PROGRAMMING
LANGUAGE
PRAGMATICS

Michael L. Scott

Programming Language Pragmatics
FOURTH EDITION

Michael L. Scott

Department of Computer Science
University of Rochester

AMSTERDAM ¢ BOSTON ¢ HEIDELBERG ¢ LONDON
NEW YORK ¢ OXFORD ¢ PARIS « SAN DIEGO
SAN FRANCISCO » SINGAPORE » SYDNEY TOKYQO

Morgan Kaufmann is an imprint of Elsevier

ELSEVIER

Morgan Kaufmann is an imprint of Elsevier
225 Wyman Street,Waltham, MA 02451, USA

Copyright © 2016, 2009, 2006, 1999 Elsevier Inc. All rights reserved.

Cover image: Copyright © 2009, Shannon A. Scott.
Cumming Nature Center, Naples, NY.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or any information storage and retrieval system, without
permission in writing from the publisher. Details on how to seek permission, further information about the
Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center
and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other
than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our
understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using
any information, methods, compounds, or experiments described herein. In using such information or methods
they should be mindful of their own safety and the safety of others, including parties for whom they have a
professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability
for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or
from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

For information on all MK publications
visit our website at http://store.elsevier.com/

ISBN: 978-0-12-410409-9

"4+ Working together
b — AW o orow libraries in
asvie | BookAld - jeveloping countries

www.elsevier.com » www.bookaid.org

Contents

Foreword xxiii
Preface XXV
FOUNDATIONS 3

I Introduction 5
I.I' The Art of Language Design 7

1.2 The Programming Language Spectrum I

1.3 Why Study Programming Languages? 14

1.4 Compilation and Interpretation 17

1.5 Programming Environments 24

1.6 An Overview of Compilation 26

[.6.1 Lexical and Syntax Analysis 28

[.6.2 Semantic Analysis and Intermediate Code Generation 32

[.6.3 Target Code Generation 34

.64 Code Improvement 36

1.7 Summary and Concluding Remarks 37

I.8 Exercises 38

1.9 Explorations 39

[.10 Bibliographic Notes 40

2 Programming Language Syntax 43
2.1 Specifying Syntax: Regular Expressions and Context-Free Grammars 44

2.1.1' Tokens and Regular Expressions 45

2.1.2 Context-Free Grammars 48

2.1.3 Derivations and Parse Trees 50

Contents

2.2 Scanning
2.2.1 Generating a Finite Automaton
2.22 Scanner Code
2.2.3 Table-Driven Scanning
2.24 Lexical Errors
225 Pragmas

2.3 Parsing
2.3.1 Recursive Descent
2.3.2 Writing an LL(1) Grammar
2.3.3 Table-Driven Top-Down Parsing
2.34 Bottom-Up Parsing
2.35 Syntax Errors

2.4 Theoretical Foundations
24.1 Finite Automata
2.4.2 Push-Down Automata
243 Grammar and Language Classes

2.5 Summary and Concluding Remarks
2.6 Exercises
2.7 Explorations

2.8 Bibliographic Notes

3 Names, Scopes, and Bindings
3. The Notion of Binding Time

3.2 Object Lifetime and Storage Management
3.2.1 Static Allocation
3.2.2 Stack-Based Allocation
3.2.3 Heap-Based Allocation
3.24 Garbage Collection

3.3 Scope Rules
3.3.1 Static Scoping
3.3.2 Nested Subroutines
3.3.3 Declaration Order
3.34 Modules
3.3.5 Module Types and Classes
3.3.6 Dynamic Scoping

3.4 Implementing Scope
3.4.1 Symbol Tables
3.4.2 Association Lists and Central Reference Tables

c-1

c-13
c-13
c-18
c-19

c-26
Cc-26
c-31

54
56
6l
65
65
67

69
73
79
82
89
102

103

104
105
112
112

15
16

118
19
120
122
124

125
126
127
130
135
139
142

144

35

3.6

3.7
3.8

3.9
3.10
3.11
3.12

Contents

The Meaning of Names within a Scope
3.5.1 Aliases
3.52 Overloading

The Binding of Referencing Environments
3.6.1 Subroutine Closures
3.6.2 First-Class Values and Unlimited Extent
3.6.3 Object Closures
3.64 Lambda Expressions

Macro Expansion

Separate Compilation Cc-36
3.8.1 Separate Compilation in C c-37
3.8.2 Packages and Automatic Header Inference c-40
3.8.3 Module Hierarchies c-41

Summary and Concluding Remarks
Exercises
Explorations

Bibliographic Notes

4 Semantic Analysis

4.1
4.2
4.3
4.4
4.5

4.6
4.7
4.8
4.9
4.10

The Role of the Semantic Analyzer
Attribute Grammars

Evaluating Attributes

Action Routines

Space Management for Attributes c-45
4.5.1 Bottom-Up Evaluation C-45
4.52 Top-Down Evaluation Cc-50

Tree Grammars and Syntax Tree Decoration
Summary and Concluding Remarks
Exercises

Explorations

Bibliographic Notes

5 Target Machine Architecture c-60

5.1
5.2

The Memory Hierarchy c-61

Data Representation Cc-63

145
145
147

152
153
155
157
159

162
165

165
167
175
177

179
180
184
187
195
200

201
208
209
214
215

217

Contents

53

54

5.5

5.6
57
5.8
5.9

52,1 Integer Arithmetic
5.22 Floating-Point Arithmetic

Instruction Set Architecture (ISA)
5.3.1 Addressing Modes
5.3.2 Conditions and Branches

Architecture and Implementation
54.1 Microprogramming
542 Microprocessors
54.3 RISC
544 Multithreading and Multicore
545 Two Example Architectures: The x86 and ARM

Compiling for Modern Processors
5.5.1 Keeping the Pipeline Full
5.5.2 Register Allocation

Summary and Concluding Remarks
Exercises
Explorations

Bibliographic Notes

CORE ISSUES IN LANGUAGE DESIGN

6 Control Flow

6.1

Expression Evaluation
6.1.1 Precedence and Associativity
6.1.2 Assignments
6.1.3 Initialization
6.1.4 Ordering within Expressions
6.1.5 Short-Circuit Evaluation

6.2 Structured and Unstructured Flow

6.2.1 Structured Alternatives to goto
6.2.2 Continuations

6.3 Sequencing

6.4 Selection

6.5

6.4.1 Short-Circuited Conditions
6.4.2 Case/Switch Statements

Iteration

Cc-65
c-67

c-70
c-71
c-72
c-75
c-76
c-77
c-77
Cc-78
c-80
Cc-88
c-89
Cc-93
Cc-98
c-100
c-104

C-105

221

223

224
226
229
238
240
243

246
247
250

252

253
254
256

261

6.6

6.7
6.8
6.9
6.10
6.11

6.5.1 Enumeration-Controlled Loops
6.5.2 Combination Loops

6.5.3 [terators

6.54 Generators in lcon

6.5.5 Logically Controlled Loops

Recursion
6.6.] teration and Recursion

6.6.2 Applicative- and Normal-Order Evaluation

Nondeterminacy

Summary and Concluding Remarks
Exercises

Explorations

Bibliographic Notes

7 Type Systems

7.1

7.2

7.3

74
7.5
7.6
7.7
78

Overview
7.1.1 The Meaning of “Type"
7.1.2 Polymorphism
7.1.3 Orthogonality
/.14 Classification of Types

Type Checking
7.2.1 Type Equivalence
7.22 Type Compatibility
7.2.3 Type Inference
7.24 Type Checking in ML

Parametric Polymorphism
7.3.1 Generic Subroutines and Classes
7.32 Generics in C++, Java, and C#

Equality Testing and Assignment
Summary and Concluding Remarks
Exercises

Explorations

Bibliographic Notes

8 Composite Types

8.1

Records (Structures)

Contents

c-107
c-110
c-119

262
266
268
274
275

277
277
282

283
284
286
292
294

297

298
300
302
302
305

312
313
320
324
326

331
333
339

340
342
344
347
348

351
351

xiv

Contents

8.2

8.3
84
8.5

8.6
8.7

8.8
89
8.10
8.11

8.1.1 Syntax and Operations
8.1.2 Memory Layout and Its Impact
8.1.3 Variant Records (Unions)

Arrays
8.2.1 Syntax and Operations
8.2.2 Dimensions, Bounds, and Allocation
8.2.3 Memory Layout

Strings
Sets

Pointers and Recursive Types
8.5.1 Syntax and Operations
8.5.2 Dangling References
8.5.3 Garbage Collection

Lists

Files and Input/Output
8.7.1 Interactive /O
8.7.2 File-Based I/O
8.7.3 Textl/O

Summary and Concluding Remarks
Exercises
Explorations

Bibliographic Notes

9 Subroutines and Control Abstraction

9.1
9.2

9.3

9.4

Review of Stack Layout

Calling Sequences
9.2.1 Displays

9.22 Stack Case Studies: LLVM on ARM; gcc on x86

9.2.3 Register Windows
9.24 In-Line Expansion

Parameter Passing

9.3.1 Parameter Modes

9.3.2 Call by Name

9.3.3 Special-Purpose Parameters
9.34 Function Returns

Exception Handling

c-136

c-144

C-148
Cc-148
Cc-149
c-151

C-163
c-167
c-177

c-180

352
353
357

359
359
363
368

375
376

377
378
388
389

398

+ 401

402
404
409
410

411
412
414

- 417
< 417
- 419

419

422
423

© 433

433
438

440

Contents XV

9.4.1 Defining Exceptions 444

9.4.2 Exception Propagation 445

9.4.3 Implementation of Exceptions 447

9.5 Coroutines 450
9.5.1 Stack Allocation 453

9.52 Transfer 454

9.5.3 Implementation of lterators C-183 - 456

9.54 Discrete Event Simulation C-187 - 456

9.6 Events 456
9.6.1 Sequential Handlers 457

9.62 Thread-Based Handlers 459

9.7 Summary and Concluding Remarks 461
9.8 Exercises 462
9.9 Explorations 467
9.10 Bibliographic Notes 468
10 Data Abstraction and Object Orientation 471
0.1 Object-Oriented Programming 473
10.1.1 Classes and Generics 481

10.2 Encapsulation and Inheritance 485
10.2.1 Modules 486
10.2.2 Classes 488
10.2.3 Nesting (Inner Classes) 490
1024 Type Extensions 491
10.2.5 Extending without Inheritance 494

10.3 Initialization and Finalization 495
10.3.1 Choosing a Constructor 496
10.3.2 References and Values 498

10.3.3 Execution Order 502
10.3.4 Garbage Collection 504

0.4 Dynamic Method Binding 505
10.4.1 Virtual and Nonvirtual Methods 508
10.4.2 Abstract Classes 508
10.4.3 Member Lookup 509
10.4.4 Object Closures 513

10.5 Mix-In Inheritance 516
10.5.1 Implementation 517

|0.5.2 Extensions 519

Contents

10.6 True Multiple Inheritance c-194
10.6.1 Semantic Ambiguities c-196
10.6.2 Replicated Inheritance C-200
10.6.3 Shared Inheritance C-201

0.7 Object-Oriented Programming Revisited
10.7.1 The Object Model of Smalltalk Cc-204

10.8 Summary and Concluding Remarks
10.9 Exercises
10.10 Explorations

10.11 Bibliographic Notes

ALTERNATIVE PROGRAMMING MODELS

Il Functional Languages

I'l.1 Historical Origins
1.2 Functional Programming Concepts

1.3 A Bit of Scheme
['1.3.1 Bindings
I'1.32 Lists and Numbers
I'1.3.3 Equality Testing and Searching
I'1.34 Control Flow and Assighment
[1.35 Programs as Lists
I'1.3.6 Extended Example: DFA Simulation in Scheme

1.4 A Bit of OCaml
I'1.4.1 Equality and Ordering
I'1.4.2 Bindings and Lambda Expressions
I'1.43 Type Constructors
I'1.44 Pattern Matching
I'1.45 Control Flow and Side Effects
| 1.4.6 Extended Example: DFA Simulation in OCam|

I 1.5 Evaluation Order Revisited
I'1.5.1 Strictness and Lazy Evaluation
I1.52 1/O: Streams and Monads

1.6 Higher-Order Functions

| 1.7 Theoretical Foundations c-212
I1.7.] Lambda Calculus c-214

521

522
523

524
525
528
529

533

535
536
537

539
542
543
544
545
547
548

550
553
554
555
559
563
565

567
569
571

576
580

Contents xvii

I1.7.2 Control Flow c-217

I1.7.3 Structures c-219
I1.8 Functional Programming in Perspective 58|
1.9 Summary and Concluding Remarks 583
I1.10 Exercises 584
I1.1'l Explorations 589
I11.12 Bibliographic Notes 590
12 Logic Languages 591
2.1 Logic Programming Concepts 592
2.2 Prolog 593
12.2.1 Resolution and Unification 595
1222 Lists 596
12.2.3 Arithmetic 597
1224 Search/Execution Order 598
12.2.5 Extended Example: Tic-Tac-Toe 600
12.2.6 Imperative Control Flow 604
12.2.7 Database Manipulation 607
2.3 Theoretical Foundations Cc-226 - 612

12.3.1 Clausal Form c-227

12,32 Limitations Cc-228

12.3.3 Skolemization Cc-230
2.4 Logic Programming in Perspective 613
12.4.1 Parts of Logic Not Covered 613
12.4.2 Execution Order 613
12.4.3 Negation and the "Closed World" Assumption 615
2.5 Summary and Concluding Remarks 616
12.6 Exercises 618
2.7 Explorations 620
12.8 Bibliographic Notes 620
13 Concurrency 623
I3.1 Background and Motivation 624
[3.1.1 The Case for Multithreaded Programs 627
13.1.2 Multiprocessor Architecture 631

3.2 Concurrent Programming Fundamentals 635

xviii Contents

13.2.1 Communication and Synchronization
13.2.2 Languages and Libraries

13.2.3 Thread Creation Syntax

13.24 Implementation of Threads

3.3 Implementing Synchronization
13.3.1 Busy-Wait Synchronization
13.3.2 Nonblocking Algorithms
13.3.3 Memory Consistency
13.34 Scheduler Implementation
13.3.5 Semaphores

13.4 Language-Level Constructs
13.4.1 Monitors
13.4.2 Conditional Critical Regions
13.4.3 Synchronization in Java
13.44 Transactional Memory
1345 Implicit Synchronization

3.5 Message Passing
13.5.1 Naming Communication Partners
13.5.2 Sending
13.5.3 Receiving
13.54 Remote Procedure Call

3.6 Summary and Concluding Remarks
13.7 Exercises
3.8 Explorations

3.9 Bibliographic Notes

14 Scripting Languages

4.1 What Is a Scripting Language?
[4.1.1 Common Characteristics

4.2 Problem Domains
[4.2.1 Shell (Command) Languages
1422 Text Processing and Report Generation
14.2.3 Mathematics and Statistics
1424 “Glue" Languages and General-Purpose Scripting
1425 Extension Languages

14.3 Scripting the World Wide Web
14.3.1 CGlI Scripts
14.32 Embedded ServerSide Scripts

C-235
Cc-235
Cc-239
C-244
C-249

635
637
638
647

652
653
657
659
663
667

669
669
674
676
679
683

687

688
690
695
697

699

700
701

704
705
712
717
718
724

727
728
729

Contents
14.3.3 Client-Side Scripts
14.34 Java Applets and Other Embedded Elements
14.35 XSLT Cc-258

4.4 Innovative Features
4.4.1 Names and Scopes
14.42 String and Pattern Manipulation
14.4.3 Data Types
1444 Object Orientation

4.5 Summary and Concluding Remarks
4.6 Exercises
4.7 Explorations

4.8 Bibliographic Notes

A CLOSER LOOK AT IMPLEMENTATION

I5 Building a Runnable Program

I5.1 Back-End Compiler Structure
[5.1.] A Plausible Set of Phases
[5.1.2 Phases and Passes

5.2 Intermediate Forms
[5.2.1 GIMPLE and RTL Cc-273
15.2.2 Stack-Based Intermediate Forms

5.3 Code Generation
15.3.1 An Attribute Grammar Example
15.3.2 Register Allocation

5.4 Address Space Organization

5.5 Assembly
I5.5.1 Emitting Instructions
1552 Assigning Addresses to Names

5.6 Linking
[5.6.1 Relocation and Name Resolution
15.6.2 Type Checking

15.7 Dynamic Linking c-279
I5.7.1 Position-Independent Code C-280
15.7.2 Fully Dynamic (Lazy) Linking C-282

Xix

734
734
736

738
739
743
751
757

764
765
769
771

773

775

775
776
780

780
782
782

784
785
787

790

792
794
796

797
798
799

800

XX Contents

[5.8 Summary and Concluding Remarks
15.9 Exercises
15.10 Explorations

I15.11 Bibliographic Notes

16 Run-Time Program Management

16.1 Virtual Machines
16.1.1 The Java Virtual Machine
l6.1.2 The Common Language Infrastructure

6.2 Late Binding of Machine Code
16.2.] Just-in-Time and Dynamic Compilation
16.2.2 Binary Translation
16.2.3 Binary Rewriting
16.24 Mobile Code and Sandboxing

16.3 Inspection/Introspection
16.3.1 Reflection
16.3.2 Symbolic Debugging
16.3.3 Performance Analysis

6.4 Summary and Concluding Remarks
16.5 Exercises
16.6 Explorations

16.7 Bibliographic Notes

17 Code Improvement
7.1 Phases of Code Improvement
7.2 Peephole Optimization

7.3 Redundancy Elimination in Basic Blocks
I7.3.1 A Running Example
17.3.2 Value Numbering

7.4 Global Redundancy and Data Flow Analysis
17.4.1 SSA Form and Global Value Numbering
1742 Global Common Subexpression Elimination

17.5 Loop Improvement |
17.5.1 Loop Invariants
[7.5.2 Induction Variables

[7.6 Instruction Scheduling

C-286

c-297
c-299
Cc-301

Cc-304
C-305
c-307

c-312
c-312
c-315

Cc-323
Cc-323
C-325

Cc-328

802
803
805
806

807

810
812
820

822
822
828
833
835

837
837
845
848

850
851
853
854

857

Contents xXXi

7.7 Loop Improvement Il Cc-332
17.7.1 Loop Unrolling and Software Pipelining Cc-332
17.7.2 Loop Reordering c-337
7.8 Register Allocation C-344
7.9 Summary and Concluding Remarks C-348
17.10 Exercises C-349
17.11 Explorations C-353
17.12 Bibliographic Notes C-354
A Programming Languages Mentioned 859
B Language Design and Language Implementation 871
C Numbered Examples 877
Bibliography 89|

Index 9]

This page intentionally left blank

Foreword

Programming languages are universally accepted as one of the core subjects that
every computer scientist must master. The reason is clear: these languages are
the main notation we use for developing products and for communicating new
ideas. They have influenced the field by enabling the development of those
multimillion-line programs that shaped the information age. Their success is
owed to the long-standing effort of the computer science community in the cre-
ation of new languages and in the development of strategies for their implemen-
tation. The large number of computer scientists mentioned in the footnotes and
bibliographic notes in this book by Michael Scott is a clear manifestation of the
magnitude of this effort as is the sheer number and diversity of topics it contains.

Over 75 programming languages are discussed. They represent the best and
most influential contributions in language design across time, paradigms, and ap-
plication domains. They are the outcome of decades of work that led initially to
Fortran and Lisp in the 1950s, to numerous languages in the years that followed,
and, in our times, to the popular dynamic languages used to program the Web.
The 75 plus languages span numerous paradigms including imperative, func-
tional, logic, static, dynamic, sequential, shared-memory parallel, distributed-
memory parallel, dataflow, high-level, and intermediate languages. They include
languages for scientific computing, for symbolic manipulations, and for accessing
databases. This rich diversity of languages is crucial for programmer productivity
and is one of the great assets of the discipline of computing.

Cutting across languages, this book presents a detailed discussion of control
flow, types, and abstraction mechanisms. These are the representations needed
to develop programs that are well organized, modular, easy to understand, and
easy to maintain. Knowledge of these core features and of their incarnation in to-
day’s languages is a basic foundation to be an effective programmer and to better
understand computer science today.

Strategies to implement programming languages must be studied together
with the design paradigms. A reason is that success of a language depends on
the quality of its implementation. Also, the capabilities of these strategies some-
times constraint the design of languages. The implementation of a language starts
with parsing and lexical scanning needed to compute the syntactic structure of
programs. Today’s parsing techniques, described in Part I, are among the most
beautiful algorithms ever developed and are a great example of the use of mathe-
matical objects to create practical instruments. They are worthwhile studying just

xxiii

xXiv

Foreword

as an intellectual achievement. They are of course of great practical value, and a
good way to appreciate the greatness of these strategies is to go back to the first
Fortran compiler and study the ad hoc, albeit highly ingenious, strategy used to
implement precedence of operators by the pioneers that built that compiler.

The other usual component of implementation are the compiler components
that carry out the translation from the high-level language representation to a
lower level form suitable for execution by real or virtual machines. The transla-
tion can be done ahead of time, during execution (just in time), or both. The
book discusses these approaches and implementation strategies including the
elegant mechanisms of translation driven by parsing. To produce highly effi-
cient code, translation routines apply strategies to avoid redundant computations,
make efficient use of the memory hierarchy, and take advantage of intra-processor
parallelism. These, sometimes conflicting goals, are undertaken by the optimiza-
tion components of compilers. Although this topic is typically outside the scope
of a first course on compilers, the book gives the reader access to a good overview
of program optimization in Part TV.

An important recent development in computing is the popularization of paral-
lelism and the expectation that, in the foreseeable future, performance gains will
mainly be the result of effectively exploiting this parallelism. The book responds
to this development by presenting the reader with a range of topics in concurrent
programming including mechanisms for synchronization, communication, and
coordination across threads. This information will become increasingly impor-
tant as parallelism consolidates as the norm in computing,.

Programming languages are the bridge between programmers and machines.
It is in them that algorithms must be represented for execution. The study of pro-
gramming languages design and implementation offers great educational value
by requiring an understanding of the strategies used to connect the different as-
pects of computing. By presenting such an extensive treatment of the subject,
Michael Scott’s Programming Language Pragmatics, is a great contribution to the
literature and a valuable source of information for computer scientists.

David Padua
Siebel Center for Computer Science
University of [llinois at Urbana-Champaign

Preface

A course in computer programming provides the typical student’s first ex-
posure to the field of computer science. Most students in such a course will have
used computers all their lives, for social networking, email, games, web brows-
ing, word processing, and a host of other tasks, but it is not until they write their
first programs that they begin to appreciate how applications work. After gaining
a certain level of facility as programmers (presumably with the help of a good
course in data structures and algorithms), the natural next step is to wonder how
programming languages work. This book provides an explanation. It aims, quite
simply, to be the most comprehensive and accurate languages text available, in a
style that is engaging and accessible to the typical undergraduate. This aim re-
flects my conviction that students will understand more, and enjoy the material
more, if we explain what is really going on.

In the conventional “systems” curriculum, the material beyond data struc-
tures (and possibly computer organization) tends to be compartmentalized into a
host of separate subjects, including programming languages, compiler construc-
tion, computer architecture, operating systems, networks, parallel and distributed
computing, database management systems, and possibly software engineering,
object-oriented design, graphics, or user interface systems. One problem with
this compartmentalization is that the list of subjects keeps growing, but the num-
ber of semesters in a Bachelor’s program does not. More important, perhaps,
many of the most interesting discoveries in computer science occur at the bound-
aries between subjects. Computer architecture and compiler construction, for
example, have inspired each other for over 50 years, through generations of su-
percomputers, pipelined microprocessors, multicore chips, and modern GPUs.
Over the past decade, advances in virtualization have blurred boundaries among
the hardware, operating system, compiler, and language run-time system, and
have spurred the explosion in cloud computing. Programming language tech-
nology is now routinely embedded in everything from dynamic web content, to
gaming and entertainment, to security and finance.

Increasingly, both educators and practitioners have come to emphasize these
sorts of interactions. Within higher education in particular, there is a growing
trend toward integration in the core curriculum. Rather than give the typical stu-
dent an in-depth look at two or three narrow subjects, leaving holes in all the
others, many schools have revised the programming languages and computer or-
ganization courses to cover a wider range of topics, with follow-on electives in

XXV

xXXvi

Preface

various specializations. This trend is very much in keeping with the ACM/IEEE-
CS Computer Science Curricula 2013 guidelines [SR13], which emphasize the need
to manage the size of the curriculum and to cultivate both a “system-level per-
spective” and an appreciation of the interplay between theory and practice. In
particular, the authors write,

Graduates of a computer science program need to think at multiple levels of detail and
abstraction. This understanding should transcend the implementation details of the
various components to encompass an appreciation for the structure of computer systems
and the processes involved in their construction and analysis [p. 24].

On the specific subject of this text, they write

Programming languages are the medium through which programmers precisely describe
concepts, formulate algorithms, and reason about solutions. In the course of a career,
a computer scientist will work with many different languages, separately or together.
Software developers must understand the programming models underlying different
languages and make informed design choices in languages supporting multiple com-
plementary approaches. Computer scientists will often need to learn new languages
and programming constructs, and must understand the principles underlying how pro-
gramming language features are defined, composed, and implemented. The effective
use of programming languages, and appreciation of their limitations, also requires a ba-
sic knowledge of programming language translation and static program analysis, as well
as run-time components such as memory management [p. 155].

The first three editions of Programming Language Pragmatics (PLP) had the
good fortune of riding the trend toward integrated understanding. This fourth
edition continues and strengthens the “systems perspective” while preserving the
central focus on programming language design.

At its core, PLP is a book about how programming languages work. Rather
than enumerate the details of many different languages, it focuses on concepts
that underlie all the languages the student is likely to encounter, illustrating those
concepts with a variety of concrete examples, and exploring the tradeoffs that ex-
plain why different languages were designed in different ways. Similarly, rather
than explain how to build a compiler or interpreter (a task few programmers will
undertake in its entirety), PLP focuses on what a compiler does to an input pro-
gram, and why. Language design and implementation are thus explored together,
with an emphasis on the ways in which they interact.

Changes in the Fourth Edition

In comparison to the third edition, PLP-4e includes

I. New chapters devoted to type systems and composite types, in place of the
older single chapter on types

Preface XXV

2. Updated treatment of functional programming, with extensive coverage of
OCaml

3. Numerous other reflections of changes in the field

4. Improvements inspired by instructor feedback or a fresh consideration of fa-
miliar topics

Item 1 in this list is perhaps the most visible change. Chapter 7 was the longest
in previous editions, and there is a natural split in the subject material. Reorgani-
zation of this material for PLP-4e afforded an opportunity to devote more explicit
attention to the subject of type inference, and of its role in ML-family languages
in particular. It also facilitated an update and reorganization of the material on
parametric polymorphism, which was previously scattered across several differ-
ent chapters and sections.

Item 2 reflects the increasing adoption of functional techniques into main-
stream imperative languages, as well as the increasing prominence of SML,
OCaml, and Haskell in both education and industry. Throughout the text,
OCaml is now co-equal with Scheme as a source of functional programming
examples. As noted in the previous paragraph, there is an expanded section
(7.2.4) on the ML type system, and Section 11.4 includes an OCaml overview,
with coverage of equality and ordering, bindings and lambda expressions, type
constructors, pattern matching, and control flow and side effects. The choice of
OCaml, rather than Haskell, as the ML-family exemplar reflects its prominence in
industry, together with classroom experience suggesting that—at least for many
students—the initial exposure to functional thinking is easier in the context of
eager evaluation. To colleagues who wish I'd chosen Haskell, my apologies!

Other new material (Item 3) appears throughout the text. Wherever appro-
priate, reference has been made to features of the latest languages and standards,
including C & C++11, Java 8, C# 5, Scala, Go, Swift, Python 3, and HTML 5.
Section 3.6.4 pulls together previously scattered coverage of lambda expressions,
and shows how these have been added to various imperative languages. Com-
plementary coverage of object closures, including C++11’s std: : function and
std: :bind, appears in Section 10.4.4. Section ¢-5.4.5 introduces the x86-64 and
ARM architectures in place of the x86-32 and MIPS used in previous editions. Ex-
amples using these same two architectures subsequently appear in the sections on
calling sequences (9.2) and linking (15.6). Coverage of the x86 calling sequence
continues to rely on gec; the ARM case study uses LLVM. Section 8.5.3 intro-
duces smart pointers. R-value references appear in Section 9.3.1. JavaFX replaces
Swing in the graphics examples of Section 9.6.2. Appendix A has new entries for
Go, Lua, Rust, Scala, and Swift.

