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Abbreviations and Notations

Abbreviations

ARO
ATMO
AuMO

AUO

BrMO
BWM
BMO
ChNO
HMO
M
IMO
LMO
MMO

PAMO

Allrussian Mathematical Olympiad

Austrian Mathematical Olympiad

Australian Mathematical Olympiad

Allunion Mathematical Olympiad

British Mathematical Olympiad

German National Olympiad

Balkan Mathematical Olympiad

Chinese National Olympiad

Hungarian Mathematical Olympiad (Kitirschak Competition)
International Intellectual Marathon (Mathematics/Physics Competition)
International Mathematical Olympiad

Leningrad Mathematical Olympiad

Moskov Mathematical Olympiad

Polish-Austrian Mathematical Olympiad



X Abbreviations and Notations

PMO Polish Mathematical Olympiad
RO Russian Olympiad (ARO from 1994 on)
SPMO St. Petersburg Mathematical Olympiad
TT Tournament of the Towns

USO US Olympiad

Notations for Numerical Sets

Nor Z™ the positive integers (natural numbers), i.e., {1,2,3,...}
Ny the nonnegative integers, {0,1,2, ...}
Z the integers
Q the rational numbers
Q" the positive rational numbers
o the nonnegative rational numbers
R the real numbers
R* the positive real numbers
C the complex numbers

Z, the integers modulo n

1..n theintegers 1, 2, ..., n

Notations from Sets, Logic, and Geometry

<= iff, if and only if
= implies
A C B Aisasubsetof B
A\ B A without B
AN B the intersection of A and B
AU B the union of A and B
a € A the element a belongs to the set A
|AB| also AB, the distance between the points A and B

box parallelepiped, solid bounded by three pairs of parallel planes
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The Invariance Principle

We present our first Higher Problem-Solving Strategy. It is extremely useful in
solving certain types of difficult problems, which are easily recognizable. We will
teach it by solving problems which use this strategy. In fact, problem solving
can be learned only by solving problems. But it must be supported by strategies
provided by the trainer.

Our first strategy is the search for invariants, and it is called the Invariance Prin-
ciple. The principle is applicable to algorithms (games, transformations). Some
task is repeatedly performed. What stays the same? What remains invariant?
Here is a saying easy to remember:

If there is repetition, look for what does not change!

In algorithms there is a starting state S and a sequence of legal steps (moves,
transformations). One looks for answers to the following questions:

1. Can a given end state be reached?

2. Find all reachable end states.

3. Is there convergence to an end state?

4. Find all periods with or without tails, if any.

Since the Invariance Principle is a heuristic principle, it is best learned by ex-
perience, which we will gain by solving the key examples E1 to E10.
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El. Starting with a point S = (a, b) of the plane with 0 < b < a, we generate a
sequence of points (x,, y,) according to the rule

xl! + yll _

2xnyl1
Xg = da, Yo = b7 xn+] = 2 ’ yn+l -

Xy + Yn '

Here it is easy to find an invariant. From x, ;1,11 = X, Y., for all n we deduce
x,yn = ab for all n. This is the invariant we are looking for. Initially, we have
Yo < Xo. This relation also remains invariant. Indeed, suppose y, < x, for some
n. Then x,.; is the midpoint of the segment with endpoints y,, x,. Moreover,
Yut1 < X,41 since the harmonic mean is strictly less than the arithmetic mean.
Thus,

Xn = Yu Xn = Yn Xp— Yn
Xy + Y 2 2

0< Xn+1 = Ynp1 =

for all n. So we have lim x,, = lim y, = x with x> = aborx = Vab.
Here the invariant helped us very much, but its recognition was not yet the
solution, although the completion of the solution was trivial.

E2. Suppose the positive integer n is odd. First Al writes the numbers 1,2, ..., 2n
on the blackboard. Then he picks any two numbers a, b, erases them, and writes,
instead, |a — b|. Prove that an odd number will remain at the end.

Solution. Suppose S is the sum of all the numbers still on the blackboard. Initially
thissumis S = 1 4+24---4+2n = n(2n+ 1), an odd number. Each step reduces §
by 2min(a, b), which is an even number. So the parity of S is an invariant. During
the whole reduction process we have S = 1 mod 2. Initially the parity is odd. So,
it will also be odd at the end.

E3. A circle is divided into six sectors. Then the numbers 1,0, 1,0, 0, 0 are writ-
ten into the sectors (counterclockwise, say). You may increase two neighboring
numbers by 1. Is it possible to equalize all numbers by a sequence of such steps?

Solution. Suppose ay, ..., ae are the numbers currently on the sectors. Then I =
a; — ay + az — ag + as — ae is an invariant. Initially I = 2. The goal I = 0 cannot
be reached.

EA. In the Parliament of Sikinia, each member has at most three enemies. Prove
that the house can be separated into two houses, so that each member has at most
one enemy in his own house.

Solution. Initially, we separate the members in any way into the two houses. Let
H be the total sum of all the enemies each member has in his own house. Now
suppose A has at least two enemies in his own house. Then he has at most one
enemy in the other house. If A switches houses, the number H will decrease. This
decrease cannot go on forever. At some time, H reaches its absolute minimum.
Then we have reached the required distribution.



1. The Invariance Principle 3

Here we have a new idea. We construct a positive integral function which de-
creases at each step of the algorithm. So we know that our algorithm will termi-
nate. There is no strictly decreasing infinite sequence of positive integers. H is not
strictly an invariant, but decreases monotonically until it becomes constant. Here,
the monotonicity relation is the invariant.

ES. Suppose not all four integers a, b, c, d are equal. Start with (a, b, c, d) and
repeatedly replace (a,b,c,d)by(a — b, b —c,c —d,d — a). Then at least one
number of the quadruple will eventually become arbitrarily large.

Solution. Let P, = (a,, b,, c,, d,) be the quadruple after n iterations. Then we
have a, + b, + ¢, +d, = 0 forn > 1. We do not see yet how to use this invariant.
But geometric interpretation is mostly helpful. A very important function for the
point P, in 4-space is the square of its distance from the origin (0, 0, 0, 0), which
is a2 + b2 + 2 + d?. If we could prove that it has no upper bound, we would be
finished.

We try to find a relation between P, and P,:

a3+1 + b,2,+1 + C,2,+] + d3+1 = (Cl,, - bn)z + (brr - cn)z + (cn - dn)2 + (dn - an)z
=2a; + b+ +d))
- zanbn - 2bnclr - 2(:11 dn - Zdu ay.

Now we can use a, + b, + ¢, + d, = 0 or rather its square:

0 = (a” +b” +C” +d”)2 = (all +C")2 + (b” +dll)2 + 2all b" +2a)1 d" —I_ 2bncn +2C”dﬂ -

Adding (1) and (2), for a2, | + b2, | 4+ c2, | +d> |, we get v
2a? + b2+ 2+ dP) + (a, + c)? + by +d)? = 2ad + b2+ 2+ d).
From this invariant inequality relationship we conclude that, for n > 2,
al + b2+t +d? > 2""Nal + b} + cf +d}). 2)

The distance of the points P, from the origin increases without bound, which
means that at least one component must become arbitrarily large. Can you always
have equality in (2)?

Here we learned that the distance from the origin is a very important func-
tion. Each time you have a sequence of points you should consider it.

E6. An algorithm is defined as follows:

Start:  (xo, yo) with 0 < xo < ¥o.

Xp + W
l 3 ’1 Yo+1 = A/ Xn1Vn-

S[ep'. e
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Figure 1.1 and the arithmetic mean-geometric mean inequality show that

yn — Xp

Xy < Vp = Xkl < Yntls Ynt1 — Xpg1 < 4

for all n. Find the common limit limx, = limy, = x = y.

Here, invariants can help. But there are no systematic methods to find invariants,
just heuristics. These are methods which often work, but not always. Two of these
heuristics tell us to look for the change in x,,/y, or y, — x,, when going from n to
n+ 1.

n n n 1+ nlVn
@) Xntl _ Kurt X [T % /v 1)
Yn+1 \/anrlyn Yn 2

This reminds us of the half-angle relation

o 1+ cosa
COS — =/ ———.
2 2

Since we always have 0 < x,/y, < 1, we may set x,,/y, = cos,. Then (1)
becomes
Ap 0] o
cos @, = COS > = a, = o = 2"a, = ay,

which is equivalent to
X

n Xn 0
2" arccos — = arccos —. (2)
Yn Yo
This is an invariant!
(b) To avoid square roots, we consider y> — x? instead of y, — x, and get

2 2
2 2 YT X 2 2 _ 2 2
yn+l - xn+l - 4 = 2\/yn+l - xn+1 - yn - xn

or

N ] ®

which is a second invariant.

Xn xn+l yn+l yn

Fig. 1.1 Fig. 1.2. arccost = arcsins, s = /1 — 12,
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From Fig. 1.2 and (2), (3), we get

2 2
p) 3 Vo — X
X0 Xn . Y, — X . 0 0
arccos — = 2" arccos — = 2" arcsin —=£ % = 2" arcsin
Yo Yn Yn 2” Yn

The right-hand side converges to ,/y3 — x72/y for n — oo. Finally, we get

Yo —X; "
=Y arccos(xo/yo)

It would be pretty hopeless to solve this problem without invariants. By the way,
this is a hard problem by any competition standard.

E7. Each of the numbers ay, ..., a, is 1 or —1, and we have
S = ayarazay + arasagas + - - - + a,aiara; = 0.

Prove that 4 | n.

Solution. This is a number theoretic problem, but it can also be solved by in-
variance. If we replace any a; by —a;, then S does not change mod 4 since four
cyclically adjacent terms change their sign. Indeed, if two of these terms are pos-
itive and two negative, nothing changes. If one or three have the same sign, S
changes by 4. Finally, if all four are of the same sign, then S changes by £8.

Initially, we have S = 0 which implies S = 0 mod 4. Now, step-by-step, we
change each negative sign into a positive sign. This does not change S mod 4. At
the end, we still have S = 0 mod 4, but also S= n, i.e, 4|n.

E8. 2n ambassadors are invited to a banquet. Every ambassador has at mostn — 1
enemies. Prove that the ambassadors can be seated around a round table, so that
nobody sits next to an enemy.

