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INTRODUCTION

Imagine we could program the brain. How cool would that be!
We could lift our mood, raise our ambition, cure anxiety,
bolster our self-confidence, improve our leadership skills, and
alter our worst impulses. We could also create new, artificially
intelligent companions and transfer our minds to powerful
robot bodies.

So what's stopping us? First, we don’t really know how the
brain works. | believe our current understanding of brain
function needs a fundamental revision. We can’t program
something we don’t understand. Second, current theories of
artificial intelligence (Al) and neural networks—based on our
misunderstanding of the mind—are also cast into doubt.

I’'m a computer scientist, not a neuroscientist or academic.
But | know enough to say that Al—as currently conceived—is
not how the brain works. So, in this book, | will intrepidly offer
my own, perhaps fanciful, hopefully thought-provoking,
alternative—something we can program.

So what's wrong with our current understanding of the brain?

We know the human brain contains around 100 billion
neurons with many more supporting cells. Each neuron is
connected to thousands of other neurons via synapses. Each
neuron sends messages (electrical pulses) at a frequency up
to 200 times per second to its direct neighbors. Scientists
continue to devise clever lab experiments to study how
human subjects think and behave. They poke and prod the
brain and scan it using functional magnetic resonance
imaging (fMRI) and other technologies to uncover its secrets



(Le Bihan 2014).

Yet what have we learned? Do we know how memory
works? No. Do we understand how traits like ambition,
shyness, fear, or risk-taking are implemented in the brain?
No. Do we know why happiness “feels” happy? No. Do we
know why some people are narcissists or extroverts and
others are not? No. Do we know the algorithms we use to
identify a potential mate? What really happens in the brain of
an ambitious person? How we make plans, learn faces, take
risks, and experience awe? No, no, and no.

Instead, here’s how a typical scientist describes the workings
of the brain:

The dopamine system is more or less obsessed
with keeping us alive. It constantly scans the
environment for new sources of food, shelter,
mating opportunities, and other resources that will
keep our DNA replicating ... Dopamine yields not
just desire but also domination. It gives us the
ability to bend the environment and even other
people to our will. (Lieberman and Long 2018)

| disagree. | think describing the brain in terms of molecules
(e.g., neurotransmitters like dopamine) completely misses
the point. A molecule is simply a bit of matter, a puff of
smoke. It doesn’t know anything about food, shelter, or
mating. A molecule is not an algorithm or set of instructions.
If we gaze at a picture of a serotonin molecule, do we get
motivated? No. Are we visually stimulated at the sight of a
hormone molecule such as testosterone or estrogen? Not in
the least!

You can’t program a molecule.

Molecules are simply messengers—smoke signals—helping



to convey orders to an army of ready neurons in the brain.
Like a general's command to charge, the signal itself
conveys very little information. Much more interesting is how
the receivers of the signal—the soldiers—are trained, what
maneuvers they can perform, and the history and usage of
their weapons. A general’s order simply unleashes a complex
process that's already in place. A molecule can't affect us
unless our brains are prewired to be affected.

In addition to molecular explanations, neuroscientists also
describe the brain in terms of its neural circuits and functional
regions:

Pride, shame, and guilt all activate similar neural
circuits, including the dorsomedial prefrontal
cortex, amygdala, insula, and the nucleus
accumbens. Interestingly, pride is the most
powerful of these emotions at triggering activity in
these regions—except in the nucleus accumbens,
where guilt and shame win out. This explains why
it can be so appealing to heap guilt and shame on
ourselves—they’re activating the brain’s reward
center. (Korb 2015)

Again, | think this explanation misses the mark.

Yes, it's true that the brain is divided into specialized regions
such as the prefrontal cortex, amygdala, and cerebellum.
Planning seems to occur somewhere in the brain’s frontal
lobes. Emotion appears to bubble up from the amygdala, a
specialized region consisting of around 12 million neurons.
Short-term memory is enabled by the hippocampus. The
brain stem is responsible for basic life functions and
respiration. The cerebellum helps with coordinated motor
control. The cortex—or gray matter—comprises around 20
percent of the brain’s neurons and appears responsible for



language, vision, and other higher-order capabilities.

But knowing which brain regions are more active when we
engage in a specific activity doesn’t help us understand how
the mind is implemented. Describing the brain in terms of its
gross anatomy and specialized regions is no more helpful
than explaining it in terms of neurotransmitters and
hormones.

You can't program a brain region.

Yet scientists continue to plunge ahead with their current
approaches. The latest $100 million scientific research
project called MICrONS (Cepelewicz 2016) endeavors to
understand the brain by studying a cubic millimeter of a rat’s
brain tissue—containing 100,000 neurons and one billion
synapses—in the visual cortex, the part of the brain involved
in sight. Best of luck to them, but I'm not holding my breath. A
similar $1.3 billion Human Brain Project, launched by the
European Union in 2013, collapsed after only two years
(Theil 2015).