Finally, Item 4 encompasses improvements to almost every section of the
text. Among the more heavily updated topics are FOLLOW and PREDICT sets
(Section 2.3.3); Wirth’s error recovery algorithm for recursive descent (Sec-
tion ¢-2.3.5); overloading (Section 3.5.2); modules (Section 3.3.4); duck typing
(Section 7.3); records and variants (Section 8.1); intrusive lists (removed from
the running example of Chapter 10); static fields and methods (Section 10.2.2);

xxXv

-

—-—

-

Preface

mix-in inheritance (moved from the companion site back into the main text,
and updated to cover Scala traits and Java 8 default methods); multicore proces-
sors (pervasive changes to Chapter 13); phasers (Section 13.3.1); memory models
(Section 13.3.3); semaphores (Section 13.3.5); futures (Section 13.4.5); GIMPLE
and RTL (Section c-15.2.1); QEMU (Section 16.2.2); DWARF (Section 16.3.2);
and language genealogy (Figure A.1).

To accommodate new material, coverage of some topics has been condensed
or even removed. Examples include modules (Chapters 3 and 10), variant
records and with statements (Chapter 8), and metacircular interpretation (Chap-
ter 11). Additional material—the Common Language Infrastructure (CLI) in
particular—has moved to the companion site. Throughout the text, examples
drawn from languages no longer in widespread use have been replaced with more
recent equivalents wherever appropriate. Almost all remaining references to Pas-
cal and Modula are merely historical. Most coverage of Occam and Tcl has also
been dropped.

Overall, the printed text has grown by roughly 40 pages. There are 5 more
“Design & Implementation” sidebars, 35 more numbered examples, and about
25 new end-of-chapter exercises and explorations. Considerable effort has been
invested in creating a consistent and comprehensive index. As in earlier editions,
Morgan Kaufmann has maintained its commitment to providing definitive texts
at reasonable cost: PLP-4e is far less expensive than competing alternatives, but
larger and more comprehensive.

The Companion Site

To minimize the physical size of the text, make way for new material, and al-
low students to focus on the fundamentals when browsing, over 350 pages of
more advanced or peripheral material can be found on a companion web site:
booksite.elsevier.com/web/9780124104099. Each companion-site (CS) section is
represented in the main text by a brief introduction to the subject and an “In
More Depth” paragraph that summarizes the elided material.

Note that placement of material on the companion site does not constitute a
judgment about its technical importance. It simply reflects the fact that there is
more material worth covering than will fit in a single volume or a single-semester
course. Since preferences and syllabi vary, most instructors will probably want to
assign reading from the CS, and most will refrain from assigning certain sections
of the printed text. My intent has been to retain in print the material that is likely
to be covered in the largest number of courses.

Also included on the CS are pointers to on-line resources and compilable
copies of all significant code fragments found in the text (in more than two dozen
languages).

Preface xXXix

Design & Implementation Sidebars

Like its predecessors, PLP-4e places heavy emphasis on the ways in which
language design constrains implementation options, and the ways in which antic-
ipated implementations have influenced language design. Many of these connec-
tions and interactions are highlighted in some 140 “Design & Implementation”
sidebars. A more detailed introduction appears in Sidebar 1.1. A numbered list
appears in Appendix B.

Numbered and Titled Examples

Examples in PLP-4e are intimately woven into the flow of the presentation. To
make it easier to find specific examples, to remember their content, and to refer
to them in other contexts, a number and a title for each is displayed in a marginal
note. There are over 1000 such examples across the main text and the CS. A
detailed list appears in Appendix C.

Exercise Plan

Review questions appear throughout the text at roughly 10-page intervals, at the
ends of major sections. These are based directly on the preceding material, and
have short, straightforward answers.

More detailed questions appear at the end of each chapter. These are divided
into Exercises and Explorations. The former are generally more challenging than
the per-section review questions, and should be suitable for homework or brief
projects. The latter are more open-ended, requiring web or library research, sub-
stantial time commitment, or the development of subjective opinion. Solutions
to many of the exercises (but not the explorations) are available to registered in-
structors from a password-protected web site: visit textbooks.elsevier.com/web/
9780124104099,

How to Use the Book

Programming Language Pragmatics covers almost all of the material in the PL
“knowledge units” of the Computing Curricula 2013 report [SR13]. The languages
course at the University of Rochester, for which this book was designed, is in fact
one of the featured “course exemplars” in the report (pp. 369-371). Figure 1 il-
lustrates several possible paths through the text.

For self-study, or for a full-year course (track F in Figure 1), I recommend
working through the book from start to finish, turning to the companion site
as each “In More Depth” section is encountered. The one-semester course at
Rochester (track R) also covers most of the book, but leaves out most of the CS

XXX

O W X\ M

Preface

™

i Part II o i Part I1I i Part IV
: &4?? | 4 } &
3 &'
P& & & & : > & | . . &
& & 3 & > § & o & o
N < & S &1 o 3 & G-
Lol) 5 = | G % | & o <
S & o S &£ & & >3 & K ¥ & R
® Sy §) X0 & & Q od I > &
S & & o S & 59O F & RS
b © o h 2 < P R N R

T xom

. The full-year/self-study plan
: The one-semester Rochester plan
: The traditional Programming Languages plan;

[l Companion site (CS) section
To be skimmed by students

would also de-emphasize implementation material in need of review
throughout the chapters shown
C: The compiler plan; would also de-emphasize design material
throughout the chapters shown
Q: The 142 quarter plan: an overview quarter and two independent, optional
follow-on quarters, one language-oriented, the other compiler-oriented

Figure | Paths through the text. Darker shaded regions indicate supplemental "In More Depth” sections on the companion
site. Section numbers are shown for breaks that do not correspond to supplemental material.

sections, as well as bottom-up parsing (2.3.4), logic languages (Chapter 12), and
the second halves of Chapters 15 (Building a Runnable Program) and 16 (Run-
time Program Management). Note that the material on functional programming
(Chapter 11 in particular) can be taught in either OCaml or Scheme.

Some chapters (2, 4, 5, 15, 16, 17) have a heavier emphasis than others on im-
plementation issues. These can be reordered to a certain extent with respect to the
more design-oriented chapters. Many students will already be familiar with much
of the material in Chapter 5, most likely from a course on computer organization;
hence the placement of the chapter on the companion site. Some students may
also be familiar with some of the material in Chapter 2, perhaps from a course on
automata theory. Much of this chapter can then be read quickly as well, pausing
perhaps to dwell on such practical issues as recovery from syntax errors, or the
ways in which a scanner differs from a classical finite automaton.

A traditional programming languages course (track P in Figure 1) might leave
out all of scanning and parsing, plus all of Chapter 4. It would also de-emphasize
the more implementation-oriented material throughout. In place of these, it
could add such design-oriented CS sections as multiple inheritance (10.6), Small-
talk (10.7.1), lambda calculus (11.7), and predicate calculus (12.3).

Preface xxxi

PLP has also been used at some schools for an introductory compiler course
(track C in Figure 1). The typical syllabus leaves out most of Part III (Chapters 11
through 14), and de-emphasizes the more design-oriented material throughout.
In place of these, it includes all of scanning and parsing, Chapters 15 through 17,
and a slightly different mix of other CS sections.

For a school on the quarter system, an appealing option is to offer an introduc-
tory one-quarter course and two optional follow-on courses (track Q in Figure 1).
The introductory quarter might cover the main (non-CS) sections of Chapters 1,
3,6, 7,and 8, plus the first halves of Chapters 2 and 9. A language-oriented follow-
on quarter might cover the rest of Chapter 9, all of Part III, CS sections from
Chapters 6 through 9, and possibly supplemental material on formal semantics,
type theory, or other related topics. A compiler-oriented follow-on quarter might
cover the rest of Chapter 2; Chapters 4-5 and 15-17, CS sections from Chapters 3
and 9-10, and possibly supplemental material on automatic code generation, ag-
gressive code improvement, programming tools, and so on.

Whatever the path through the text, T assume that the typical reader has already
acquired significant experience with at least one imperative language. Exactly
which language it is shouldn’t matter. Examples are drawn from a wide variety of
languages, but always with enough comments and other discussion that readers
without prior experience should be able to understand easily. Single-paragraph
introductions to more than 60 different languages appear in Appendix A. Algo-
rithms, when needed, are presented in an informal pseudocode that should be
self-explanatory. Real programming language code is set in "typewriter" font.
Pseudocode is set in a sans-serif font.

Supplemental Materials

In addition to supplemental sections, the companion site contains complete
source code for all nontrivial examples, and a list of all known errors in the
book. Additional resources are available on-line at textbooks.elsevier.com/web/
9780124104099. For instructors who have adopted the text, a password-protected
page provides access to

Editable PDF source for all the figures in the book
Editable PowerPoint slides
Solutions to most of the exercises

Suggestions for larger projects

Acknowledgments for the Fourth Edition

In preparing the fourth edition, T have been blessed with the generous assis-
tance of a very large number of people. Many provided errata or other feed-
back on the third edition, among them Yacine Belkadi, Bjérn Brandenburg,

xXxXi

Preface

Bob Cochran, Daniel Crisman, Marcelino Debajo, Chen Ding, Peter Drake,
Michael Edgar, Michael Glass, Sérgio Gomes, Allan Gottlieb, Hossein Hadavi,
Chris Hart, Thomas Helmuth, Wayne Heym, Scott Hoge, Kelly Jones, Ahmed
Khademzadeh, Eleazar Enrique Leal, Kyle Liddell, Annie Liu, Hao Luo, Dirk
Miiller, Holger Peine, Andreas Priesnitz, Mikhail Prokharau, Harsh Raju, and
Jingguo Yao. I also remain indebted to the many individuals acknowledged in
previous editions, and to the reviewers, adopters, and readers who made those
editions a success.

Anonymous reviewers for the fourth edition provided a wealth of useful sug-
gestions; my thanks to all of you! Special thanks to Adam Chlipala of MIT for his
detailed and insightful suggestions on the coverage of functional programming.
My thanks as well to Nelson Beebe (University of Utah) for pointing out that com-
pilers cannot safely use integer comparisons for floating-point numbers that may
be NaNs; to Dan Scarafoni for prompting me to distinguish between FIRST/EPS
of symbols and FIRST/EPS of strings in the algorithm to generate PREDICT sets; to
Dave Musicant for suggested improvements to the description of deep binding; to
Allan Gottlieb (NYU) for several key clarifications regarding Ada semantics; and
to Benjamin Kowarsch for similar clarifications regarding Objective-C. Problems
that remain in all these areas are entirely my own.

In preparing the fourth edition, I have drawn on 25 years of experience teach-
ing this material to upper-level undergraduates at the University of Rochester. |
am grateful to all my students for their enthusiasm and feedback. My thanks as
well to my colleagues and graduate students, and to the department’s administra-
tive, secretarial, and technical staff for providing such a supportive and produc-
tive work environment. Finally, my thanks to David Padua, whose work I have
admired since I was in graduate school; I am deeply honored to have him as the
author of the Foreword.

As they were on previous editions, the staff at Morgan Kaufmann has been a
genuine pleasure to work with, on both a professional and a personal level. My
thanks in particular to Nate McFadden, Senior Development Editor, who shep-
herded both this and the previous two editions with unfailing patience, good hu-
mor, and a fine eye for detail; to Mohana Natarajan, who managed the book’s
production; and to Todd Green, Publisher, who upholds the personal touch of
the Morgan Kauffman imprint within the larger Elsevier universe.

Most important, I am indebted to my wife, Kelly, for her patience and support
through endless months of writing and revising. Computing is a fine profession,
but family is what really matters.

Michael L. Scott
Rochester, NY
August 2015

This page intentionally left blank

5
P A
v N _._"4

o

T

T e i,

i

g

o T .

L Al g
i
.
” \
- -

Foundations

A central premise of Programming Language Pragmatics is that langnage design and implemen-
tation are intimately connected; it’s hard to study one without the other.

The bulk of the text—Parts II and III—is organized around topics in language design,
but with detailed coverage throughout of the many ways in which design decisions have been
shaped by implementation concerns.

The first five chapters—Part I—set the stage by covering foundational material in both
design and implementation. Chapter 1 motivates the study of programming languages, in-
troduces the major language families, and provides an overview of the compilation process.
Chapter 3 covers the high-level structure of programs, with an emphasis on names, the bind-
ing of names to objects, and the scope rules that govern which bindings are active at any given
time. In the process it touches on storage management; subroutines, modules, and classes;
polymorphism; and separate compilation.

Chapters 2, 4, and 5 are more implementation oriented. They provide the background
needed to understand the implementation issues mentioned in Parts II and III. Chapter 2
discusses the syntax, or textual structure, of programs. It introduces regular expressions and
context-free grammars, which designers use to describe program syntax, together with the scan-
ning and parsing algorithms that a compiler or interpreter uses to recognize that syntax. Given
an understanding of syntax, Chapter 4 explains how a compiler (or interpreter) determines
the semantics, or meaning of a program. The discussion is organized around the notion of at-
tribute grammars, which serve to map a program onto something else that has meaning, such
as mathematics or some other existing language. Finally, Chapter 5 (entirely on the companion
site) provides an overview of assembly-level computer architecture, focusing on the features of
modern microprocessors most relevant to compilers. Programmers who understand these fea-
tures have a better chance not only of understanding why the languages they use were designed

the way they were, but also of using those languages as fully and effectively as possible.

This page intentionally left blank

EXAMPLE ||

GCD program in x86
machine language

EXAMPLE | 2

GCD program in x86
assembler

Introduction

The first electronic computers were monstrous contraptions, filling
several rooms, consuming as much electricity as a good-size factory, and costing
millions of 1940s dollars (but with much less computing power than even the sim-
plest modern cell phone). The programmers who used these machines believed
that the computer’s time was more valuable than theirs. They programmed in
machine language. Machine language is the sequence of bits that directly controls
a processor, causing it to add, compare, move data from one place to another,
and so forth at appropriate times. Specifying programs at this level of detail is an
enormously tedious task. The following program calculates the greatest common
divisor (GCD) of two integers, using Euclid’s algorithm. It is written in machine
language, expressed here as hexadecimal (base 16) numbers, for the x86 instruc-
tion set.

55 89 e5 53 83 ec 04 83 e4 fO eB 31 00 00 00 89 <c3 e8 2a 00
00 00 39 ¢c3 74 10 8d b6 00 00 00 OO0 39 c3 7e 13 29 3 39 c3
75 f6 89 1c 24 e8 6e 00 00 00 8b 6d fc c9 c3 29 dB eb eb 890

As people began to write larger programs, it quickly became apparent that a
less error-prone notation was required. Assembly languages were invented to al-
low operations to be expressed with mnemonic abbreviations. Our GCD program
looks like this in x86 assembly language:

pushl Jebp jle D

movl %esp, Yebp subl Y%eax, %ebx

pushl %ebx B: cmpl fheax, Yebx

subl $4, Yesp jne A

andl $-16, Yesp C: movl #hebx, (Yesp)

call getint call putint

movl heax, %ebx movl -4 (Yebp), 'hebx

call getint leave

cmpl Y%eax, Yebx ret

je Cc D: subl ebx, Jeax
A: cmpl Yeax, Jebx jmp B

6

Chapter 1 Introduction

Assembly languages were originally designed with a one-to-one correspon-
dence between mnemonics and machine language instructions, as shown in this
example.! Translating from mnemonics to machine language became the job
of a systems program known as an assembler. Assemblers were eventually aug-
mented with elaborate “macro expansion” facilities to permit programmers to
define parameterized abbreviations for common sequences of instructions. The
correspondence between assembly language and machine language remained ob-
vious and explicit, however. Programming continued to be a machine-centered
enterprise: each different kind of computer had to be programmed in its own as-
sembly language, and programmers thought in terms of the instructions that the
machine would actually execute.

As computers evolved, and as competing designs developed, it became increas-
ingly frustrating to have to rewrite programs for every new machine. It also be-
came increasingly difficult for human beings to keep track of the wealth of de-
tail in large assembly language programs. People began to wish for a machine-
independent language, particularly one in which numerical computations (the
most common type of program in those days) could be expressed in something
more closely resembling mathematical formulae. These wishes led in the mid-
1950s to the development of the original dialect of Fortran, the first arguably
high-level programminglanguage. Other high-level languages soon followed, no-
tably Lisp and Algol.

Translating from a high-level language to assembly or machine language is the
job of a systems program known as a compiler.> Compilers are substantially more
complicated than assemblers because the one-to-one correspondence between
source and target operations no longer exists when the source is a high-level
language. Fortran was slow to catch on at first, because human programmers,
with some effort, could almost always write assembly language programs that
would run faster than what a compiler could produce. Over time, however, the
performance gap has narrowed, and eventually reversed. Increases in hardware
complexity (due to pipelining, multiple functional units, etc.) and continuing
improvements in compiler technology have led to a situation in which a state-
of-the-art compiler will usually generate better code than a human being will.
Even in cases in which human beings can do better, increases in computer speed
and program size have made it increasingly important to economize on program-
mer effort, not only in the original construction of programs, but in subsequent

I The 22 lines of assembly code in the example are encoded in varying numbers of bytes in ma-
chine language. The three emp (compare) instructions, for example, all happen to have the same
register operands, and are encoded in the two-byte sequence (39 ¢3). The four mov (move) in-
structions have different operands and lengths, and begin with 89 or 8b. The chosen syntax is
that of the GNU gcc compiler suite, in which results overwrite the last operand, not the first.

2 High-level languages may also be interpreted directly, without the translation step. We will return
to this option in Section 1.4. It is the principal way in which scripting languages like Python and
JavaScript are implemented.

1.1 The Art of Language Design 7

program maintenance—enhancement and correction. Labor costs now heavily
outweigh the cost of computing hardware.

The Art of Language Design

Today there are thousands of high-level programming languages, and new ones
continue to emerge. Why are there so many? There are several possible answers:

Evolution. Computer science is a young discipline; we're constantly finding bet-
ter ways to do things. The late 1960s and early 1970s saw a revolution in
“structured programming,” in which the goto-based control flow of languages
like Fortran, Cobol, and Basic® gave way to while loops, case (switch)
statements, and similar higher-level constructs. In the late 1980s the nested
block structure of languages like Algol, Pascal, and Ada began to give way to
the object-oriented structure of languages like Smalltalk, C++, Eiffel, and—a
decade later—Java and C#. More recently, scripting languages like Python and
Ruby have begun to displace more traditional compiled languages, at least for
rapid development.

Special Purposes. Some languages were designed for a specific problem domain.
The various Lisp dialects are good for manipulating symbolic data and com-
plex data structures. lcon and Awk are good for manipulating character
strings. C is good for low-level systems programming. Prolog is good for rea-
soning about logical relationships among data. Each of these languages can be
used successfully for a wider range of tasks, but the emphasis is clearly on the
specialty.

Personal Preference. Different people like different things. Much of the parochi-
alism of programming is simply a matter of taste. Some people love the terse-
ness of C; some hate it. Some people find it natural to think recursively; others
prefer iteration. Some people like to work with pointers; others prefer the im-
plicit dereferencing of Lisp, Java, and ML. The strength and variety of personal
preference make it unlikely that anyone will ever develop a universally accept-
able programming language.

Of course, some languages are more successful than others. Of the many that
have been designed, only a few dozen are widely used. What makes a language
successful? Again there are several answers:

Expressive Power. One commonly hears arguments that one language is more
“powerful” than another, though in a formal mathematical sense they are all

3 The names of these languages are sometimes written entirely in uppercase letters and sometimes
in mixed case. For consistency’s sake, I adopt the convention in this book of using mixed case for
languages whose names are pronounced as words (e.g., Fortran, Cobol, Basic), and uppercase for
those pronounced as a series of letters (e.g., APL, PL/I, ML).

8

Chapter 1 Introduction

Turing complete—each can be used, if awkwardly, to implement arbitrary algo-
rithms. Still, language features clearly have a huge impact on the programmer’s
ability to write clear, concise, and maintainable code, especially for very large
systems. There is no comparison, for example, between early versions of Basic
on the one hand, and C++ on the other. The factors that contribute to ex-
pressive power—abstraction facilities in particular—are a major focus of this

book.

Ease of Use for the Novice. While it is easy to pick on Basic, one cannot deny its

success. Part of that success was due to its very low “learning curve.” Pascal was
taught for many years in introductory programming language courses because,
at least in comparison to other “serious” languages, it was compact and easy
to learn. Shortly after the turn of the century, Java came to play a similar role;
though substantially more complex than Pascal, it is simpler than, say, C++. In
a renewed quest for simplicity, some introductory courses in recent years have
turned to scripting languages like Python.

Ease of Implementation. In addition to its low learning curve, Basic was success-

ful because it could be implemented easily on tiny machines, with limited re-
sources. Forth had a small but dedicated following for similar reasons. Ar-
guably the single most important factor in the success of Pascal was that its de-
signer, Niklaus Wirth, developed a simple, portable implementation of the lan-
guage, and shipped it free to universities all over the world (see Example 1.15).*
The Java and Python designers took similar steps to make their language avail-
able for free to almost anyone who wants it.

Standardization. Almost every widely used language has an official international

standard or (in the case of several scripting languages) a single canonical im-
plementation; and in the latter case the canonical implementation is almost
invariably written in a language that has a standard. Standardization—of
both the language and a broad set of libraries—is the only truly effective way
to ensure the portability of code across platforms. The relatively impover-
ished standard for Pascal, which was missing several features considered essen-
tial by many programmers (separate compilation, strings, static initialization,
random-access 1/O), was at least partially responsible for the language’s drop
from favor in the 1980s. Many of these features were implemented in different
ways by different vendors.

Open Source. Most programming languages today have at least one open-source

compiler or interpreter, but some languages—C in particular—are much
more closely associated than others with freely distributed, peer-reviewed,
community-supported computing. C was originally developed in the early

4

Niklaus Wirth (1934-), Professor Emeritus of Informatics at ETH in Ziirich, Switzerland, is
responsible for a long line of influential languages, including Euler, Algol W, Pascal, Modula,
Modula-2, and Oberon. Among other things, his languages introduced the notions of enumera-
tion, subrange, and set types, and unified the concepts of records (structs) and variants (unions).
He received the annual ACM Turing Award, computing’s highest honor, in 1984.

1.1 The Art of Language Design 9

1970s by Dennis Ritchie and Ken Thompson at Bell Labs,” in conjunction
with the design of the original Unix operating system. Over the years Unix
evolved into the world’s most portable operating system—the OS of choice for
academic computer science—and C was closely associated with it. With the
standardization of C, the language became available on an enormous variety
of additional platforms. Linux, the leading open-source operating system, is
written in C. As of June 2015, C and its descendants account for well over half
of a variety of language-related on-line content, including web page references,
book sales, employment listings, and open-source repository updates.

Excellent Compilers. Fortran owes much of its success to extremely good com-
pilers. In part this is a matter of historical accident. Fortran has been around
longer than anything else, and companies have invested huge amounts of time
and money in making compilers that generate very fast code. It is also a matter
of language design, however: Fortran dialects prior to Fortran 90 lacked recur-
sion and pointers, features that greatly complicate the task of generating fast
code (at least for programs that can be written in a reasonable fashion with-
out them!). In a similar vein, some languages (e.g., Common Lisp) have been
successful in part because they have compilers and supporting tools that do an
unusually good job of helping the programmer manage very large projects.

Economics, Patronage, and Inertia. Finally, there are factors other than technical
merit that greatly influence success. The backing of a powerful sponsor is one.
PL/I, at least to first approximation, owed its life to IBM. Cobol and Ada owe
their life to the U. S. Department of Defense. C# owes its life to Microsoft. In
recent years, Objective-C has enjoyed an enormous surge in popularity as the
official language for iPhone and iPad apps. At the other end of the life cycle,
some languages remain widely used long after “better” alternatives are avail-
able, because of a huge base of installed software and programmer expertise,
which would cost too much to replace. Much of the world’s financial infras-
tructure, for example, still functions primarily in Cobol.

Clearly no single factor determines whether a language is “good.” As we study
programming languages, we shall need to consider issues from several points of
view. In particular, we shall need to consider the viewpoints of both the pro-
grammer and the language implementor. Sometimes these points of view will be
in harmony, as in the desire for execution speed. Often, however, there will be
conflicts and tradeoffs, as the conceptual appeal of a feature is balanced against
the cost of its implementation. The tradeoff becomes particularly thorny when
the implementation imposes costs not only on programs that use the feature, but
also on programs that do not.

5 Ken Thompson (1943-) led the team that developed Unix. He also designed the B programming
language, a child of BCPL and the parent of C. Dennis Ritchie (1941-2011) was the principal
force behind the development of C itself. Thompson and Ritchie together formed the core of an
incredibly productive and influential group. They shared the ACM Turing Award in 1983.

10 Chapter 1 Introduction

In the early days of computing the implementor’s viewpoint was predominant.
Programming languages evolved as a means of telling a computer what to do. For
programmers, however, a language is more aptly defined as a means of expressing
algorithms. Just as natural languages constrain exposition and discourse, so pro-
gramming languages constrain what can and cannot easily be expressed, and have
both profound and subtle influence over what the programmer can think. Donald
Knuth has suggested that programming be regarded as the art of telling another
human being what one wants the computer to do [Knu84].° This definition per-
haps strikes the best sort of compromise. It acknowledges that both conceptual
clarity and implementation efficiency are fundamental concerns. This book at-
tempts to capture this spirit of compromise, by simultaneously considering the
conceptual and implementation aspects of each of the topics it covers.

DESIGN & IMPLEMENTATION

[.I Introduction

Throughout the book, sidebars like this one will highlight the interplay of
language design and language implementation. Among other things, we will
consider

Cases (such as those mentioned in this section) in which ease or difficulty
of implementation significantly affected the success of a language

Language features that many designers now believe were mistakes, at least
in part because of implementation difficulties

Potentially useful features omitted from some languages because of concern
that they might be too difficult or slow to implement

Language features introduced at least in part to facilitate efficient or elegant
implementations

Cases in which a machine architecture makes reasonable features unreason-
ably expensive

Various other tradeoffs in which implementation plays a significant role

A complete list of sidebars appears in Appendix B.

6 Donald E. Knuth (1938-), Professor Emeritus at Stanford University and one of the foremost
figures in the design and analysis of algorithms, is also widely known as the inventor of the TgX
typesetting system (with which this book was produced) and of the literate programming method-
ology with which TgX was constructed. His multivolume The Art of Computer Programming has
an honored place on the shelf of most professional computer scientists. He received the ACM
Turing Award in 1974.

EXAMPLE |3

Classification of
programming languages

1.2 The Programming Language Spectrum 11

declarative
functional Lisp/Scheme, ML, Haskell
dataflow Id, Val
logic, constraint-based Prolog, spreadsheets, SQL

imperative
von Neumann C, Ada, Fortran, ...
object-oriented Smalltalk, Eiffel, Java, ...
scripting Perl, Python, PHP,...

Figure I.I Classification of programming languages, Note that the categories are fuzzy, and

open to debate. In particular, it is possible for a functional language to be object-oriented, and
many authors do not consider functional programming to be declarative.

The Programming Language Spectrum

The many existing languages can be classified into families based on their model
of computation. Figure 1.1 shows a common set of families. The top-level di-
vision distinguishes between the declarative languages, in which the focus is on
what the computer is to do, and the imperative languages, in which the focus is
on how the computer should do it.

Declarative languages are in some sense “higher level”; they are more in tune
with the programmer’s point of view, and less with the implementor’s point of
view. Imperative languages predominate, however, mainly for performance rea-
sons. There is a tension in the design of declarative languages between the desire
to get away from “irrelevant” implementation details and the need to remain close
enough to the details to at least control the outline of an algorithm. The design of
efficient algorithms, after all, is what much of computer science is about. It is not
yet clear to what extent, and in what problem domains, we can expect compilers
to discover good algorithms for problems stated at a very high level of abstrac-
tion. In any domain in which the compiler cannot find a good algorithm, the
programmer needs to be able to specify one explicitly.

Within the declarative and imperative families, there are several important
subfamilies:

Functional languages employ a computational model based on the recursive
definition of functions. They take their inspiration from the lambda calculus,
a formal computational model developed by Alonzo Church in the 1930s. In
essence, a program is considered a function from inputs to outputs, defined in
terms of simpler functions through a process of refinement. Languages in this
category include Lisp, ML, and Haskell.

Dataflow languages model computation as the flow of information (tokens)
among primitive functional nodes. They provide an inherently parallel model:
nodes are triggered by the arrival of input tokens, and can operate concur-
rently. Id and Val are examples of dataflow languages. Sisal, a descendant of
Val, is more often described as a functional language.