Solution. First, we seat the ambassadors in any way. Let H be the number of
neighboring hostile couples. We must find an algorithm which reduces this number
whenever H > 0. Let (A, B) be a hostile couple with B sitting to the right of A
(Fig. 1.3). We must separate them so as to cause as little disturbance as possible.
This will be achieved if we reverse some arc B A’ getting Fig. 1.4. H will be reduced
if (A, A’) and (B, B’) in Fig. 1.4 are friendly couples. It remains to be shown that
such a couple always exists with B’ sitting to the right of A’. We start in A and go
around the table counterclockwise. We will encounter at least n friends of A. To
their right, there are at least n seats. They cannot all be occupied by enemies of
B since B has at most n — 1 enemies. Thus, there is a friend A’ of A with right
neighbor B’, a friend of B.
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B p B" p
B A’
A A
Fig. 1.3. Invert arc A’B. Fig. 1.4

Remark. This problem is similar to E4, but considerably harder. It is the following
theorem in graph theory: Let G be a linear graph with n vertices. Then G has a
Hamiltonian path if the sum of the degrees of any two vertices is equal to or larger
than n — 1. In our special case, we have proved that there is even a Hamiltonian
circuit.

E9. To each vertex of a pentagon, we assign an integer x; with sums = Y x; > 0.
If x, y. z are the numbers assigned to three successive vertices and if y < 0, then
we replace (x,y,z) by (x +y,—y,y + 2). This step is repeated as long as there
isay < 0. Decide if the algorithm always stops. (Most difficult problem of IMO
1986.)

Solution. The algorithm always stops. The key to the proof is (as in Examples 4
and 8) to find an integer-valued, nonnegative function f(xy, ..., x5) of the vertex
labels whose value decreases when the given operation is performed. All but one
of the eleven students who solved the problem found the same function

5
2
J(xr, x2, x3, X4, X5) = Z(Ii —Xip2),  Xe = X1,  X7=Xp.
i=1
Suppose y = x4 < 0. Then few — foia = 25x4 < 0, since s > 0. If the algorithm
does not stop, we can find an infinite decreasing sequence fy > fi > f>» > --- of
nonnegative integers. Such a sequence does not exist.

Bernard Chazelle (Princeton) asked: How many steps are needed until stop? He
considered the infinite multiset S of all sums defined by s(i, j) = x; +--- + x;_
with1 <i < 5and j > i. Amultiset is a set which can have equal elements. In this
set, all elements but one either remain invariant or are switched with others. Only
s(4,5) = x4 changes to —x4. Thus, exactly one negative element of S changes to
positive at each step. There are only finitely many negative elements in §, since
s > 0. The number of steps until stop is equal to the number of negative elements
of §. We see that the x; need not be integers.

Remark. It is interesting to find a formula with the computer, which, for input
a,b,c,d, e, gives the number of steps until stop. This can be done without much
effort if s = 1. For instance, the input (n, n, 1 — 4n, n, n) gives the step number
f(n)=20n — 10.
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E10. Shrinking squares. An empirical exploration. Start with a sequence S =
(a, b, ¢, d) of positive integers and find the derived sequence Sy = T(S) = (la —
bl, |b—c|, |c—d|, |d — al). Does the sequence S, Sy, S2 = T(S,), S35 =T(S2), ...
always end up with (0,0, 0, 0)?

Let us collect material for solution hints:

0,3,10,13) = (3,7,3,13) = (4,4, 10, 10)
(0,6,0,6) = (6,6,6,06) = (0,0,0,0),

(8,17,3,107) — (9, 14,104, 99) — (5,90, 5,90) —
(85,85,85,85) — (0,0,0,0),

(91, 108, 95,294) = (17, 13,99, 203) > (4, 86, 104, 186) —
(82, 18, 82, 182) = (64, 64, 100, 100) — (0, 36, 0, 36) >
(36, 36, 36, 36) — (0,0, 0,0).

Observations:

1. Let max S be the maximal element of S. Then max S;;; < maxJS;, and
max S;;4 < max S; as long as max S; > 0. Verify these observations. This
gives a proof of our conjecture.

2. S and ¢S have the same life expectancy.

3. After four steps at most, all four terms of the sequence become even. Indeed,
it is sufficient to calculate modulo 2. Because of cyclic symmetry, we need
to test just six sequences 0001 +— 0011 — 0101 — 1111 + 0000 and
1110 + 0011. Thus, we have proved our conjecture. After four steps at
most, each term is divisible by 2, after 8 steps at most, by 2% ..., after 4k
steps at most, by 2F. As soon as max § < 2*, all terms must be 0.

In observation 1, we used another strategy, the Extremal Principle: Pick the
maximal element! Chapter 3 is devoted to this principle.

In observation 3, we used symmetry. You should always think of this strategy,
although we did not devote a chapter to this idea.

Generalizations:

(a) Start with four real numbers, e.g.,

V2 n V3 e
7 -2 -3 e—~3 e—+/2
L) T —e V3-2 T —e

m—e—34V2 m—e—V3+V2 m-e-V3+V2 m—e-V34+V2
0 0 0 0.
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Some more trials suggest that, even for all nonnegative real quadruples, we always
end up with (0,0, 0, 0). But with# > land S = (1, ¢, 2, 13) we have

TS)=1[t—1,0— i, — D>, (t — D> 41+ D]

It} =2+t +1,ie.,t = 1.8392867552 .. ., then the process never stops because
of the second observation. This # is unique up to a transformation f(f) = at + b.

(b) Start with S = (ao, a1, ..., a,—1), a; nonnegative integers. For n = 2, we
reach (0, 0) after 2 steps at most. For n = 3, we get, for 011, a pure cycle of length
3: 011 — 101 — 110 — 011. For n = 5 we get 00011 —» 00101 01111
10001 +— 10010 +— 10111 = 11000 + 01001 +— 11011 +~ 01100 —
10100 = 11101 = 00110 + 01010 + 11110 = 00011, which has a pure
cycle of length 15.

1. Find the periods for n = 6 (n = 7) starting with 000011 (0000011).
2. Prove that, for n = 8§, the algorithm stops starting with 00000011.

3. Prove that, forn = 2", we alwaysreach (0, 0, ..., 0),and, forn # 2", we get
(up to some exceptions) a cycle containing just two numbers: 0 and evenly
often some number a > 0. Because of observation 2, we may assume that
a=1.Then|a— b |=a+ b mod 2, and we do our calculations in GF(2),
i.e., the finite field with two elements 0 and 1.

4. Let n # 2" and c(n) be the cycle length. Prove that ¢(2n) = 2¢(n) (up to
some exceptions).

5. Prove that, forodd n, § = (0,0, ..., 1, I) always lies on a cycle.

6. Algebraization. To the sequence (ag, ..., a,_1), we assign the polynomial
px)=a,.1+---+ agx"~ ! with coefficients from GF(2), and x” = 1. The
polynomial (1 4+ x)p(x) belongs to T(S). Use this algebraization if you can.

7. The following table was generated by means of a computer. Guess as many
properties of ¢(n) as you can, and prove those you can.

n|3 5 7 9 11 13 15 17 19 21 23 25
cim) | 3 15 7 63 341 819 15 255 9709 63 2047 25575

n 27 29 31 33 35 37 39 41 43
c(n) | 13797 47507 31 1023 4095 3233097 4095 41943 5461

Problems

1. Start with the positive integers 1, ..., 4n — 1. In one move you may replace any two
integers by their difference. Prove that an even integer will be left after 4n — 2 steps.
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Start with the set {3, 4, 12}. In each step you may choose two of the numbers a, b
and replace them by 0.6a — 0.8b and 0.8a + 0.6b. Can you reach the goal (a) or (b)
in finitely many steps:

(@) {4, 6,12}, (b) {x,y,z} with |x — 4], |y — 6|, |z — 12| each less than 1/+/3?

Assume an 8 x 8 chessboard with the usual coloring. You may repaint all squares (a)
of arow or column (b) of a 2 x 2 square. The goal is to attain just one black square.
Can you reach the goal?

We start with the state (a, b) where a, b are positive integers. To this initial state we
apply the following algorithm:
while a > 0, do ifa < b then (a, b) < (2a, b — a) else (a, b) < (a — b, 2b).

For which starting positions does the algorithm stop? In how many steps does it stop,
if it stops? What can you tell about periods and tails?

The same questions, when a, b are positive reals.

. Around acircle, 5 ones and 4 zeros are arranged in any order. Then between any two

equal digits, you write 0 and between different digits 1. Finally, the original digits
are wiped out. If this process is repeated indefinitely, you can never get 9 zeros.
Generalize!

There are a white, b black, and c red chips on a table. In one step, you may choose
two chips of different colors and replace them by a chip of the third color. If just one
chip will remain at the end, its color will not depend on the evolution of the game.
When can this final state be reached?

There are a white, b black, and ¢ red chips on a table. In one step, you may choose
two chips of different colors and replace each one by a chip of the third color. Find
conditions for all chips to become of the same color. Suppose you have initially 13
white 15 black and 17 red chips. Can all chips become of the same color? What
states can be reached from these numbers?

There is a positive integer in each square of a rectangular table. In each move, you
may double each number in a row or subtract 1 from each number of a column. Prove
that you can reach a table of zeros by a sequence of these permitted moves.

. Each of the numbers 1 to 10° is repeatedly replaced by its digital sum until we reach

10° one-digit numbers. Will these have more 1°s or 2’s?

The vertices of an n-gon are labeled by real numbers x,, ..., x,. Leta, b, c, d be
four successive labels. If (a — d)(b — ¢) < 0, then we may switch b with ¢. Decide
if this switching operation can be performed infinitely often.

. In Fig. 1.5, you may switch the signs of all numbers of a row, column, or a parallel

to one of the diagonals. In particular, you may switch the sign of each corner square.
Prove that at least one —1 will remain in the table.

—_ o = =
— = = =

—| =] = =

S (RN [N [

Fig. 1.5
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There is a row of 1000 integers. There is a second row below, which is constructed
as follows. Under each number a of the first row, there is a positive integer f(a) such
that f(a) equals the number of occurrences of a in the first row. In the same way,
we get the 3rd row from the 2nd row, and so on. Prove that, finally, one of the rows
is identical to the next row.