To truly understand how the brain and Al work, | propose that
we focus on the activity of individual neurons. They don’t
even have to be human neurons. The Open Worm project
(openworm.org) studies a small nematode worm having only
300 neurons. Other scientists conduct research on large sea
slugs—Aplysia californica—that have 20,000 central neurons
in their nervous system, still a manageable number. Focusing
on small worms and sea slugs is much more practical and
has a much better chance of success in allowing us to
understand how the brain works in general. Why? Because in
small worms and sea slugs, many or all of the identified
neurons have a unique function and carry out the same task
across the species (Hoyle and Wiersma 1977).

Like sea slugs and nematodes, | speculate that human brains



also contain identified neurons, each having a specific task to
perform, although this is not scientifically proven. More
radically, | think each neuron is responsible for the same
function across the human species.

Think about it for a moment. If we all have the same set of
identified neurons, it would explain a lot about how the brain
works. Each neuron is accountable for performing a single,
specific mental trait or task. Each neuron essentially
becomes a computer on a network, able to run algorithms
and programs, store information, and send messages to
other neurons on the network. Neurons bootstrap with
programs and algorithms written in our ancestral DNA. This is
very similar to how the internet works today. Why not human
brains?

Identified neurons give us something we can program!

When describing this theory of identified neurons, [l
deliberately ignore the influence of other, commonly ascribed
causes for human traits such as genetics, epigenetics,
neurotransmitters, and hormones. | believe a neuron-centric
view can replace them all.

Any complete theory of the mind should also address where
“feeling” and consciousness come from. | propose that the
activity of individual neurons and their algorithms, in the
context of powerful emergent effects, is the only explanation
needed. The brain’s simulation of reality, through the action
of billions of individual neurons, begins to resonate in
harmony, and “feeling” and consciousness are the result.

Many of these hypotheses may seem a little far-fetched, and
in truth they are highly speculative and unproven. According
to a critic:

Here is what we are not born with: information,



data, rules, software, knowledge, lexicons,
representations, algorithms, programs, models,
memories, images, processors, subroutines,
encoders, decoders, symbols, or buffers—design
elements that allow digital computers to behave
somewhat intelligently. Not only are we not born
with such things, we also don’t develop them—
ever. (R. Epstein 2016)

Clearly, | disagree. The ideas in this book are falsifiable, and
that's how science advances (Popper 1959). Science is a
way of thinking, not a source of absolute truth. Will these
ideas ultimately prove to be correct? Perhaps yes, perhaps
no. But | think anything is better than the current quagmire of
our understanding.

Finally, I'll discuss the implications of this theory and how
algorithms, trait diversity, and luck can answer persistent
questions about free will, personal responsibility, and
fairness. I'll address the social issues arising from Al and
how we can best prepare society for the changes to come.

It's a lot to cover, so let's get started!



PART 1—IDENTIFIED
NEURONS

Al Is Not How the Brain Works

Artificial intelligence (Al) is a hot topic these days, offering
the promise of self-driving cars and trucks, automated
factories, and world-class chess play. Yet the enthusiasm is
also laced with foreboding: Will a robot take my job?

Current Al techniques are known by many names, including
“neural networks” and “deep learning,” a subset of machine
learning (LeCun, Bengio and Hinton 2015). Al is used to
mine big data sets to look for patterns, predict weather
trends, diagnose complex diseases, monitor banking
transactions for fraud, identify military targets, forecast stock
market trends, convert speech to text, translate languages,
enable factory quality control, understand handwriting, and—
perhaps ominously—parse social media for consumer and
political preferences.

Al can also be trained to recognize faces in photos and
videos as we often see on TV police dramas. When a
criminal culprit’s face is caught on camera, it doesn’t take
long for law enforcement to identify him or her using Al facial
recognition tools. Al is very good at finding patterns in big
data, especially when millions or even billions of exemplars
are available to train the neural network (Loy 2019).

However, as promising as Al might appear for these specific
applications, dire warnings of an “Al winter” are mounting, as
current approaches to Al don’t explain how the brain actually



works.

To get a deep-learning system to recognize a hot
dog, we might have to feed it 40 million pictures of
hot dogs. To get [a girl] to recognize a hot dog, we
show her a [single] hot dog ...

A computer that sees a picture of ... doughnuts
piled up on a table and captions it, automatically,
as “a pile of doughnuts piled on a table” seems to
understand the world: but when that same
program sees a picture of a girl brushing her teeth
and says “The boy is holding a baseball bat” we
realize how thin that understanding really is ...

Self-driving cars can fail to navigate conditions
they’'ve never seen before. Machines have trouble
parsing sentences that demand common-sense
understanding of how the world works. (Somers
2017)

We're often willing to suspend our disbelief and accept that
true Al and intelligent robots are right around the corner. We
see them in the movies all the time, and they seem credible
and real. But in reality, they are still a ways off.