12

Chapter 1 Introduction

Logic or constraint-based languages take their inspiration from predicate logic.
They model computation as an attempt to find values that satisfy certain spec-
ified relationships, using goal-directed search through a list of logical rules.
Prolog is the best-known logic langnage. The term is also sometimes applied
to the SQL database language, the XSLT scripting language, and programmable
aspects of spreadsheets such as Excel and its predecessors.

The von Neumann languages are probably the most familiar and widely used.
They include Fortran, Ada, C, and all of the others in which the basic means of
computation is the modification of variables.” Whereas functional languages
are based on expressions that have values, von Neumann languages are based
on statements (assignments in particular) that influence subsequent computa-
tion via the side effect of changing the value of memory.

Object-oriented languages trace their roots to Simula 67. Most are closely
related to the von Neumann languages, but have a much more structured
and distributed model of both memory and computation. Rather than pic-
ture computation as the operation of a monolithic processor on a monolithic
memory, object-oriented languages picture it as interactions among semi-
independent objects, each of which has both its own internal state and sub-
routines to manage that state. Smalltalk is the purest of the object-oriented
languages; C++ and Java are probably the most widely used. It is also possi-
ble to devise object-oriented functional languages (the best known of these are
CLOS [Kee89] and OCaml), but they tend to have a strong imperative flavor.

Scripting languages are distinguished by their emphasis on coordinating or
“gluing together” components drawn from some surrounding context. Sev-
eral scripting languages were originally developed for specific purposes: csh
and bash are the input languages of job control (shell) programs; PHP and
JavaScript are primarily intended for the generation of dynamic web content;
Lua is widely used to control computer games. Other languages, including
Perl, Python, and Ruby, are more deliberately general purpose. Most place
an emphasis on rapid prototyping, with a bias toward ease of expression over
speed of execution.

One might suspect that concurrent (parallel) languages would form a separate
family (and indeed this book devotes a chapter to such languages), but the dis-
tinction between concurrent and sequential execution is mostly independent of
the classifications above. Most concurrent programs are currently written using
special library packages or compilers in conjunction with a sequential language
such as Fortran or C. A few widely used languages, including Java, C#, and Ada,
have explicitly concurrent features. Researchers are investigating concurrency in
each of the language families mentioned here.

7 John von Neumann (1903-1957) was a mathematician and computer pioneer who helped to
develop the concept of stored program computing, which underlies most computer hardware. In
a stored program computer, both programs and data are represented as bits in memory, which
the processor repeatedly fetches, interprets, and updates.

EXAMPLE |4
GCD function in C

exampLe |.5
GCD function in OCaml

EXAMPLE | 6

GCD rules in Prolog

1.2 The Programming Language Spectrum 13

As a simple example of the contrast among language families, consider the
greatest common divisor (GCD) problem introduced at the beginning of this
chapter. The choice among, say, von Neumann, functional, or logic program-
ming for this problem influences not only the appearance of the code, but how
the programmer thinks. The von Neumann algorithm version of the algorithm is
very imperative:

To compute the ged of a and b, check to see if a and b are equal. If so, print one of
them and stop. Otherwise, replace the larger one by their difference and repeat.

C code for this algorithm appears at the top of Figure 1.2.
In a functional language, the emphasis is on the mathematical relationship of
outputs to inputs:

The gcd of a and b is defined to be (1) a when a and b are equal, (2) the ged of b and
a - bwhen a > b,and (3) the gcd of aand b - a when b > a. To compute the ged of
a given pair of numbers, expand and simplify this definition until it terminates.

An OCaml version of this algorithm appears in the middle of Figure 1.2. The key-
word let introduces a definition; rec indicates that it is permitted to be recursive
(self-referential); arguments for a function come between the name (in this case,
ged) and the equals sign.

In a logic language, the programmer specifies a set of axioms and proof rules
that allows the system to find desired values:

The proposition ged(a, b, g) is true if (1) a, b, and g are all equal; (2) a is greater
than b and there exists a number ¢ such that c is 2 - b and ged(c, b, g) is true; or
(3) a is less than b and there exists a number ¢ such that ¢ is b - a and ged(c, a,
g) is true. To compute the ged of a given pair of numbers, search for a number g (and
various numbers ¢) for which these rules allow one to prove that gcd(a, b, g) is true.

A Prolog version of this algorithm appears at the bottom of Figure 1.2. It may be
easier to understand if one reads “if” for : - and “and” for commas.

It should be emphasized that the distinctions among language families are not
clear-cut. The division between the von Neumann and object-oriented languages,
for example, is often very fuzzy, and many scripting languages are also object-
oriented. Most of the functional and logic languages include some imperative
features, and several recent imperative languages have added functional features.
The descriptions above are meant to capture the general flavor of the families,
without providing formal definitions.

Imperative languages—von Neumann and object-oriented—receive the bulk
of the attention in this book. Many issues cut across family lines, however, and
the interested reader will discover much that is applicable to alternative compu-
tational models in most chapters of the book. Chapters 11 through 14 contain
additional material on functional, logic, concurrent, and scripting languages.

14

Chapter 1 Introduction

int ged(int a, int b) { // C
while (a != b) {
if (a > b) a =a - b;
else b =b - a;

}
return a;
}
let rec ged a b = (* OCaml *)
if a = b then a
else if a > b then gcd b (a - b)
else ged a (b - a)
gcd(A,B,G) :- A =B, G =A. % Prolog

gcd(A,B,G) :- A > B, C is A-B, gcd(C,B,G).
gcd(A,B,G) :- B » A, C is B-A, gcd(C,A,G).

Figure .l The GCD algorithm in C (top), OCaml (middle), and Prolog (bottom). All three
versions assume (without checking) that their inputs are positive integers.

Why Study Programming Languages?

Programming languages are central to computer science, and to the typical com-
puter science curriculum. Like most car owners, students who have become fa-
miliar with one or more high-level languages are generally curious to learn about
other languages, and to know what is going on “under the hood.” Learning about
languages is interesting. It’s also practical.

For one thing, a good understanding of language design and implementation
can help one choose the most appropriate language for any given task. Most lan-
guages are better for some things than for others. Few programmers are likely to
choose Fortran for symbolic computing or string processing, but other choices
are not nearly so clear-cut. Should one choose C, C++, or C# for systems pro-
gramming? Fortran or C for scientific computations? PHP or Ruby for a web-
based application? Ada or C for embedded systems? Visual Basic or Java for a
graphical user interface? This book should help equip you to make such deci-
sions.

Similarly, this book should make it easier to learn new languages. Many lan-
guages are closely related. Java and C# are easier to learn if you already know
C++; Common Lisp if you already know Scheme; Haskell if you already know
ML. More importantly, there are basic concepts that underlie all programming
languages. Most of these concepts are the subject of chapters in this book: types,
control (iteration, selection, recursion, nondeterminacy, concurrency), abstrac-
tion, and naming. Thinking in terms of these concepts makes it easier to assim-
ilate the syntax (form) and semantics (meaning) of new languages, compared to
picking them up in a vacuum. The situation is analogous to what happens in nat-

1.3 Why Study Programming Languages? 15

ural languages: a good knowledge of grammatical forms makes it easier to learn a
foreign language.

Whatever language you learn, understanding the decisions that went into its
design and implementation will help you use it better. This book should help
you:

Understand obscure features. The typical C++ programmer rarely uses unions,
multiple inheritance, variable numbers of arguments, or the . * operator. (If
you don’t know what these are, don’t worry!) Just as it simplifies the assimi-
lation of new languages, an understanding of basic concepts makes it easier to
understand these features when you look up the details in the manual.

Choose among alternative ways to express things, based on a knowledge of imple-
mentation costs. In C++, for example, programmers may need to avoid un-
necessary temporary variables, and use copy constructors whenever possible,
to minimize the cost of initialization. In Java they may wish to use Executor
objects rather than explicit thread creation. With certain (poor) compilers,
they may need to adopt special programming idioms to get the fastest code:
pointers for array traversal; x*x instead of x**2. In any language, they need
to be able to evaluate the tradeoffs among alternative implementations of ab-
stractions—for example between computation and table lookup for functions
like bit set cardinality, which can be implemented either way.

Make good use of debuggers, assemblers, linkers, and related tools. In general, the
high-level language programmer should not need to bother with implementa-
tion details. There are times, however, when an understanding of those details
is virtually essential. The tenacious bug or unusual system-building problem
may be dramatically easier to handle if one is willing to peek at the bits.

Simulate useful features in languages that lack them. Certain very useful features
are missing in older languages, but can be emulated by following a deliberate
(if unenforced) programming style. In older dialects of Fortran, for exam-
ple, programmers familiar with modern control constructs can use comments
and self-discipline to write well-structured code. Similarly, in languages with
poor abstraction facilities, comments and naming conventions can help imi-
tate modular structure, and the extremely useful iterators of Clu, C#, Python,
and Ruby (which we will study in Section 6.5.3) can be imitated with subrou-
tines and static variables.

Make better use of language technology wherever it appears. Most programmers
will never design or implement a conventional programming language, but
most will need language technology for other programming tasks. The typ-
ical personal computer contains files in dozens of structured formats, en-
compassing word processing, spreadsheets, presentations, raster and vector
graphics, music, video, databases, and a wide variety of other application do-
mains. Web content is increasingly represented in XML, a text-based format
designed for easy manipulation in the XSLT scripting language (discussed in
Section C-14.3.5). Code to parse, analyze, generate, optimize, and otherwise

16

Chapter 1 Introduction

manipulate structured data can thus be found in almost any sophisticated pro-
gram, and all of this code is based on language technology. Programmers with
a strong grasp of this technology will be in a better position to write well-
structured, maintainable tools.

In a similar vein, most tools themselves can be customized, via start-up con-
figuration files, command-line arguments, input commands, or built-in exten-
sion languages (considered in more detail in Chapter 14). My home directory
holds more than 250 separate configuration (“preference”) files. My personal
configuration files for the emacs text editor comprise more than 1200 lines
of Lisp code. The user of almost any sophisticated program today will need
to make good use of configuration or extension languages. The designers of
such a program will need either to adopt (and adapt) some existing extension
language, or to invent new notation of their own. Programmers with a strong
grasp of language theory will be in a better position to design elegant, well-
structured notation that meets the needs of current users and facilitates future
development.

Finally, this book should help prepare you for further study in language de-

sign or implementation, should you be so inclined. It will also equip you to un-
derstand the interactions of languages with operating systems and architectures,
should those areas draw your interest.

/CHECK YOUR UNDERSTANDING

l.
1

(== e

What is the difference between machine language and assembly language?

In what way(s) are high-level languages an improvement on assembly lan-
guage? Are there circumstances in which it still make sense to program in
assembler?

Why are there so many programming languages?
What makes a programming language successful?

Name three languages in each of the following categories: von Neumann,
functional, object-oriented. Name two logic languages. Name two widely
used concurrent languages.

What distinguishes declarative languages from imperative languages?
What organization spearheaded the development of Ada?
What is generally considered the first high-level programming language?

What was the first functional language?

[0. Why aren’t concurrent languages listed as a separate family in Figure 1.1?

EXAMPLE | ?

Pure compilation

EXAMPLE | 8

Pure interpretation

1.4 Compilation and Interpretation 17

Compilation and Interpretation

At the highest level of abstraction, the compilation and execution of a program in
a high-level language look something like this:

Source program

(Compiler)

Input —P‘: Target program :l—)- Output

The compiler translates the high-level source program into an equivalent target
program (typically in machine language), and then goes away. At some arbitrary
later time, the user tells the operating system to run the target program. The com-
piler is the locus of control during compilation; the target program is the locus of
control during its own execution. The compiler is itself a machine language pro-
gram, presumably created by compiling some other high-level program. When
written to a file in a format understood by the operating system, machine lan-
guage is commonly known as object code.

An alternative style of implementation for high-level languages is known as
interpretation:

Source program
prog —

o~ Interpreter) — Output
Input

Unlike a compiler, an interpreter stays around for the execution of the appli-
cation. In fact, the interpreter is the locus of control during that execution. In
effect, the interpreter implements a virtual machine whose “machine language”
is the high-level programming language. The interpreter reads statements in that
language more or less one at a time, executing them as it goes along.

In general, interpretation leads to greater flexibility and better diagnostics (er-
ror messages) than does compilation. Because the source code is being executed
directly, the interpreter can include an excellent source-level debugger. It can also
cope with languages in which fundamental characteristics of the program, such as
the sizes and types of variables, or even which names refer to which variables, can
depend on the input data. Some language features are almost impossible to im-
plement without interpretation: in Lisp and Prolog, for example, a program can
write new pieces of itself and execute them on the fly. (Several scripting languages
also provide this capability.) Delaying decisions about program implementation
until run time is known as late binding; we will discuss it at greater length in
Section 3.1.

18 Chapter 1 Introduction

EXAMPLE | .9

Mixing compilation and
interpretation

Compilation, by contrast, generally leads to better performance. In general,
a decision made at compile time is a decision that does not need to be made at
run time. For example, if the compiler can guarantee that variable x will always
lie at location 49378, it can generate machine language instructions that access
this location whenever the source program refers to x. By contrast, an interpreter
may need to look x up in a table every time it is accessed, in order to find its loca-
tion. Since the (final version of a) program is compiled only once, but generally
executed many times, the savings can be substantial, particularly if the interpreter
is doing unnecessary work in every iteration of a loop.

While the conceptual difference between compilation and interpretation is
clear, most language implementations include a mixture of both. They typically
look like this:

Source program

l

C Translator >

Intermediate program —~
Input —

(Virtual machine >—> Output

We generally say that a language is “interpreted” when the initial translator is
simple. If the translator is complicated, we say that the language is “compiled.”
The distinction can be confusing because “simple” and “complicated” are sub-
jective terms, and because it is possible for a compiler (complicated translator)
to produce code that is then executed by a complicated virtual machine (inter-
preter); this is in fact precisely what happens by default in Java. We still say that a
language is compiled if the translator analyzes it thoroughly (rather than effecting
some “mechanical” transformation), and if the intermediate program does not
bear a strong resemblance to the source. These two characteristics—thorough
analysis and nontrivial transformation—are the hallmarks of compilation.

DESIGN & IMPLEMENTATION

1.2 Compiled and interpreted languages

Certain languages (e.g., Smalltalk and Python) are sometimes referred to as
“Interpreted languages” because most of their semantic error checking must
be performed at run time. Certain other languages (e.g., Fortran and C)
are sometimes referred to as “compiled languages” because almost all of their
semantic error checking can be performed statically. This terminology isn't
strictly correct: interpreters for C and Fortran can be built easily, and a com-
piler can generate code to perform even the most extensive dynamic semantic
checks. That said, language design has a profound effect on “compilability.”

EXAMPLE |I[]

Preprocessing

EXAMPLE || I

Library routines and linking

1.4 Compilation and Interpretation 19

In practice one sees a broad spectrum of implementation strategies:

Most interpreted languages employ an initial translator (a preprocessor) that re-
moves comments and white space, and groups characters together into tokens
such as keywords, identifiers, numbers, and symbols. The translator may also
expand abbreviations in the style of a macro assembler. Finally, it may identify
higher-level syntactic structures, such as loops and subroutines. The goal is to
produce an intermediate form that mirrors the structure of the source, but can
be interpreted more efficiently.

In some very early implementations of Basic, the manual actually suggested

removing comments from a program in order to improve its performance.
These implementations were pure interpreters; they would re-read (and then
ignore) the comments every time they executed a given part of the program.
They had no initial translator.
The typical Fortran implementation comes close to pure compilation. The
compiler translates Fortran source into machine language. Usually, however,
it counts on the existence of a library of subroutines that are not part of the
original program. Examples include mathematical functions (sin, cos, log,
etc.) and I/O. The compiler relies on a separate program, known as a linker, to
merge the appropriate library routines into the final program:

Fortran program

C Compiler)

Incomplete machine language Library routines

Machine language program

In some sense, one may think of the library routines as extensions to the
hardware instruction set. The compiler can then be thought of as generating
code for a virtual machine that includes the capabilities of both the hardware
and the library.

In a more literal sense, one can find interpretation in the Fortran routines
for formatted output. Fortran permits the use of format statements that con-
trol the alignment of output in columns, the number of significant digits and
type of scientific notation for floating-point numbers, inclusion/suppression
of leading zeros, and so on. Programs can compute their own formats on the
fly. The output library routines include a format interpreter. A similar inter-
preter can be found in the printf routine of C and its descendants.

20 Chapter 1 Introduction

EXAMPLE | IZ

Post-compilation assembly

EXAMPLE |. |3

The C preprocessor

EXAMPLE ||4

Source-to-source
translation

Many compilers generate assembly language instead of machine language. This
convention facilitates debugging, since assembly language is easier for people
to read, and isolates the compiler from changes in the format of machine lan-
guage files that may be mandated by new releases of the operating system (only
the assembler must be changed, and it is shared by many compilers):

Source program

!
(compier)

Assembly language

C Assembler)

Machine language

Compilers for C (and for many other languages running under Unix) begin
with a preprocessor that removes comments and expands macros. The pre-
processor can also be instructed to delete portions of the code itself, providing
a conditional compilation facility that allows several versions of a program to
be built from the same source:

Source program

(Preprocessor)

Modified source program

l
C ll D

Assembly language

A surprising number of compilers generate output in some high-level
language—commonly C or some simplified version of the input language.
Such source-to-source translation is particularly common in research languages
and during the early stages of language development. One famous example was
AT&T’s original compiler for C++. This was indeed a true compiler, though
it generated C instead of assembler: it performed a complete analysis of the
syntax and semantics of the C++ source program, and with very few excep-

EXAMPLE | IS

Bootstrapping

1.4 Compilation and Interpretation 21

tions generated all of the error messages that a programmer would see prior
to running the program. In fact, programmers were generally unaware that
the C compiler was being used behind the scenes. The C++ compiler did not
invoke the C compiler unless it had generated C code that would pass through
the second round of compilation without producing any error messages:

Source program

!
(Compiler 1)
!

Alternative source program (e.g., in C)

l
(Compiez)
l

Assembly language

Occasionally one would hear the C++ compiler referred to as a preproces-
sor, presumably because it generated high-level output that was in turn com-
piled. I consider this a misuse of the term: compilers attempt to “understand”
their source; preprocessors do not. Preprocessors perform transformations
based on simple pattern matching, and may well produce output that will gen-
erate error messages when run through a subsequent stage of translation.

Many compilers are self-hosting: they are written in the language they
compile—Ada compilers in Ada, C compilers in C. This raises an obvious
question: how does one compile the compiler in the first place? The answer
is to use a technique known as bootstrapping, a term derived from the inten-
tionally ridiculous notion of lifting oneself off the ground by pulling on one’s
bootstraps. In a nutshell, one starts with a simple implementation—often an
interpreter—and uses it to build progressively more sophisticated versions. We
can illustrate the idea with an historical example.

Many early Pascal compilers were built around a set of tools distributed by
Niklaus Wirth. These included the following:

— A Pascal compiler, written in Pascal, that would generate output in P-code,
a stack-based language similar to the byfecode of modern Java compilers
— The same compiler, already translated into P-code
— A P-code interpreter, written in Pascal
To get Pascal up and running on a local machine, the user of the tool set
needed only to translate the P-code interpreter (by hand) into some locally

available language. This translation was not a difficult task; the interpreter was
small. By running the P-code version of the compiler on top of the P-code

22

Chapter 1 Introduction

interpreter, one could then compile arbitrary Pascal programs into P-code,
which could in turn be run on the interpreter. To get a faster implementa-
tion, one could modify the Pascal version of the Pascal compiler to generate
a locally available variety of assembly or machine language, instead of gen-
erating P-code (a somewhat more difficult task). This compiler could then
be bootstrapped—run through itself—to yield a machine-code version of the
compiler:

Pascal to machine
language compiler,
in Pascal

l

Pascal to P-code Pascal to machine

1

. . - !
compiler, in P-code language compiler, 1
in P-code !

S

Pascal to machine
language compiler,
in machine language

In a more general context, suppose we were building one of the first compil-
ers for a new programming language. Assuming we have a C compiler on our
target system, we might start by writing, in a simple subset of C, a compiler
for an equally simple subset of our new programming language. Once this
compiler was working, we could hand-translate the C code into (the subset of)
our new language, and then run the new source through the compiler itself.
After that, we could repeatedly extend the compiler to accept a larger subset

DESIGN & IMPLEMENTATION

.3 The early success of Pascal

The P-code-based implementation of Pascal, and its use of bootstrapping, are
largely responsible for the language’s remarkable success in academic circles
in the 1970s. No single hardware platform or operating system of that era
dominated the computer landscape the way the x86, Linux, and Windows do
today.® Wirth’s toolkit made it possible to get an implementation of Pascal up
and running on almost any platform in a week or so. It was one of the first
great successes in system portability.

8 Throughout this book we will use the term “x86” to refer to the instruction set architecture of the

Intel 8086 and its descendants, including the various Pentium, “Core,” and Xeon processors. Intel
calls this architecture the [A-32, but x86 is a more generic term that encompasses the offerings of
competitors such as AMD as well.

exampie |16
Compiling interpreted
languages

EXAMPLE | IT

Dynamic and just-in-time
compilation

1.4 Compilation and Interpretation 23

of the new programming language, bootstrap it again, and use the extended
language to implement an even larger subset. “Self-hosting” implementations
of this sort are actually quite common.

One will sometimes find compilers for languages (e.g., Lisp, Prolog, Smalltalk)
that permit a lot of late binding, and are traditionally interpreted. These com-
pilers must be prepared, in the general case, to generate code that performs
much of the work of an interpreter, or that makes calls into a library that does
that work instead. In important special cases, however, the compiler can gen-
erate code that makes reasonable assumptions about decisions that won’t be
finalized until run time. If these assumptions prove to be valid the code will
run very fast. If the assumptions are not correct, a dynamic check will discover
the inconsistency, and revert to the interpreter.

In some cases a programming system may deliberately delay compilation until
the last possible moment. One example occurs in language implementations
(e.g., for Lisp or Prolog) that invoke the compiler on the fly, to translate newly
created source into machine language, or to optimize the code for a particu-
lar input set. Another example occurs in implementations of Java. The Java
language definition defines a machine-independent intermediate form known
as Java bytecode. Bytecode is the standard format for distribution of Java pro-
grams; it allows programs to be transferred easily over the Internet, and then
run on any platform. The first Java implementations were based on byte-code
interpreters, but modern implementations obtain significantly better perfor-
mance with a just-in-time compiler that translates bytecode into machine lan-
guage immediately before each execution of the program:

Java program

(Java compiler) Input

Java byte code ———(Bytecode interpreter)
< JIT compiler) Qutput

Input ——»{ Machine language [Output
A) 4

C#, similarly, is intended for just-in-time translation. The main C# com-
piler produces Common Intermediate Language (CIL), which is then translated
into machine language immediately prior to execution. CIL is deliberately lan-
guage independent, so it can be used for code produced by a variety of front-
end compilers. We will explore the Java and C# implementations in detail in
Section 16.1.

24 Chapter 1 Introduction

EXAMPLE ||8

Microcode (firmware)

On some machines (particularly those designed before the mid-1980s), the
assembly-level instruction set is not actually implemented in hardware, but in
fact runs on an interpreter. The interpreter is written in low-level instructions
called microcode (or firmware), which is stored in read-only memory and ex-
ecuted by the hardware. Microcode and microprogramming are considered
further in Section C-5.4.1.

As some of these examples make clear, a compiler does not necessarily translate
from a high-level programming language into machine language. Some compil-
ers, in fact, accept inputs that we might not immediately think of as programs at
all. Text formatters like TiX, for example, compile high-level document descrip-
tions into commands for a laser printer or phototypesetter. (Many laser printers
themselves contain pre-installed interpreters for the Postscript page-description
language.) Query language processors for database systems translate languages
like SQL into primitive operations on files. There are even compilers that trans-
late logic-level circuit specifications into photographic masks for computer chips.
Though the focus in this book is on imperative programming languages, the term
“compilation” applies whenever we translate automatically from one nontrivial
language to another, with full analysis of the meaning of the input.

Programming Environments

Compilers and interpreters do not exist in isolation. Programmers are assisted in
their work by a host of other tools. Assemblers, debuggers, preprocessors, and
linkers were mentioned earlier. Editors are familiar to every programmer. They
may be augmented with cross-referencing facilities that allow the programmer to
find the point at which an object is defined, given a point at which it is used. Pretty
printers help enforce formatting conventions. Style checkers enforce syntactic or
semantic conventions that may be tighter than those enforced by the compiler
(see Exploration 1.14). Configuration management tools help keep track of de-
pendences among the (many versions of) separately compiled modules in a large
software system. Perusal tools exist not only for text but also for intermediate
languages that may be stored in binary. Profilers and other performance analysis
tools often work in conjunction with debuggers to help identify the pieces of a
program that consume the bulk of its computation time.

In older programming environments, tools may be executed individually, at
the explicit request of the user. If a running program terminates abnormally with
a “bus error” (invalid address) message, for example, the user may choose to in-
voke a debugger to examine the “core” file dumped by the operating system. He
or she may then attempt to identify the program bug by setting breakpoints, en-
abling tracing and so on, and running the program again under the control of the
debugger. Once the bug is found, the user will invoke the editor to make an ap-
propriate change. He or she will then recompile the modified program, possibly
with the help of a configuration manager.

1.5 Programming Environments 25

Modern environments provide more integrated tools. When an invalid address
error occurs in an integrated development environment (IDE), a new window is
likely to appear on the user’s screen, with the line of source code at which the
error occurred highlighted. Breakpoints and tracing can then be set in this win-
dow without explicitly invoking a debugger. Changes to the source can be made
without explicitly invoking an editor. If the user asks to rerun the program af-
ter making changes, a new version may be built without explicitly invoking the
compiler or configuration manager.

The editor for an IDE may incorporate knowledge of language syntax, provid-
ing templates for all the standard control structures, and checking syntax as it is
typed in. Internally, the IDE is likely to maintain not only a program’s source
and object code, but also a partially compiled internal representation. When the
source is edited, the internal representation will be updated automatically—often
incrementally (without reparsing large portions of the source). In some cases,
structural changes to the program may be implemented first in the internal rep-
resentation, and then automatically reflected in the source.

IDEs are fundamental to Smalltalk—it is nearly impossible to separate the lan-
guage from its graphical environment—and have been routinely used for Com-
mon Lisp since the 1980s. With the ubiquity of graphical interfaces, integrated
environments have largely displaced command-line tools for many languages and
systems. Popular open-source IDEs include Eclipse and NetBeans. Commercial
systems include the Visual Studio environment from Microsoft and the XCode
environment from Apple. Much of the appearance of integration can also be
achieved within sophisticated editors such as emacs.

‘/CHECK YOUR UNDERSTANDING

Il. Explain the distinction between interpretation and compilation. What are the
comparative advantages and disadvantages of the two approaches?

[2. Is Java compiled or interpreted (or both)? How do you know?
13. What is the difference between a compiler and a preprocessor?

[4. What was the intermediate form employed by the original AT&T C++ com-
piler?

DESIGN & IMPLEMENTATION

[.4 Powerful development environments

Sophisticated development environments can be a two-edged sword. The
quality of the Common Lisp environment has arguably contributed to its
widespread acceptance. On the other hand, the particularity of the graphi-
cal environment for Smalltalk (with its insistence on specific fonts, window
styles, etc.) made it difficult to port the language to systems accessed through
a textual interface, or to graphical systems with a different “look and feel.”

26 Chapter 1 Introduction

EXAMPLE | Ig

Phases of compilation and
interpretation

[5. What is P-code?
[6. What is bootstrapping?
I7. What is a just-in-time compiler?

[8. Name two languages in which a program can write new pieces of itself “on

the fly.”

19. Briefly describe three “unconventional” compilers—compilers whose pur-
pose is not to prepare a high-level program for execution on a general-
purpose processor.

20. List six kinds of tools that commonly support the work of a compiler within
a larger programming environment.

21. Explain how an integrated development environment (IDE) differs from a
collection of command-line tools.

An Overview of Compilation

Compilers are among the most well-studied computer programs. We will con-
sider them repeatedly throughout the rest of the book, and in chapters 2, 4, 15,
and 17 in particular. The remainder of this section provides an introductory
overview.

In a typical compiler, compilation proceeds through a series of well-defined
phases, shown in Figure 1.3. Each phase discovers information of use to later
phases, or transforms the program into a form that is more useful to the subse-
quent phase.

The first few phases (up through semantic analysis) serve to figure out the
meaning of the source program. They are sometimes called the front end of the
compiler. The last few phases serve to construct an equivalent target program.
They are sometimes called the back end of the compiler.