There is an integer in each square of an 8 x 8 chessboard. In one move, you may
choose any 4 x 4 or 3 x 3 square and add | to each integer of the chosen square.
Can you always get a table with each entry divisible by (a) 2, (b) 37

We strike the first digit of the number 7'°°°, and then add it to the remaining number.
This is repeated until a number with 10 digits remains. Prove that this number has
two equal digits.

There is a checker at point (1, 1) of the lattice (x, y) with x, y positive integers. It
moves as follows. At any move it may double one coordinate, or it may subtract
the smaller coordinate from the larger . Which points of the lattice can the checker
reach?

Each term inasequence 1,0, 1,0, 1, 0, ... starting with the seventh is the sum of the
last 6 terms mod 10. Prove that the sequence ..., 0, 1,0, 1,0, 1, ... never occurs.

Starting with any 35 integers, you may select 23 of them and add 1 to each. By
repeating this step, one can make all 35 integers equal. Prove this. Now replace 35
and 23 by m and n, respectively. What condition must m and n satisfy to make the
equalization still possible?

The integers 1, ..., 2n are arranged in any order on 2n places numbered 1, ..., 2n.
Now we add its place number to each integer. Prove that there are two among the
sums which have the same remainder mod 2n.

The n holes of a socket are arranged along a circle at equal (unit) distances and
numbered 1, . . ., n. For whatn can the prongs of a plug fitting the socket be numbered
such that at least one prong in each plug-in goes into a hole of the same number (good
numbering)?

A game for computing ged(a, b) and lem(a, b).

We start with x = a, y = b, u = a, v = b and move as follows:

ifx < ythen,sety < y—xandv < v+u

ifx >y, thensetx < x —yandu < u+v

The game ends with x = y = ged(a, b) and (u + v)/2 = lem(a, b). Show this.

Three integers a, b, ¢ are written on a blackboard. Then one of the integers is erased
and replaced by the sum of the other two diminished by 1. This operation is repeated
many times with the final result 17, 1967, 1983. Could the initial numbers be (a) 2,
2,2 (b)3,3,3?

There is a chip on each dot in Fig. 1.6. In one move, you may simultaneously move
any two chips by one place in opposite directions. The goal is to get all chips into
one dot. When can this goal be reached?

Fio. 1.6
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Start with n pairwise different integers x;, x5, ..., x,, (n > 2) and repeat the fol-
lowing step:

T:(xl""7xn)|_) x1+x2’x2+x3,”.,x"+xl .
2 2 3

Show that T, T2, ... finally leads to nonintegral components.

Start with an m x n table of integers. In one step, you may change the sign of all
numbers in any row or column. Show that you can achieve a nonnegative sum of any
row or column. (Construct an integral function which increases at each step, but is
bounded above. Then it must become constant at some step, reaching its maximum.)

Assume a convex 2m-gon A, ..., A,,. In its interior we choose a point P, which
does not lie on any diagonal. Show that P lies inside an even number of triangles
with vertices among Ay, ..., Aa,.

Three automata I, H, T print pairs of positive integers on tickets. For input (a, b), I
and H give (a+ 1, b+ 1) and (a/2, b/2), respectively. H accepts only evena, b. T
needs two pairs (a, b) and (b, ¢) as input and yields output (a, ¢). Starting with (5, 19)
can you reach the ticket (a) (1, 50) (b) (1, 100)? Initially, we have (a, b),a < b. For
what n is (1, n) reachable?

Three automata 7, R, S print pairs of positive integers on tickets. For entry (x, y), the
automata I, R, S give tickets (x — y, y), (x + ¥, ¥), (¥, x), respectively, as outputs.
Initially, we have the ticket (1, 2). With these automata, can I get the tickets (a)
(19,79) (b) (819, 357)? Find an invariant. What pairs (p, g) can I get starting with
(a, b)? Via which pair should I best go?

n numbers are written on a blackboard. In one step you may erase any two of the
numbers, say a and b, and write, instead (a + b) /4. Repeating this step n — 1 times,
there is one number left. Prove that, initially, if there were n ones on the board, at
the end, a number, which is not less than 1/n will remain.

The following operation is performed with a nonconvex non-self-intersecting poly-
gon P.Let A, B be two nonneighboring vertices. Suppose P lies on the same side
of AB. Reflect one part of the polygon connecting A with B at the midpoint O of
AB. Prove that the polygon becomes convex after finitely many such reflections.

Solve the equation (x* — 3x +3)> —= 3(x* = 3x +3) + 3 = x.
Let a;,a,, ..., a, be a permutation of 1,2,...,n. If n is odd, then the product
P = (a, — 1)(a, — 2)...(a, — n) is even. Prove this.

Many handshakes are exchanged at a big international congress. We call a person
an odd person if he has exchanged an odd number of handshakes. Otherwise he will
be called an even person. Show that, at any moment, there is an even number of odd
persons.

Start with two points on a line labeled 0, 1 in that order. In one move you may add
or delete two neighboring points (0, 0) or (1, 1). Your goal is to reach a single pair
of points labeled (1, 0) in that order. Can you reach this goal?

Is it possible to transform f(x) = x> + 4x + 3 into g(x) = x> + 10x + 9 by a
sequence of transformations of the form

fE) = 2fA/x+1) or f(x) e (x =1 f[1/(x=D]?
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Does the sequence of squares contain an infinite arithmetic subsequence?

The integers 1, ..., n are arranged in any order. In one step you may switch any two
neighboring integers. Prove that you can never reach the initial order after an odd
number of steps.

One step in the preceding problem consists of an interchange of any two integers.
Prove that the assertion is still true.

Theintegers 1, ..., n are arranged in order. In one step you may take any four integers
and interchange the first with the fourth and the second with the third. Prove that,
if n(n — 1)/2 is even, then by means of such steps you may reach the arrangement
n,n—1,...,1.Butifn(n — 1)/2 is odd, you cannot reach this arrangement.

Consider all lattice squares (x, y) with x, y nonnegative integers. Assign to each its
lower left corner as a label. We shade the squares (0, 0), (1, 0), (0, 1), (2, 0), (1, 1),
(0, 2). (a) There is a chip on each of the six squares (b) There is only one chip on
(0, 0).

Step: If (x, y) is occupied, but (x + 1, y) and (x, y + 1) are free, you may remove
the chip from (x, y) and place a chip on each of (x + 1, y) and (x, y 4+ 1). The goal
is to remove the chips from the shaded squares. Is this possible in the cases (a) or
(b)? (Kontsevich, TT 1981.)

In any way you please, fill up the lattice points below or on the x-axis by chips. By
solitaire jumps try to get one chip to (0, 5) with all other chips cleared off. (J. H.
Conway.) The preceding problem of Kontsevich might have been suggested by this
problem.

A solitaire jump is a horizontal or vertical jump of any chip over its neighbor to a free
point with the chip jumped over removed. For instance, with (x, y) and (x, y + 1)
occupied and (x, y + 2) free, a jump consists in removing the two chips on (x, y)
and (x, y + 1) and placing a chip onto (x, y + 2).

We may extend a set S of space points by reflecting any point X of S at any space
point A, A # X. Initially, S consists of the 7 vertices of a cube. Can you ever get
the eight vertex of the cube into S?

The following game is played on an infinite chessboard. Initially, each cell of an
n X n square is occupied by a chip. A move consists in a jump of a chip over a chip in
a horizontal or vertical direction onto a free cell directly behind it. The chip jumped
over is removed. Find all values of n, for which the game ends with one chip left

over (IMO 1993 and AUO 1992!).

Nine 1 x 1 cells of a 10 x 10 square are infected. In one time unit, the cells with
at least two infected neighbors (having a common side) become infected. Can the
infection spread to the whole square?

Can you get the polynomial 4(x) = x from the polynomials f(x) and g(x) by the
operations addition, subtraction, multiplication if

(@) f(x) = x* +x, g(x) = x> + 23 (b) f(x) = 227 + x, g(x) = 2x:

(©) f(x) =x%+x, gx) = x? —2?

Accumulation of your computer rounding errors. Start with xo = 1, yo = 0, and,
with your computer, generate the sequences

5xn - lz_yu _ 12.?(,, + 5}‘1:
13 '

X1 — ’ Ynt1 =

13
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Find x? + y? forn = 102, 10°, 10%, 10%, 10°, and 10’.

Start with two numbers 18 and 19 on the blackboard. In one step you may add another
number equal to the sum of two preceding numbers. Can you reach the number 1994
(IIM)?

In a regular (a) pentagon (b) hexagon all diagonals are drawn. Initially each vertex
and each point of intersection of the diagonals is labeled by the number 1. In one step
it is permitted to change the signs of all numbers of a side or diagonal. Is it possible
to change the signs of all labels to —1 by a sequence of steps (IIM)?

In Fig. 1.7, two squares are neighbors if they have a common boundary. Consider
the following operation 7': Choose any two neighboring numbers and add the same
integer to them. Can you transform Fig. 1.7 into Fig. 1.8 by iteration of 7'?

1273 718719
41576 624
7080 351
Fig. 1.7 Fig. 1.8

There are several signs + and — on a blackboard. You may erase two signs and
write, instead, + if they are equal and — if they are unequal. Then, the last sign on
the board does not depend on the order of erasure.

There are several letters e, a and b on a blackboard. We may replace two ¢’s by one
e, two a's by one b, two b's by one a, an a and a b by one e, an a and an e by one
a, a b, and an e by one b. Prove that the last letter does not depend on the order of
erasure.

A dragon has 100 heads. A knight can cut off 15, 17, 20, or 5 heads, respectively,
with one blow of his sword. In each of these cases, 24, 2, 14, or 17 new heads grow
on its shoulders. If all heads are blown off, the dragon dies. Can the dragon ever die?

Is it possible to arrange the integers 1,1,2,2,..., 1998, 1998 such that there are

exactly ¢ — 1 other numbers between any two i's?

