.

resides on the level of the application interface, for instance, because the application
still holds an unsaved document. In this case, the causal frame of the application inter-
face is not broken. But if the window fails to close because of the hidden interaction
of the programming library with a different application that uses the same instance of
the programming library, then the behavior of the graphical user interface can only be
understood if the different programming libraries are taken into account. The frame
of the graphical user interface is no longer a self-contained ontology but needs to be
expanded by elements of the level it supposedly supervenes on.
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Table 1.1 Layers of Description of a Cognitive
System (Newell, 1990)

Scale (seconds) System Stratum
107

106 Social
108

10*

103 Tasks Rational
102

10! Unit Tasks

100 Operations Cognitive
10! Deliberative Acts

102 Neural Circuitry

103 Neurons Biological
10 Organellae

To function, a symbol system has to observe some basic require-
ments: it needs sufficient memory, and it has to realize composability
and interpretability. The first condition, composability, specifies that
the operators have to allow the composition of any symbol structure,
and interpretability asks that symbol structures can encode any valid
arrangement of operators.

A fixed structure that implements such a symbol system is called a
symbolic architecture. The behavior of this structure (that is, the pro-
gram) only depends on the properties of the symbols, operators and
interpretations, not on the actual implementation; it is independent of
the physical substrate of the computational mechanism, of the program-
ming language and so on.

The advantages of a symbolic architecture are obvious: because a large
part of human knowledge is symbolic, it may easily be encoded (Lenat,
1990); reasoning in symbolic languages allows for some straightforward
conceptualizations of human reasoning, and a symbolic architecture
can easily be made computation complete (i.e., Turing computational:
Turing 1936).

According to Newell (1990), cognitive acts span action coordination,
deliberation, basic reasoning and immediate decision-making—those
mental operations of an individual that take place in the order of hun-
dreds of milliseconds to several seconds (insert table 1.1). Long-term
behavior, such as the generation and execution of complex plans, the

acquisition of a language, or the formation and maintenance of a social
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role, go beyond the immediately modeled area and are facilitated by
many successive cognitive acts. The neurobiological level is situated
below the cognitive band and falls outside the scope of a functional the-
ory of cognition.

Alan Newell has set out to find an architecture that—while being as
simple as possible—is still able to fulfill the tasks of the cognitive level,
a minimally complex architecture for general intelligence (i.e., with the
smallest possible set of orthogonal mechanisms). To reproduce results
from experimental psychology, so-called regularities (covering all con-
ceivable domains, be it chess-playing, language, memory tasks, and
even skiing), algorithms would be implemented within these organiza-
tional principles. Newell'’s architecture (Newell, 1990; Laird, Newell, &
Rosenbloom, 1987) is called Soar (originally an acronym that stood for
State, Operator and Result) and originated in his conceptions of human
problem solving (Newell 1968; Newell & Simon, 1972). Soar embodies
three principles: heuristic search for the solution of problems with little
knowledge, a procedural method for routine tasks, and a symbolic the-
ory for bottom-up learning, implementing the Power Law of Learning
(Laird, Newell, & Rosenbloom, 1986).

Central to Soar is the notion of Problem Spaces. According to Newell,
human rational action can be described by

— aset of knowledge states
— operators for state transitions
— constraints for the application of operators

— control knowledge about the next applicable operator.

Consequently, a problem space consists of a set of states (with a dedi-
cated start state and final state) and operators over these states. Any task
is represented as a collection of problem spaces. Initially, a problem space
is selected, and then a start state within this problem space. The goal is
the final state of that problem space. During execution, state transitions
are followed through until the goal state is reached or it is unclear how
to proceed. In that case, Soar reaches an impasse. An impasse creates and
selects a new problem space, which has the resolution of the impasse as
its goal. The initial problem spaces are predefined by the modeler.

Problem spaces are also defined independently from Soar, for example
in STRIPS (Stanford Research Institute Problem Solver; Fikes & Nilsson,
1971), and generally contain a set of goals (with the top-level goal being
the task of the system), a set of states (each of which is realized as a set of
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literals describing knowledge and world model) and a set of valid opera-
tors and constraints.

The actual problem solving work in Soar is delivered by the operators.
Operators are algorithms that describe how to reach the next state; they
are executed upon the filling of the context slots of a problem space. Soar
can develop new operators on its own, but its models typically work with
a set of predefined operators (often augmented with a library of about
50 default rules for planning and search, including means-end analysis,
hill-climbing, alpha-beta search, branch and bound); the system may
learn which one to apply in a given context. This represents a consider-
able extension over Newell’s and Simon’s earlier attempt at a universal
problem-solving mechanism, the General Problem Solver (1961), which
did, among many other restrictions, only have a single problem space
and two operators: means-end analysis and sub-goaling to find a new
operator. Also, it lacked the impasse mechanism to recognize missing
knowledge (see also Newell, 1992).