An interpreter (Figure 1.4) shares the compiler’s front-end structure, but
“executes” (interprets) the intermediate form directly, rather than translating
it into machine language. The execution typically takes the form of a set of
mutually recursive subroutines that traverse (“walk”) the syntax tree, “execut-
ing” its nodes in program order. Many compiler and interpreter phases can
be created automatically from a formal description of the source and/or target
languages.

One will sometimes hear compilation described as a series of passes. A pass
is a phase or set of phases that is serialized with respect to the rest of compila-
tion: it does not start until previous phases have completed, and it finishes before
any subsequent phases start. If desired, a pass may be written as a separate pro-
gram, reading its input from a file and writing its output to a file. Compilers are
commonly divided into passes so that the front end may be shared by compilers

1.6 An Overview of Compilation 27

Character stream

\]] m B
Scanner (lexical analysis)
Token stream \
Front
C Parser (syntax analysis)) end
Parse tree
\ (Semantic analysis and) o
Abstract syntax tree or intermediate code generation :% B
other intermediate form \ Machine independent) :;
Modified «— code improvement (optional) 5
intermediate form
\ (Target code generation]
Target language — Back
(e.g., assembler) - - end
8 \ Machine-specific
Modified __—— code improvement (optional) __/

target language
Figure 1.3 Phases of compilation. Phases are listed on the right and the forms in which

information is passed between phases are listed on the left. The symbol table serves throughout
compilation as a repository for information about identifiers.

Character stream

\ m N
Scanner (lexical analysis)
Token stream
\ Front
Parser (syntax analysis) < " end
Parse tree 8
\ Semantic analysis and) _Tg
[=]
Abstract syntax tree or / intermediate code generation % B
other intermediate form \
Program input ——» Tree-walk routines)

S Program output

Figure |.4 Phases of interpretation. The front end is essentially the same as that of a compiler.
The final phase “executes” the intermediate form, typically using a set of mutually recursive
subroutines that walk the syntax tree.

for more than one machine (target language), and so that the back end may be
shared by compilers for more than one source language. In some implementa-
tions the front end and the back end may be separated by a “middle end” that
is responsible for language- and machine-independent code improvement. Prior

28 Chapter 1 Introduction

examece .20
GCD program in C

EXAMPLE |2|

GCD program tokens

EXAMPLE |22

Context-free grammar and
parsing

to the dramatic increases in memory sizes of the mid to late 1980s, compilers
were also sometimes divided into passes to minimize memory usage: as each pass
completed, the next could reuse its code space.

|.6.] Lexical and Syntax Analysis

Consider the greatest common divisor (GCD) problem introduced at the begin-
ning of this chapter, and shown as a function in Figure 1.2. Hypothesizing trivial
[/O routines and recasting the function as a stand-alone program, our code might

look like this in C:

int main() {
int i = getint(), j = getint();
while (i != j) {
iG> §)i=4d- g
else j = j - i;
}
putint(i);

Scanning and parsing serve to recognize the structure of the program, without
regard to its meaning. The scanner reads characters (‘1) ‘n’ ‘t} ‘ ’ ‘m’ ‘@) ‘i’ ‘n)
‘(5) etc.) and groups them into fokens, which are the smallest meaningful units

of the program. In our example, the tokens are

int main () { int i =
getint () , h| = getint (
) ; while (i 1= j)
{ if (i > j) i
= i - J ; else J =
J - i ; ¥ putint (i
) ; ¥

Scanning is also known as lexical analysis. The principal purpose of the scanner
is to simplify the task of the parser, by reducing the size of the input (there are
many more characters than tokens) and by removing extraneous characters like
white space. The scanner also typically removes comments and tags tokens with
line and column numbers, to make it easier to generate good diagnostics in later
phases. One could design a parser to take characters instead of tokens as input—
dispensing with the scanner—but the result would be awkward and slow.

Parsing organizes tokens into a parse tree that represents higher-level con-
structs (statements, expressions, subroutines, and so on) in terms of their con-
stituents. Each construct is a node in the tree; its constituents are its children. The
root of the tree is simply “program”; the leaves, from left to right, are the tokens
received from the scanner. Taken as a whole, the tree shows how the tokens fit

EXAMPLE |23

GCD program parse tree

1.6 An Overview of Compilation 29

together to make a valid program. The structure relies on a set of potentially re-
cursive rules known as a context-free grammar. Each rule has an arrow sign (—)
with the construct name on the left and a possible expansion on the right.’ In C,
for example, a while loop consists of the keyword while followed by a parenthe-
sized Boolean expression and a statement:

iteration-staternent — while (expression) statement
The statement, in turn, is often a list enclosed in braces:

statement — compound-statement

compound-statement — { block-item-list_opt }
where

block-item-list_opt — block-item-list
or

block-item-list_opt — €
and

block-item-list — block-item
block-item-list — block-item-list block-item
block-item — declaration

block-itemm — statement

Here € represents the empty string; it indicates that block-item-list_opt can simply
be deleted. Many more grammar rules are needed, of course, to explain the full
structure of a program.

A context-free grammar is said to define the syntax of the language; parsing
is therefore known as syntax analysis. There are many possible grammars for C
(an infinite number, in fact); the fragment shown above is taken from the sam-
ple grammar contained in the official language definition [Int99]. A full parse
tree for our GCD program (based on a full grammar not shown here) appears in
Figure 1.5. While the size of the tree may seem daunting, its details aren’t par-
ticularly important at this point in the text. What is important is that (1) each
individual branching point represents the application of a single grammar rule,
and (2) the resulting complexity is more a reflection of the grammar than it is
of the input program. Much of the bulk stems from (a) the use of such artificial
“constructs” as block_item-list and block_item-list_opt to generate lists of arbitrary

9 Theorists also study context-sensitive grammars, in which the allowable expansions of a construct
(the applicable rules) depend on the context in which the construct appears (i.e., on constructs
to the left and right). Context sensitivity is important for natural languages like English, but it is
almost never used in programming language design.

Chapter 1 Introduction

30

2 3do™s1-uossaidxa-juaun iy (autie8)juspt
I

.
uoissaidxa-xifisod

1do™1s1p-uoissaudxa-juatunsip (2urqe8)quspt (

I
(uoissaidxa-xifisod uoissasdxa-xifjsod (T)auept E!
| |
uorssasdxa-xifisod ([yauspt 2 uotssardxa-quatuuBisso doppppap-panp 1do aautod
€l | | | ~_—
uorssaidxa-juatuufissy tojpappap-paap jdoaagurod 1azippIUL = 10)pIvpIP
A2zZ1[p13Iu1 = A01D4D22p Aojpavap-jiut
LOJRADIP-JIE ¢ JSI[-AOJRID|I2P-]iLil E] qut
1s1]-d01pappap-jur - jdo”suanfads-uoyvavpap aarfirads-adA;
¢ adoTisi-aotap)rap-giul saatfirads-uonpivpap
Vv uoIBIIP El Jut
q waji-y201q 1511-1a11-3201q 1do~suarfads-uoypiwpap aatfads-add)
wag-y20]q 151]-1a-y0jq El (uTew) 3uspT suatfixads-uotjpippap

R | |

151)-1aj1-y20jq (adoTgsy-iafuaps Y uojpappap-paup 3

| g |

{ Kolﬁ.:-ﬁmx-u_..ucﬁ } 2 AOJDAV]I2P-1I2.41P Kol.ﬁ&:._om

Juatap)s-punoduior 1do™ s1j-uonpivpap dojpappoap

uoiufap-uorounf
L
!
JUR-UOLD]SUDL]

1.6 An Overview of Compilation

UBUIWELIS 23.J-1X2U0D B JO 2JN1ONJIS [EIILDIEISIY SUL 01Ul SPOD 324Nnos (Jajduwis yanwl) ay3 1) 01 SUIABY WO SSUI0D 3

I [IEI2P JO JUNOWD J33YS DY}

Yardeup ualind auyy o} Juellodul ,Usie 2341 SUY JO S|IBISP 3UL 3IUAA 'SSPOU PATHILIO JO 1aguUUnu ayj sajedlpul Jaquinu juadelpe sy tadeds anes 01 papijs
'sjusWEE|dad BUO=IO-BUO JO UIBYD B 23BDIPUI S3UI| pano] Bulns Aldwe ayy syussaudad 3 [oquids oy ‘weddoud @O sya o) 99.43 Bs.ed <l E:m_“_

(T)3uepT ([)yauspr
¥ S\
uotssasdxa-aanvoydiypm - - uoissaadxa-anippo

N _——

:a.ﬁ&&k?@..&.ﬁﬁm = ([)auspt
ot | .
uoissardxa-juarudissy aoiado-justuudissy uoissaidxa-Aavun

iy ey

uoissaidxa-juaiuusissy
,
[
:
¢ jdo uogssardxa

~_

JUDLLUDIDIS-UOISSIIGXD

([yquept

uoissaidxa-aaypoyduniu -

(T)3uept
P! S\
uotssaidxa-aanippy

N

:o.ﬁ@;&ﬁ.»;.&%ﬁu = (T)3uspT
o1 | z
: .
uoissaidxa-juawudissy 10jprado-juatuudissy uotssasdxa-Aapun

101552.4dx2-]UIUUTISSD ([)auept (T)3uept
L 9 L
' ! v
uoissaidxo-fiys < uoissasdxa-puoiv]as

—

U Q.nwmmhﬁmuﬁm “|puopvial
'

¢ jdo uotssaidxa

~_

JUILUIA VIS~ U0ISS2I]XD

| _ 8!
(T)3uept JuaLLIOIS asTe JuaniaIvys (:o.ummm.E.Rw) It
! N
adogs1-uoissardxa-juatundi (3utgnd)juspt JUIIAIDIS-UO11I2[S ([yaquept (T)auspT
L €1 L 81
(uorssaidxa-xifisod { 1doTisi-wagr-yoopq } wosssaudxa-jpuonpppr =i uosssaidxa-Aypnba

uoissaidxa-xifisod

ST
H 1do " uoissaidxa

~_

JUaM2J0]s - xﬁwwm.uhmuﬂw

FTEITIEN T

q

/_\

JuatapIs-punoduior

FITEIEN

/_\

uoissasdxa-Ajppnba

| i

(womssoudxa) sTTUM

T

JUUU]DIS-HOLIPA]T

FTEITIEN T

\4

32

Chapter 1 Introduction

length, and (b) the use of the equally artificial assignment-expression, additive-
expression, multiplicative-expression, and so on, to capture precedence and asso-
ciativity in arithmetic expressions. We shall see in the following subsection that
much of this complexity can be discarded once parsing is complete.

In the process of scanning and parsing, the compiler or interpreter checks to
see that all of the program’s tokens are well formed, and that the sequence of
tokens conforms to the syntax defined by the context-free grammar. Any mal-
formed tokens (e.g., 123abc or $0foo in C) should cause the scanner to produce
an error message. Any syntactically invalid token sequence (e.g., A = X Y Z in C)
should lead to an error message from the parser.

[.6.2 Semantic Analysis and Intermediate Code Generation

Semantic analysis is the discovery of meaning in a program. Among other things,
the semantic analyzer recognizes when multiple occurrences of the same identi-
fier are meant to refer to the same program entity, and ensures that the uses are
consistent. In most languages it also tracks the types of both identifiers and ex-
pressions, both to verify consistent usage and to guide the generation of code in
the back end of a compiler.

To assist in its work, the semantic analyzer typically builds and maintains a
symbol table data structure that maps each identifier to the information known
about it. Among other things, this information includes the identifier’s type, in-
ternal structure (if any), and scope (the portion of the program in which it is
valid).

Using the symbol table, the semantic analyzer enforces a large variety of rules
that are not captured by the hierarchical structure of the context-free grammar
and the parse tree. In C, for example, it checks to make sure that

Every identifier is declared before it is used.

No identifier is used in an inappropriate context (calling an integer as a sub-
routine, adding a string to an integer, referencing a field of the wrong type of
struct, etc.).

Subroutine calls provide the correct number and types of arguments.
Labels on the arms of a switch statement are distinct constants.

Any function with a non-void return type returns a value explicitly.

In many front ends, the work of the semantic analyzer takes the form of semantic
action routines, invoked by the parser when it realizes that it has reached a partic-
ular point within a grammar rule.

Of course, not all semantic rules can be checked at compile time (or in the
front end of an interpreter). Those that can are referred to as the static semantics
of the language. Those that must be checked at run time (or in the later phases
of an interpreter) are referred to as the dynamic semantics of the language. C has
very little in the way of dynamic checks (its designers opted for performance over
safety). Examples of rules that other languages enforce at run time include:

EXAMPLE | 24

GCD program abstract
syntax tree

EXAMPLE |.25

Interpreting the syntax
tree

1.6 An Overview of Compilation 33

Variables are never used in an expression unless they have been given a value.'”
Pointers are never dereferenced unless they refer to a valid object.

Array subscript expressions lie within the bounds of the array.

Arithmetic operations do not overtlow.

When it cannot enforce rules statically, a compiler will often produce code to
perform appropriate checks at run time, aborting the program or generating an
exception if one of the checks then fails. (Exceptions will be discussed in Sec-
tion 9.4.) Some rules, unfortunately, may be unacceptably expensive or impossi-
ble to enforce, and the language implementation may simply fail to check them.
In Ada, a program that breaks such a rule is said to be erroneous; in C its behavior
is said to be undefined.

A parse tree is sometimes known as a concrete syntax tree, because it demon-
strates, completely and concretely, how a particular sequence of tokens can be
derived under the rules of the context-free grammar. Once we know that a token
sequence is valid, however, much of the information in the parse tree is irrele-
vant to further phases of compilation. In the process of checking static semantic
rules, the semantic analyzer typically transforms the parse tree into an abstract
syntax tree (otherwise known as an AST, or simply a syntax tree) by removing
most of the “artificial” nodes in the tree’s interior. The semantic analyzer also
annotates the remaining nodes with useful information, such as pointers from
identifiers to their symbol table entries. The annotations attached to a particular
node are known as its attributes. A syntax tree for our GCD program is shown in
Figure 1.6.

Many interpreters use an annotated syntax tree to represent the running pro-
gram: “execution” then amounts to tree traversal. In our GCD program, an inter-
preter would start at the root of Figure 1.6 and visit, in order, the statements on
the main spine of the tree. At the first “:=” node, the interpreter would notice that
the right child is a call: it would therefore call the getint routine (found in slot
3 of the symbol table) and assign the result into i (found in slot 5 of the symbol
table). At the second “:=” node the interpreter would similarly assign the result
of getint into j. At the while node it would repeatedly evaluate the left (“#£7)
child and, if the result was true, recursively walk the tree under the right (if) child.
Finally, once the while node’s left child evaluated to false, the interpreter would
move on to the final call node, and output its result.

In many compilers, the annotated syntax tree constitutes the intermediate
form that is passed from the front end to the back end. In other compilers, se-
mantic analysis ends with a traversal of the tree (typically single pass) that gener-
ates some other intermediate form. One common such form consists of a control
flow graph whose nodes resemble fragments of assembly language for a simple

10 As we shall see in Section 6.1.3, Java and C# actually do enforce initialization at compile time,
but only by adopting a conservative set of rules for “definite assignment,” outlawing programs
for which correctness is difficult or impossible to verify at compile time.

34 Chapter 1 Introduction

EXAMPLE |26

GCD program assembly
code

program

(6) call /F N~

(6) call call
(3) ‘ /\
@) @
(5) (6) > = =
Index Symbol Type /\ /\ /\

1 void type B ® (5 -
2 int type
3 getint func: (1) — (2) /\ /\
4 putint func: (2) — (1)
5 A 2) (5) (B) (6) (5)
6 (2)

Figure 1.6 Syntax tree and symbol table for the GCD program. Note the contrast to Fig-
ure |.5: the syntax tree retains just the essential structure of the program, omitting details that
were needed only to drive the parsing algorithm.

idealized machine. We will consider this option further in Chapter 15, where a
control flow graph for our GCD program appears in Figure 15.3. In a suite of re-
lated compilers, the front ends for several languages and the back ends for several
machines would share a common intermediate form.

1.6.3 Target Code Generation

The code generation phase of a compiler translates the intermediate form into
the target language. Given the information contained in the syntax tree, gener-
ating correct code is usually not a difficult task (generating good code is harder,
as we shall see in Section 1.6.4). To generate assembly or machine language, the
code generator traverses the symbol table to assign locations to variables, and
then traverses the intermediate representation of the program, generating loads
and stores for variable references, interspersed with appropriate arithmetic opera-
tions, tests, and branches. Naive code for our GCD example appears in Figure 1.7,
in x86 assembly language. It was generated automatically by a simple pedagogical
compiler.

The assembly language mnemonics may appear a bit cryptic, but the com-
ments on each line (not generated by the compiler!) should make the correspon-

pushl
movl
subl
call
movl
call
movl
A: movl
movl
cmpl
je
movl
movl
cmpl
jle
movl
movl
subl
movl
Jmp
B: movl
movl
subl
movl
C: jmp
D: movl
push
call
addl
leave
mov

ret

%ebp

fesp, Yebp

$16, Jesp
getint

feax, -8(%ebp)
getint

heax, -12(%ebp)
-8(%ebp), %edi
-12(%ebp), %ebx
Jebx, %edi

D

-8(%ebp), Yedi
-12(%ebp), ‘hebx
%ebx, %hedi

B

-8(Y%ebp), ledi
-12(%ebp), %ebx
Yebx, fedi
%edi, -8(ebp)
C

-12(%ebp), Yedi
-8(%ebp), %ebx
Yebx, Yedi
%edi, -12(%ebp)
A

-8(ebp), %ebx
%hebx

putint

$4, %esp

$0, Jeax

H H E B R H R HE BB REHREHREHRH

B H

#
#
#
#
#
#
#

1.6 An Overview of Compilation 35

\
) reserve space for local variables
/
read
store i
read
store j
load i
load j
compare

jump if i

n
n
(8

load i

load j
compare

Jump if i < j
load i

load j
i=1i-=-3j
store i

load j
load i
j=i-i
store j

load i

push i (pass to putint)

write

pop i

deallocate space for local variables
exit status for program

return to operating system

Figure I.7T Naive x86 assembly language for the GCD program.

dence between Figures 1.6 and 1.7 generally apparent. A few hints: esp, ebp,
eax, ebx, and edi are registers (special storage locations, limited in number, that
can be accessed very quickly). -8(%ebp) refers to the memory location 8 bytes
before the location whose address is in register ebp; in this program, ebp serves
as a base from which we can find variables i and j. The argument to a subroutine
call instruction is passed by pushing it onto a stack, for which esp is the top-of-
stack pointer. The return value comes back in register eax. Arithmetic operations
overwrite their second argument with the result of the operation.!!

Il As noted in footnote 1, these are GNU assembler conventions; Microsoft and Intel assemblers

specify arguments in the opposite order.

36

EXAMPLE |2?

GCD program
optimization

Chapter 1 Introduction

Often a code generator will save the symbol table for later use by a symbolic
debugger, by including it in a nonexecutable part of the target code.

.64 Code Im provement

Code improvement is often referred to as optimization, though it seldom makes
anything optimal in any absolute sense. It is an optional phase of compilation
whose goal is to transform a program into a new version that computes the same
result more efficiently—more quickly or using less memory, or both.

Some improvements are machine independent. These can be performed as
transformations on the intermediate form. Other improvements require an un-
derstanding of the target machine (or of whatever will execute the program in the
target language). These must be performed as transformations on the target pro-
gram. Thus code improvement often appears twice in the list of compiler phases:
once immediately after semantic analysis and intermediate code generation, and
again immediately after target code generation.

Applying a good code improver to the code in Figure 1.7 produces the code
shown in Example 1.2. Comparing the two programs, we can see that the im-
proved version is quite a lot shorter. Conspicuously absent are most of the loads
and stores. The machine-independent code improver is able to verify that i and j
can be kept in registers throughout the execution of the main loop. (This would
not have been the case if, for example, the loop contained a call to a subrou-
tine that might reuse those registers, or that might try to modify i or j.) The
machine-specific code improver is then able to assign i and j to actual regis-
ters of the target machine. For modern microprocessors, with complex internal
behavior, compilers can usually generate better code than can human assembly
language programmers.

‘/CHECK YOUR UNDERSTANDING

1). List the principal phases of compilation, and describe the work performed by
each.

13. List the phases that are also executed as part of interpretation.

24. Describe the form in which a program is passed from the scanner to the
parser; from the parser to the semantic analyzer; from the semantic analyzer
to the intermediate code generator.

15. What distinguishes the front end of a compiler from the back end?

26. What is the difference between a phase and a pass of compilation? Under what
circumstances does it make sense for a compiler to have multiple passes?

11. What is the purpose of the compiler’s symbol table?

28. What is the difference between static and dynamic semantics?

1.7 Summary and Concluding Remarks 37

19. On modern machines, do assembly language programmers still tend to write
better code than a good compiler can? Why or why not?

Summary and Concluding Remarks

In this chapter we introduced the study of programming language design and
implementation. We considered why there are so many languages, what makes
them successful or unsuccessful, how they may be categorized for study, and what
benefits the reader is likely to gain from that study. We noted that language design
and language implementation are intimately tied to one another. Obviously an
implementation must conform to the rules of the language. At the same time,
a language designer must consider how easy or difficult it will be to implement
various features, and what sort of performance is likely to result.

Language implementations are commonly differentiated into those based on
interpretation and those based on compilation. We noted, however, that the dif-
ference between these approaches is fuzzy, and that most implementations in-
clude a bit of each. As a general rule, we say that a language is compiled if exe-
cution is preceded by a translation step that (1) fully analyzes both the structure
(syntax) and meaning (semantics) of the program, and (2) produces an equiva-
lent program in a significantly different form. The bulk of the implementation
material in this book pertains to compilation.

Compilers are generally structured as a series of phases. The first few phases—
scanning, parsing, and semantic analysis—serve to analyze the source program.
Collectively these phases are known as the compiler’s front end. The final few
phases—target code generation and machine-specific code improvement—are
known as the back end. They serve to build a target program—preferably a fast
one—whose semantics match those of the source. Between the front end and the
back end, a good compiler performs extensive machine-independent code im-
provement; the phases of this “middle end” typically comprise the bulk of the
code of the compiler, and account for most of its execution time.

Chapters 3, 6, 7, 8, 9, and 10 form the core of the rest of this book. They cover
fundamental issues of language design, both from the point of view of the pro-
grammer and from the point of view of the language implementor. To support
the discussion of implementations, Chapters 2 and 4 describe compiler front ends
in more detail than has been possible in this introduction. Chapter 5 provides an
overview of assembly-level architecture. Chapters 15 through 17 discuss com-
piler back ends, including assemblers and linkers, run-time systems, and code
improvement techniques. Additional language paradigms are covered in Chap-
ters 11 through 14. Appendix A lists the principal programming languages men-
tioned in the text, together with a genealogical chart and bibliographic references.
Appendix B contains a list of “Design & Implementation” sidebars; Appendix C
contains a list of numbered examples.

38

Chapter 1 Introduction

Exercises

Errors in a computer program can be classified according to when they are
detected and, if they are detected at compile time, what part of the compiler
detects them. Using your favorite imperative language, give an example of
each of the following.

() Alexical error, detected by the scanner

(b) A syntax error, detected by the parser

() A static semantic error, detected by semantic analysis

(d) A dynamic semantic error, detected by code generated by the compiler
(e) An error that the compiler can neither catch nor easily generate code to

catch (this should be a violation of the language definition, not just a
program bug)

Consider again the Pascal tool set distributed by Niklaus Wirth (Exam-
ple 1.15). After successfully building a machine language version of the
Pascal compiler, one could in principle discard the P-code interpreter and
the P-code version of the compiler. Why might one choose not to do so?

Imperative languages like Fortran and C are typically compiled, while
scripting languages, in which many issues cannot be settled until run time,
are typically interpreted. Is interpretation simply what one “has to do” when
compilation is infeasible, or are there actually some advantages to interpret-
ing a language, even when a compiler is available?

The gcd program of Example 1.20 might also be written

int main() {
int i = getint(), j = getint();
while (i !'= j) {
if G>) i=4%3;
else j = j % i;
3}
putint(i);

Does this program compute the same result? If not, can you fix it? Under
what circumstances would you expect one or the other to be faster?

Expanding on Example 1.25, trace an interpretation of the ged program on
the inputs 12 and 8. Which syntax tree nodes are visited, in which order?

Both interpretation and code generation can be performed by traversal of a
syntax tree. Compare these two kinds of traversals. In what ways are they
similar/different?

In your local implementation of C, what is the limit on the size of inte-
gers? What happens in the event of arithmetic overflow? What are the

1.10

I.II

1.12

1.9 Explorations 39

implications of size limits on the portability of programs from one ma-
chine/compiler to another? How do the answers to these questions differ
for Java? For Ada? For Pascal? For Scheme? (You may need to find a man-
ual.)

The Unix make utility allows the programmer to specify dependences among
the separately compiled pieces of a program. If file A depends on file B and
file B is modified, make deduces that A must be recompiled, in case any of
the changes to B would affect the code produced for A. How accurate is this
sort of dependence management? Under what circumstances will it lead
to unnecessary work? Under what circumstances will it fail to recompile
something that needs to be recompiled?

Why is it difficult to tell whether a program is correct? How do you go about
finding bugs in your code? What kinds of bugs are revealed by testing? What
kinds of bugs are not? (For more formal notions of program correctness,
see the bibliographic notes at the end of Chapter 4.)

Explorations

(3) What was the first programming language you learned? If you chose it,
why did you do so? If it was chosen for you by others, why do you think
they chose it? What parts of the language did you find the most difficult
to learn?

(b) For the language with which you are most familiar (this may or may
not be the first one you learned), list three things you wish had been
differently designed. Why do you think they were designed the way
they were? How would you fix them if you had the chance to do it
over? Would there be any negative consequences, for example in terms
of compiler complexity or program execution speed?

Get together with a classmate whose principal programming experience is

with a language in a different category of Figure 1.1. (If your experience is

mostly in C, for example, you might search out someone with experience
in Lisp.) Compare notes. What are the easiest and most difficult aspects

of programming, in each of your experiences? Pick a simple problem (e.g.,

sorting, or identification of connected components in a graph) and solve it

using each of your favorite languages. Which solution is more elegant (do
the two of you agree)? Which is faster? Why?

(a) If you have access to a Unix system, compile a simple program with
the -8 command-line flag. Add comments to the resulting assembly
language file to explain the purpose of each instruction.

(b) Now use the -o command-line flag to generate a relocatable object file.
Using appropriate local tools (look in particular for nm, objdump, or

40

Chapter 1 Introduction

113

.14

.15

a symbolic debugger like gdb or dbx), identify the machine language
corresponding to each line of assembler.

() Using nm, objdump, or a similar tool, identify the undefined external
symbols in your object file. Now run the compiler to completion, to
produce an executable file. Finally, run nm or objdump again to see
what has happened to the symbols in part (b). Where did they come
from—how did the linker resolve them?

(d) Run the compiler to completion one more time, using the -v command-
line flag. You should see messages describing the various subprograms
invoked during the compilation process (some compilers use a dif-
ferent letter for this option; check the man page). The subprograms
may include a preprocessor, separate passes of the compiler itself (of-
ten two), probably an assembler, and the linker. If possible, run these
subprograms yourself, individually. Which of them produce the files
described in the previous subquestions? Explain the purpose of the
various command-line flags with which the subprograms were invoked.

Write a program that commits a dynamic semantic error (e.g., division by
zero, access off the end of an array, dereference of a null pointer). What
happens when you run this program? Does the compiler give you options
to control what happens? Devise an experiment to evaluate the cost of run-
time semantic checks. If possible, try this exercise with more than one lan-
guage or compiler.

C has a reputation for being a relatively “unsafe” high-level language. For
example: it allows the programmer to mix operands of different sizes and
types in many more ways than its “safer” cousins. The Unix 1int utility can
be used to search for potentially unsafe constructs in C programs. In effect,
many of the rules that are enforced by the compiler in other languages are
optional in C, and are enforced (if desired) by a separate program. What do
you think of this approach? Is it a good idea? Why or why not?

Using an Internet search engine or magazine indexing service, read up on
the history of Java and C#, including the conflict between Sun and Microsoft
over Java standardization. Some have claimed that C# was, at least in part,
an attempt by Microsoft to undermine the spread of Java. Others point to
philosophical and practical differences between the languages, and argue
that C# more than stands on its merits. In hindsight, how would you char-
acterize Microsoft’s decision to pursue an alternative to Java?