NYU psychology and neuroscience professor Gary Marcus
thinks Al—as currently conceived—is fragile, inflexible, and
unable to generalize or think outside the box. Al can’t think
abstractly, make plans, or comprehend complex ideas
(Marcus 2018a). Today, Al can merely recognize patterns. It
can’t currently do what humans achieve effortlessly. It lacks
common sense. Neural networks are missing the innate
prewiring required to learn.

One interviewer described Marcus’s thinking:



Say you wanted a machine to teach itself to
recognize daisies ... At first, the neural network is
just guessing blindly; it starts life a blank slate,
more or less ... Given enough time and enough
daisies, the neural net gets more accurate ...

But Marcus was never convinced. For him, the
problem is the blank slate: It assumes that humans
build their intelligence purely by observing the
world around them, and that machines can too.
But Marcus doesn’t think that's how humans work.
He walks the intellectual path laid down by Noam
Chomsky, who argued that humans are born wired
to learn, programmed to master language and
interpret the physical world. (Thompson 2018)

We humans easily learn new concepts after a single example
or exposure. We can generalize from a few examples. We
effortlessly infer cause and effect. We pick up language
quickly.

So how is the brain prewired to learn this way?

Scientists have long believed that human memories are
stored in the connections, or synapses, between neurons in
the brain. In 1949, Donald Hebb proposed that the
connection weights between neurons are adjusted as we
learn skills and remember new things. This process, known
as “backpropagation,” is “a procedure for rejiggering the
strength of every connection in the network so as to fix the
error for a given training example” (Somers 2017). It's the
basis of today’s Al and deep-learning artificial neural
networks.

But recent research suggests other mechanisms at work. Our
memories are not always stored in the connections between
neurons but, instead, are stored within individual neurons



themselves (Bédécarrats, et al. 2018). When scientists
disrupted neural synapses in snail brains in a way that should
have removed their memory of previously administered
electric shocks, some memory remained.

In another experiment, when certain RNA molecules (similar
to DNA) were transferred from the brain cells of trained snails
to those of untrained snails, some of the trained snails’
training (memory) was transferred too. This finding—that
memories may be stored in RNA and are transferable—flies
in the face of established theories that memories are stored
via changes in connection strengths between neurons.

Taken together, these experiments don’t offer a grand
refutation of current brain theory and Al, but they do show
chinks in the armor of the current paradigm. Although Al and
neural networks offer powerful pattern recognition
capabilities, they don’t reflect how the brain actually works.

Since 2012, when it was used to win the prestigious
ImageNet competition (Krizhevsky, Sutskever and Hinton
2017), the neural network approach to Al has become all the
rage. But prior to that, Al researchers combined multiple
techniques, including symbolic rule-engines, autonomous
agents, simulation, statistics, and even Kalman filters
(Russell and Norvig 2009).

Today, we're at an inflection point again, as researchers
realize that neural networks are fragile, don't explain their
decisions well, lack common sense, and require an
overwhelming amount of labelled data to train them (Marcus
2018b). When the current paradigm begins to crumble, we
need a new theory to replace it.

The brain is a complex adaptive system, with properties like
unpredictability, non-periodic behavior, feedback loops,
spontaneous order, adaptation and emergence (Holland



2006). To study how the brain actually works, | propose we
return to earlier Al techniques, especially agent-based
simulation (Abar, et al. 2017), whereby neurons are
autonomous agents, and the mind emerges from their
collective activity in a grand simulation of reality.

That's what | intend to demonstrate. Fancifully, of course!

Neurons as Little Computers

| propose that individual identified neurons are the primary
actors (agents) in the brain. They each have their own unique
agenda, and they zealously and relentlessly strive to achieve
their goals and objectives. In the process, they cooperate
and compete with other neurons in the brain for access to
scarce bodily resources and attention.

Why do | propose this? For one thing, other complex
networks—such as the public internet—take this distributed
approach. Human society operates this way as well. The
collective activity of each individual's self-interested behavior
has unintended benefits—the “invisible hand” (Smith 1759)—
that central planning could never equal.

In the brain, each of the 100 billion neurons is a specialized
agent, an autonomous computer executing a unique program
to carry out its assigned tasks. The most basic computer is
called a Turing machine, described by Alan Turing in 1936. In
its simplest form, all a computer needs to operate is a long
tape (onto which it can write characters) and an interpreter
which can process the current symbol (or instruction) on the
tape. | speculate that each neuron is just such a computer.
I's not a mainstream hypothesis, to be sure, but a few
intrepid scientists have proposed that microtubules inside
neurons can indeed support quantum computing (Hameroff
and Penrose 2013).



A computer program processes inputs and delivers outputs.
It repeatedly executes a set of instructions (loop), makes
conditional assessments (if—then—else), and stores data
(memory). That's what brain activity is mostly about, |
propose.