The following operations are permitted with the quadratic polynomial ax? 4+ bx + c:
(a) switch a and ¢, (b) replace x by x + ¢ where ¢ is any real. By repeating these
operations, can you transform x> — x — 2 into x> — x — 1?2

Initially, we have three piles with a, b, and ¢ chips, respectively. In one step, you may
transfer one chip from any pile with x chips onto any other pile with y chips. Let
d=y—x+41.1fd > 0, the bank pays you d dollars. If d < 0, you pay the bank |d|
dollars. Repeating this step several times you observe that the original distribution of
chips has been restored. What maximum amount can you have gained at this stage?

Let d(n) be the digital sum of n € N. Solve n + d(n) 4+ d(d(n)) = 1997.

Start with four congruent right triangles. In one step you may take any triangle and
cut it in two with the altitude from the right angle. Prove that you can never get rid
of congruent triangles (MMO 1995).

Starting with a point S(a, b) of the plane with 0 < a < b, we generate a sequence
(x,, y,) of points according to the rule

Xo = a, Yo = b, Xntl = N/ XnYnt1,s VYo+t1 = A/ XnYn-



14 1. The Invariance Principle

Prove that there is a limiting point with x = y. Find this limit.

58. Consider any binary word W = a a,---a,. It can be transformed by inserting,
deleting or appending any word X X X, X being any binary word. Our goal is to
transform W from 01 to 10 by a sequence of such transformations. Can the goal be
attained (LMO 1988, oral round)?

59. Seven vertices of a cube are marked by O and one by 1. You may repeatedly select
an edge and increase by 1 the numbers at the ends of that edge. Your goal is to reach
(a) 8 equal numbers, (b) 8 numbers divisible by 3.

60. Start with a point S(a, D) of the plane with 0 < b < a, and generate a sequence of
points S, (x,, ¥,) according to the rule
2%, Y0 _ Zxusyn

Vg1 =

xo=a, yo=b, x4 = —> -
Xn+ Va Xps1 + Vn

Prove that there is a limiting point with x = y. Find this limit.

Solutions

1. In one move the number of integers always decreases by one. After (4n — 2) steps,
just one integer will be left. Initially, there are 2n even integers, which is an even
number. If two odd integers are replaced, the number of odd integers decreases by
2. If one of them is odd or both are even, then the number of odd numbers remains
the same. Thus, the number of odd integers remains even after each move. Since it
is initially even, it will remain even to the end. Hence, one even number will remain.

2. () (0.6a—0.8b)>+(0.8a+0.6b)* = a*+b2.Sincea’+b>+c? = 32+42+12% = 132,
the point (a, b, ¢) lies on the sphere around O with radius 13. Because 4° +67+12? =
142, the goal lies on the sphere around O with radius 14. The goal cannot be reached.
(b) (x — 4)> + (y — 6)* + (z — 12)> < 1. The goal cannot be reached.

The important invariant, here, is the distance of the point (a, b, ¢) from O.

3. (a) Repainting a row or column with & black and 8 — b white squares, you get (8§ — b)
black and b white squares. The number of black squares changes by [(8 — b) — b| =
|8 — 2b|, that is an even number. The parity of the number of black squares does
not change. Initially, it was even. So, it always remains even. One black square is
unattainable. The reasoning for (b) is similar.

4. Here is a solution valid for natural, rational and irrational numbers. With the invariant
a + b = n the algorithm can be reformulated as follows:

Ifa < n/2, replace a by 2a.

Ifa > n/2 replaceabya—b=a—(n—a)=2a—n=2a (modn)
Thus, we double a repeatedly modulo n and get the sequence
a,2a,2%a,?%a,... (mod n). (N

Divide a by n in base 2. There are three cases.
(a) The result is terminating: a/n = 0.d\dads...d;, d; € {0,1}. Then 2 = 0
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(mod n), but 2" £ 0 (mod n) fori < k. Thus, the algorithm stops after exactly k&
steps.

(b) The result is nonterminating and periodic.
a/n = 0.6{[(12 . ..al)dldz o .dkd|[lz ‘e .dk cea

The algorithm will not stop, but the sequence (1) has period k with tail p.
(c) The result is nonterminating and nonperiodic: a/n = 0.d,d,d; . . .. In this case,
the algorithm will not stop, and the sequence (1) is not periodic.

This is a special case of problem E10 on shrinking squares. Addition is done mod
2040=141=0,140=0+1 = 1. Let (x;, x5, ..., x,) be the original
distribution of zeros and ones around the circle. One step consists of the replacement
(x1, ..., x,) < (X + x2, x2 + x3, ..., x, + xy). There are two special distributions
E=(,1,...,1)and I = (0,0,...,0). Here, we must work backwards. Suppose
we finally reach /. Then the preceding state must be £, and before that an alternating
n-tuple (1,0, 1,0, ...). Since n is odd such an n-tuple does not exist.

Now suppose that n = 2°q, ¢ odd. The following iteration

(X1, -.,x) < (o +x, 0+ x3, .+ x, +x) < g+ x3, 0+ x4, .00x, + X2)

<—(x|+x2+.r3+X4,x2+x;+x4+X5,...)<—(x1+x5,x2+x6,...)<—---

shows that, for ¢ = 1, the iteration ends up with 7. For ¢ > 1, we eventually arrive
at I iff we ever get ¢ identical blocks of length 2, i.e., we have period 2F. Try to
prove this.

The problem-solving strategy of working backwards will be treated in Chapter
14.

All three numbers a, b, ¢ change their parity in one step. If one of the numbers has
different parity from the other two, it will retain this property to the end. This will
be the one which remains.

(a, b, ¢) will be transformed into one of the three triples (a + 2,6 — 1,¢c — 1),
(@a—1L,b+2,c—1),(a@a—-1,b—1,c+ 2). Ineachcase, I = a — bmod 3 is
an invariant. But » — ¢ = O mod 3 and @ — ¢ = 0 mod 3 are also invariant. So
I = 0 mod 3 combined with a + b + ¢ = 0 mod 3 is the condition for reaching a
monochromatic state.

If there are numbers equal to 1 in the first column, then we double the corresponding
rows and subtract 1 from all elements of the first column. This operation decreases
the sum of the numbers in the first column until we get a column of ones, which is
changed to a column of zeros by subtracting 1. Then we go to the next column, etc.

Consider the remainder mod 9. It is an invariant. Since 10° = 1 mod 9 the number
of ones is by one more than the number of twos.

From (a — d)(b — ¢) < 0, we get ab 4 cd < ac + bd. The switching operation
increases the sum S of the products of neighboring terms. In our case ab + bc + cd
is replaced by ac + ¢b + bd. Because of ab + cd < ac + bd the sum § increases.
But S can take only finitely many values.

. The product I of the eight boundary squares (except the four corners) is —1 and

remains invariant.
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The numbers starting with the second in each column are an increasing and bounded
sequence of integers.

. (a) Let S be the sum of all numbers except the third and sixth row. S mod 2 is invariant.

If $#£ 0 (mod 2) initially, then odd numbers will remain on the chessboard.

(b) Let S be the sum of all numbers, except the fourth and eight row. Then I =
S mod 3 is an invariant. If, initially, 7 # 0 (mod 3) there will always be numbers
on the chessboard which are not divisible by 3.

We have 77 = 1 mod 9 = 7'%¢ = 7' mod 9. This digital sum remains invariant. At
the end all digits cannot be distinct, else the digital sum wouldbe O+ 14-- - -+9 = 45,
which is 0 mod 9.

The point (x, y) can be reached from (1, 1) iff ged(x, y) = 2", n € N. The permitted
moves either leave ged(x, y) invariant or double it.

Here, I(x,, x5, ..., X¢) = 2x; 4+ 4x; + 6x3 + 8x4 + 10x5 + 12x5 mod 10 is the
invariant. Starting with 7(1,0, 1,0, 1, 0) = 8, the goal 1(0, 1,0, 1, 0, 1) = 4 cannot
be reached.

. Suppose ged(m, n) = 1. Then, in Chapter 4, ES, we prove that nx = my + 1 has

a solution with x and y from {1,2,...,m — 1}. We rewrite this equation in the
form nx = m(y — 1) + m + 1. Now we place any m positive integers x, ..., X
around a circle assuming that x; is the smallest number. We proceed as follows. Go
around the circle in blocks of » and increase each number of a block by 1. If you
do this n times you get around the circle m times, and, in addition, the first number
becomes one more then the others. In this way, | X,,.x — Xnin| decreases by one. This
is repeated each time placing a minimal element in front until the difference between
the maximal and minimal element is reduced to zero.

Butif ged(x, y) = d > 1, then such areduction is not always possible. Let one of the
m numbers be 2 and all the others be 1. Suppose that, applying the same operation
k times we get equidistribution of the (m 4 1 4 kn) units to the m numbers. This
means m + 1 + kn = 0 mod m. But d does not divide m + kn + 1 since d > 1.
Hence m does not divide m 4 1 + kn. Contradiction!

We proceed by contradiction. Suppose all the remainders O, 1, ..., 2rn — 1 occur.

The sum of all integers and their place numbers is
S1=2001424+...+42n)=2n2n+1)=0 (mod 2n).

The sum of all remainders is

S =0+14+...42n—1=n2n—-1)=n (mod 2n).

Contradiction!

Let the numbering of the prongs be iy, i,, ..., i,. Clearly i, + - + i, = n(n + 1)/2.
If n is odd, then the numbering i; = n 4+ 1 — j works. Suppose the numbering is
good. The prong and hole with number #; coincide if the plug is rotated by i; — j
(ori; — j+ n) units ahead. This means that (, — 1) +---+ (@, —n) =1+2+4+---n
(mod n). The LHS is 0. The RHS is n(n + 1)/2. This is divisible by n if n is odd.

Invariants of this transformation are

P :ged(x, y) = ged(x — y, x) = ged(x, y — x),
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Q:xv+yu=2ab,R:x>0,y>0.

P and R are obviously invariant. We show the invariance of Q. Initially, we have
ab + ab = 2ab, and this is obviously correct. After one step, the left side of Q
becomes either x (v+u)+(y—x)u = xv+yuor (x—y)v+y(u+v) = xv+ yu, thatis,
the left side of Q does notchange. At the end of the game, we have x = y = gcd(a, b)
and

x(u+v)=2ab— (u+v)/2=ab/x = ab/gcd(a, b) = lcm(a, b).