Bibliographic Notes

The compiler-oriented chapters of this book attempt to convey a sense of what
the compiler does, rather than explaining how to build one. A much greater level
of detail can be found in other texts. Leading options include the work of Aho

1.10 Bibliographic Notes 41

et al. [ALSUO07], Cooper and Torczon [CT04], and Fischer et al. [FCL10]. Other
excellent, though less current texts include those of Appel [App97] and Grune et
al. [GB]JT12]. Popular texts on programming language design include those of
Louden [LL12], Sebesta [Seb15], and Sethi [Set96].

Some of the best information on the history of programming languages can be
found in the proceedings of conferences sponsored by the Association for Com-
puting Machinery in 1978, 1993, and 2007 [Wex78, Ass93, Ass07]. Another excel-
lent reference is Horowitz’s 1987 text [Hor87]. A broader range of historical mate-
rial can be found in the quarterly IEEE Annals of the History of Computing. Given
the importance of personal taste in programming language design, it is inevitable
that some language comparisons should be marked by strongly worded opin-
ions. Early examples include the writings of Dijkstra [Dij82], Hoare [Hoa81],
Kernighan [Ker81], and Wirth [Wir85a].

Much modern software development takes place in integrated programming
environments. Influential precursors to these environments include the Genera
Common Lisp environment from Symbolics Corp. [WMWMS87] and the Small-
talk [Gol84], Interlisp [TM81], and Cedar [SZBH86] environments at the Xerox
Palo Alto Research Center.

This page intentionally left blank

EXAMPLE 1 I

Syntax of Arabic numerals

Programming Language Syntax

Unlike natural languages such as English or Chinese, computer languages
must be precise. Both their form (syntax) and meaning (semantics) must be spec-
ified without ambiguity, so that both programmers and computers can tell what
a program is supposed to do. To provide the needed degree of precision, lan-
guage designers and implementors use formal syntactic and semantic notation.
To facilitate the discussion of language features in later chapters, we will cover
this notation first: syntax in the current chapter and semantics in Chapter 4.

As a motivating example, consider the Arabic numerals with which we repre-
sent numbers. These numerals are composed of digits, which we can enumerate
as follows (‘| means “or”):

digit — o|1]|2|3]|4|5|6]7]|8]9

Digits are the syntactic building blocks for numbers. In the usual notation, we say
that a natural number is represented by an arbitrary-length (nonempty) string of
digits, beginning with a nonzero digit:

non_zerodigit — 1| 2|3 |4a|s5|6]|7|8]|9

natural_number — non_zero_digit digit *

Here the “Kleene! star” metasymbol (*) is used to indicate zero or more repeti-
tions of the symbol to its left.

Of course, digits are only symbols: ink blobs on paper or pixels on a screen.
They carry no meaning in and of themselves. We add semantics to digits when
we say that they represent the natural numbers from zero to nine, as defined by
mathematicians. Alternatively, we could say that they represent colors, or the
days of the week in a decimal calendar. These would constitute alternative se-
mantics for the same syntax. In a similar fashion, we define the semantics of
natural numbers by associating a base-10, place-value interpretation with each

I Stephen Kleene (1909-1994), a mathematician at the University of Wisconsin, was responsible
for much of the early development of the theory of computation, including much of the material
in Section C-2.4.

43

44

Chapter 2 Programming Language Syntax

string of digits. Similar syntax rules and semantic interpretations can be devised
for rational numbers, (limited-precision) real numbers, arithmetic, assignments,
control flow, declarations, and indeed all of programming languages.

Distinguishing between syntax and semantics is useful for at least two reasons.
First, different programming languages often provide features with very similar
semantics but very different syntax. It is generally much easier to learn a new lan-
guage if one is able to identify the common (and presumably familiar) semantic
ideas beneath the unfamiliar syntax. Second, there are some very efficient and
elegant algorithms that a compiler or interpreter can use to discover the syntactic
structure (but not the semantics!) of a computer program, and these algorithms
can be used to drive the rest of the compilation or interpretation process.

In the current chapter we focus on syntax: how we specify the structural rules
of a programming language, and how a compiler identifies the structure of a
given input program. These two tasks—specifying syntax rules and figuring out
how (and whether) a given program was built according to those rules—are dis-
tinct. The first is of interest mainly to programmers, who want to write valid
programs. The second is of interest mainly to compilers, which need to analyze
those programs. The first task relies on regular expressions and context-free gram-
mars, which specify how to generate valid programs. The second task relies on
scanners and parsers, which recognize program structure. We address the first of
these tasks in Section 2.1, the second in Sections 2.2 and 2.3.

In Section 2.4 (largely on the companion site) we take a deeper look at the for-
mal theory underlying scanning and parsing. In theoretical parlance, a scanner is
a deterministic finite automaton (DFA) that recognizes the tokens of a program-
ming language. A parser is a deterministic push-down automaton (PDA) that
recognizes the language’s context-free syntax. It turns out that one can gener-
ate scanners and parsers automatically from regular expressions and context-free
grammars. This task is performed by tools like Unix’s 1ex and yacc,” among oth-
ers. Possibly nowhere else in computer science is the connection between theory
and practice so clear and so compelling.

Specifying Syntax: Regular Expressions and
Context-Free Grammars

Formal specification of syntax requires a set of rules. How complicated (expres-
sive) the syntax can be depends on the kinds of rules we are allowed to use. It
turns out that what we intuitively think of as tokens can be constructed from
individual characters using just three kinds of formal rules: concatenation, alter-
nation (choice among a finite set of alternatives), and so-called “Kleene closure”

2 At many sites, lex and yacc have been superseded by the GNU flex and bison tools, which
provide a superset of the original functionality.

EXAMPLE 2.2

Lexical structure of CI 1

2.1 Specifying Syntax 45

(repetition an arbitrary number of times). Specifying most of the rest of what
we intuitively think of as syntax requires one additional kind of rule: recursion
(creation of a construct from simpler instances of the same construct). Any set of
strings that can be defined in terms of the first three rules is called a regular set,
or sometimes a regular language. Regular sets are generated by regular expressions
and recognized by scanners. Any set of strings that can be defined if we add recur-
sion is called a context-free language (CFL). Context-free languages are generated
by context-free grammars (CFGs) and recognized by parsers. (Terminology can
be confusing here. The meaning of the word “language” varies greatly, depending
on whether we’re talking about “formal” languages [e.g., regular or context-free],
or programming languages. A formal language is just a set of strings, with no
accompanying semantics.)

21.1 Tokens and Regular Expressions

Tokens are the basic building blocks of programs—the shortest strings of char-
acters with individual meaning. Tokens come in many kinds, including key-
words, identifiers, symbols, and constants of various types. Some kinds of token
(e.g., the increment operator) correspond to only one string of characters. Oth-
ers (e.g., identifier) correspond to a set of strings that share some common form.
(In most languages, keywords are special strings of characters that have the right
form to be identifiers, but are reserved for special purposes.) We will use the word
“token” informally to refer to both the generic kind (an identifier, the increment
operator) and the specific string (foo, ++); the distinction between these should
be clear from context.

Some languages have only a few kinds of token, of fairly simple form. Other
languages are more complex. C, for example, has more than 100 kinds of
tokens, including 44 keywords (double, if, return, struct, etc.); identifiers
(my_variable, your_type, sizeof, printf, etc.); integer (0765, 0x1f5, 501),
floating-point (6.022¢23), and character ('x', '\'"', '\0170"') constants; string
literals ("snerk", "say \"hi\"\n"); 54 “punctuators” (+,], ->, *=, :, | |, etc.),
and two different forms of comments. There are provisions for international
character sets, string literals that span multiple lines of source code, constants
of varying precision (width), alternative “spellings” for symbols that are missing
on certain input devices, and preprocessor macros that build tokens from smaller
pieces. Other large, modern languages (Java, Ada) are similarly complex.

To specify tokens, we use the notation of regular expressions. A regular expres-
sion is one of the following:

I. A character
2. The empty string, denoted ¢

3. Two regular expressions next to each other, meaning any string generated by
the first one followed by (concatenated with) any string generated by the sec-
ond one

46 Chapter 2 Programming Language Syntax

4. Two regular expressions separated by a vertical bar (|), meaning any string
generated by the first one or any string generated by the second one

5. A regular expression followed by a Kleene star, meaning the concatenation of
zero or more strings generated by the expression in front of the star

Parentheses are used to avoid ambiguity about where the various subexpres-
sions start and end.?

exameie 1.3 Consider, for example, the syntax of numeric constants accepted by a simple
Syntax of numeric hand-held calculator:
constants

number —s integer | real

integer — digit digit*

real — integer exponent | decimal (exponent | €)
decimal — digit* (. digit | digit .) digit*
exponent — (e | E) (+ | = | €) integer
digit — o] 1|2]|3]|4a|s|6]|7]|8]9

The symbols to the left of the — signs provide names for the regular expres-
sions. One of these (number) will serve as a token name; the others are simply

DESIGN & IMPLEMENTATION

2.1 Contextual keywords

In addition to distinguishing between keywords and identifiers, some lan-
guages define so-called contextual keywords, which function as keywords in
certain specific places in a program, but as identifiers elsewhere. In C#, for ex-
ample, the word yield can appear immediately before return or break—a
place where an identifier can never appear. In this context, it is interpreted as
a keyword; anywhere else it is an identifier. It is therefore perfectly acceptable
to have a local variable named yield: the compiler can distinguish it from the
keyword by where it appears in the program.

C++11 has a small handful of contextual keywords. C# 4.0 has 26. Most
were introduced in the course of revising the language to create a new stan-
dard version. Given a large user community, any short, intuitively appealing
word is likely to have been used as an identifier by someone, in some existing
program. Making that word a contextual keyword in the new version of the
language, rather than a full keyword, reduces the risk that existing programs
will suddenly fail to compile.

3 Some authors use A to represent the empty string. Some use a period (.), rather than juxtaposi-
tion, to indicate concatenation. Some use a plus sign (+), rather than a vertical bar, to indicate
alternation.

2.1 Specifying Syntax 47

for convenience in building larger expressions.* Note that while we have allowed
definitions to build on one another, nothing is ever defined in terms of itself,
even indirectly. Such recursive definitions are the distinguishing characteristic of
context-free grammars, described in Section 2.1.2. To generate a valid number,
we expand out the sub-definitions and then scan the resulting expression from left
to right, choosing among alternatives at each vertical bar, and choosing a number
of repetitions at each Kleene star. Within each repetition we may make different
choices at vertical bars, generating different substrings.

Character Sets and Formatting Issues

Upper- and lowercase letters in identifiers and keywords are considered distinct in
some languages (e.g., Perl, Python, and Ruby; C and its descendants), and identi-
cal in others (e.g., Ada, Common Lisp, and Fortran). Thus foo, Foo, and FOO all
represent the same identifier in Ada, but different identifiers in C. Modula-2 and
Modula-3 require keywords and predefined (built-in) identifiers to be written in
uppercase; C and its descendants require them to be written in lowercase. A few
languages allow only letters and digits in identifiers. Most allow underscores. A
few (notably Lisp) allow a variety of additional characters. Some languages (e.g.,
Java and C#) have standard (but optional) conventions on the use of upper- and
lowercase letters in names.’

With the globalization of computing, non-Latin character sets have become
increasingly important. Many modern languages, including C, C++, Ada 95,
Java, C#, and Fortran 2003 have introduced explicit support for multibyte char-
acter sets, generally based on the Unicode and ISO/IEC 10646 international stan-
dards. Most modern programming languages allow non-Latin characters to ap-
pear within comments and character strings; an increasing number allow them
in identifiers as well. Conventions for portability across character sets and for lo-
calization to a given character set can be surprisingly complex, particularly when
various forms of backward compatibility are required (the C99 Rationale devotes
five full pages to this subject [Int03a, pp. 19-23]); for the most part we ignore
such issues here.

Some language implementations impose limits on the maximum length of
identifiers, but most avoid such unnecessary restrictions. Most modern languages
are also more or less free format, meaning that a program is simply a sequence of
tokens: what matters is their order with respect to one another, not their physical
position within a printed line or page. “White space” (blanks, tabs, carriage re-
turns, and line and page feed characters) between tokens is usually ignored, except
to the extent that it is needed to separate one token from the next.

4 We have assumed here that all numeric constants are simply “numbers.” In many programming
languages, integer and real constants are separate kinds of token. Their syntax may also be more
complex than indicated here, to support such features are multiple lengths or nondecimal bases.

5 Tor the sake of consistency we do not always obey such conventions in this book: most examples

follow the common practice of C programmers, in which underscores, rather than capital letters,
separate the “subwords” of names.

48 Chapter 2 Programming Language Syntax

exampe 1.4
Syntactic nesting in
expressions

There are a few noteworthy exceptions to these rules. Some language imple-
mentations limit the maximum length of a line, to allow the compiler to store the
current line in a fixed-length buffer. Dialects of Fortran prior to Fortran 90 use
a fixed format, with 72 characters per line (the width of a paper punch card, on
which programs were once stored), and with different columns within the line re-
served for different purposes. Line breaks serve to separate statements in several
other languages, including Go, Haskell, Python, and Swift. Haskell and Python
also give special significance to indentation. The body of a loop, for example, con-
sists of precisely those subsequent lines that are indented farther than the header
of the loop.

Other Uses of Regular Expressions

Many readers will be familiar with regular expressions from the grep family of
tools in Unix, the search facilities of various text editors, or such scripting lan-
guages and tools as Perl, Python, Ruby, awk, and sed. Most of these provide a rich
set of extensions to the notation of regular expressions. Some extensions, such as
shorthand for “zero or one occurrences” or “anything other than white space,”
do not change the power of the notation. Others, such as the ability to require a
second occurrence, later in the input string, of the same character sequence that
matched an earlier part of the expression, increase the power of the notation, so
that it is no longer restricted to generating regular sets. Still other extensions are
designed not to increase the expressiveness of the notation but rather to tie it to
other language facilities. In many tools, for example, one can bracket portions of
a regular expression in such a way that when a string is matched against it the con-
tents of the corresponding substrings are assigned into named local variables. We
will return to these issues in Section 14.4.2, in the context of scripting languages.

1.1 Context-Free Grammars

Regular expressions work well for defining tokens. They are unable, however, to
specify nested constructs, which are central to programming languages. Consider
for example the structure of an arithmetic expression:

DESIGN & IMPLEMENTATION

1.1 Formatting restrictions

Formatting limitations inspired by implementation concerns—as in the
punch-card-oriented rules of Fortran 77 and its predecessors—have a ten-
dency to become unwanted anachronisms as implementation techniques im-
prove. Given the tendency of certain word processors to “fill” or auto-format
text, the line break and indentation rules of languages like Haskell, Occam, and
Python are somewhat controversial.

exameLe 1.5
Extended BNF (EBNF)

2.1 Specifying Syntax 49

expr — id | number | - expr | (expr)
| expr op expr

op — -1+

Here the ability to define a construct in terms of itself is crucial. Among other
things, it allows us to ensure that left and right parentheses are matched, some-
thing that cannot be accomplished with regular expressions (see Section C-2.4.3
for more details). The arrow symbol (—) means “can have the form”; for brevity
it is sometimes pronounced “goes to.”

Each of the rules in a context-free grammar is known as a production. The
symbols on the left-hand sides of the productions are known as variables, or non-
terminals. There may be any number of productions with the same left-hand side.
Symbols that are to make up the strings derived from the grammar are known as
terminals (shown here in typewriter font). They cannot appear on the left-hand
side of any production. In a programming language, the terminals of the context-
free grammar are the language’s tokens. One of the nonterminals, usually the one
on the left-hand side of the first production, is called the start symbol. It names
the construct defined by the overall grammar.

The notation for context-free grammars is sometimes called Backus-Naur
Form (BNF), in honor of John Backus and Peter Naur, who devised it for the
definition of the Algol-60 programming language [NBBT63].5 Strictly speaking,
the Kleene star and meta-level parentheses of regular expressions are not allowed
in BNE, but they do not change the expressive power of the notation, and are
commonly included for convenience. Sometimes one sees a “Kleene plus” (*) as
well; it indicates one or more instances of the symbol or group of symbols in front
of it.” When augmented with these extra operators, the notation is often called

extended BNF (EBNF). The construct
idlist — id (, id)*

is shorthand for
id list — id
iddist — id_list , id

“Kleene plus” is analogous. Note that the parentheses here are metasymbols. In
Example 2.4 they were part of the language being defined, and were written in
fixed-width font.?

6 John Backus (1924-2007) was also the inventor of Fortran. He spent most of his professional
career at IBM Corporation, and was named an IBM Fellow in 1987. He received the ACM Turing
Award in 1977.

7 Some authors use curly braces ({ }) to indicate zero or more instances of the symbols inside.
Some use square brackets ([]) to indicate zero or one instances of the symbols inside—that is, to
indicate that those symbols are optional.

8 To avoid confusion, some authors place quote marks around any single character that is part of
the language being defined: id Jist — id (*,” id)*; expr — ‘C’ expr “)’. In both regular
and extended BNF, many authors use ::= instead of —.

50 Chapter 2 Programming Language Syntax

EXAMPLE 16

Derivation of slope * x +
intercept

Like the Kleene star and parentheses, the vertical bar is in some sense superflu-
ous, though it was provided in the original BNF. The construct

op — +|-| =]/
can be considered shorthand for

op — +
op — -
op — *

op — /
which is also sometimes written

op — +
—y =
—% %

— /

Many tokens, such as id and number above, have many possible spellings (i.e.,
may be represented by many possible strings of characters). The parser is obliv-
ious to these; it does not distinguish one identifier from another. The semantic
analyzer does distinguish them, however; the scanner must save the spelling of
each such “interesting” token for later use.

1.1.3 Derivations and Parse Trees

A context-free grammar shows us how to generate a syntactically valid string of
terminals: Begin with the start symbol. Choose a production with the start sym-
bol on the left-hand side; replace the start symbol with the right-hand side of that
production. Now choose a nonterminal A in the resulting string, choose a pro-
duction P with A on its left-hand side, and replace A with the right-hand side of
P. Repeat this process until no nonterminals remain.

As an example, we can use our grammar for expressions to generate the string
“slope * x + intercept™

expr —=> expr op expr

expr op id

expr + id

expr op expr + id
expr op id + id
expr * id + id

Lyl

id * id + id
(slope) (x) (intercept)

EXAMPLE 2.7

Parse trees for slope * x
+ intercept

2.1 Specifying Syntax 51

expr
T T
expr op expr
M\
expr op expr -‘i- id(intlrcept)
id(sl‘l.ope) * id|(x)
Figure 2| Parse tree for slope * x + intercept (grammar in Example 2.4).
expr
/’7‘\
expr op expr
/I\
id(sl‘.ope) * expr op expr
1d|(x) -‘*- id(intnlarcept)

Figure 21 Alternative (less desirable) parse tree for slope * x + intercept (grammar in
Example 2.4). The fact that more than one tree exists implies that our grammar is ambiguous.

The = metasymbol is often pronounced “derives.” It indicates that the right-
hand side was obtained by using a production to replace some nonterminal in the
left-hand side. At each line we have underlined the symbol A that is replaced in
the following line.

A series of replacement operations that shows how to derive a string of termi-
nals from the start symbol is called a derivation. Each string of symbols along the
way is called a sentential form. The final sentential form, consisting of only ter-
minals, is called the yield of the derivation. We sometimes elide the intermediate
steps and write expr =—* slope * x + intercept, where the metasymbol =—*
means “derives after zero or more replacements.” In this particular derivation, we
have chosen at each step to replace the right-most nonterminal with the right-
hand side of some production. This replacement strategy leads to a right-most
derivation. There are many other possible derivations, including left-most and
options in-between.

We saw in Chapter 1 that we can represent a derivation graphically as a parse
tree. The root of the parse tree is the start symbol of the grammar. The leaves of
the tree are its yield. Each internal node, together with its children, represents the
use of a production.

A parse tree for our example expression appears in Figure 2.1. This tree is
not unique. At the second level of the tree, we could have chosen to turn the
operator into a * instead of a +, and to further expand the expression on the
right, rather than the one on the left (see Figure 2.2). A grammar that allows the

52 Chapter 2 Programming Language Syntax

EXAMPLE 28

Expression grammar with
precedence and
associativity

construction of more than one parse tree for some string of terminals is said to be
ambiguous. Ambiguity turns out to be a problem when trying to build a parser:
it requires some extra mechanism to drive a choice between equally acceptable
alternatives.

A moment’s reflection will reveal that there are infinitely many context-free
grammars for any given context-free language.” Some grammars, however, are
much more useful than others. In this text we will avoid the use of ambiguous
grammars (though most parser generators allow them, by means of disambiguat-
ing rules). We will also avoid the use of so-called useless symbols: nonterminals
that cannot generate any string of terminals, or terminals that cannot appear in
the yield of any derivation.

When designing the grammar for a programming language, we generally try
to find one that reflects the internal structure of programs in a way that is useful
to the rest of the compiler. (We shall see in Section 2.3.2 that we also try to find
one that can be parsed efficiently, which can be a bit of a challenge.) One place
in which structure is particularly important is in arithmetic expressions, where
we can use productions to capture the associativity and precedence of the various
operators. Associativity tells us that the operators in most languages group left
to right, so that 10 - 4 - 3 means (10 - 4) - 3 rather than 10 - (4 - 3).
Precedence tells us that multiplication and division in most languages group more
tightly than addition and subtraction, so that 3 + 4 * 5 means 3 + (4 * 5) rather
than (3 + 4) * 5. (These rules are not universal; we will consider them again in
Section 6.1.1.)

Here is a better version of our expression grammar:

1. expr — term | expr add_op term

2. term —> factor | term mult_op factor

3. factor — id | number | - factor | (expr)
4. addop — +| -

multop — = | /

This grammar is unambiguous. It captures precedence in the way factor, term,
and expr build on one another, with different operators appearing at each level.
It captures associativity in the second halves of lines 1 and 2, which build subexprs
and subterms to the left of the operator, rather than to the right. In Figure 2.3, we
can see how building the notion of precedence into the grammar makes it clear
that multiplication groups more tightly than addition in 3 + 4 * 5, even without
parentheses. In Figure 2.4, we can see that subtraction groups more tightly to the
left, so that 10 - 4 - 3 would evaluate to 3, rather than to 9.

9 Given a specific grammar, there are many ways to create other equivalent grammars. We could,
for example, replace A with some new symbol B everywhere it appears in the right-hand side of
a production, and then create a new production B — A.

2.1 Specifying Syntax 53

expr
expr add_op term
— T
rer|m -!- term mult_op factor
fac|tor fm:|i‘or l number (5)
number (3) number (4)

Figure 13 Parse tree for 3 + 4 * 5, with precedence (grammar in Example 2.8).

expr
_— T/
expr add_op term
expr add_op term l ﬁzc|ror
ch"m *‘ facltor number (3)
fac‘mr number (4)
nu.mbe‘r (10)

Figure 14 Parse tree for 10 — 4 — 3, with left associativity (grammar in Example 2.8).

‘/CHECK YOUR UNDERSTANDING

l.
1.

What is the difference between syntax and semantics?

What are the three basic operations that can be used to build complex regular
expressions from simpler regular expressions?

What additional operation (beyond the three of regular expressions) is pro-
vided in context-free grammars?

What is Backus-Naur form? When and why was it devised?
Name a language in which indentation affects program syntax.

When discussing context-free languages, what is a derivation? What is a sen-
tential form?

What is the difference between a right-most derivation and a left-most deriva-
tion?

What does it mean for a context-free grammar to be ambiguous?

What are associativity and precedence? Why are they significant in parse trees?

54 Chapter 2 Programming Language Syntax

EXAMPLE 29

Tokens for a calculator
language

Scanning

Together, the scanner and parser for a programming language are responsible for
discovering the syntactic structure of a program. This process of discovery, or
syntax analysis, is a necessary first step toward translating the program into an
equivalent program in the target language. (It’s also the first step toward inter-
preting the program directly. In general, we will focus on compilation, rather
than interpretation, for the remainder of the book. Most of what we shall dis-
cuss either has an obvious application to interpretation, or is obviously irrelevant
to it.)

By grouping input characters into tokens, the scanner dramatically reduces the
number of individual items that must be inspected by the more computationally
intensive parser. In addition, the scanner typically removes comments (so the
parser doesn’t have to worry about them appearing throughout the context-free
grammar—see Exercise 2.20); saves the text of “interesting” tokens like identifiers,
strings, and numeric literals; and tags tokens with line and column numbers, to
make it easier to generate high-quality error messages in subsequent phases.

In Examples 2.4 and 2.8 we considered a simple language for arithmetic expres-
sions. In Section 2.3.1 we will extend this to create a simple “calculator language”
with input, output, variables, and assignment. For this language we will use the
following set of tokens:

assign —» =

plus — +

minus — -

times —» *

div — [

Iparen — (

rparen —)

id — letter (letter | digit)*
except for read and write

number — digit digit * | digit* (. digit | digit .) digit *

In keeping with Algol and its descendants (and in contrast to the C-family lan-
guages), we have used := rather than = for assignment. For simplicity, we have
omitted the exponential notation found in Example 2.3. We have also listed the
tokens read and write as exceptions to the rule for id (more on this in Sec-
tion 2.2.2). To make the task of the scanner a little more realistic, we borrow the
two styles of comment from C:

comment —s /% (non-x | * non-/)* xty
| 7/ (non-newline)* newline

Here we have used non-*, non-/, and non-newline as shorthand for the alterna-
tion of all characters other than *, /, and newline, respectively.

EXAMPLE 2'0

An ad hoc scanner for
calculator tokens

EXAMPLE II I

Finite automaton for a
calculator scanner

2.2 Scanning 55

How might we go about recognizing the tokens of our calculator language? The
simplest approach is entirely ad hoc. Pseudocode appears in Figure 2.5. We can
structure the code however we like, but it seems reasonable to check the simpler
and more common cases first, to peek ahead when we need to, and to embed
loops for comments and for long tokens such as identifiers and numbers.

After finding a token the scanner returns to the parser. When invoked again it
repeats the algorithm from the beginning, using the next available characters of
input (including any that were peeked at but not consumed the last time).

As a rule, we accept the longest possible token in each invocation of the scan-
ner. Thus foobar is always foobar and never f or foo or foob. More to the
point, in a language like C, 3.14159 is a real number and never 3, ., and 14159.
White space (blanks, tabs, newlines, comments) is generally ignored, except to
the extent that it separates tokens (e.g., foo bar is different from foobar).

Figure 2.5 could be extended fairly easily to outline a scanner for some larger
programming language. The result could then be fleshed out, by hand, to create
code in some implementation language. Production compilers often use such
ad hoc scanners; the code is fast and compact. During language development,
however, it is usually preferable to build a scanner in a more structured way, as
an explicit representation of a finite automaton. Finite automata can be generated
automatically from a set of regular expressions, making it easy to regenerate a
scanner when token definitions change.

An automaton for the tokens of our calculator language appears in pictorial
form in Figure 2.6. The automaton starts in a distinguished initial state. It then
moves from state to state based on the next available character of input. When
it reaches one of a designated set of final states it recognizes the token associated
with that state. The “longest possible token” rule means that the scanner returns
to the parser only when the next character cannot be used to continue the current
token.

DESIGN & IMPLEMENTATION

23 Nested comments

Nested comments can be handy for the programmer (e.g., for temporarily
“commenting out” large blocks of code). Scanners normally deal only with
nonrecursive constructs, however, so nested comments require special treat-
ment. Some languages disallow them. Others require the language implemen-
tor to augment the scanner with special-purpose comment-handling code. C
and C++ strike a compromise: /* ... */ style comments are not allowed to
nest, but /* ... */ and //... style comments can appear inside each other.
The programmer can thus use one style for “normal” comments and the other
for “commenting out” (The C99 designers note, however, that conditional
compilation (#if) is preferable [Int03a, p. 58].)

56

Chapter 2 Programming Language Syntax

skip any initial white space (spaces, tabs, and newlines)
if cur_chare {"(", "), "+, =", "%}
return the corresponding single-character token
if curchar=":"
read the next character
if itis ‘=" then return assign else announce an error
if cur_char="/"
peek at the next character
ifitis '*" or'/’
read additional characters until “*/" or newline is seen, respectively
jump back to top of code
else return div
if cur_char = .
read the next character
if it is a digit
read any additional digits
return number
else announce an error
If cur_char is a digit
read any additional digits and at most one decimal point
return number
if cur_char is a letter
read any additional letters and digits
check to see whether the resulting string is read or write
if so then return the corresponding token
else return id
else announce an error

Figure 15 Outline of an ad hoc scanner for tokens in our calculator language.