As a strictly symbolic architecture, Soar stores knowledge in the
form of rules (productions, also called “chunks”), even though a neuro-
symbolic implementation exists (Cho, Rosenbloom, & Dolan, 1993).
Perception and action are originally not integral parts of the Soar archi-
tecture—they are supplied by independent, asynchronous modules (e.g.,
from EPIC, Chong, & Laird, 1997). Despite many successful applica-
tions (e.g., Gratch & Marsella, 2004; Ritter & Bibby, in press), Soar is
frequently criticized for being more of an Al programming language
(Ritter, Baxter, et al., 2002) than it is a model of human cognition.

Many of the criticisms that apply to Soar have later been addressed
by John Anderson's ACT theory'” (Anderson, 1983, 1990; Anderson &
Lebiere, 1998). ACT is—next to Soar—currently the most extensively
covered and applied model in the field of symbolic cognitive architec-
tures, and probably the one best grounded in experimental psychological
research literature (Morrison, 2003, p. 30). Just as Soar, ACT-R is based
on production rules, but unlike Soar, it allows for real-valued activa-
tions (instead of a binary on-off), which are biologically more plausible,

17 ACT is an acronym that supposedly stands for the Adaptive Character of Thought
(it meant the Adaptive Control of Thought earlier, has also been reported to abbreviate
Atomic Components of Thought (Morrison, 2003) and perhaps, it just refers to Anderson’s
Cognition Theory). The ‘R’ abbreviates Rational and refers to Anderson’s rational
analysis (Anderson, 1990, 1991).
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because the spread of activation is governed by time, not by program-
ming steps (Anderson, 1978, 1983).

The ACT theory has its roots in a model of human associative mem-
ory (HAM, Anderson and Bower 1973), which was an attempt to pro-
vide a descriptive language of mental content, made up of hierarchies of
connected nodes (called “chunks”) in a semantic network and featuring
associative recall. In the course of its development, it was also extended
by perceptual and motor facilities (PM, Byrne & Anderson, 1998; Byrne,
2001).

ACT-R (and its predecessor, ACT*) have both claimed to bridge the
gap between neural-like implementation and symbolic computation.
The connectionist implementation of ACT-R, ACT-RN (Lebiére &
Anderson, 1993), is an attempt to substantiate that claim. ACT-RN'’s
implementation of a declarative memory makes use of a simplified
Hopfield network (Hopfield, 1984) with real values, with each chunk
acting as a node in the network. To limit the number of links, in the
connectionist implementation, the declarative memory is split into
several areas. Within each area, all chunks are fully connected to each
other. ACT-RN has been used in several cognitive models, but has been
abandoned nonetheless, because it was considered too unwieldy for the
intended applications—the development of current ACT-R versions
focuses on symbolic implementations. Even so, the retrieval of chunks
partially follows a sub-symbolic paradigm: spreading activation.

In addition to the declarative memory, ACT-R proposes a procedural
memory. Such a distinction has, for instance, been suggested by Squire
(1994), but is far from being undisputed in the literature of psychology
(Miiller, 1993). Procedural memory consists of production rules, which
coordinate the cognitive behavior using a goal stack that is laid out in
working memory (see Figure 1.1).

Using chunks and productions, ACT-R can encode temporal strings
(which are somewhat like scripts, see Schank & Abelsson, 1977), spa-
tial images (similar to schemas; Minsky, 1975) and abstract propositions.
The activity of the system is determined by a probabilistic, goal-oriented
matching process of productions, which leads to the acquisition of new
procedures (productions) and the manipulation of declarative knowledge.

ACT-R has been designed to mimic human performance more closely
than Soar and attempts to be an integrated theory of the mind (Anderson
et al., 2004). Recently, John Anderson’s perspective on modeling cogni-
tion shifted even further from symbolic abstraction towards modeling
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Procedural Memory: Declarative Memory:
Production rules Chunks
specifying cognitive providing hierarchical
algorithms and strategies object descriptions (facts)
Execution Retrieval
Match Storage
Perception Working Memory: Action
—
Encoding Active knowledge Performance

Figure 1.1 ACT-R memory organization (simplified, see Anderson 1983, p. 19)

brain functions and maintains that “a cognitive architecture is a specifica-
tion of the structure of the brain at a level of abstraction that explains
how it achieves the function of the mind” (Anderson, 2007, p. 7). But
ACT-R is not a model of a complete cognitive system. ACT-R models
have captured many regularities of the behavior of subjects in psycholog-
ical experiments, from visual perception tasks to the learning of mental
arithmetic, and its success stems not least from the fact that it allows for
testing its cognitive models by comparing computation times with those
of human subjects, without making more than a few very basic assump-
tions on the speed of activation spreading. On the other hand, ACT-R
models are usually not autonomous or motivated—goals of the system
are given explicitly and beforehand by the experimenter.

Anderson maintains that ACT-R is a hybrid architecture, because it
combines the explicit learning of discrete memory structures with
Bayesian reasoning supplied by its associative memory structures.
However, Anderson’s semantic networks are strictly localist,'® and dis-
tributed representations only play a role in external modules, which are
not an integral part of the architecture, so its current implementations
put it into the realm of symbolic models. Yet, even though it can be

18 Ron Sun (2003, p. 5) characterizes sub-symbolic units as not being individually
meaningful. In this sense, the distinction between symbolic and sub-symbolic systems
does not allude to whether link weights are strictly binary or real-valued, but whether
the links implement a distributed representation of concepts.