A computer program is simply an algorithm:

For many people, the word “algorithm” evokes the
arcane and inscrutable machinations of big data ...
hardly a source of practical wisdom or guidance
for human affairs. But an algorithm is just a finite
sequence of steps used to solve a problem ...
Long before algorithms were ever used by
machines, they were used by people ...

When we think about computers, we think about
coldly  mechanical, deterministic  systems;
machines applying rigid deductive logic
[However] tackling real world tasks requires being
comfortable with chance, trading off time with
accuracy, and using approximations. As
computers become better tuned to real-world
problems, they provide not only algorithms that
people can borrow for their own lives, but a better
standard against which to compare human
cognition itself. (Christian and Griffiths 2016)

In this book, | will de-emphasize artificial neural networks in
favor of a more algorithmic approach, whereby neurons act
as independent agents, running local programs in a
massively distributed, resonating mind simulation. Although
neural networks can also be considered algorithms, in some
respects, | believe their black-box decision-making process
remains too inscrutable for evolved traits. To the degree we
humans employ machine learning and neural networks in the



brain, | propose they execute within individual neurons
themselves as helper functions.

So let's have a look at what the neural programming might
look like.

Introduction to Neural Programming

The idea of a computer program running inside each of the
100 billion neurons in the brain might sound far-fetched. So
take a deep breath, suspend your disbelief, and assume for a
moment it’s true. What are the implications?

Every program requires a programming language, a
language of thought if you will. In neurons, the language
must be ancient, written hundreds of thousands, or even
millions, of years ago. Since we don’t know what a neuron’s
programming language actually looks like, I'll use a modified
version of the modern Python language in this book to
illustrate the examples. (Python aficionados may protest
some liberties I've taken with the language. | apologize in
advance.)

Those with a computer programming background will know
that most programming languages are essentially the same.
They have subroutines or methods, variable assignments (A
= 3), conditionals (if-then—else), arrays and lists (1, 2, 3, 4,
5), mathematical functions (A + B), and loops.

By my theory, each human trait is carried out by a single
identified neuron in the brain. So let's assume there’s a
SeeksShelterNeuron in the brain that's responsible for our
behavior to find shelter when we’re exposed to the elements
like rain or snow. It seems like a reasonable hardwired
behavior as we humans—and monkeys before us—have
sought shelter throughout our history.



The neuron’s programming—using a modern agent-based
(object-oriented) style that encapsulates code into classes—
might look something like this:

class SeekShelterNeuron:
def _init_(self):
# Initialize the neuron once,
# when it’s first generated in the brain.

self.exposed = False

# Then automatically run this main routine at
startup
def run(self):
# Repeat (or loop) the following code forever,
# from birth to death of the neuron
loop forever:
# send a message to another neuron
# to delegate a subtask or make a request
4 e.g., are we currently exposed to the
elements?
e = sendrequest (“ExposedNeuron”, “getstatus”)
# assign the resulting status tc a variable
self.exposed = e
# then check whether the result is True or
False
if e == True:
# The conditional statement (IF) is True, so
# do something, e.g., move our legs and arms
. code not shown
else:
# otherwise do something else
. code not shown
wait (clocktick) # wait a moment, rinse and repeat

# Repeat the loop

The seeksShelterNeuron executes a unique program, which



I've encapsulated into a class of the same name. (I'll assume
there’s only a single instance neuron per class; that's why |
will treat classes and instances interchangeably for now.)

The class contains two methods or subroutines: _init_ and
run. The _init_ method is executed only once, when the
neuron is first generated in the brain, at or before birth. The
run method then executes automatically after that. It usually
contains a loop that repeatedly executes the code that
follows it from the birth to the death of the neuron. In other
words, every neuron in the brain is actively running a
program all the time—none of this “we only use 10 percent of
our brain” stuff.

A neuron may delegate subtasks to other neurons. In the
previous example, a request or message is sent to the
ExposedNeuron to determine our current state (e.g., whether
we're currently exposed to the elements and needing
shelter). [Narrowly-defined delegated subtasks like this may
indeed employ local pattern matching and machine learning
techniques.] A conditional (if-then—else) statement handles
the two possibilities—True or False—likely by delegating
additional subtasks to other neurons. The loop then waits
briefly and restarts from the beginning.

To recap, the neural programming language supports the
following operations:

« Assignment of local variables (using the [=]
operator). In the example, the variable e is assigned a
value: True or False.

+ Test for equality (using the [==] operator). In the
example, e is tested to see whether it equals True or
False. “Not equal to” is denoted by the [!=] operator.

+ Conditional statements (if—then—else). These allow
the neuron to exhibit different behaviors depending on



external or internal inputs or context.

* Loops. The “loop forever” statement endlessly repeats
the execution of a block of code that follows it for the
life of the neuron. In the example, a request is sent to
the ExposedNeuron every clock tick, waiting for a True
reply. Most of the time, the neuron sits idly because
we're not in an exposed situation (e.qg., sitting in rain or
cold). The neuron just keeps waiting—pinging—until
events transpire.