2.2 Generating a Finite Automaton

While a finite automaton can in principle be written by hand, it is more com-
mon to build one automatically from a set of regular expressions, using a scanner
generator tool. For our calculator language, we should like to covert the regular
expressions of Example 2.9 into the automaton of Figure 2.6. That automaton has
the desirable property that its actions are deterministic: in any given state with a
given input character there is never more than one possible outgoing transition
(arrow) labeled by that character. As it turns out, however, there is no obvious
one-step algorithm to convert a set of regular expressions into an equivalent de-
terministic finite automaton (DFA). The typical scanner generator implements
the conversion as a series of three separate steps.

The first step converts the regular expressions into a nondeterministic finite
automaton (NFA). An NFA is like a DFA except that (1) there may be more than
one transition out of a given state labeled by a given character, and (2) there may
be so-called epsilon transitions: arrows labeled by the empty string symbol, e. The
NFA is said to accept an input string (token) if there exists a path from the start

2.2 Scanning 57

space, tab, newline

newline

non-newline

* .

Hon-% non-{or *

*

times

number number

letter letter, digit

id or keyword

FIgllI'E 2.6 Pictorial representation of a scanner for calculator tokens, in the form of a
finite automaton. This figure roughly parallels the code in Figure 2.5. States are numbered
for reference in Figure 2.12. Scanning for each token begins in the state marked “Start” The
final states, in which a token is recognized, are indicated by double circles, Comments, when
recognized, send the scanner back to its start state, rather than a final state.

state to a final state whose non-epsilon transitions are labeled, in order, by the
characters of the token.

To avoid the need to search all possible paths for one that “works,” the second
step of a scanner generator translates the NFA into an equivalent DFA: an automa-
ton that accepts the same language, but in which there are no epsilon transitions,
and no states with more than one outgoing transition labeled by the same char-
acter. The third step is a space optimization that generates a final DFA with the
minimum possible number of states.

58 Chapter 2 Programming Language Syntax

EXAMPLE 2 |2

Constructing an NFA for a
given regular expression

c
(a) Base case

O =>=O=0

(b) Concatenation AB

(¢) Alternation

o S

(d) Kleene closure A*

Figure 1.1 Construction of an NFA equivalent to a given regular expression. Part (a) shows
the base case: the automaton for the single letter c. Parts (b), (c), and (d), respectively, show
the constructions for concatenation, alternation, and Kleene closure. Each construction retains a
unique start state and a single final state. Internal detail is hidden in the diamond-shaped center
regions.

From a Regular Expression to an NFA

A trivial regular expression consisting of a single character ¢ is equivalent to a
simple two-state NFA (in fact, a DFA), illustrated in part (a) of Figure 2.7. Simi-
larly, the regular expression € is equivalent to a two-state NFA whose arc is labeled
by e. Starting with this base we can use three subconstructions, illustrated in parts
(b) through (d) of the same figure, to build larger NFAs to represent the concate-
nation, alternation, or Kleene closure of the regular expressions represented by
smaller NFAs. Each step preserves three invariants: there are no transitions into
the initial state, there is a single final state, and there are no transitions out of
the final state. These invariants allow smaller automata to be joined into larger

EXAMPLE 2.'3
NFA for d*(.d | d.) d*

2.2 Scanning 59

Figure 18 Construction of an NFA equivalent to the regular expression d*(.d | d.) d*.
In the top row are the primitive automata for . and d, and the Kleene closure construction for
d*. In the second and third rows we have used the concatenation and alternation constructions
to build .d, d.,and (.d | d.). The fourth row uses concatenation again to complete the
NFA. We have labeled the states in the final automaton for reference in subsequent figures.

ones without any ambiguity about where to create the connections, and without
creating any unexpected paths.

To make these constructions concrete, we consider a small but nontrivial
example—the decimal strings of Example 2.3. These consist of a string of decimal
digits containing a single decimal point. With only one digit, the point can come
at the beginning or the end: (.d | d.), where for brevity we use d to represent
any decimal digit. Arbitrary numbers of digits can then be added at the beginning
ortheend: d*(.d | d.) d*. Starting with this regular expression and using the
constructions of Figure 2.7, we illustrate the construction of an equivalent NFA
in Figure 2.8,

60 Chapter 2 Programming Language Syntax

EXAMPLE 2'4
DFA for d*(.d | d.) d*

EXAMPLE 2 IS

Minimal DFA for
d*(.d|d.)d*

From an NFA to a DFA

With no way to “guess” the right transition to take from any given state, any prac-
tical implementation of an NFA would need to explore all possible transitions,
concurrently or via backtracking. To avoid such a complex and time-consuming
strategy, we can use a “set of subsets” construction to transform the NFA into an
equivalent DFA. The key idea is for the state of the DFA after reading a given
input to represent the set of states that the NFA might have reached on the same
input. We illustrate the construction in Figure 2.9 using the NFA from Figure 2.8.
Initially, before it consumes any input, the NFA may be in State 1, or it may make
epsilon transitions to States 2, 4, 5, or 8. We thus create an initial State A for our
DFA to represent this set. On an input of d, our NFA may move from State 2
to State 3, or from State 8 to State 9. It has no other transitions on this input
from any of the states in A. From State 3, however, the NFA may make epsilon
transitions to any of States 2, 4, 5, or 8. We therefore create DFA State B as shown.

On a ., our NFA may move from State 5 to State 6. There are no other transi-
tions on this input from any of the states in A, and there are no epsilon transitions
out of State 6. We therefore create the singleton DFA State C as shown. None of
States A, B, or C is marked as final, because none contains a final state of the
original NFA.

Returning to State B of the growing DFA, we note that on an input of d the
original NFA may move from State 2 to State 3, or from State 8 to State 9. From
State 3, in turn, it may move to States 2, 4, 5, or 8 via epsilon transitions. As these
are exactly the states already in B, we create a self-loop in the DFA. Given a .,
on the other hand, the original NFA may move from State 5 to State 6, or from
State 9 to State 10. From State 10, in turn, it may move to States 11, 12, or 14 via
epsilon transitions. We therefore create DFA State D as shown, with a transition
on . from B to D. State D is marked as final because it contains state 14 of the
original NFA. That is, given input d ., there exists a path from the start state to
the end state of the original NFA. Continuing our enumeration of state sets, we
end up creating three more, labeled E, F, and G in Figure 2.9. Like State D, these
all contain State 14 of the original NFA, and thus are marked as final.

In our example, the DFA ends up being smaller than the NFA, but this is only
because our regular language is so simple. In theory, the number of states in the
DFA may be exponential in the number of states in the NFA, but this extreme is
also uncommon in practice. For a programming language scanner, the DFA tends
to be larger than the NFA, but not outlandishly so. We consider space complexity
in more detail in Section C-2.4.1.

Minimizing the DFA

Starting from a regular expression, we have now constructed an equivalent DFA.
Though this DFA has seven states, a bit of thought suggests that a smaller one
should exist. In particular, once we have seen both a d and a ., the only valid
transitions are on d, and we ought to be able to make do with a single final state.

2.2 Scanning 61

Figlll’e 19 ADFA equivalent to the NFA at the bottom of Figure 2.8. Each state of the DFA
represents the set of states that the NFA could be in after seeing the same input.

We can formalize this intuition, allowing us to apply it to any DFA, via the fol-
lowing inductive construction.

Initially we place the states of the (not necessarily minimal) DFA into two
equivalence classes: final states and nonfinal states. We then repeatedly search for
an equivalence class X' and an input symbol ¢ such that when given ¢ as input,
the states in X make transitions to states in k > 1 different equivalence classes.
We then partition X into k classes in such a way that all states in a given new class
would move to a member of the same old class on ¢. When we are unable to find
a class to partition in this fashion we are done.

In our example, the original placement puts States D, E, F, and G in one class
(final states) and States A, B, and C in another, as shown in the upper left of
Figure 2.10. Unfortunately, the start state has ambiguous transitions on both d
and .. To address the d ambiguity, we split ABC into AB and C, as shown in the
upper right. New State AB has a self-loop on d; new State C moves to State DEFG.
State AB still has an ambiguity on ., however, which we resolve by splitting it into
States A and B, as shown at the bottom of the figure. At this point there are no
further ambiguities, and we are left with a four-state minimal DFA.

1.2.) Scanner Code

We can implement a scanner that explicitly captures the “circles-and-arrows”
structure of a DFA in either of two main ways. One embeds the automaton in
the control flow of the program using gotos or nested case (switch) statements;
the other, described in the following subsection, uses a table and a driver. As
a general rule, handwritten automata tend to use nested case statements, while

62 Chapter 2 Programming Language Syntax

Figlll’e 210 Minimization of the DFA of Figure 2.9. In each step we split a set of states to
eliminate a transition ambiguity.

most automatically generated automata use tables. Tables are hard to create by
hand, but easier than code to create from within a program. Likewise, nested
case statements are easier to write and to debug than the ad hoc approach of Fig-
ure 2.5, if not quite as efficient. Unix’s 1ex/flex tool produces C language output
containing tables and a customized driver.

examere 1,16 The nested case statement style of automaton has the following general struc-
Nested case statement ture:
automaton

state ;=1 ——start state

loop

read cur_char
case state of
1 : case cur_char of
NG AR
‘a'...'z":
‘0°...'9":

2 : case cur_char of

n: case cur_char of

The outer case statement covers the states of the finite automaton. The inner
case statements cover the transitions out of each state. Most of the inner clauses
simply set a new state. Some return from the scanner with the current token. (It

2.2 Scanning 63

the current character should not be part of that token, it is pushed back onto the
input stream before returning.)

Two aspects of the code typically deviate from the strict form of a formal finite
automaton. One is the handling of keywords. The other is the need to peek ahead
when a token can validly be extended by two or more additional characters, but
not by only one.

As noted at the beginning of Section 2.1.1, keywords in most languages look
just like identifiers, but are reserved for a special purpose (some authors use the
term reserved word instead of keyword). It is possible to write a finite automaton
that distinguishes between keywords and identifiers, but it requires a lot of states
(see Exercise 2.3). Most scanners, both handwritten and automatically generated,
therefore treat keywords as “exceptions” to the rule for identifiers. Before return-

DESIGN & IMPLEMENTATION

2.4 Recognizing multiple kinds of token

One of the chief ways in which a scanner differs from a formal DFA is that it
identifies tokens in addition to recognizing them. That is, it not only deter-
mines whether characters constitute a valid token; it also indicates which one.
In practice, this means that it must have separate final states for every kind of
token. We glossed over this issue in our RE-to-DFA constructions.

To build a scanner for a language with
n different kinds of tokens, we begin with
an NFA of the sort suggested in the figure
here. Given NFAs M;, 1<i<n (one au-
tomaton for each kind of token), we cre-
ate a new start state with epsilon transi-
tions to the start states of the M;s. In con-
trast to the alternation construction of Fig-
ure 2.7(c), however, we do not create a single
final state; we keep the existing ones, each
labeled by the token for which it is final.
We then apply the NFA-to-DFA construction as before. (If final states for dif-
ferent tokens in the NFA ever end up in the same state of the DFA, then we
have ambiguous token definitions. These may be resolved by changing the reg-
ular expressions from which the NFAs were derived, or by wrapping additional
logic around the DFA.)

In the DFA minimization construction, instead of starting with two equiv-
alence classes (final and nonfinal states), we begin with n + 1, including a sep-
arate class for final states for each of the kinds of token. Exercise 2.5 explores
this construction for a scanner that recognizes both the integer and decimal
types of Example 2.3.

64 Chapter 2 Programming Language Syntax

EXAMPLE 2 I?

The nontrivial prefix
problem

EXAMPLE 2.'8

Look-ahead in Fortran
scanning

ing an identifier to the parser, the scanner looks it up in a hash table or trie (a tree
of branching paths) to make sure it isn’t really a keyword.'"

Whenever one legitimate token is a prefix of another, the “longest possible to-
ken” rule says that we should continue scanning. If some of the intermediate
strings are not valid tokens, however, we can’t tell whether a longer token is pos-
sible without looking more than one character ahead. This problem arises with
dot characters (periods) in C. Suppose the scanner has just seen a 3 and has a dot
coming up in the input. It needs to peek at characters beyond the dot in order
to distinguish between 3.14 (a single token designating a real number), 3 . foo
(three tokens that the scanner should accept, even though the parser will object
to seeing them in that order), and 3 ... foo (again not syntactically valid, but
three separate tokens nonetheless). In general, upcoming characters that a scan-
ner must examine in order to make a decision are known as its look-ahead. In
Section 2.3 we will see a similar notion of look-ahead tokens in parsing.

In messier languages, a scanner may need to look an arbitrary distance ahead.
In Fortran IV, for example, D0 5 I = 1,25 is the header of a loop (it executes the
statements up to the one labeled 5 for values of I from 1 to 25), while D0 5 I
= 1.25 is an assignment statement that places the value 1.25 into the variable
DOS5I. Spaces are ignored in (pre-Fortran 90) Fortran input, even in the middle
of variable names. Moreover, variables need not be declared, and the terminator
for a DO loop is simply a label, which the parser can ignore. After seeing DO,
the scanner cannot tell whether the 5 is part of the current token until it reaches
the comma or dot. It has been widely (but apparently incorrectly) claimed that
NASA’s Mariner 1 space probe was lost due to accidental replacement of a comma
with a dot in a case similar to this one in flight control software.!! Dialects of
Fortran starting with Fortran 77 allow (in fact encourage) the use of alternative

DESIGN & IMPLEMENTATION

1.5 Longest possible tokens

A little care in syntax design—avoiding tokens that are nontrivial prefixes of
other tokens—can dramatically simplify scanning. In straightforward cases
of prefix ambiguity, the scanner can enforce the “longest possible token” rule
automatically. In Fortran, however, the rules are sufficiently complex that no
purely lexical solution suffices. Some of the problems, and a possible solution,
are discussed in an article by Dyadkin [Dya95].

10 Many languages include predefined identifiers (e.g., for standard library functions), but these are
not keywords. The programmer can redefine them, so the scanner must treat them the same as
other identifiers. Contextual keywords, similarly, must be treated by the scanner as identifiers.

Il In actuality, the faulty software for Mariner 1 appears to have stemmed from a missing “bar”
punctuation mark (indicating an average) in handwritten notes from which the software was
derived [Cer89, pp. 202-203]. The Fortran DO loop error does appear to have occurred in at least
one piece of NASA software, but no serious harm resulted [Web89].

EXAMPLE 2. |9

Table-driven scanning

2.2 Scanning 65

syntax for loop headers, in which an extra comma makes misinterpretation less
likely: DO 5,1 = 1,25.

In C, the dot character problem can easily be handled as a special case. In
languages requiring larger amounts of look-ahead, the scanner can take a more
general approach. In any case of ambiguity, it assumes that a longer token will
be possible, but remembers that a shorter token could have been recognized at
some point in the past. It also buffers all characters read beyond the end of the
shorter token. If the optimistic assumption leads the scanner into an error state, it
“unreads” the buffered characters so that they will be seen again later, and returns
the shorter token.

223 Table-Driven Scanning

In the preceding subsection we sketched how control flow—a loop and nested
case statements—can be used to represent a finite automaton. An alternative ap-
proach represents the automaton as a data structure: a two-dimensional transition
table. A driver program (Figure 2.11) uses the current state and input character
to index into the table. Each entry in the table specifies whether to move to a new
state (and if so, which one), return a token, or announce an error. A second table
indicates, for each state, whether we might be at the end of a token (and if so,
which one). Separating this second table from the first allows us to notice when
we pass a state that might have been the end of a token, so we can back up if we
hit an error state. Example tables for our calculator tokens appear in Figure 2.12.

Like a handwritten scanner, the table-driven code of Figure 2.11 looks tokens
up in a table of keywords immediately before returning. An outer loop serves to
filter out comments and “white space”—spaces, tabs, and newlines.

124 Lexical Errors

The code in Figure 2.11 explicitly recognizes the possibility of lexical errors. In
some cases the next character of input may be neither an acceptable continuation
of the current token nor the start of another token. In such cases the scanner must
print an error message and perform some sort of recovery so that compilation can
continue, if only to look for additional errors. Fortunately, lexical errors are rel-
atively rare—most character sequences do correspond to token sequences—and
relatively easy to handle. The most common approach is simply to (1) throw away
the current, invalid token; (2) skip forward until a character is found that can le-
gitimately begin a new token; (3) restart the scanning algorithm; and (4) count
on the error-recovery mechanism of the parser to cope with any cases in which
the resulting sequence of tokens is not syntactically valid. Of course the need for
error recovery is not unique to table-driven scanners; any scanner must cope with
errors. We did not show the code in Figure 2.5, but it would have to be there in
practice.

66 Chapter 2 Programming Language Syntax

state = 0.. number_of_states
token = Q.. number_of_tokens
scan_tab : array [char, state| of record
action : (move, recognize, error)
new._state : state
token_tab : array [state] of token —-what to recognize
keyword_tab : set of record
k_image : string
k_token : token
——these three tables are created by a scanner generator tool

tok : token
cur_char : char
remembered_chars : list of char
repeat
cur_state : state := start_state
image : string := null
remembered_state : state := 0 ——none
loop
read cur_char
case scan_tab[cur_char, cur_state].action
move:
if token_tab[cur_state] # 0
—— this could be a final state
remembered_state := cur_state
remembered_chars := ¢
add cur_char to remembered_chars
cur_state := scan_tablcur_char, cur_state]|.new_state
recognize:
tok := token_tab[cur_state]
unread cur_char —— push back into input stream
exit inner loop
error:
if remembered_state # 0
tok := token_tab[remembered_state]
unread remembered_chars
remove remembered_chars from image
exit inner loop
—— else print error message and recover; probably start over
append cur_char to image
——end inner loop
until tok & {white_space, comment}
look image up in keyword_tab and replace tok with appropriate keyword if found
return (tok, image)

Figure LIl Driver for a table-driven scanner, with code to handle the ambiguous case in
which one valid token is a prefix of another; but some intermediate string is not.

State space, tab

e = e

=]

10
11
12
13
14
15
16
17
18

newline

17

18

2.2 Scanning 67

Current input character

/ * (O : = - digit letter other

2 10 6 7 8 9 11 - 13 14 16 -

3 4 - - - - - - - - - - div

3 3 3 3 3 3 3 3 3 3 3 3

4 5 4 4 4 4 4 4 4 4 4 4

18 5 4 4 4 4 4 4 4 4 4 4

_ _ - - — — - - - - Iparen

_ — - - - _ — - — - - - rparen

- - - - - - - - - - - - plus

— - - — - - — - - - - - minus

_ — — — - - — — - — — — times

_ _ - - - _ 12 _ _ _ _

_ - - - - - - - - - - - assign

- - - - - - - — - 15 - -

_ - - - - - - - 15 14 - - number
_ _ — — - - - — - 15 - - number
— - - — - — - - - 16 16 - identifier
— - - = - - — - - — - - white_space
_ _ - - _ — - - - - comment

Figure 212 Scanner tables for the calculator language. These could be used by the code of Figure 2.1 |. States are numbered
as in Figure 2.6, except for the addition of two states— 17 and |18—to “recognize” white space and comments. The right-hand
column represents table token_tab; the rest of the figure is scan_tab. Numbers in the table indicate an entry for which the
corresponding action is move. Dashes appear where there is no way to extend the current token: if the corresponding entry
in token_tab is nonempty, then action is recognize; otherwise, action is error. Table keyword_tab (not shown) contains the
strings read and write.

The code in Figure 2.11 also shows that the scanner must return both the kind
of token found and its character-string image (spelling); again this requirement
applies to all types of scanners. For some tokens the character-string image is
redundant: all semicolons look the same, after all, as do all while keywords. For
other tokens, however (e.g., identifiers, character strings, and numeric constants),
the image is needed for semantic analysis. It is also useful for error messages:
“undeclared identifier” is not as nice as “foo has not been declared.”

125 Pragmas

Some languages and language implementations allow a program to contain con-
structs called pragmas that provide directives or hints to the compiler. Prag-
mas that do not change program semantics—only the compilation process—are
sometimes called significant comments. In some languages the name is also ap-
propriate because, like comments, pragmas can appear anywhere in the source
program. In this case they are usually processed by the scanner: allowing them
anywhere in the grammar would greatly complicate the parser. In most languages,

68 Chapter 2 Programming Language Syntax

however, pragmas are permitted only at certain well-defined places in the gram-
mar. In this case they are best processed by the parser or semantic analyzer.
Pragmas that serve as directives may

Turn various kinds of run-time checks (e.g., pointer or subscript checking) on
or off

Turn certain code improvements on or off (e.g., on in inner loops to improve
performance; off otherwise to improve compilation speed)

Enable or disable performance profiling (statistics gathering to identify pro-
gram bottlenecks)

Some directives “cross the line” and change program semantics. In Ada, for ex-
ample, the unchecked pragma can be used to disable type checking. In OpenMP,
which we will consider in Chapter 13, pragmas specify significant parallel exten-
sions to Fortran, C and C++: creating, scheduling, and synchronizing threads. In
this case the principal rationale for expressing the extensions as pragmas rather
than more deeply integrated changes is to sharply delineate the boundary between
the core language and the extensions, and to share a common set of extensions
across languages.

Pragmas that serve (merely) as hints provide the compiler with information
about the source program that may allow it to do a better job:

Variable x is very heavily used (it may be a good idea to keep it in a register).

Subroutine F is a pure function: its only effect on the rest of the program is the
value it returns.

Subroutine $ is not (indirectly) recursive (its storage may be statically allo-
cated).

32 bits of precision (instead of 64) suffice for floating-point variable x.

The compiler may ignore these in the interest of simplicity, or in the face of con-
tradictory information.

Standard syntax for pragmas was introduced in C++11 (where they are known
as “attributes”). A function that prints an error message and terminates execu-
tion, for example, can be labeled [[noreturn]], to allow the compiler to opti-
mize code around calls, or to issue more helpful error or warning messages. As
of this writing, the set of supported attributes can be extended by vendors (by
modifying the compiler), but not by ordinary programmers. The extent to which
these attributes should be limited to hints (rather than directives) has been some-
what controversial. New pragmas in Java (which calls them “annotations”) and
C# (which calls them “attributes”) can be defined by the programmer; we will
return to these in Section 16.3.1.

2.3 Parsing 69

J CHECK YOUR UNDERSTANDING
[0. List the tasks performed by the typical scanner.

[I. What are the advantages of an automatically generated scanner, in compari-
son to a handwritten one? Why do many commercial compilers use a hand-
written scanner anyway?

[2. Explain the difference between deterministic and nondeterministic finite au-
tomata. Why do we prefer the deterministic variety for scanning?

13. Outline the constructions used to turn a set of regular expressions into a min-
imal DFA.

|4, What is the “longest possible token” rule?

[5. Why must a scanner sometimes “peek” at upcoming characters?
[6. What is the difference between a keyword and an identifier?

I7. Why must a scanner save the text of tokens?

18. How does a scanner identify lexical errors? How does it respond?

19. What is a pragma?

Parsing

The parser is the heart of a typical compiler. Tt calls the scanner to obtain the
tokens of the input program, assembles the tokens together into a syntax tree,
and passes the tree (perhaps one subroutine at a time) to the later phases of the
compiler, which perform semantic analysis and code generation and improve-
ment. In effect, the parser is “in charge” of the entire compilation process; this
style of compilation is sometimes referred to as syntax-directed translation.

As noted in the introduction to this chapter, a context-free grammar (CFG) is
a generator for a CF language. A parser is a language recognizer. It can be shown
that for any CFG we can create a parser that runs in O(n”) time, where n is the
length of the input program.'? There are two well-known parsing algorithms that
achieve this bound: Earley’s algorithm [Ear70] and the Cocke-Younger-Kasami
(CYK) algorithm [Kas65, You67]. Cubic time is much too slow for parsing siz-
able programs, but fortunately not all grammars require such a general and slow
parsing algorithm. There are large classes of grammars for which we can build
parsers that run in linear time. The two most important of these classes are called
LL and LR (Figure 2.13).

12 In general, an algorithm is said to run in time O(f(n)), where n is the length of the input, if
its running time #(#) is proportional to f(n) in the worst case. More precisely, we say t(n) =
O(f(n)) <= Fe.mn>m — t(n) < cf(n)].

70 Chapter 2 Programming Language Syntax

EXAMPLE 220

Top-down and bottom-up
parsing

Direction Derivation Parse tree
Class of scanning discovered construction Algorithm used
LL left-to-right left-most top-down predictive
LR left-to-right right-most bottom-up shift-reduce

Figure 113 Principal classes of linear-time parsing algorithms.

LL stands for “Left-to-right, Left-most derivation.” LR stands for “Left-to-
right, Right-most derivation.” In both classes the input is read left-to-right, and
the parser attempts to discover (construct) a derivation of that input. For LL
parsers, the derivation will be left-most; for LR parsers, right-most. We will cover
LL parsers first. They are generally considered to be simpler and easier to under-
stand. They can be written by hand or generated automatically from an appropri-
ate grammar by a parser-generating tool. The class of LR grammars is larger (i.e.,
more grammars are LR than LL), and some people find the structure of the LR
grammars more intuitive, especially in the handling of arithmetic expressions. LR
parsers are almost always constructed by a parser-generating tool. Both classes of
parsers are used in production compilers, though LR parsers are more common.

LL parsers are also called “top-down,” or “predictive” parsers. They construct
a parse tree from the root down, predicting at each step which production will be
used to expand the current node, based on the next available token of input. LR
parsers are also called “bottom-up” parsers. They construct a parse tree from the
leaves up, recognizing when a collection of leaves or other nodes can be joined
together as the children of a single parent.

We can illustrate the difference between top-down and bottom-up parsing
by means of a simple example. Consider the following grammar for a comma-
separated list of identifiers, terminated by a semicolon:

id_list — id id_list_tail
id list_tail — , id id_list_tail

id_list_tail —

These are the productions that would normally be used for an identifier list in a
top-down parser. They can also be parsed bottom-up (most top-down grammars
can be). In practice they would not be used in a bottom-up parser, for reasons
that will become clear in a moment, but the ability to handle them either way
makes them good for this example.

Progressive stages in the top-down and bottom-up construction of a parse tree
for the string A, B, C; appear in Figure 2.14. The top-down parser begins by
predicting that the root of the tree (id_list) will expand to id id_list_tail. It then
matches the id against a token obtained from the scanner. (If the scanner pro-
duced something different, the parser would announce a syntax error.) The parser
then moves down into the first (in this case only) nonterminal child and predicts
that id_list_tail will expand to , id id_list_tail. To make this prediction it needs

2.3 Parsing 71

id_list id(A)

id_list 1dh) -,
N id(A) , id(B)

id(A) id_list_tail
id(A) , id(B) ,

id_list
}’5\ id(A) , id(B) , id(C)
id(a) id_list_tail id(A) , id(B) , id(C) ;

A\ id(A) , id(B) , id(C) id list_tail

. id(B) id_lList_tail |

id list '
1 id(R) , id®) id_list_tail

id(A) id_list_tail /R
T~ s id(C) id_list_tail

, 1d(B) id_list_tail

)

2

o~ . id(A) id_list_tail
, id(C) id_list_tail

id_list , id(B) id_list_tail

id(a) id_list_tail , id(c) id_list_tail

, 1d(B) id_list_tail ;
id_list

, id(C) id_list_tail 1d(A) id list_tail

, 1d(B) id_list_tail

id_list — id id_list_tail , id(C) id_list_tail
id_list_tail — , id id_list_tail |

id_list_taill — ;

Figure 214 Top-down (left) and bottom-up parsing (right) of the input string A, B, C;.
Grammar appears at lower left.

to peek at the upcoming token (a comma), which allows it to choose between the
two possible expansions for id_list_tail. It then matches the comma and the id
and moves down into the next id_list_tail. In a similar, recursive fashion, the top-
down parser works down the tree, left-to-right, predicting and expanding nodes
and tracing out a left-most derivation of the fringe of the tree.

72 Chapter 2 Programming Language Syntax

EXAMPLE 2.2 I

Bounding space with a
bottom-up grammar

The bottom-up parser, by contrast, begins by noting that the left-most leaf of
the tree is an id. The next leaf is a comma and the one after that is another id.
The parser continues in this fashion, shifting new leaves from the scanner into
a forest of partially completed parse tree fragments, until it realizes that some
of those fragments constitute a complete right-hand side. In this grammar, that
doesn’t occur until the parser has seen the semicolon—the right-hand side of
id_list_tail — ;. With this right-hand side in hand, the parser reduces the semi-
colon to an id_list_tail. It then reduces , id id_list_tail into another id_list_tail.
After doing this one more time it is able to reduce id id_list_tail into the root of
the parse tree, id_list.