Initially, if all components are greater than 1, then they will remain greater than 1.
Starting with the second triple the largest component is always the sum of the other
two components diminished by 1. If, after some step, we get (a, b, c) with a <
b < ¢, thenc = a + b — 1, and a backward step yields the triple (a, b, b — a +
1). Thus, we can retrace the last state (17, 1967, 1983) uniquely until the next to
last step: (17,1967, 1983) « (17,1967, 1951) « (17,1935,1951) « --- «
(17,15,31) « (17,15,3) « (13,15,3) <« --- <« (5,7,3) « (5,3,3). The
preceding triple should be (1, 3, 3) containing 1, which is impossible. Thus the triple
(5, 3, 3) is generated at the first step. We can get from (3, 3, 3) to (5, 3, 3) in one step,
but not from (2, 2, 2).

Let a; be the number of chips on the circle #i. We consider the sum S = Y ia;.
Initially, we have S = Zi % 1 = n(n + 1)/2 and, at the end, we must have kn for
ke {1,2,...,n}. Each move changes S by 0, or n, or —n, thatis, S is invariant mod
n. At the end, S = 0 mod n. Hence, at the beginning, we must have § = 0 mod n.
This is the case for odd n. Reaching the goal is trivial in the case of an odd n.

Solution 1. Suppose we get only integer n-tuples from (x|, ..., x,). Then the dif-
ference between the maximal and minimal term decreases. Since the difference is
integer, from some time on it will be zero. Indeed, if the maximum x occurs k times
in a row, then it will become smaller than x after & steps. If the minimum y occurs m
times in a row, then it will become larger after m steps. In a finite number of steps,

we arrive at an integral n-tuple (a, a, ..., a). We will show that we cannot get equal
numbers from pairwise different numbers. Supppose z, . . ., z, are not all equal, but
(z1+2)/2=(z2+23)/2=+---=(z,+2)/2.Thenz, = z3 = z5s = --- and
272 = 24 = Z¢ = - --. If n is odd then all z; are equal, contradicting our assumption.
For even n = 2k, we must eliminate the case (a, b, . .., a, b) with a # b. Suppose

i+ _ Y3+ 4 _ _ Yn-1+ Ya _ Y2+ 3 L Yo+ V1 —b

2 2 B 2 R 2 N 2 7

But the sums of the left sides of the two equation chains are equal, i.e., a = b, that
is, we cannot get the n-tuple (a, b, ..., a, b) witha # b.
Solution 2. Let X = (x;, ..., x,), TX =5V =(y,...,y,). Withn + 1 =1,

n . 1 n . 1 n R n R
D23 = g 20T b ) < g ) bl b ) = )
i=1 i=1 i=1 i=1

We have equality if and only if x; = x;, for all i. Suppose the components remain
integers. Then the sum of squares is a strictly decreasing sequence of positive integers
until all integers become equal after a finite number of steps. Then we show as in
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solution 1 that, from unequal numbers, you cannot get only equal numbers in a finite
number of steps.

Another Solution Sketch. Try a geometric solution from the fact that the sum of the
components is invariant, which means that the centroid of the » points is the same
at each step.

If you find a negative sum in any row or column, change the signs of all numbers in
that row or column. Then the sum of all numbers in the table strictly increases. The
sum cannot increase indefinitely. Thus, at the end, all rows and columns will have
nonnegative signs.

The diagonals partition the interior of the polygon into convex polygons. Consider
two neighboring polygons P;, P, having a common side on a diagonal or side XY .
Then P;, P, both belong or do not belong to the triangles without the common side
XY.Thus, if P goes from P; to P, the number of triangles changes by #; — #,, where
t; and #, are the numbers of vertices of the polygon on the two sides of XY. Since
t, +t, = 2m + 2, the number ¢, — 1, is also even.

You cannot get rid of an odd divisor of the difference b — a, that is, you can reach
(1, 50) from (5, 19), but not (1, 100).

The three automata leave ged(x, y) unchanged. We can reach (19, 79) from (1, 2),
but not (819, 357). We can reach (p, ¢g) from (a, b) iff ged(p, q) = ged(a, b) = d.
Go from (a, b) down to (1, d + 1), then, up to (p, g).

From the inequality 1/a + 1/b > 4/(a + b) which is equivalent to (a + b)/2 >
2ab/(a + b), we conclude that the sum S of the inverses of the numbers does not
increase. Initially, we have S = n. Hence, at the end, we have S < n. For the last
number 1/S, we have 1/S > 1/n.

The permissible transformations leave the sides of the polygon and their directions
invariant. Hence, there are only a finite number of polygons. In addition, the area
strictly increases after each reflection. So the process is finite.

Remark. The corresponding problem for line reflections in AB is considerably harder.
The theorem is still valid, but the proof is no more elementary. The sides still remain
the same, but their direction changes. So the finiteness of the process cannot be easily
deduced. (In the case of line reflections, there is a conjecture that 2n reflections suffice
to reach a convex polygon.)

Let f(x) = x> — 3x + 3. We are asked to solve the equation f(f(x)) = x, that is to
find the fixed or invariant points of the function f o f. First, let us look at f(x) = x,
i.e. the fixed points of f. Every fixed point of f is also a fixed point of f o f. Indeed,

fx)=x= f(f() = fl)= f(fx)=x

First, we solve the quadratic f(x) = x, or x> — 4x + 3 = 0 with solutions x; = 3,
x2 = 1. f[f(x)] = x leads to the fourth degree equation x* —6x>+12x*— 10x+3 =
0, of which we already know two solutions 3 and 1. So the left side is divisible by
x — 3 and x — 1 and, hence, by the product (x — 3)(x — 1) = x? — 4x + 3. This
will be proved in the chapter on polynomials, but the reader may know this from
high school. Dividing the left side of the 4th-degree equation by x> — 4x + 3 we get
x2—2x+ 1.Nowx2—2x+1=0is equivalent to (x — 1)?> = 0. So the two other
solutions are x3 = x4 = 1. We get no additional solutions in this case, but usually,
the number of solutions is doubled by going from f[x] = x to f[f(x)] = x.
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Suppose the product P is odd. Then, each of its factors must be odd. Consider the
sum S of these numbers. Obviously S is odd as an odd number of odd summands.
Onthe otherhand, S = Y (a; —i) = Y _a, — Y_ i = 0, since the a; are a permutation
of the numbers 1 to n. Contradiction!

We partition the participants into the set £ of even persons and the set O of odd
persons. We observe that, during the hand shaking ceremony, the set O cannot
change its parity. Indeed, if two odd persons shake hands, O increases by 2. If two
even persons shake hands, O decreases by 2, and, if an even and an odd person
shake hands, |O| does not change. Since, initially, | Q| = 0, the parity of the set is
preserved.

Consider the number U of inversions, computed as follows: Below each 1, write the
number of zeros to the right of it, and add up these numbers. Initially U = 0. U does
not change at all after each move, or it increases or decreases by 2. Thus U always
remains even. But we have U = 1 for the goal. Thus, the goal cannot be reached.

Consider the trinomial f(x) = ax?+ bx + c. It has discriminant 5> — 4ac. The first
transformation changes f(x) into (a + b + ¢)x? + (b + 2a)x + a with discriminant
(b + 2a)* —4(a + b+ ¢) - a = b*> — 4ac, and, applying the second transformation,
we get the trinomial cx? + (b — 2¢)x + (a — b + ¢) with discriminant b — 4ac.
Thus the discriminant remains invariant. But x* + 4x + 3 has discriminant 4, and
x2 + 10x + 9 has discriminant 64. Hence, one cannot get the second trinomial from
the first.

For three squares in arithmetic progression, we have a3 — a3 = a3 — a} or (a3 —
ar)(a; +a,) = (a, — a,)(a, + a,). Since a, + a, < as + a,, we must have a, —a; >
az — dp.

Suppose thata;, a3, aj, ... is an infinite arithmetic progression. Then
ar —dy >4z —dy > AAqg — A3z > .

This is a contradiction since there is no infinite decreasing sequence of positive
integers.

Suppose the integers 1, . . ., n are arranged in any order. We will say that the numbers
i and k are out of order if the larger of the two is to the left of the smaller. In that
case, they form an inversion. Prove that interchange of two neighbors changes the
parity of the number of inversions.

Interchange of any two integers can be replaced by an odd number of interchanges
of neighboring integers.

The number of inversions in n, ..., 1 is n(n — 1)/2. Prove that one step does not
change the parity of the inversions. If n(n — 1)/2 is even, then split the n integers
into pairs of neighbors (leaving the middle integer unmatched for odd n). Then form
quadruplets from the first, last, second, second from behind, etc.

We assign the weight 1/2** to the square with label (x, y). We observe that the total
weight of the squares covered by chips does not change if a chip is replaced by two
neighbors. The total weight of the first column is

(I
I+ -+ -4--=2.
tyt gt
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(a) No! The parity of the number of —1's on the perimeter of the pentagon does not
change.

(b) No! The product of the nine numbers colored black in Fig. 1.11 does not change.

Color the squares alternately black and white as in Fig. 1.12. Let W

10" | x2 + y2
10 | 1.0000000000
107 [ 1.0000000001
10° [ 1.0000000007
10 | 1.0000000066
10° | 1.0000000665
10° | 1.0000006660

10" | 1.0000066666

Fig. 1.11 Fig. 1.12

and B be the sums of the numbers on the white and black squares, respectively.
Application of 7' does not change the difference W — B. For Fig. 1.7 and Fig. 1.8
the differences are 5 and —1, respectively. The goal —1 cannot be reached from 5.

Replace each + by +1 and each — by — 1, and form the product P of all the numbers.
Obviously, P is an invariant.

We denote a replacement operation by o. Then, we have
eoe—e, eoca=da, eob=>b, aca=b, bob=a, aob = e.

The o operation is commutative since we did not mention the order. Itis easy to check
that it is also associative, i.e., (pog)or = po(q or) for all letters occurring. Thus,
the product of all letters is independent of the the order in which they are multiplied.

The number of heads is invariant mod 3. Initially, it is 1 and it remains so.