+ Sending messages or requests. A neuron can send a
request to any other neuron in the brain using the
sendreqguest method. The destination or address of
the message—that is, the neuron’s name—is in
quotation marks because the referenced neuron may
be far away from the sender and may not even
currently exist in the brain. Requests (and replies) take
time to process and are routed from one neuron to the
next until they reach their destination via other neurons
that are already busy with their own tasks. Until the
message is received, the reply is assumed to be
Fralse. Once received, it is locally cached.

+ Comments in the code. These are preceded by a
hash mark (#), and the program ignores them. Like a
hastily written computer program, our DNA code is
probably not commented very well for easy
deciphering, but we can always hope!

| propose that this theory of identified neurons running code
written (by evolution) in an agent-based (object-oriented)
computer language, with integrated message passing
between neurons, provides all we need to explain how the
brain works. When billions of identified neurons
simultaneously seek to carry out their own unique agendas,
in cooperation and competition with other neurons, this
massively parallel simulation begins to resonate with reality



and takes on a life of its own.

The simulation aspect comes from how the neuron is
programmed. After executing its short programming script,
the neuron waits a clock tick, observes how the world has
changed (via messages from other neurons), adjusts its
internal state, then repeats the same script, over and over
again, like a chess player repeatedly reacting to his
opponent’s moves, or an economist engaged in game theory.
The mind emerges from this rich simulation of reality.

Loading the Program (from DNA)

For a neuron to act as a computer, it must first load its unique
program. So where’s the code? Why not in our shared
human DNA library?

First a word about DNA, or “deoxyribonucleic acid.” Each cell
in the human body, including every neuron in the brain,
contains a complete copy of the DNA library. The DNA library
resembles a scroll—two meters long—containing 3 billion
nucleic acids or “bases.” [How a two-meter-long DNA
molecule can be stuffed into each cell in the body is mind-
boggling! But anyway, every neuron in the brain has access
to the complete DNA library.]

There are four letters in the DNA alphabet—A, T, G, and C—
represented by the four types of bases, adenine, thymine,
guanine, and cytosine. This alphabet is comparable to the
26-letter English alphabet or the two-letter binary alphabet of
1’s and 0’s used in computers. It can represent concepts,
words, and descriptions. And computer programs.

The DNA library contains 23 books or volumes (called
chromosomes), onto which are written a total of 3 billion
letters or characters, one letter per base. (Technically, we
receive one set of chromosomes from our mother and



another set from our father, so we have 46 chromosomes.)

Now a word about genes. All humans have the same 20,000
genes. Genes are books or chapters of the DNA library used
to describe and express proteins and enzymes, which
construct the body and control metabolism. (Technically,
genes act as templates for constructing proteins. DNA bases
are grouped into triples, or codons—ATT, GAC, and so on—
which represent amino acids. ATG stands for methionine,
TGG stands for tryptophan, and so on. Genes are thus
translated into amino acid sequences, a.k.a. “proteins.”)

Now the complication. Only 9 percent of our DNA is
dedicated to genes (of which 2 percent acts as protein
templates and another 7 percent is involved in gene
regulation.) In other words, genes comprise only 9 percent of
our DNA. So what does the other 91 percent of our non-
protein-coding, non-gene DNA do?

Some scientists call it “junk DNA.” | speculate that this junk
DNA is actually a storage device for programs executed by
neurons in the brain. Each neuron is assigned a unique
section of junk DNA from which it loads and executes its
program. In the rest of this book, | will ignore genes and
genetics and will focus exclusively on the other 91 percent of
junk DNA.

It's just a wild theory, but it does make sense. If neurons run
ancient computer programs, then the programs have to be
located somewhere. Why not in our collective human DNA?
(To prove such a theory, perhaps a computer scientist can
run a decompiler on our junk DNA to look for code
fragments.)

Obviously, the neural code isn’t written in English. It would be
compiled into four-letter DNA-ese, similar to how modern
computer code is compiled into a binary (base-2) alphabet.



The programming code for each identified neuron is stored
as a sequence of letters in one of the library books of our
collective human DNA:

ATTGATCGGCAATGACTTAAGGGCACCGAT .. and so on

We humans are all 99.9 percent alike, DNA-speaking. We'’re
so similar because at one point in our evolutionary history, as
we left Africa, there were perhaps as few as 5,000 humans
left on earth. Our DNA similarity has a stunning implication. If
neurons load their programs from our collective human DNA
library, it follows that we must all share the same neural
programs! All humans have the same set of identified
neurons running the same algorithms! It must be so because
the 0.1 percent DNA difference among us is not enough to
swap in and out different sections of DNA. We all share the
same DNA.