At no point does the bottom-up parser predict what it will see next. Rather,
it shifts tokens into its forest until it recognizes a right-hand side, which it then
reduces to a left-hand side. Because of this behavior, bottom-up parsers are some-
times called shift-reduce parsers. Moving up the figure, from bottom to top, we
can see that the shift-reduce parser traces out a right-most derivation, in reverse.
Because bottom-up parsers were the first to receive careful formal study, right-
most derivations are sometimes called canonical.

There are several important subclasses of LR parsers, including SLR, LALR,
and “full LR” SLR and LALR are important for their ease of implementation,
full LR for its generality. LL parsers can also be grouped into SLL and “full LL”
subclasses. We will cover the differences among them only briefly here; for fur-
ther information see any of the standard compiler-construction or parsing theory
textbooks [App97, ALSU07, AU72, CT04, FCL10, GBJ*12].

One commonly sees LL or LR (or whatever) written with a number in paren-
theses after it: LL(2) or LALR(1), for example. This number indicates how many
tokens of look-ahead are required in order to parse. Most real compilers use just
one token of look-ahead, though more can sometimes be helpful. The open-
source ANTLR tool, in particular, uses multitoken look-ahead to enlarge the class
of languages amenable to top-down parsing [PQ95]. In Section 2.3.1 we will
look at LL(1) grammars and handwritten parsers in more detail. In Sections
2.3.3 and 2.3.4 we will consider automatically generated LL(1) and LR(1) (ac-
tually SLR(1)) parsers.

The problem with our example grammar, for the purposes of bottom-up pars-
ing, is that it forces the compiler to shift all the tokens of an id_list into its forest
before it can reduce any of them. In a very large program we might run out of
space. Sometimes there is nothing that can be done to avoid a lot of shifting. In
this case, however, we can use an alternative grammar that allows the parser to
reduce prefixes of the id_list into nonterminals as it goes along:

id list — id_list_prefix ;
id_list_prefix — id list_prefix , id
— id

This grammar cannot be parsed top-down, because when we see an id on the
input and we're expecting an id_list_prefix, we have no way to tell which of the two

EXAMPLE 222

Top-down grammar for a
calculator language

2.3 Parsing 73

id(A) id_list_prefix , 1id(C)
id_list_prefix id_list_prefix , id(B)

id!A) id!A)
id_list_prefix id_list_prefix

id!A) id_list_prefix , 1id(C)
id_list_prefix , id(B) id_list_prefix , id(B)

id(A) id(A)

id_list_prefix id_list_prefix :

id_list_prefix , id(B) id_list_prefix , id(C)
id!A) id_list_prefix , id(B)
id_list_prefix idl(A)
id_list_prefix , id(B) id_list
id(4) id_list_prefix ;

id_list_prefix , 1id(C)

id_list —> id_list_prefix ; id_list_prefix 1d(B)

id_list_prefix — id_list_prefix , id |

> id id(A)

Figure 215 Bottom-up parse of A, B, C; using a grammar (lower left) that allows lists to be
collapsed incrementally.

possible productions we should predict (more on this dilemma in Section 2.3.2).
As shown in Figure 2.15, however, the grammar works well bottom-up.

1.3.] Recursive Descent

To illustrate top-down (predictive) parsing, let us consider the grammar for a sim-
ple “calculator” language, shown in Figure 2.16. The calculator allows values to
be read into named variables, which may then be used in expressions. Expressions
in turn may be written to the output. Control flow is strictly linear (no loops, if
statements, or other jumps). In a pattern that will repeat in many of our examples,
we have included an initial augmenting production, program — stmt_list $$,

74

Chapter 2 Programming Language Syntax

program — stmt_list $$

stmt_list —s stmt stmit_list | €

stmt —+ id := expr | read id | write expr
expr — term fterm_tail

term_tail — add_op term term_tail | e

term — factor factor_tail

factor_tail — mult_op factor factor_tail | ¢
factor — (expr) | id | number

add_op — + | -

mult_op — * |/

Figure 216 LL(1) grammar for a simple calculator language.

which arranges for the “real” body of the program (stmt_list) to be followed by a
special end marker token, $$. The end marker is produced by the scanner at the
end of the input. Its presence allows the parser to terminate cleanly once it has
seen the entire program, and to decline to accept programs with extra garbage
tokens at the end. As in regular expressions, we use the symbol ¢ to denote the
empty string. A production with € on the right-hand side is sometimes called an
epsilon production.

It may be helpful to compare the expr portion of Figure 2.16 to the expression
grammar of Example 2.8. Most people find that previous, LR grammar to be
significantly more intuitive. It suffers, however, from a problem similar to that of
the id_list grammar of Example 2.21: if we see an id on the input when expecting
an expr, we have no way to tell which of the two possible productions to predict.
The grammar of Figure 2.16 avoids this problem by merging the common prefixes
of right-hand sides into a single production, and by using new symbols (term_tail
and factor_tail) to generate additional operators and operands as required. The
transformation has the unfortunate side effect of placing the operands of a given
operator in separate right-hand sides. In effect, we have sacrificed grammatical
elegance in order to be able to parse predictively.

So how do we parse a string with our calculator grammar? We saw the basic
idea in Figure 2.14. We start at the top of the tree and predict needed productions
on the basis of the current left-most nonterminal in the tree and the current in-
put token. We can formalize this process in one of two ways. The first, described
in the remainder of this subsection, is to build a recursive descent parser whose
subroutines correspond, one-one, to the nonterminals of the grammar. Recur-
sive descent parsers are typically constructed by hand, though the ANTLR parser
generator constructs them automatically from an input grammar. The second
approach, described in Section 2.3.3, is to build an LL parse table which is then
read by a driver program. Table-driven parsers are almost always constructed
automatically by a parser generator. These two options—recursive descent and
table-driven—are reminiscent of the nested case statements and table-driven ap-

EXAMPLE 2.23

Recursive descent parser
for the calculator language

EXAMPLE 2.24

Recursive descent parse of
a “sum and average”
program

2.3 Parsing 75

proaches to building a scanner that we saw in Sections 2.2.2 and 2.2.3. It should
be emphasized that they implement the same basic parsing algorithm.

Handwritten recursive descent parsers are most often used when the language
to be parsed is relatively simple, or when a parser-generator tool is not available.
There are exceptions, however. In particular, recursive descent appears in recent
versions of the GNU compiler collection (gecc). Earlier versions used bison to
create a bottom-up parser automatically. The change was made in part for perfor-
mance reasons and in part to enable the generation of higher-quality syntax error
messages. (The bison code was easier to write, and arguably easier to maintain.)

Pseudocode for a recursive descent parser for our calculator language appears
in Figure 2.17. It has a subroutine for every nonterminal in the grammar. It also
has a mechanism input_token to inspect the next token available from the scanner
and a subroutine (match) to consume and update this token, and in the process
verify that it is the one that was expected (as specified by an argument). If match
or any of the other subroutines sees an unexpected token, then a syntax error has
occurred. For the time being let us assume that the parse_error subroutine simply
prints a message and terminates the parse. In Section 2.3.5 we will consider how
to recover from such errors and continue to parse the remainder of the input.

Suppose now that we are to parse a simple program to read two numbers and
print their sum and average:

read A

read B

sum := A + B
write sum

write sum / 2

The parse tree for this program appears in Figure 2.18. The parser begins by
calling the subroutine program. After noting that the initial token is a read,
program calls stmt_list and then attempts to match the end-of-file pseudoto-
ken. (In the parse tree, the root, program, has two children, stmt_list and $$.)
Procedure stmt_list again notes that the upcoming token is a read. This ob-
servation allows it to determine that the current node (stnt_list) generates stmt
stmt_list (rather than €). It therefore calls stmt and stmt_list before returning.
Continuing in this fashion, the execution path of the parser traces out a left-to-
right depth-first traversal of the parse tree. This correspondence between the dy-
namic execution trace and the structure of the parse tree is the distinguishing
characteristic of recursive descent parsing. Note that because the stmt_list non-
terminal appears in the right-hand side of a stmt_list production, the stmt_list
subroutine must call itself. This recursion accounts for the name of the parsing
technique.

Without additional code (not shown in Figure 2.17), the parser merely ver-
ifies that the program is syntactically correct (i.e., that none of the otherwise
parse_error clauses in the case statements are executed and that match always
sees what it expects to see). To be of use to the rest of the compiler—which must
produce an equivalent target program in some other language—the parser must

76 Chapter 2 Programming Language Syntax

procedure match(expected)
if input_token = expected then consume_input_token()
else parse_error

——this is the start routine:
procedure program()
case input.token of
id, read, write, $$:
stmt_list()
match($$)
otherwise parse_error

procedure stmt_list()
case input_token of
id, read, write : stmt(); stmt_list()
$$: skip ——epsilon production
otherwise parse_error

procedure stmt()
case input_token of
id : match(id); match(:=); expr()
read : match(read); match(id)
write : match(write); expr()
otherwise parse_error

procedure expr()
case input_token of
id, number, (: term(); term_tail()
otherwise parse_error

procedure term_tail()
case input_token of
+, - : add_op(); term(); term_tail()
), id, read, write, $$:
skip ——epsilon production
otherwise parse_error

procedure termf()
case input_token of
id, number, (: factor(); factor_tail()
otherwise parse_error

Figure 117 Recursive descent parser for the calculator language. Execution begins in proce-
dure program. The recursive calls trace out a traversal of the parse tree. Not shown is code to
save this tree (or some similar structure) for use by later phases of the compiler. (continued)

2.3 Parsing 77

procedure factor_tail()
case input_token of
*, [/ mult_opl); factor(); factor_tail()
+, -,), id, read, write, $%$
skip ——epsilon production
otherwise parse_error

procedure factor()
case input_token of
id : match(id)
number : match{number)
(: match((); expr(); match())
otherwise parse_error

procedure add_op()
case input.token of
+ : match(+)
- . match(=)
otherwise parse_error

procedure mult_opl()
case input.token of
* . match(x*)
/ : match(/)
otherwise parse_error

Figure 217 (continued)

save the parse tree or some other representation of program fragments as an ex-
plicit data structure. To save the parse tree itself, we can allocate and link together
records to represent the children of a node immediately before executing the re-
cursive subroutines and match invocations that represent those children. We shall
need to pass each recursive routine an argument that points to the record that is
to be expanded (i.e., whose children are to be discovered). Procedure match will
also need to save information about certain tokens (e.g., character-string repre-
sentations of identifiers and literals) in the leaves of the tree.

As we saw in Chapter 1, the parse tree contains a great deal of irrelevant detail
that need not be saved for the rest of the compiler. It is therefore rare for a parser
to construct a full parse tree explicitly. More often it produces an abstract syntax
tree or some other more terse representation. In a recursive descent compiler,
a syntax tree can be created by allocating and linking together records in only a
subset of the recursive calls.

The trickiest part of writing a recursive descent parser is figuring out which
tokens should label the arms of the case statements. Each arm represents one
production: one possible expansion of the symbol for which the subroutine was
named. The tokens that label a given arm are those that predict the production.
A token X may predict a production for either of two reasons: (1) the right-hand

78 Chapter 2 Programming Language Syntax

program
stint_list $$
,”/,,’,’/H&‘Hhmﬁhm“hm
stint stmt_list
N T
read id(A) stmi stimt_list
) N
read 1id(B) stmt stmt_list
RN T
id(sum) := expr stmt stmt_list
term term_tail write expr stmt stmt_list
N T RN N
factor factor_tail add op term term_tail term term_tail write expr €
| VA N e N
id(A) € + factor factor_tail ¢ factor factor_tail ¢ term term_tail
| | N |
id(B) € id(sum) € factor factor_tail €

//N

id(sum) mult_op factor factor_tail

/ number (2) €

Figure 118 Parse tree for the sum-and-average program of Example 2.24, using the grammar of Figure 2.16.

side of the production, when recursively expanded, may yield a string beginning
with X, or (2) the right-hand side may yield nothing (i.e., it is €, or a string of
nonterminals that may recursively yield €), and X may begin the yield of what
comes next. We will formalize this notion of prediction in Section 2.3.3, using
sets called FIRST and FOLLOW, and show how to derive them automatically from

an LL(1) CFG.

\/CHECK YOUR UNDERSTANDING

20. What is the inherent “big-O” complexity of parsing? What is the complexity

of parsers used in real compilers?

21. Summarize the difference between LL and LR parsing. Which one of them is
also called “bottom-up”? “Top-down”? Which one is also called “predictive”?

“Shift-reduce”? What do “LL” and “LR” stand for?

EXAMPLE 225

Left recursion

EXAMPLE 126

Common prefixes

2.3 Parsing 79

1). What kind of parser (top-down or bottom-up) is most common in produc-
tion compilers?

13. Why are right-most derivations sometimes called canonical?

24. What is the significance of the “1” in LR(1)?

15. Why might we want (or need) different grammars for different parsing algo-
rithms?

26. What is an epsilon production?

21. What are recursive descent parserst Why are they used mostly for small lan-
guages?

18. How might a parser construct an explicit parse tree or syntax tree?

131 Writing an LL(1) Grammar

When designing a recursive-descent parser, one has to acquire a certain facility
in writing and modifying LL(1) grammars. The two most common obstacles to
“LL(1)-ness” are left recursion and common prefixes.

A grammar is said to be left recursive if there is a nonterminal A such that A
=71 A « forsome a."” The trivial case occurs when the first symbol on the right-
hand side of a production is the same as the symbol on the left-hand side. Here
again is the grammar from Example 2.21, which cannot be parsed top-down:

id_list — id_list_prefix ;
id_list_prefix — id list_prefix , id

— id

The problem is in the second and third productions; in the id_list_prefix pars-
ing routine, with id on the input, a predictive parser cannot tell which of the
productions it should use. (Recall that left recursion is desirable in bottom-up
grammars, because it allows recursive constructs to be discovered incrementally,
as in Figure 2.15.)

Common prefixes occur when two different productions with the same left-
hand side begin with the same symbol or symbols. Here is an example that com-
monly appears in languages descended from Algol:

13 Following conventional notation, we use uppercase Roman letters near the beginning of the al-
phabet to represent nonterminals, uppercase Roman letters near the end of the alphabet to rep-
resent arbitrary grammar symbols (terminals or nonterminals), lowercase Roman letters near
the beginning of the alphabet to represent terminals (tokens), lowercase Roman letters near the
end of the alphabet to represent token strings, and lowercase Greek letters to represent strings of
arbitrary symbols.

80 Chapter 2 Programming Language Syntax

EXAMPLE 22?

Eliminating left recursion

EXAMPLE 128

Left factoring

EXAMPLE 229

Parsing a “dangling else”

stint — id := expr

— id (argument_list) —— procedure call

With id at the beginning of both right-hand sides, we cannot choose between
them on the basis of the upcoming token.

Both left recursion and common prefixes can be removed from a grammar me-
chanically. The general case is alittle tricky (Exercise 2.25), because the prediction
problem may be an indirect one (e.g., S — A aand A — S S,orS — A «,
S —B 3, A =%c v,and B =% ¢ §). We can see the general idea in the
examples above, however.

Our left-recursive definition of id_list can be replaced by the right-recursive
variant we saw in Example 2.20:

id list — id id_list_tail
id list_tail — , id id_list_tail

id_list_tail —

H

Our common-prefix definition of stmit can be made LL(1) by a technique called

left factoring:

stmt — id stmnt_list_tail

stnt_list_tail —» := expr | (argument_list)

Of course, simply eliminating left recursion and common prefixes is not guar-
anteed to make a grammar LL(1). There are infinitely many non-LL languages—
languages for which no LL grammar exists—and the mechanical transformations
to eliminate left recursion and common prefixes work on their grammars just
fine. Fortunately, the few non-LL languages that arise in practice can generally be
handled by augmenting the parsing algorithm with one or two simple heuristics.

The best known example of a “not quite LL” construct arises in languages like
Pascal, in which the else part of an if statement is optional. The natural gram-
mar fragment

stmt — if condition then_clause else_clause | other_stmt
then_clause —» then stmt

else_clause —» else stmt | e

is ambiguous (and thus neither LL nor LR); it allows the else in if C; then if
C, then S| else S; to be paired with either then. The less natural grammar
fragment

stmt — balanced_stmt | unbalanced_stmt
balanced_stmt — if condition then balanced_stmt else balanced_stmt
| other_stmt

unbalanced_stmt — if condition then stmt
| if condition then balanced_stmt else unbalanced_stmt

EXAMPLE 230

“Dangling else” program
bug

EXAMPLE 2.3 I

End markers for structured
statements

2.3 Parsing 81

can be parsed bottom-up but not top-down (there is no pure top-down grammar
for Pascal else statements). A balanced_stmt is one with the same number of
thens and elses. An unbalanced_stmt has more thens.

The usual approach, whether parsing top-down or bottom-up, is to use the
ambiguous grammar together with a “disambiguating rule,” which says that in
the case of a conflict between two possible productions, the one to use is the one
that occurs first, textually, in the grammar. In the ambiguous fragment above,
the fact that else_clause — else stmt comes before else_clause — ¢ ends up
pairing the else with the nearest then.

Better yet, a language designer can avoid this sort of problem by choosing dif-
ferent syntax. The ambiguity of the dangling else problem in Pascal leads to prob-
lems not only in parsing, but in writing and maintaining correct programs. Most
Pascal programmers at one time or another ended up writing a program like this
one:

if P <> nil then
if P".val = goal then
foundIt := true
else
end0fList := true

Indentation notwithstanding, the Pascal manual states that an else clause
matches the closest unmatched then—in this case the inner one—which is clearly
not what the programmer intended. To get the desired effect, the Pascal program-
mer needed to write

if P <> nil then begin
if P".val = goal then
foundIt := true
end
else
end0fList := true

Many other Algol-family languages (including Modula, Modula-2, and Oberon,
all more recent inventions of Pascal’s designer, Niklaus Wirth) require explicit end
markers on all structured statements. The grammar fragment for if statements
in Modula-2 looks something like this:

DESIGN & IMPLEMENTATION
2.6 The dangling else

A simple change in language syntax—eliminating the dangling else—not
only reduces the chance of programming errors, but also significantly sim-
plifies parsing. For more on the dangling else problem, see Exercise 2.24 and
Section 6.4.

82 Chapter 2 Programming Language Syntax

EXAMPLE 2.32

The need for elsif

EXAMPLE 233

Driver and table for
top-down parsing

stmt —+ IF condition then_clause else_clause END | other_stmt
then_clause — THEN stmi_list
else_clause —+ ELSE stmt list | €

The addition of the END eliminates the ambiguity.

Modula-2 uses END to terminate all its structured statements. Ada and For-
tran 77 end an if with end if (and a while with end while, etc.). Al-
gol 68 creates its terminators by spelling the initial keyword backward (if...fi,
case...esac, do...od, etc.).

One problem with end markers is that they tend to bunch up. In Pascal one
could write

if A = B then ...
else if A = C then ...
else if A = D then ...
else if A E then ...
else ...

With end markers this becomes

if A =B then ...
else if A = C then ...
else if A = D then ...
else if A = E then ...
else ...

end end end end

To avoid this awkwardness, languages with end markers generally provide an
elsif keyword (sometimes spelled elif):

if A = B then ...
elsif A = C then ...

elsif A = D then ...
elsif A = E then ...
else ...

end

233 Table-Driven Top-Down Parsing

In a recursive descent parser, each arm of a case statement corresponds to a
production, and contains parsing routine and match calls corresponding to the
symbols on the right-hand side of that production. At any given point in the
parse, if we consider the calls beyond the program counter (the ones that have yet
to occur) in the parsing routine invocations currently in the call stack, we obtain
a list of the symbols that the parser expects to see between here and the end of the
program. A table-driven top-down parser maintains an explicit stack containing
this same list of symbols.

EXAMPLE 234

Table-driven parse of the
“sum and average”
program

2.3 Parsing 83

terminal = 1.. number_of_terminals

non_terminal = number_of_terminals + 1 .. number_of_symbols
symbol = 1.. number_of_symbols

production = 1.. number_of_productions

parse_tab : array [non_terminal, terminal] of record
action : (predict, error)
prod : production
prod_tab : array [production| of list of symbol
—— these two tables are created by a parser generator tool

parse_stack : stack of symbol

parse_stack.push(start_symbol)
loop
expected_sym : symbol := parse_stack.pop()
if expected_sym € terminal
match(expected_sym) ——as in Figure 2.17
if expected_sym = $$ then return ——success!
else
if parse_tablexpected_sym, input_token].action = error
parse_error
else
prediction : production := parse_tablexpected_sym, input_token].prod
foreach sym : symbol in reverse prod_tablprediction]
parse_stack.push(sym)

Figure 119 Driver for a table-driven LL(I) parser.

Pseudocode for such a parser appears in Figure 2.19. The code is language
independent. It requires a language-dependent parsing table, generally produced
by an automatic tool. For the calculator grammar of Figure 2.16, the table appears
in Figure 2.20.

To illustrate the algorithm, Figure 2.21 shows a trace of the stack and the input
over time, for the sum-and-average program of Example 2.24. The parser iter-
ates around a loop in which it pops the top symbol off the stack and performs
the following actions: If the popped symbol is a terminal, the parser attempts
to match it against an incoming token from the scanner. If the match fails, the
parser announces a syntax error and initiates some sort of error recovery (see Sec-
tion 2.3.5). If the popped symbol is a nonterminal, the parser uses that nontermi-
nal together with the next available input token to index into a two-dimensional
table that tells it which production to predict (or whether to announce a syntax
error and initiate recovery).

Initially, the parse stack contains the start symbol of the grammar (in our case,
program). When it predicts a production, the parser pushes the right-hand-side
symbols onto the parse stack in reverse order, so the first of those symbols ends up
at top-of-stack. The parse completes successfully when we match the end marker

84 Chapter 2 Programming Language Syntax

Top-of-stack

nonterminal

program
stmt_list
stmt

expr

term _tail
term
factor_tail
factor
add_op
mult_op

Current input token

number read write = () + = * / $3
- 1 1 - - - - - - - 1

- 2 2 - - - - - - - 3

5 6 - - - - - - - -

7 - - - 7 - - - - - -

- 9 9 - - 9 8 8 - - 9

10 - - - 10 - - - - - -
- 12 12 - - 12 12 12 11 11 12

15 - - - 13 - - - - - -

Figure 2.20 LL(l) parse table for the calculator language. Table entries indicate the production to predict (as numbered in
Figure 2.23). A dash indicates an error. When the top-of-stack symbol is a terminal, the appropriate action is always to match
it against an incoming token from the scanner. An auxiliary table, not shown here, gives the right-hand-side symbols for each

production.

EXAMPLE 235

Predict sets for the
calculator language

token, $$. Assuming that $$ appears only once in the grammar, at the end of the
first production, and that the scanner returns this token only at end-of-file, any
syntax error is guaranteed to manifest itself either as a failed match or as an error
entry in the table.

As we hinted at the end of Section 2.3.1, predict sets are defined in terms of
simpler sets called FIRST and FOLLOW, where FIRST(A) is the set of all tokens that
could be the start of an A and FOLLOW(A) is the set of all tokens that could come
after an A in some valid program. If we extend the domain of FIRST in the obvious
way to include strings of symbols, we then say that the predict set of a production
A — 3 is FIRST(S3), plus FOLLOW(A) if 3 == ¢. For notational convenience,
we define the predicate EPS such that EPS(8) = 3 =% e.

We can illustrate the algorithm to construct these sets using our calculator
grammar (Figure 2.16). We begin with “obvious” facts about the grammar and
build on them inductively. If we recast the grammar in plain BNF (no EBNF
‘|’ constructs), then it has 19 productions. The “obvious” facts arise from ad-
jacent pairs of symbols in right-hand sides. In the first production, we can see
that $$ € FOLLOW(stmt_list). In the third (stmt_list — €), EPS(stmt list) =
true. In the fourth production (stmt — id := expr), id € FIRST(stmt) (also
:= € FOLLOW(id), but it turns out we don’t need FOLLOW sets for nontermi-
nals). In the fifth and sixth productions (stmt — read id | write expr),
{read, write} C FIRST(stmt). The complete set of “obvious” facts appears in
Figure 2.22.

From the “obvious” facts we can deduce a larger set of facts during a second
pass over the grammar. For example, in the second production (stmt_list —
stmt stmt_list) we can deduce that {id, read, write} C FIRST(stmt_list), be-
cause we already know that {id, read, write} C FIRST(stmt), and a stmi_list can

Parse stack

program

stmt_list $$

stmt stmt_list $$

read id stmt_list $$

id stmt list $%

stmt_ list $%

stmt stmt_list $$

read id stmt.list $%

id stmt list $$

stmt_list $%

stmt stmt_list $$

id := expr stmtlist $$

1= expr stmt list $$

expr stmt_list $8

term term_tail stmtlist $%

factor factor_tail term_tail stmt_list $$
id factor_tail term_tail stmtlist $$
factor_tail term_tail stmt_list $$
term_tail stmt_list $%

add_op term term_tail stmt_list $$

+ term term_tail stmiJist $$

term term_tail stmt_list $%

factor factor_tail term_tail stmt_list $$
id factor_tail term_tail stmt list $$
factor_tail term_tail stmt list $%
term_tail stmt_list $%

stmt_list $$

stmt stmt_list $$

write expr stmtlist $$

expr stmt_list $%

term term_tail stmitlist $$

factor factor_tail term_tail stmt_list $$
id factor_tail term_tail stmt_list $$
factor_tail term_tail stmt_list $$
term_tail stmit_list $$

stmt_list $$

stmt stmt_list $$

write expr stmtlist $$

expr stmt_list $$

term term_tail stmit list $$

factor factor_tail term_tail stmtlist $$
id factor_tail term_tail stmt list $$
factor_tail term_tail stmt_list $$
mult_op factor factor_tail term_tail stmt_list $$
/ factor factor_tail term_tail stmtlist $8
factor factor_tail term_tail stmt_list $$
number factor_tail term_tail stmt_list $$
factor_tail term_tail stmt_list $$
term_tail stmt_list $$

stmt_list $$

$$

Input stream

read A read B ...
read A read B ...
read A read B ...
read A read B ...
Aread B ...

read B sum := ...

read B sum :

read B sum :
B sum := ...
sum := A+ B ...
sum := A+ B ...
sum := A+ B ...
:=A+B...
A+B...
A+B...
A+B...
A+B...

+ B write sum...
+ B write sum...
+ B write sum ...
+ B write sum...
B write sum ...
B write sum ...
B write sum ...

write sum...

write sum write ...
write sum write ...
write sum write ...
write sum write ...

sum write sum / 2
sum write sum / 2
sum write sum / 2
sum write sum / 2
write sum / 2
write sum / 2
write sum / 2
write sum / 2
write sum / 2
sum / 2

sum / 2

sum / 2

sum / 2

/2

/2

/2

2

2

2.3 Parsing

Comment

initial stack contents

predict program —s stmt list $$
predict stmt_list — stmt stmi_list
predict stmt — read id

match read

match id

predict stmt_list — stmt stmt_list
predict stmt — read id

match read

match id

predict stint_list — stmt st _list
predict stmf — id := expr
match id

match :=

predict expr — term term_tail
predict term — factor factor_tail
predict factor — id

match id

predict factor_taill — €

predict term_tail — add_op term term_tail
predict add_op — +

match +

predict term — factor factor_tail
predict factor — id

match id

predict factor_tail — €

predict term_tail — €

predict stimt_list — stmt st _list
predict stmf — write expr
match write

predict expr — term term_tail
predict term — factor factor_tail
predict factor — id

match id

predict factor_tail — €

predict term_tail — €

predict stimt_list — stmt stmt_list
predict stml — write expr
match write

predict expr — term term_tail
predict term — factor factor_tail
predict factor — id

match id

predict factor_tail — mult_op factor factor_tail
predict mult_op — /

match /

predict factor — number

match number

predict factor_tail — ¢

predict term_tail — €

predict stmi_list — €

Figure 22l Trace of a table-driven LL(!) parse of the sum-and-average program of Example 2.24.

85

86 Chapter 2 Programming Language Syntax

program — stmt_list $$

stmt_list — stmt stmt_list

stit_list — €

stmt — id 1= expr

stmt —> read id

stmt — write expr

expr — term term_tail

term_tail — add_op term term_tail
term_tail — ¢

term — factor factor_tail
factor_tail — mult_op factor factor_tail
factor_tail — e

factor — (expr)

factor — id

factor — number

add_op — +

add_op — -

mult_op — *

mult_op — /

$$ € FOLLOW (st _list)

EPS(stmt_list) = true
id € FIRST(stmt)
read € FIRST(stmt)
write € FIRST(stmt)

EPS(term_tail) = true

EPS(factor_tail) = true

(€ FIRST (factor) and) € FOLLOW (expr)
id € FIRST(factor)

number € FIRST(factor)

+ € FIRST(add_op)

- € FIRST(add_op)

* € FIRST (mult_op)

/ € FIRST (mult_op)

Figlll'e 1.2) “Obvious” facts (right) about the LL(1) calculator grammar (left).