Replace 1998 by n, and derive a necessary condition for the existence of such an
arrangement. Let p, be the position of the first integer k. Then the other k has
position p + k. By counting the position numbers twice, we get 1 + -+ -+ 2n =
(pi+pi+ D4+ (pu+p.+n).For P=3"" | p;,weget P =n(3n+1)/4,and
P is aninteger forn = 0, 1 mod 4. Since 1998 = 2 mod 4, this necessary condition
is not satisfied. Find examples for n = 4, 5, and 8.

This is an invariance problem. As a prime candidate, we think of the discriminant
D. The first operation obviously does not change D. The second operation does
not change the difference of the roots of the polynomial. Now, D = b* — dac =
a*((bja)* — 4c/a), but —b/a = x; + x,, and c/a = x,x,. Hence, D = a*(x, —
x,)?, i.e., the second operation does not change D. Since the two trinomials have
discriminants 9 and 5, the goal cannot be reached.

Consider I = a* + b* + ¢* — 2g, where g is the current gain (originally g = 0). If
we transfer one chip from the first to the second pile, then we get I’ = (a — 1)* +
b+ 12 +c2—2g whereg' = g+b—a+ 1, thatis, I' =a®> —2a+ 1+ b> +
AA+2b+1-2g—2b+2a—2=a*+b*+ c* —2g = I. We see that I does not
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change in one step. If we ever get back to the original distribution (a, b, c¢), then g
must be zero again.

The invariant / = ab + bc + ca + g yields another solution. Prove this.

The transformation d leaves the remainder on division by 3 invariant. Hence, modulo
3 the equation has the form 0 = 2. There is no solution.

We assume that, at the start, the side lengths are 1, p, g, 1 > p, 1 > g. Then all
succeeding triangles are similar with coefficient p™¢g". By cutting such a triangle of
type (m, n), we get two triangles of types (m + 1, n) and (m, n + 1). We make the
following translation. Consider the lattice square with nonnegative coordinates. We
assign the coordinates of its lower left vertex to each square. Initially, we place four
chips on the square (0, 0). Cutting a triangle of type (i, n) is equvalent to replacing
a chip on square (m, n) by one chip on square (m + 1, n) and one chip on square
(m,n + 1). We assign weight 2" " to a chip on square (mm, n). Initially, the chips
have total weight 4. A move does not change total weight. Now we get problem 39
of Kontsevich. Initially, we have total weight 4. Suppose we can get each chip on a
different square. Then the total weight is less than 4. In fact, to get weight 4 we would
have to fill the whole plane by single chips. This is impossible in a finite number of
steps.

Comparing x, 1 /x, with y,/y,, we observe that x2y, = a®b is an invariant. If we
can show that lim x,, = lim y, = x, then x> = a?b, or x = v/a?b.

Because of x,, < y, and the arithmetic mean-geometric mean inequality, y, ., lies to
the left of (x,, + y,)/2 and x,., lies to the left of (x, 4+ y,.1)/2. Thus, x, < x,.; <
Var1 < yp and y,i1 — X, < (¥, — x,)/2. We have, indeed, a common limit x.
Actually for large n, say n > 5, we have /X, y, = (y, + x,)/2 and y,41 — X, 41 =
e — x,)/4.

Assign the number /(W) = a, +2a,+3a;+- - - +na, to W. Deletion or insertion of
any word X X X in any place produces Z = b, b, - - - b,, with I(W) = I(Z) modulo
3. Since /(01) = 2 and /(10) = 1, the goal cannot be attained.

Select four vertices such that no two are joined by an edge. Let X be the sum of the
numbers at these vertices, and let y be the sum of the numbers at the remaining four
vertices. Initially, / = x — y = +1. A step does not change I. So neither (a) nor (b)
can be attained.

Hint: Consider the sequences s, = 1/x,,andt, = 1/y,. Aninvariantiss, ,+2f,,, =
S, + 2t, = 1/a+2/b.
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Coloring Proofs

The problems of this chapter are concerned with the partitioning of a set into a
finite number of subsets. The partitioning is done by coloring each element of a
subset by the same color. The prototypical example runs as follows.

In 1961, the British theoretical physicist M.E. Fisher solved a famous and very
tough problem. He showed that an 8 x 8 chessboard can be covered by 2 x 1
dominoes in 2* x 9017 or 12,988,816 ways. Now let us cut out two diagonally
opposite corners of the board. In how many ways can you cover the 62 squares of
the mutilated chessboard with 31 dominoes?

The problem looks even more complicated than the problem solved by Fisher,
but this is not so. The problem is trivial. There is no way to cover the mutilated
chessboard. Indeed, each domino covers one black and one white square. If a
covering of the board existed, it would cover 31 black and 31 white squares. But
the mutilated chessboard has 30 squares of one color and 32 squares of the other
color.

The following problems are mostly ingenious impossibility proofs based on
coloring or parity. Some really belong to Chapter 3 or Chapter 4, but they use
coloring, so I put them in this chapter. A few also belong to the closely related
Chapter 1. The mutilated chessboard required two colors. The problems of this
chapter often require more than two colors.
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Problems

. Arectangular floor is covered by 2 x 2 and 1 x 4 tiles. One tile got smashed. There is a

tile of the other kind available. Show that the floor cannot be covered by rearranging
the tiles.

Is it possible to form a rectangle with the five tetrominoes in Fig. 2.1?

A 10 x 10 chessboard cannot be covered by 25 T-tetrominoes in Fig. 2.1. These
tiles are called from left to right: straight tetromino, T-tetromino, square tetromino,
L-tetromino, and skew tetromino.

HENNN ! =0 |

Fig. 2.1

An 8 x 8 chessboard cannot be covered by 15 T-tetrominoes and one square tetromino.

5. A 10 x 10 board cannot be covered by 25 straight tetrominoes (Fig. 2.1).

10.

12.

Consider an n x n chessboard with the four corners removed. For which values of n
can you cover the board with L-tetrominoes as in Fig. 2.2?

Is there a way to pack 250 1 x 1 x 4 bricks into a 10 x 10 x 10 box?
Ana x b rectangle can be covered by 1 x n rectangles iff n|a or n|b.

One corner of a (2n + 1) x (2n + 1) chessboard is cut off. For which n can you
cover the remaining squares by 2 x 1 dominoes, so that half of the dominoes are
horizontal?

Fig. 2.3 shows five heavy boxes which can be displaced only by rolling them about
one of their edges. Their tops are labeled by the letter T. Fig. 2.4 shows the same
five boxes rolled into a new position. Which box in this row was originally at the
center of the cross?

. Fig. 2.5 shows a road map connecting 14 cities. Is there a path passing through each

city exactly once?

N
LHJHEH

Fig. 2.2 Fig. 2.3 Fig. 2.4 Fig. 2.5

[T ]

A beetle sits on each square of a 9 x 9 chessboard. At a signal each beetle crawls
diagonally onto a neighboring square. Then it may happen that several beetles will
sit on some squares and none on others. Find the minimal possible number of free
squares.
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Every point of the plane is colored red or blue. Show that there exists a rectangle
with vertices of the same color. Generalize.

Every space point is colored either red or blue. Show that among the squares with
side 1 in this space there is at least one with three red vertices or at least one with
four blue vertices.

. Show that there is no curve which intersects every segment in Fig. 2.6 exactly once.

||
I

Fig. 2.6
On one square of a 5 x 5 chessboard, we write —1 and on the other 24 squares +1.
In one move, you may reverse the signs of one a x a subsquare witha > 1. My goal
is to reach +1 on each square. On which squares should —1 be to reach the goal?

The points of a plane are colored red or blue. Then one of the two colors contains
points with any distance.

The points of a plane are colored with three colors. Show that there exist two points
with distance 1 both having the same color.

All vertices of a convex pentagon are lattice points, and its sides have integral length.
Show that its perimeter is even.

n points (n > 5) of the plane can be colored by two colors so that no line can separate
the points of one color from those of the other color.

You have many 1 x 1 squares. You may color their edges with one of four colors
and glue them together along edges of the same color. Your aim is to getan m x n
rectangle. For which m and » is this possible?

You have many unit cubes and six colors. You may color each cube with 6 colors
and glue together faces of the same color. Your aim is to get a » x s x t box, each
face having different color. For which r, s, ¢ is this possible?

Consider three vertices A = (0,0), B = (0, 1), C = (1, 0) in a plane lattice. Can
you reach the fourth vertex D = (1, 1) of the square by reflections at A, B, C or at
points previously reflected?

Every space point is colored with exactly one of the colors red, green, or blue. The
sets R, G, B consist of the lengths of those segments in space with both endpoints
red, green, and blue, respectively. Show that at least one of these sets contains all
nonnegative real numbers.

The Art Gallery Problem. An art gallery has the shape of a simple n-gon. Find
the minimum number of watchmen needed to survey the building, no matter how
complicated its shape.

AT x 7 square is covered by sixteen 3 x 1 and one 1 x 1 tiles. What are the permissible
positions of the 1 x 1 tile?

The vertices of aregular 2n-gon A, ..., A,, are partitioned into n pairs. Prove that,
ifn =4m 4+ 2 orn = 4m + 3, then two pairs of vertices are endpoints of congruent
segments.

A 6 x 6 rectangle is tiled by 2 x 1 dominoes. Then it has always at least one fault-line,
i.e., a line cutting the rectangle without cutting any domino.
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1[2]3fo1]2]3]o]1]2
o[t[2]3]o|1]2]3]0]1
sfolt]2]3]o]1]2]3]0
2370123 o]1]2]3
1213 o]1]2]3]0]1]2
o[t[2[3]o|1]2]3]0]1
sfol1[2]3]o1]2]3]0
230|123 o1 ]2]3
1 2]3[o]1]2[3]0]1]2
oft][2]3fot[2]3[0]1
Fig. 2.10

7. Assign coordinates (x, v, z) to the cells of the box, | < x,y,z < 10. Color the

cells in four colors denoted by 0, 1, 2, 3. The cell (x, y, z) is assigned color 7 if
x + ¥y +z =1 mod 4. This coloring has the property thata 1 x 1 x 4 brick always
occupies one cell of each color no matter how it is placed in the box. Thus, if the box
could be filled with two hundred fifty 1 x 1 x 4 bricks, there would have to be 250
cells of each of the colors 0, 1, 2, 3, respectively. Let us see if this necessary packing
condition is satisfied. Fig. 2.10 shows the lowest level of cells with the corresponding
coloring. There are 26, 25, 24, 25 cells with color 0, 1, 2, 3 respectively. The coloring
of the next layer is obtained from that of the preceding layer by adding 1 mod 4.
Thus the second layer has 26, 25, 24, 25 cells with colors 1, 2, 3, 0, respectively. The
third layer has 26, 25, 24, 25 cells with colors 2, 3, 0, 1, respectively, the fourth layer
has 26, 25, 24, 25 cells with colors 3, 0, 1, 2, respectively, and so on. Thus there are
(26 425+ 244 25)- 2426+ 25 = 251 cells of color 0. Hence there is no packing
of the 10 x 10 x 10 box by 1 x 1 x 4 bricks.