DNA is a wormhole to the time of our ancestors. Millions of
years of their experience is manifest in DNA, which
transports that history to the present. DNA is time travel
(Buonomano 2017). DNA is merely matter, but it's a different
sort of matter than, say, a rock. A rock lives in the eternal
present—a fleeting series of nows. It doesn’t retain any
memory of the past—lights, sounds, tastes, smells, touches,
causes and effects. Over millions of years, we evolved from
rocks, and water and gas, and life began to retain knowledge
from the past. First, matter took on the shape of catalysts,
which sped the rate of chemical reactions. Then, matter plus
catalysts constructed more and more complex structures with
feedback loops. Catalysts created more catalysts, along with
more sophisticated structures like DNA, which began to
replicate. More and more knowledge was manifest in the
form of matter, and experience was retained and transported
from the past to the present. Our neural programming—in our
DNA—allows ancestral memories to resonate with present



experience.

Not everyone agrees, however, that evolution can devise
such elegant solutions as identified neurons and neural
programs. Consider the following, for example:

How genetics and development actually work, it's
a mess. It consists entirely of hacks and patches
all the way down. It's not modular. It's not agile. It's
not anything that an engineer would recognize; it's
just crap that runs. So when you go to try to
reverse-engineer it, you can't. It's no good,
because it was never engineered in the first place.
So how do you devolve what has been evolved?
That's like trying to unstir the coffee. (Veve 2018)

| disagree. Obviously humans can design things, and
humans are merely a product of evolution. It follows that
evolution can also design things. Indeed, intelligent design—
and elegant solutions—may be an inherent function of
evolution itself, or of any complex adaptive system.

Let me repeat that. Anything we humans can do—from
setting up small Skunk Works labs (local innovation), to
venture capital investment (scale-up), to radical redesign of
current approaches (deployment)—can also be done by
evolution because we can do it and we’re simply a product of
evolution.

Neurons Send Each Other Messages

A neuron doesn’t have to do everything itself. It can delegate
subtasks and solicit help from thousands of other neurons by
sending them request messages. Those neurons can then
delegate their sub-subtasks to other neurons, and so on.
Pretty soon, the whole brain is lit up in a cascade of activity
initiated by a single neuron. It's no wonder people think the



brain operates holistically. The mind is the product of billions
of individual neurons—self-interested and self-directed
agents—each cooperating and competing for resources.

In the brain, each neuron is physically connected to “only” a
few thousand other neurons. (The axon of one neuron
directly connects to the dendrites of thousands of other
neurons.) In order to send a request or message to one of its
immediate neighbors, a neuron simply converts its request
into a series of electrical pulses—like Morse code—and
transmits the pulses via its axon wire to their dendrites.

The first time a sendrequest message is sent from one
neuron to another, there will likely be no immediate
response. The request will simply “time out,” and the reply
will be assumed to be ralse. However, after some time has
elapsed, the asynchronous reply will eventually come back.
Once it's received, it will be locally cached in the requesting
neuron for better performance the next time it's needed.

Caching of results—like squirrels storing nuts for the winter—
is critical to the operation of a massively parallel architecture
like the brain. Even if the memory storage capability of the
brain were infinite, we are limited by the time it takes to
search for things and send messages to other neurons
because of constraints on network bandwidth in the brain. It
makes sense that neurons cache the results of messages
into local working memory, inside the neuron itself, although
that cache size is limited. Computer scientists have long
debated the best strategy for cache management, including
first in, first out (FIFO) and least recently used (LRU)
(Christian and Griffiths 2016). It turns out that LRU is the
most efficient way to manage the cache: message results
that haven't been used in a while—like the stalest nuts in a
squirrel’'s cache—are flushed from the local cache.



How can a neuron send a message to a distant neuron in the
brain if the two are not physically connected? In computer
science, there’s a communication protocol called a “message
passing interface” (MPI) whereby messages are sent to
remote computers. Operating on a similar concept, neural
messages could be routed from one neuron to the next until
they reach their destination, either by point-to-point
communication or broadcast messaging to many neurons
simultaneously.

For example, on the public internet, packets of data are
routed from one server to the next until they reach their
destination. Likewise, each busy neuron in the brain—Dby this
highly speculative theory—has a second job: to forward
messages. To accomplish this complex task, each neuron
maintains a “routing table” containing instructions on how to
best route messages to remote nodes. (Routing tables can
be built dynamically through trial and error by observing
network traffic, or with the assistance of “routing protocols.”)

class SomeNeuron:
def _init_(self):
# initialize the message routing information
self.routing_table = []

self.immediate_neighbors = []

def routerequest (self, requestor, regtype, dest,
params) :
# find the best routing for the message
if dest == self:
# process the request locally
sendrequest (self, requestor, reqtype, params)
else:
rt = self.routing_table
neighbors = self.immediate_neighbors

via = determine_best_routing(dest, neighbors, rt)



sendrequest (destination, reqtype, params,

next=via)

The self.routing_table and
self.immediate_neighbors are arrays of values stored in
the neuron as local variables (i.e., local memory).