. If nla or n|b, the board can be covered by 1 x n tiles in an obvious way. Suppose

n fa,ie.a=gq-n+r 0 <r <n.Colorthe board as indicated in Fig. 2.9. There
are bq + b squares of each of the colors 1, 2, ..., r, and there are bq squares of
each of the colors 1, ..., n. The h horizontal 1 x n tiles of a covering each cover
one square of each color. Each vertical 1 x n tile covers n squares of the same color.
After the h horizontal tiles are placed, there will remain (bg 4+ b — h) squares of
each of the colors 1, ..., r and bg — h of each of the colors r 4+ 1, ..., n. Thus
nlbg + b — h and n|bg — h. But if n divides two numbers, it also divides their
difference: (bg 4+ b — h) — (bq — h) = b. Thus, n|b. Space analogue: [fana x b x ¢
box can be tiled withn x 1 x 1 bricks, then n|a or n|b or n|c.

Fig. 2.13




11.

12.

13.

2. Coloring Proofs 31

. Color the board as in Fig. 2.12. There are 2n? + n white squares and 21n% + 3n black

squares, a total of 4n? + 4n squares. 2n”> + 2n dominoes will be required to cover
all of these squares. Since one half of these dominoes are to be horizontal, there will
be n? + n vertical and n?> + n horizontal dominoes. Each vertical domino covers one
black and one white square. When all the vertical dominoes are placed, they cover
n? + n white squares and n? + n black squares. The remaining n* white squares and
n®+2n black squares must be covered by horizontal dominoes. A horizontal domino
covers only squares of the same color. To cover the n? white squares n?, i.e., n must
be even. One easily shows by actual construction that this necessary condition is also
sufficient. Thus, the required covering is possible for a (4n 4 1) x (4n 4 1) board
and is impossible for a (4n — 1) x (4n — 1) board.

. Suppose the floor is ruled into squares colored black and white like a chessboard.

Further suppose that the central box of the cross covers a black square. Then the
four other boxes stand on white squares. It is easy to see that the transition T — T
requires an even number of flips whereas a transition T — F requires an odd number
of flips. Hence the boxes #1, 3, 4, 5 in Fig. 2.13 originally stand on squares of the
same color. Now the squares occupied by boxes #1, 3, 5 are the same color, and so
boxes #1, 3, 5 must have originated on squares of the same color. Since there are
not three boxes which originated on black squares, these boxes must stand on white
squares. Box #2 must have been flipped an odd number of times. It is now on a black
square. Hence it was originally on a white square. Box #4 is now on a black square.
Since it was flipped an even number of times, it was originally on a black square.
Thus #4 is the central box.

Color the cities black and white so that neighboring cities have different colors as
shown in Fig. 2.14. Every path through the 14 cities has the color pattern bwbwb-
wbwbwbwbw or wbwbwbwbwbwbwb. So it passes through seven black and seven
white cities. But the map has six black and eight white cities. Hence, there is no path
passing through each city exactly once.

odd
evenl odd I even
odd | odd

Fig. 2.14 Fig. 2.15

Color the columns alternately black and white. We get 45 black and 36 white squares.
Every beetle changes its color by crawling. Hence at least nine black squares remain
empty. It is easy to see that exactly nine squares can stay free.

Consider the lattice points (x,y) with 1 < x < n+1, 1 <y < L
One row can be colored in n"*! ways. By the box principle, at least two of the
(n"*' + 1) rows have the same coloring. Let two such rows colored the same way
have ordinates k and m. Foreachi € {1, ..., n+ 1}, the points (7, k) and (i, m) have
the same color. Since there are only n colors available, one of the colors will repeat.
Suppose (a, k) and (b, k) have the same color. Then the rectangle with the vertices
(a, k), (b, k), (b, m), (a, m) has four vertices of the same color.
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The problem can be generalized to parallelograms and to k-dimensional boxes. In-
stead of the lattice rectangle with sides n and n"*!, we have a lattice box with lengths
dl — l, dg — 1‘..‘dk— l,and

di=n+1, dy =n"41.

Denote by B the property that there is a unit square with four blue vertices.

Case 1: All points of space are blue = B.

Case 2: There exists a red point P,. Make of P, the vertex of a pyramid with equal
edges and the square P, P; P, Ps as base.

Case 2.1: The four points P;, i = 2, 3,4, 5 are blue = B.

Case 2.2: One of the points P;, i = 2,3, 4,5 is red, say P,. Make of P, P, a lateral
edge of an equilateral prism, with the remaining vertices P, P;, Ps, Ps.

Case 2.2.1: The four points P;, j = 6,7, 8,9 are blue= B.

Case 2.2.2: One of the points P;, j =6,7,8,9 isred, say F;. Then P,, P,, and P,
are three red vertices of a unit square.

The map in Fig. 2.15 consists of three faces each bounded by five segments (labeled
odd). Suppose there exists a curve intersecting every segment exactly once. Then it
would have three points inside the odd faces, where it starts or ends. But a curve has
zero or two endpoints.

. Color the board as in Fig. 2.16. Every permitted subsquare contains an even number

of black squares. Initially if —1 is on a black square, then there are always an odd
number of —1’s on the black squares. Rotation by 90° shows that the —1 can be only
on the central square.

If —1 is on the central square, then we can achieve all +1’s in 5 moves

1. Reverse signs on the lower left 3 x 3 square.

2. Reverse signs on the upper right 3 x 3 square.

3. Reverse signs on the upper left 2 x 2 square.

4. Reverse signs on the lower right 2 x 2 square.

5. Reverse signs on the whole 5 x 5 square.

Suppose the theorem is not true. Then the red points miss a distance a and the blue
points miss a distance b. We may assume a < b. Consider a blue point C. Construct
an isosceles triangle ABC with legs AC = BC = b and AB = a. Since C is blue,
A cannot be blue. Thus, it must be red. The point B cannot be red since its distance
to the red point A is a. But it cannot be blue either, since its distance to the blue point
C is b. Contradiction!

Call the colors black, white, and red. Suppose any two points with distance 1 have
different colors. Choose any red point r and assign to it Fig. 2.17. One of the two
points » and w must be white and the other black. Hence, the point r" must be red.
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Rotating Fig. 2.17 about r we get a circle of red points r'. This circle contains a
chord of length 1. Contradiction!

Alternate solution. For Fig. 2.18 consisting of 11 unit rods, you need at least four
colors, if vertices of distance 1 are to have distinct colors.

. Color the lattices as in a chess board. Erect right triangles on the sides of the pentagon

as longest sides. With the two other sides along the sides of the squares, trace the ten
shorter sides. Since, at the end, we return to the vertex we left, we must have traced
an even number of lattice points (on transition from one lattice point to the next the
color of the lattice point changes). Hence the sum of shorter sides is even. The parity
of the longer sides (i.e., the sides of the pentagon) is equivalent to the parity of the
sums of the shorter sides. Hence the perimeter of the pentagon has the same parity
as the sum of the shorter sides.

Of n > 5 points, it is always possible to choose four vertices of a convex polygon.
If we color two opposite vertices the same color, then no line will separate the two
sets of points.

Result: We can glue together an m x n rectangle iff m and n have the same parity.
(a) m and n are both odd. Then we can glue together an 1 x n rectangle as in Fig.
2.19. From these strips, we can glue together the rectangle in Fig. 2.20.

(b) m and n are even. Consider the rectangles with odd side lengths of dimensions
m—1)xm—-1),1xm—-1),0m—1)x1,and 1 x 1, respectively. They can be
assembled into the rectangle m x n.

(c) m is even, and n is odd. Suppose we succeeded in gluing together a rectangle
m x n satisfying the conditions of the problem. Consider one of the sides of the
rectangle with odd length. Suppose it is colored red. Let us count the total number
of red sides of the squares. On the perimeter of the rectangle, there are n and in the
interior there is an even number, since another red neighbor belongs to one red side
of a square. Thus the total number of red sides is odd. The total number of squares
is the same as the number of red sides, i.e., odd. On the other hand this number is
m n, that is, an even number. Contradiction!

2 2 2 2
BE R EE 1

. T 4 4 3
Flg. 2.18 Fig. 2_19

2 2 2 2
a3 4l a3 143
1 3 1 3] 1 3
1| 23 24 23] 4] % |3

1 4 4 4

Fig. 2.20

The solution is similar to that of the preceding problem.

Color the lattice points black and white such that points with odd coordinates are
black and the other lattice points are white. By reflections you always stay on lattices
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of the same color. Thus it is not possible to reach the opposite vertex of the square
ABCD.

Let P,, P,, P; be the three sets. We assume on the contrary that a; is not assumed
by P, a, is not assumed by P, and a5 is not assumed by P;. We may assume that

a, > a, > az > 0.

Fig. 2.21

Let x, € P,. The sphere S with midpoint x, and radius a, is contained completely in
P,U P;. Sincea; > a3, S ¢ Ps.Letx; € P,NS.Thecircle {y € S|d(x,, y) = a»} C
P;, since P, does not realize a,. Butin Fig. 2.21,a, < ay = r = ay\/1 — a2/4a? >
GZN/E/Z, anday < a, < am/g < 2r. Thus a5 is assumed in P;.

Another ingenious solution will be found in Chapter 4 (problem 67). It will be good
training for the more difficult plane problem 68 of that chapter. Both solutions make
nontrivial use of the box principle.

The gallery is triangulated by drawing nonintersecting diagonals. By simple induc-
tion one can prove that such a triangulation is always possible. Then we color the
vertices of the triangles properly with three colors, so that any vertex of a triangle
gets a different color. By trivial induction, one proves that the triangles of the trian-
gulation can always be properly colored. Now we consider the color, which occurs
least often. Suppose it is red. The watchmen at the red vertices can survey all walls.
Thus the minimum number of watchmen is [n/3].

Color the squares diagonally by colors 0, 1, 2. Then each 3 x 1 tile covers each of
the colors once. In Fig. 2.22 we have 17 zeros, 16 ones and 16 twos. The monomino
must cover one of the squares labeled ”0”. In addition, it must remain a 0" if we
make a quarter-turn of the board. As possible positions there will remain only the
central square, the four corners, and the centers of the outer edges in Fig. 2.22. A
different coloring yields a different solution. We use the three colors 0, 1, 2 as in
Fig. 2.23. That is, the squares colored 0 will be the center, the four corners, and the
centers of the outer edges. The tiles 1 x 3 are of two types, those covering one square
of color 0 and two squares of color 1 and those covering one square of color 1 and
two squares of color 2. Suppose all squares of color 0 are covered by 1 x 3 tiles.
There will be 9 tiles of type 1 and 7 tiles of type 2. They will cover9 - 2 + 7 = 25
squares of color 1 and 7 - 2 = 14 squares of color 2. This contradiction proves that
one of the squares of color 0 is covered by the 1 x 1 tile.

O]1]2]0f1]2]0 Of1]1]{0[1]1]0O
210[1]2{0|1]2 1]2(2]1]2]2]1
1{2({0]1]2]0]1 1|2(2(1]2]2]1
0[{1]12]0]1]2]0 Oj1|1[0f1]1]0
2(01112]0(1(2 {2]12]1]2]2]1
112(0f1[2]0]1 L{2]2]1]2]2]!1
oj1f2jofr|2]o ofrjrj{oftrjr|o
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Suppose k is the smallest white number. From the preceding result, we conclude that
all multiples of k are also white. We prove that there are no other white numbers.
Suppose n is white. Represent n in the form gk + r, where 0 < r < k. If r # 0,
then r is black since k& is the smallest white number. But we have proved that gk is
white. Hence, gk + r is black. This contradiction proves that the white numbers are
all multiples of some £ > 1.
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The Extremal Principle

A successful research mathematician has mastered a dozen general heuristic princi-
ples of large scope and simplicity, which he/she applies over and over again. These
principles are not tied to any subject but are applicable in all branches of math-
ematics. He usually does not reflect about them but knows them subconsciously.
One of these principles, the invariance principle was discussed in Chapter I. It is
applicable whenever a transformation is given or can be introduced. If you have a
transformation, look for an invariant! In this chapter we discuss the extremal
principle, which has truly universal applicability, but is not so easy to recognize,
and therefore must be trained. It is also called the variational method, and soon
we will see why. It often leads to extremely short proofs.

We are trying to prove the existence of an object with certain properties. The
extremal principle tells us to pick an object which maximizes or minimizes some
function. The resulting objectis then shown to have the desired property by showing
that a slight perturbation (variation) would further increase or decrease the given
function. If there are several optimizing objects, then it is usually immaterial which
one we use. In addition, the extremal principle is mostly constructive, giving an
algorithm for constructing the object.

We will learn the use of the extremal principle by solving 17 examples from
geometry, graph theory, combinatorics, and number theory, but first we will remind
the reader of three well known facts:

(a) Every finite nonempty set A of nonnegative integers or real numbers has a
minimal element min A and a maximal element max A, which need not be
unique.
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(b) Every nonempty subset of positive integers has a smallest element. This is
called the well ordering principle, and it is equivalent to the principle of
mathematical induction.

(¢) An infinite set A of real numbers need not have a minimal or maximal
element. If A is bounded above, then it has a smallest upper bound sup A.
Read: supremum of A. If A is bounded below, then it has a largest lower
bound inf A. Read: infimum of A. If sup A € A, then sup A = max A, and
if inf A € A, then inf A = min A.

El. (a) Into how many parts at most is a plane cut by n lines? (b) Into how many
parts is space divided by n planes in general position?

Solution. We denote the numbers in (a) and (b) by p, and s,, respectively. A
beginner will solve these problems recursively, by finding p,4; = f(p,) and
Sp+1 = g(s,). Indeed, by adding to n lines (planes) another line (plane) we easily
get

Pn+1 = Pn+n+ L, Sp1 = Sp + Pa-

There is nothing wrong with this approach since recursion is a fundamental idea of
large scope and applicability, as we will see later. An experienced problem solver
might try to solve the problems in his head.

In (a) we have a counting problem. A fundamental counting principle is one-
to-one correspondence. The first question is: Can I map the p, parts of the plane
bijectively onto a set which is easy to count? The ('21) intersection points of the n
lines are easy to count. But each intersection point is the deepest point of exactly
one part. (Extremal principle!) Hence there are (’2’) parts with a deepest point. The
parts without deepest points are not bounded below, and they cut a horizontal line
h (which we introduce) into n 4+ 1 pieces (Fig. 3.1). The parts can be uniquely
assigned to these pieces. Thus there are n + 1, or (;) 4 (}) parts without a deepest
point. So there are altogether

= + " + parts of the pl
, = arts o ane.
Dy 0 1 2 € ne

n
3
point of exactly one part of space. Thus there are (’;) parts with a deepest point.
Each part without a deepest point intersects a horizonal plane & in one of p, plane

parts. So the number of space parts is

=0+ () + ()« ()

(b) Three planes form a vertex in space. There are ( ) vertices, and each is a deepest

Fig. 3.1 Fig. 3.2 Fig. 3.3
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E2. Continuation of 1b. Let n > 5. Show that, among the s, space parts, there
are at least (2n — 3)/4 tetrahedra (HMO 1973).

Telling the result simplifies the problem considerably. An experienced problem-
solver can often infer the road to the solution from the result.

Let ¢, be the number of tetrahedra among the s, space parts. We want to show
that ¢, > (Zn — 3)/4.

Interpretation of the numerator: On each of the n planes rest at least two tetra-
hedra. Only one tetrahedron need rest on each of three exceptional planes.

Interpretation of the denominator: Each tetrahedron is counted four times, once
for each face. Hence, we must divide by four.

Using these guiding principles we can easily find a proof. Let ¢ be any of the
n planes. It decomposes space into two half-spaces H, and H,. At least one half-
space, e.g., H; , contains vertices. In H;, we choose a vertex D with smallest
distance from e (extremal principle). D is the intersection point of the planes
€1, €2, €3. Then €, €1, €,, €3 define a tetrahedron T = ABCD (Fig. 3.2). None of
the remaining n — 4 planes cuts T, so that T is one of the parts, defined by the n
planes. If the plane ¢’ would cut the tetrahedron T, then ¢’ would have to cut at
least one of the edges AD, BD, CD in a point Q having an even smaller distance
from e than D. Contradiction.

This is valid for any of the n planes. If there are vertices on both sides of a plane,
at least two tetrahedra then must rest on this plane.

It remains to be shown that among the n planes there are at most three, so that
all vertices lie on the same side of these planes.

We show this by contradiction. Suppose there are four such planes €y, €;, €3,
€4. They delimit a tetrahedron ABC D (Fig. 3.3). Since n > 5, there is another
plane . It cannot intersect all six edges of the tetrahedron A BC D simultaneously.
Suppose it cuts the continuation of AB in E. Then B and E lie on different sides
of the plane 3 = ACD. Contradiction!

E3. There are n points given in the plane. Any three of the points form a triangle
of area < 1. Show that all n points lie in a triangle of area < 4.

Solution. Among all (’;) triples of points, we choose a triple A, B, C so that
AABC has maximal area F'. Obviously F < 1. Draw parallels to the opposite
sides through A, B, C. You get AA; B;C, with area F; = 4F < 4. We will show
that A A, B; C contains all n points.

Suppose thereisapoint P outside AA| B C,. Then AABC and P lie on different
sides of at least one of the lines A; By, B;Cy, C| A,. Suppose they lie on different
sides of B;C;. Then ABCP has a larger area than AABC. This contradicts the
maximality assumption about ABC (Fig. 3.4).

E4. 2n points are given in the plane, no three collinear. Exactly n of these
points are farms F = {Fy, F, ..., F,}). The remaining n points are wells:
W = (W, Wy, ..., W, }. It is intended to build a straight line road from each
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farm to one well. Show that the wells can be assigned bijectively to the farms, so
that none of the roads infersect.

Ci
P Fy
B
A
A C B W, W D
Fig. 3.4 Fig. 3.5 Fig. 3.6

Solution. We consider any bijection: f : F' +— W. If we draw from each F;
a straight line to f(F;), we get a road system. Among all n! road systems, we
choose one of minimal total length.Suppose this system has intersecting segments
FiW,, and F;W, (Fig. 3.5). Replacing these segments by F; W, and F; W,, the
total road length becomes shorter because of the triangle inequality. Thus it has no
intersecting roads.

ES. Let @ be a set of points in the plane. Each point in S is a midpoint of two
points in §2. Show that S is an infinite set.

First proof. Suppose £ is a finite set. Then £ contains two points A, B with
maximal distance |A B| = m. B isamidpointof some segment C D with C, D € Q.
Fig. 3.6 shows that |[AC| > |[AB| or |AD| > |AB|.

Second proof. We consider all points in €2 farthest to the left, and among those
the point M farthest down. M cannot be a midpoint of two points A, B € 2 since
one element of {A, B} would be either left of M or on the vertical below M.

E6. In each convex pentagon, we can choose three diagonals from which a triangle
can be constructed.

Solution. Fig. 3.7 shows a convex pentagon ABCDE. Let B E be the longest of the
diagonals. The triangle inequality implies |[BD|+ |CE| > |[BE|+ |CD| > |BE|,
that is, we can construct a triangle from BE, BD, CE.

D
E C

Fig.3.7 ©

E7. In every tetrahedron, there are three edges meeting at the same vertex from
which a triangle can be constructed.

Solution. Let AB be the longest edge of the tetrahedron ABCD. Since (JAC| +
|AD|—=|AB|)+(IBC|+[BD|—|BA|) = (|AD|+|BD|—|AB))+(JAC|+|BC|—