With routing, neurons can’t expect to get an immediate reply
to their sendrequest messages from other helper neurons
and delegates. Network latency may be an issue, and
responses may lag, as anyone who plays games or streams
content on the internet can tell you.

In this book, I'll assume that replies from other neurons arrive
nearly instantaneously, but | realize this is an unrealistic
expectation.

Neurons Have Unique Names

Aplysia californica are large sea slugs that graze underwater
in tidal zones. When threatened, they release ink into the
water to confuse their predators. Each slug has a tongue on
its underside controlled by two neurons. When the slug is
provoked, its siphon and gill can be quickly retracted (Moroz
2011).

Every aplysia has 20,000 central neurons in its nervous
system. Many of the neurons are unique and carry out the
same specialized function across the species.

Are we humans like sea slugs? Do we have unique identified
neurons in our brain, each with its own task and identity? Do
all humans have the same identified neurons?

Yes, that's my proposal, although it's a radical and as-yet-
unproven theory. There’s a single neuron in the human brain
for, say, hunger, a single neuron that implements greed or



ambition. Every neuron in the human brain has a specific
purpose, a specific set of tasks—goals and objectives—to
perform. The human mind emerges from the collective
activity of individual, empowered neurons.

Why do | propose this? There are three primary reasons:

1. Evolution is lazy and conservative. If something is good
enough for sea slugs, it's good enough for us humans.
Evolution wouldn’t reinvent the way the brain functions
from earlier species unless there was a very good
reason for doing so, and | don’t think there is one.

2. Humans are defined by their evolved traits, fears,
passions, interests, motivations, and drives. Does the
brain implement each of these traits in a different way?
Not likely. Evolution likely found a common approach
for all of them. Identified neurons offer just such a
powerful explanatory framework.

3. Neurons can’t send messages to other neurons—for
example, to delegate tasks—unless they know their
name (or address) in advance, a priori.

This last point is crucial. Consider, again, the public internet.
Each computer on the internet has a unique IP address that
allows any other computer in the world to send it messages.
Without a unique IP address, modern technologies like
instant messaging, chat, and streaming video wouldn’'t be
possible.

It's the same with neural communications. Each neuron must
know, in its ancient programming, the name/address of every
other neuron in the brain it wishes to correspond with.
Without knowing, a priori, the names of all other neurons in
the brain, there would be no way for one neuron to send a
message to another neuron. (I'll discuss an exception to this
rule in a moment.)



Using the proposed neural programming language described
earlier, here’s how a neuron might send a message to
another neuron:

hunger_status = sendrequest (“HungerNeuron”, “detect”)

In this example, the name of the HungerNeuron is known in
advance by the ancient evolutionary code that references it.
The task to determine (detect) whether we’re hungry is
delegated to this neuron by sending it a request. When the
reply is received, it's stored in a local variable called
hunger_status.

Because we humans all share 99.9 percent identical DNA,
we must all share the same identified neurons. As new
neurons are generated in the brain, they are assigned unique
names from the DNA name directory. Once a neuron has a
unique name, it bootstraps by loading and running its unique
program, also located in the DNA library. That code then
executes the neuron’s agenda over and over, for a lifetime.

You may have spotted a flaw with the idea of uniquely
naming each neuron. Cumulatively, our DNA is only 3 billion
letters long. That's not enough DNA to store billions of unique
names for each of the 100 billion neurons in the brain!

So let's modify the theory. Many neurons in the brain may be
closely related clones. For example, the retina at the back of
the eye contains millions of nearly identical neurons, each of
them running the same program. Likewise, the visual cortex
in the back of the brain, where visual processing takes place,
also contains a large array of identical neurons. It's probable
that each of these identical neurons is assigned a unique
name algorithmically—for example, rRetinaNeuron-1234—
by adding a random number to the end of the neuron’s class
name when the neuron is generated. It can still be sent



messages to its unigue name/address, but as its name is not
known until runtime (i.e., after birth), it must be registered
upon generation by the GenesisNeurcn if others are to be
able to look it up.

Neurogenesis

After conception, the brain develops rapidly in the womb.
Billions of new neurons are generated every day. Some
scientist believe that process stops at birth, and we're born
with all the neurons we’ll ever receive (Sorrells, et al. 2018).
But others have disputed this, contending that we continue to
generate new neurons into old age, especially in the region
of the brain known as the hippocampus (Boldrini 2018). I'll
assume that either new neurons are generated into
adulthood, or they are pre-generated (pre-allocated) earlier
for later use.

New neurons are generated through a process called
neurogenesis. Neurons connect physically—via dendrites
and axons—to a few thousand of their nearest neighbors.
That process establishes a basic physical network
connectivity of the brain. Before neurons receive a unique
name, they can only send broadcast messages over the
physical network. Once they receive a unique name
(address), they can send narrowcast messages to each
other.

If each mental trait is carried out by a single identified
neuron, what happens when the neuron dies? Does it lose all
its data and memories? Perhaps, as with modern data
centers, each neuron periodically archives its memories to a
remote storage device, likely a remote DNA backup tape.
Then, when the neuron is regenerated (respawned), its
memories can be restored by following a disaster recovery
protocol.



Let's assume the existence of a single GenesisNeuron in the
brain that acts as a factory to generate new neurons:

class GenesisNeuron:
def _init_(self):
# start life with an empty list of new neurons

[]

self.neuron_list

def

sendrequest (self, requestor, regtype,
parameters) :

# this method responds to requests from other
neurons
# to generate a new neuron
if regtype == “generate”:

# generate a new neuron

if parameters != False:

neuron_class = parameters

else:

neuron_class = “GenericNeuron”

new_neuron = New (neuron_class)
self.neuron_list.append (new_neuron)
return new_neuron

elsif regtype == “inventory”:

return self.neuron_list

def run(self):

# ensure all neurons listed in the DNA directory

# exist, 1.e., are generated or re—-generated

loop forever:

directory

read_neuron_directory_£from_DNA ()
loop for n in directory:
el

sendrequest (n, “ping”)

wait (clocktick)
e?
if el

# The neuron

sendrequest (n,

False and e2

# wait a moment

\\pingﬂ)

False:

didn’t respond, so either



# it doesn’t exist yet, or it died.
# [Disaster recovery protocol is not shown]
# In either case, generate a new neuron
sendrequest (self, “generate”, n)
walt (clocktick)
# repeat loop

Neurons are generated either at the request of other neurons
(perhaps to represent new concepts, as we’ll see later) or
automatically from the predefined DNA directory of neural
names. Did | mention this is all highly speculative?

The sendrequest method of the GenesisNeurcon processes
requests to generate a new neuron. The new neuron is given
a name prefix as an input parameter from the requester, or
simply GenericNeuron. The newly created neuron is then
added to the self.neuron_list, which can obviously get
quite long.

Neurons listed in the innate DNA directory are automatically
generated or regenerated by the run method. It continually
loops through the predefined neural names in the directory
and pings them to see if they exist. If not, it creates them.

(Python programmers might complain that there’s no nNew
function in the language to create an instance of an arbitrary
class. But that's not what's actually happening here. The New
function spins up a new computer—that is, each neuron gets
its own virtual machine—gives it a unique name [e.g.,
GenericNeuron-1234], adds it to the network, loads its
program from our shared DNA library, and starts the program
running for a lifetime.)

There’s One Neuron per Trait

Each human trait—desire, motivation, want, need, impulse,
interest, or passion—is implemented by a single identified



messages with other neurons to carry out its tasks.

So, what became of hormones, neurotransmitters, and
neuropeptides? They’re still there, of course, in the brain. But
| believe that such molecules have been relegated to a
relatively minor role. Now they simply serve to make the
transmission of neural messages more efficient. Instead of
having a neuron send individual messages to thousands of
other neurons, broadcast messages can be sent via
hormones and neurotransmitters. Like the general who
shouts “charge!” to initiate a battle, it's more effective to send
up a single smoke signal for distant troops to see and comply
with, rather than communicate with each of them individually
using messages.

In other words, molecules like serotonin, dopamine,
testosterone, and estrogen are simply used for network
optimization. Hormones and neurotransmitters don’t cause
happiness or depression or risk-taking or trust behaviors.
They simply optimize the network of messages sent between
neurons. Individual neurons have evolved to become the
primary implementers of our traits and behaviors, and
molecules now play a secondary and supporting role.



PART 2—MEMORY

The “iPad Neuron”

Some scientists believe a new neuron is generated in the
brain every time we learn a new concept, even suggesting
that a “grandmother neuron” exists in the brain (Bowers
2009). Since grandmothers have existed for millions of years
of evolutionary history, it's certainly possible that the
“grandmother” concept is itself innate.

But what about modern objects that didn’t exist in the state of
nature? How do they get into our brains? Take iPads for
example. They weren’t invented until recently, so there’s little
chance evolution has had time to incorporate that memory
engram into our collective human DNA library. Is there an
“iPad neuron” in the brain, and if so, how did it get there?

Let's take a step back. Why bother to remember an iPad at
all? Because it interests us and motivates us, we crave it and
covet it, and we envy our friends who own one. Without a
strong emotion associated with an object, we simply can't
remember it. We wouldn’t want to remember it.

When we see another person gazing or staring intently at an
iPad and then smiling, it triggers a feeling of envy in us
toward the object. Bingo! Now it becomes meaningful to us. If
we can associate an evolved emotion—for example, envy—
to an object, then it's worth remembering:

class EnvyNeuron:
def _init_(self):

# begin life with no objects of envy
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