DESIGN & IMPLEMENTATION

2.7 Recursive descent and table-driven LL parsing

When trying to understand the connection between recursive descent and
table-driven LL parsing, it is tempting to imagine that the explicit stack of
the table-driven parser mirrors the implicit call stack of the recursive descent

parser, but this is not the case.

A better way to visualize the two implementa-
tions of top-down parsing is to remember that both
are discovering a parse tree via depth-first left-to-
right traversal. When we are at a given point in
the parse—say the circled node in the tree shown
here—the implicit call stack of a recursive descent
parser holds a frame for each of the nodes on the
path back to the root, created when the routine cor-
responding to that node was called. (This path is

shown in grey.)

But these nodes are immaterial. What matters for the rest of the parse—as
shown on the white path here—are the upcoming calls on the case statement
arms of the recursive descent routines. Those calls—those parse tree nodes—

are precisely the contents of the explicit stack of a table-driven LL parser.

2.3 Parsing 87

FIRST
program {id, read, write, $$} PREDICT
stmt_list {id, read, write} 1. program — stmt_list $$ {id, read, write, $$}
stmt {id, read, write} 2. stmtlist — stmt stmt_list {id, read, write}
expr { (, id, number} 3. stmtlist — e {$$}
term_tail {+, -} 4. stmt — id := expr {id}
term { (, id, number} 5. stmt —+ read id {read}
factor_tail {*, /} 6. stml —» write expr {urite}
factor { (, id, number} 7. expr —» term term_tail { (, id, number }
add_op {+, -} 8. term_tail — add_op term term_tail {+, -}
mult_op {*, /} 9. term_tail — ¢ {), id, read, urite, $$}
10. term — factor factor_tail { (, id, number }
FOLLOW 11. factor_tail — mult_op factor factor_tail {*, /}
program & 12. factor_tail — ¢ {+, -,), id, read, write, $$}
stmt_list {$$} 13. factor — (C expr) {(}
stmt {id, read, write, $$} 14. factor — id {id}
expr{), id, read, write, $$} 15. factor —+ number {number}
term_tail {), id, read, write, $$} 16. add_op — + {+}
term {+, -,), id, read, write, $$} 17. add_op — - {-}
factor_tail {+, -,), id, read, write, 3} 18. mult_op — * {*}
factor {+, -, %, /,), id, read, write, $$} 19. multop — / {/}

add_op { (, id, number }
mult_op { (, id, number}

Figure 2.23 FIRST, FOLLOW, and PREDICT sets for the calculator language. FIRST(c) = {c} V tokens c. EPS(A) is true iff A
€ {stmt_list, term_tail, factor_tail}.

begin with a stmt. Similarly, in the first production, we can deduce that $$ €
FIRST(program), because we already know that EPS(stmt_list) = true.

In the eleventh production (factor_tail — mult_op factor factor_tail), we can
deduce that { (, id, number} C FOLLOW(mult_op), because we already know
that { (, id, number} C FIRST(factor), and factor follows mult_op in the right-
hand side. In the production expr — term term_tail, we can deduce that)
€ FOLLOW(term _tail), because we already know that) € FOLLOW(expr), and a
term_tail can be the last part of an expr. In this same production, we can also de-
duce that) € FOLLOW(term), because the term_tail can generate ¢ (EPS(term_tail)
= true), allowing a term to be the last part of an expr.

There is more that we can learn from our second pass through the grammar,
but the examples above cover all the different kinds of cases. To complete our
calculation, we continue with additional passes over the grammar until we don’t
learn any more (i.e., we don’t add anything to any of the FIRST and FOLLOW sets).
We then construct the PREDICT sets. Final versions of all three sets appear in
Figure 2.23. The parse table of Figure 2.20 follows directly from PREDICT.

The algorithm to compute EPS, FIRST, FOLLOW, and PREDICT sets appears, a
bit more formally, in Figure 2.24. It relies on the following definitions:

88 Chapter 2 Programming Language Syntax

—— EPS values and FIRST sets for all symbols:
for all terminals ¢, EPS(c) := false; FIRST(c) := {c}
for all nonterminals X, EPS(X) := if X — € then true else false; FIRST(X) = @
repeat
{outer) for all productions X — Y1 Y2 ... Y,
{inner) foriin 1..k
add FIRST(Y;) to FIRST(X)
if not EPS(Y;} (yet) then continue outer loop
EPS(X) := true
until no further progress

—— Subroutines for strings, similar to inner loop above:

function string_EPSIX, X, ... X,)
foriin1..n
if not EPS(X;) then return false
return true

function string_FIRST(X; X, ... X,,)
return_value := &
foriin1..n
add FIRST(X;) to return_value
if not EPS(X;) then return

—— FOLLOW sets for all symbols:
for all symbols X, FOLLOW(X) = &
repeat
for all productions A — « B 3,
add string_FIRST(3) to FOLLOW(B)
for all productions A — a B
or A — a B 3, where string_EPS(3) = true,
add FOLLOW(A) to FOLLOW(B)
until no further progress

—— PREDICT sets for all productions:
for all productions A — «
PREDICT{A — «) := string_FIRST(a) U (if string_EPS(«) then FOLLOW(A) else &)

Figure 2.24 Algorithm to calculate FIRST, FOLLOW, and PREDICT sets. The grammar is LL(1)
if and only if all PREDICT sets for productions with the same left-hand side are disjoint.

EPS(cr) = if @ ==* ¢ then true else false
FIRST(a) = {c:a=%c 3}
FOLLOW(A)={c:S=Ta Ac g}
PREDICT(A —) = FIRST(«x) U (if EPS(ex) then FOLLOW(A) else &)
The definition of PREDICT assumes that the language has been augmented with

an end marker—that is, that FOLLOW(S) = {$8}. Note that FIRST sets and EPS
values for strings of length greater than one are calculated on demand; they are

2.3 Parsing 89

not stored explicitly. The algorithm is guaranteed to terminate (i.e., converge on
a solution), because the sizes of the FIRST and FOLLOW sets are bounded by the
number of terminals in the grammar.

If in the process of calculating PREDICT sets we find that some token belongs to
the PREDICT set of more than one production with the same left-hand side, then
the grammar is not LL(1), because we will not be able to choose which of the
productions to employ when the left-hand side is at the top of the parse stack (or
we are in the left-hand side’s subroutine in a recursive descent parser) and we see
the token coming up in the input. This sort of ambiguity is known as a predict-
predict conflict; it can arise either because the same token can begin more than one
right-hand side, or because it can begin one right-hand side and can also appear
after the left-hand side in some valid program, and one possible right-hand side
can generate e.

‘/CHECK YOUR UNDERSTANDING

19. Describe two common idioms in context-free grammars that cannot be
parsed top-down.

30. What is the “dangling else” problem? How is it avoided in modern lan-
guages?

3|. Discuss the similarities and differences between recursive descent and table-
driven top-down parsing.

3). What are FIRST and FOLLOW sets? What are they used for?

33. Under what circumstances does a top-down parser predict the production
A —a?

34. What sorts of “obvious” facts form the basis of FIRST set and FOLLOW set
construction?

35. Outline the algorithm used to complete the construction of FIRST and
FOLLOW sets. How do we know when we are done?

36. How do we know when a grammar is not LL(1)?

234 Bottom-Up Parsing

Conceptually, as we saw at the beginning of Section 2.3, a bottom-up parser works
by maintaining a forest of partially completed subtrees of the parse tree, which it
joins together whenever it recognizes the symbols on the right-hand side of some
production used in the right-most derivation of the input string. It creates a new
internal node and makes the roots of the joined-together trees the children of
that node.

In practice, a bottom-up parser is almost always table-driven. It keeps the roots
of its partially completed subtrees on a stack. When it accepts a new token from

90 Chapter 2 Programming Language Syntax

EXAMPLE 236

Derivation of an id list

EXAMPLE 23?

Bottom-up grammar for
the calculator language

the scanner, it shifts the token into the stack. When it recognizes that the top
few symbols on the stack constitute a right-hand side, it reduces those symbols
to their left-hand side by popping them off the stack and pushing the left-hand
side in their place. The role of the stack is the first important difference between
top-down and bottom-up parsing: a top-down parser’s stack contains a list of
what the parser expects to see in the future; a bottom-up parser’s stack contains a
record of what the parser has already seen in the past.

Cancnical Derivations

We also noted earlier that the actions of a bottom-up parser trace out a right-
most (canonical) derivation in reverse. The roots of the partial subtrees, left-
to-right, together with the remaining input, constitute a sentential form of the
right-most derivation. On the right-hand side of Figure 2.14, for example, we
have the following series of steps:

Stack contents (roots of partial trees) Remaining input
€ A, B, C;

id (A) , B, C:

ia (A) , B, C;

id (A) , id (B) » G

id (&) , id (B) , C;

id (A) , id (B) , id (C) .

id (A) , id (B) , id (C) ;

id (A) , id (B) , id (C) id list_tail

id (A) , id (B) id_list_tail

id (A) id list_tail

id_list
The last four lines (the ones that don’t just shift tokens into the forest) correspond
to the right-most derivation:

id list = id id_list_tail
— id , id id_list_tail
— id , id , id id_list_tail
= id , id , id ;

The symbols that need to be joined together at each step of the parse to represent
the next step of the backward derivation are called the handle of the sentential
form. In the parse trace above, the handles are underlined.

In our id_list example, no handles were found until the entire input had been
shifted onto the stack. In general this will not be the case. We can obtain a more
realistic example by examining an LR version of our calculator language, shown
in Figure 2.25. While the LL grammar of Figure 2.16 can be parsed bottom-
up, the version in Figure 2.25 is preferable for two reasons. First, it uses a left-
recursive production for stmt_list. Left recursion allows the parser to collapse
long statement lists as it goes along, rather than waiting until the entire list is

EXAMPLE 238

Bottom-up parse of the
“sum and average”
program

2.3 Parsing 91

program — stmt_list $$
stmt_list — stmi_list stmt

stmt_list — stmt

Lol A

stmt — 1id := expr
stmt — read id
stmt —+ write expr
expr — lerm

expr —3 expr add_op term

2 2 N

term —s factor

10. term — term mult_op factor
11. factor — (expr)

12. factor —» id

13. factor — number

14, add_op — +

15. add_op — -

16. mult.op — *

17. mult_op —+ /

Figure 215 LR(1) grammar for the calculator language. Productions have been numbered for
reference in future figures.

on the stack and then collapsing it from the end. Second, it uses left-recursive
productions for expr and term. These productions capture left associativity while
still keeping an operator and its operands together in the same right-hand side,
something we were unable to do in a top-down grammar.

Modeling a Parse with LR Items

Suppose we are to parse the sum-and-average program from Example 2.24:

read A

read B

sum := A + B
write sum
write sum / 2

The key to success will be to figure out when we have reached the end of a right-
hand side—that is, when we have a handle at the top of the parse stack. The trick
is to keep track of the set of productions we might be “in the middle of” at any
particular time, together with an indication of where in those productions we
might be.

When we begin execution, the parse stack is empty and we are at the begin-
ning of the production for program. (In general, we can assume that there is only
one production with the start symbol on the left-hand side; it is easy to modify

92

Chapter 2 Programming Language Syntax

any grammar to make this the case.) We can represent our location—more spe-
cifically, the location represented by the top of the parse stack—with a « in the
right-hand side of the production:

program — e stmt_list $$

When augmented with a », a production is called an LR item. Since the in
this item is immediately in front of a nonterminal-—namely stmt_list—we may be
about to see the yield of that nonterminal coming up on the input. This possibility

implies that we may be at the beginning of some production with stmi_list on the
left-hand side:

program — o stmt_list $$
stmt_list — o stmt_list stmt

stmt_list —5 o stmt

And, since stmt is a nonterminal, we may also be at the beginning of any produc-
tion whose left-hand side is stmt:

program — o stmt_list $$ (State 0)
stmt_list —» o stmt_list stmt

stmt_list — o stmt

stmt —> o id 1= expr

stmt — e read id

sttnt — o urite expr

Since all of these last productions begin with a terminal, no additional items need
to be added to our list. The original item (program — « stmt_list $$) is called
the basis of the list. The additional items are its closure. The list represents the ini-
tial state of the parser. As we shift and reduce, the set of items will change, always
indicating which productions may be the right one to use next in the derivation
of the input string. If we reach a state in which some item has the o at the end
of the right-hand side, we can reduce by that production. Otherwise, as in the
current situation, we must shift. Note that if we need to shift, but the incoming
token cannot follow the « in any item of the current state, then a syntax error has
occurred. We will consider error recovery in more detail in Section C-2.3.5.

Our upcoming token is a read. Once we shift it onto the stack, we know we
are in the following state:

stmt — read e id (State 1)

This state has a single basis item and an empty closure—the « precedes a terminal.
After shifting the A, we have

stmt —+ read id e (State 1)

2.3 Parsing 93

We now know that read id is the handle, and we must reduce. The reduction
pops two symbols off the parse stack and pushes a st in their place, but what
should the new state be? We can see the answer if we imagine moving back in
time to the point at which we shifted the read—the first symbol of the right-hand
side. At that time we were in the state labeled “State 0” above, and the upcoming
tokens on the input (though we didn’t look at them at the time) were read id. We
have now consumed these tokens, and we know that they constituted a stmt. By
pushing a stmit onto the stack, we have in essence replaced read id with stmt on
the input stream, and have then “shifted” the nonterminal, rather than its yield,
into the stack. Since one of the items in State 0 was

stmt_list — o stmt
we now have
stmt_list —> stmt o (State 0')

Again we must reduce. We remove the stmt from the stack and push a stmt_list in
its place. Again we can see this as “shifting” a stmr_list when in State 0. Since two
of the items in State 0 have a stmnt_ist after the «, we don’t know (without looking
ahead) which of the productions will be the next to be used in the derivation, but
we don’t have to know. The key advantage of bottom-up parsing over top-down
parsing is that we don’t need to predict ahead of time which production we shall
be expanding.
Our new state is as follows:

program — stmt list o« $$ (State 2)
stmt_list — stmt_list o stmt

stmft — o id := expr

sttt —+ o read id

stmt — e write expr

The first two productions are the basis; the others are the closure. Since no item
has a « at the end, we shift the next token, which happens again to be a read,
taking us back to State 1. Shifting the B takes us to State 1’ again, at which point
we reduce. This time however, we go back to State 2 rather than State 0 before
shifting the left-hand-side stint. Why? Because we were in State 2 when we began
to read the right-hand side.

The Characteristic Finite-State Machine and LR Parsing Variants

An LR-family parser keeps track of the states it has traversed by pushing them into
the parse stack, along with the grammar symbols. It is in fact the states (rather
than the symbols) that drive the parsing algorithm: they tell us what state we
were in at the beginning of a right-hand side. Specifically, when the combina-
tion of state and input tells us we need to reduce using production A — o, we
pop length(a) symbols off the stack, together with the record of states we moved

94

Chapter 2 Programming Language Syntax

through while shifting those symbols. These pops expose the state we were in im-
mediately prior to the shifts, allowing us to return to that state and proceed as if
we had seen A in the first place.

We can think of the shift rules of an LR-family parser as the transition function
of a finite automaton, much like the automata we used to model scanners. Each
state of the automaton corresponds to a list of items that indicate where the parser
might be at some specific point in the parse. The transition for input symbol X
(which may be either a terminal or a nonterminal) moves to a state whose basis
consists of items in which the « has been moved across an X in the right-hand
side, plus whatever items need to be added as closure. The lists are constructed
by a bottom-up parser generator in order to build the automaton, but are not
needed during parsing.

It turns out that the simpler members of the LR family of parsers—LR(0),
SLR(1), and LALR(1)—all use the same automaton, called the characteristic finite-
state machine, or CFSM. Full LR parsers use a machine with (for most grammars)
amuch larger number of states. The differences between the algorithms lie in how
they deal with states that contain a shift-reduce conflict—one item with the « in
front of a terminal (suggesting the need for a shift) and another with the » at
the end of the right-hand side (suggesting the need for a reduction). An LR(0)
parser works only when there are no such states. It can be proven that with the
addition of an end-marker (i.e., $$), any language that can be deterministically
parsed bottom-up has an LR(0) grammar. Unfortunately, the LR(0) grammars
for real programming languages tend to be prohibitively large and unintuitive.

SLR (simple LR) parsers peek at upcoming input and use FOLLOW sets to re-
solve conflicts. An SLR parser will call for a reduction via A — o only if the
upcoming token(s) are in FOLLOW(«). It will still see a conflict, however, if the
tokens are also in the FIRST set of any of the symbols that follow a « in other
items of the state. As it turns out, there are important cases in which a token
may follow a given nonterminal somewhere in a valid program, but never in a
context described by the current state. For these cases global FOLLOW sets are
too crude. LALR (look-ahead LR) parsers improve on SLR by using local (state-
specific) look-ahead instead.

Conflicts can still arise in an LALR parser when the same set of items can occur
on two different paths through the CFSM. Both paths will end up in the same
state, at which point state-specific look-ahead can no longer distinguish between
them. A full LR parser duplicates states in order to keep paths disjoint when their
local look-aheads are different.

LALR parsers are the most common bottom-up parsers in practice. They are
the same size and speed as SLR parsers, but are able to resolve more conflicts.
Full LR parsers for real programming languages tend to be very large. Several
researchers have developed techniques to reduce the size of full-LR tables, but
LALR works sufficiently well in practice that the extra complexity of full LR is
usually not required. Yacc/bison produces C code for an LALR parser.

EXAMPLE 2.39

CFSM for the bottom-up
calculator grammar

EXAMPLE 240

Epsilon productions in the
bottom-up calculator
grammar

2.3 Parsing 95

Bottom-Up Parsing Tables

Like a table-driven LL(1) parser, an SLR(1), LALR(1), or LR(1) parser executes
a loop in which it repeatedly inspects a two-dimensional table to find out what
action to take. However, instead of using the current input token and top-of-
stack nonterminal to index into the table, an LR-family parser uses the current
input token and the current parser state (which can be found at the top of the
stack). “Shift” table entries indicate the state that should be pushed. “Reduce”
table entries indicate the number of states that should be popped and the non-
terminal that should be pushed back onto the input stream, to be shifted by the
state uncovered by the pops. There is always one popped state for every symbol
on the right-hand side of the reducing production. The state to be pushed next
can be found by indexing into the table using the uncovered state and the newly
recognized nonterminal.

The CFSM for our bottom-up version of the calculator grammar appears in
Figure 2.26. States 6, 7, 9, and 13 contain potential shift-reduce conflicts, but all
of these can be resolved with global FOLLOW sets. SLR parsing therefore suffices.
In State 6, for example, FIRST(add_op) N FOLLOW(stmt) = &. In addition to shift
and reduce rules, we allow the parse table as an optimization to contain rules of
the form “shift and then reduce.” This optimization serves to eliminate trivial
states such as 1’ and 0’ in Example 2.38, which had only a single item, with the
at the end.

A pictorial representation of the CFSM appears in Figure 2.27. A tabular rep-
resentation, suitable for use in a table-driven parser, appears in Figure 2.28. Pseu-
docode for the (language-independent) parser driver appears in Figure 2.29. A
trace of the parser’s actions on the sum-and-average program appears in Fig-
ure 2.30.

Handling Epsilon Productions

The careful reader may have noticed that the grammar of Figure 2.25, in addition
to using left-recursive rules for stmt_list, expr, and term, differs from the grammar
of Figure 2.16 in one other way: it defines a stmt_list to be a sequence of one or
more stmits, rather than zero or more. (This means, of course, that it defines a
different language.) To capture the same language as Figure 2.16, production 3 in
Figure 2.25,

stmt_list — stmt

would need to be replaced with
stmt_list — €

Note that it does in general make sense to have an empty statement list. In the cal-
culator language it simply permits an empty program, which is admittedly silly. In
real languages, however, it allows the body of a structured statement to be empty,
which can be very useful. One frequently wants one arm of a case or multi-
way if...then...else statement to be empty, and an empty while loop allows

96

Chapter 2 Programming Language Syntax

State

program — e stmt_list $$

stmt_list — o stmt_list stmt
stmt_list — o stmi

stmt — o id := expr
stml —+ o read id

stmt — o Write expr

stmt — read e id

program — stmt_list o $$
stmt_list — stmt_list o stmt

stmt —+ o 1d := expr
stmt — o read id

stmt — o write expr
sttt —+ id e = expr

stmt — write o expr

expr — o term

expr —+ o expr add_op term
term — e factor

— o term mult_op factor
factor — o (expr)

factor — o id

factor —» o number

term

sttt —+ id 1= o expr

expr — o lerm

expr — o expr add_op term
term — e factor

— o term mult_op factor
factor —+ o (expr)

factor — o id

factor —+ « number

term

stmt — write expr e
expr — expr e add_op term

add_op — e +
add_op — e -

Transitions

on stmt_list shift and goto 2

on stmi shift and reduce (pop 1 state, push stmt_list on input)
on id shift and goto 3

on read shift and goto 1

on write shift and goto 4

on id shift and reduce (pop 2 states, push stmt on input)

on $$ shift and reduce (pop 2 states, push program on input)
on stmt shift and reduce (pop 2 states, push stmt_list on input)

on id shift and goto 3
on read shift and goto 1
on write shift and goto 4

on := shift and goto 5

on expr shift and goto 6

on term shift and goto 7
on factor shift and reduce (pop 1 state, push term on input)

on (shift and goto 8
on id shift and reduce (pop 1 state, push factor on input)
on number shift and reduce (pop 1 state, push factor on input)

on expr shift and goto 9

on term shift and goto 7
on factor shift and reduce (pop 1 state, push term on input)

on (shift and goto 8
on id shift and reduce (pop 1 state, push factor on input)
on number shift and reduce (pop 1 state, push factor on input)

on FOLLOW (stmt) = {id, read, write, $$} reduce
(pop 2 states, push stmt on input)
on add_op shift and goto 10
on + shift and reduce (pop 1 state, push add_op on input)
on - shift and reduce (pop 1 state, push add_op on input)

Figure 126 CFSM for the calculator grammar (Figure 2.25). Basis and closure items in each state are separated by a
horizontal rule. Trivial reduce-only states have been eliminated by use of "shift and reduce” transitions. (centinued)

10.

11.

12.

13.

State

expr — term o
term — term o mult_op factor

mult_op — o *
mult_op — o /

factor — (o expr)

expr —» o term

expr —= o expr add_op term
term — e factor

term — o term mult_op factor
factor —s o (expr)

factor — o id

factor —+ o« number

stmf — id = expr e
expr — expr o add_op term

+

add_op — «
add_op — e -

expr —+ expr add_op e term

term — o factor

term — o term mult_op factor
factor —» o (expr)

factor — o id

factor — o number

term — term mult_op o factor

factor — o (expr)
factor — o id
factor — « number

factor — (expr o)
expr — expr » add_op term

add_op — o +
add_op — e -

expr — expr add_op term o
term — term o mult_op factor

mult_op —> e *
mult_op —r e /

Figure 226 (continued)

2.3 Parsing

Transitions

on FOLLOW (expr) = {id, read, write, $$,), +, -} reduce
(pop 1 state, push expr on input)

on mult_op shift and goto 11

on * shift and reduce (pop 1 state, push mult_op on input)

on / shift and reduce (pop 1 state, push mult_op on input)

on expr shift and goto 12

on term shift and goto 7
on factor shift and reduce (pop 1 state, push term on input)

on (shift and goto 8
on id shift and reduce (pop 1 state, push factor on input)
on number shift and reduce (pop 1 state, push factor on input)

on FOLLOW (stmt) = {id, read, write, $$} reduce
(pop 3 states, push stmt on input)

on add_op shift and goto 10

on + shift and reduce (pop 1 state, push add_op on input)

on - shift and reduce (pop 1 state, push add_op on input)

on term shift and goto 13

on factor shift and reduce (pop 1 state, push ferm on input)

on (shift and goto 8
on id shift and reduce (pop 1 state, push factor on input)
on number shift and reduce (pop 1 state, push factor on input)

on factor shift and reduce (pop 3 states, push term on input)

on (shift and goto 8
on id shift and reduce (pop 1 state, push factor on input)
on number shift and reduce (pop 1 state, push factor on input)

on) shift and reduce (pop 3 states, push factor on input)
on add_op shift and goto 10

on + shift and reduce (pop 1 state, push add_op on input)
on - shift and reduce (pop 1 state, push add_op on input)

on FOLLOW (expr) = {id, read, write, $$,), +, -} reduce
(pop 3 states, push expr on input)

on mult_op shift and goto 11

on * shift and reduce (pop 1 state, push mult_op on input)

on / shift and reduce (pop 1 state, push mult_op on input)

97

98 Chapter 2 Programming Language Syntax

Figure 121 Pictorial representation of the CFSM of Figure 2.26. Reduce actions are not

shown.

Top-of-stack Current input symbol
state sl s e t f a0 mo id 1lit r w = () + = * /8%
0 s2 b3 - - - - - s3 - sl s4 - - = - - - - -
1 -
2 - b2 - - - - - s3 - sl s4 - - - - - - - bl
3 - - — — — — - — - - - s5 - - - — - - —
4 - - s6 s7 b9 - - bl2 b13 - - - 8§ - - - - - -
5 - - 9 7 b9 - - bl2 b13 - - - 8 - - - - - -
6 - - - - - sl - 6 - 16 6 - - — bl4 bl5s - - 16
7 - - - - - - sl 17 - 7 7 - - r7 17 7 ble bl7 7
8 - - sl2 s7 b9 - - bl2 b13 - - - 8 - - - - - -
9 - - - - - sl - r4 - rd rd - - — bl14 bls - - r4
10 - = — 513 b9 — — bl2 bl13 - - — =8 — — — - — —
11 - = — - blo - — bl2 b13 - - — 8 — — — — — —
12 - = - - - s10 - - - - — — — bll bl4 bl5 - - -
13 - - - - - - s11 18 - 8 r8 - - 18 r8 r8 blé bl7 18

Figure 118 SLR(1) parse table for the calculator language. Table entries indicate whether to shift (s), reduce (r), or shift
and then reduce (b). The accompanying number is the new state when shifting, or the production that has been recognized
when (shifting and) reducing. Production humbers are given in Figure 2.25. Symbol names have been abbreviated for the sake
of formatting. A dash indicates an error. An auxiliary table, not shown here, gives the left-hand-side symbol and right-hand-side
length for each production.

2.3 Parsing 99

state = 1.. number_of_states
symbol = 1. . number_of_symbols
production = 1.. number_of_productions
action_rec = record
action : (shift, reduce, shift_reduce, error)
new_state : state
prod : production

parse_tab : array [symbol, state] of action_rec
prod_tab : array [production] of record
lhs : symbol
rhs_len : integer
—— these two tables are created by a parser generator tool

parse_stack : stack of record
sym : symbol

st : state

parse_stack.push({null, start_state))

cur_sym : symbol := scan() —-— get new token from scanner
loop
cur_state : state := parse_stack.top().st —— peek at state at top of stack
if cur_state = start_state and cur_sym = start_symbol
return —— success!

ar : action_rec := parse_tab[cur_state, cur_sym|
case ar.action

shift:

parse_stack.push({cur_sym, ar.new_state))

cur_sym := scan() —-- get new token from scanner
reduce:

cur_sym := prod_tab[ar.prod].lhs

parse_stack.pop(prod_tab[ar.prod].rhs_len)
shift_reduce:

cur_sym = prod_tab[ar.prod].lhs

parse_stack.pop(prod_tablar.prod].rhs_len—1)
error:

parse_error

Figure 2.29 Driver for a table-driven SLR(1) parser. We call the scanner directly, rather
than using the global input_token of Figures 2.17 and 2.19, so that we can set cur_sym to be
an arbitrary symbol. We pass to the popl() routine a parameter that indicates the number of
symbols to remove from the stack.

100 Chapter 2 Programming Language Syntax

Parse stack Input stream Comment

0 read A read B...

0 read 1 A read B... shift read

0 stmt read B ... shift id (A) & reduce by stmi — read id

0 stmmt_list read B ... shift stmt & reduce by stmt_list — stmt

0 stmt_list 2 read B sum... shift stent_list

0 stmtlist 2 read 1 B sum :=... shift read

0 stmt_list 2 stmt sum := ... shift id (B) & reduce by stmt —» read id

0 stmt list sum 1= ... shift stmt & reduce by stmt list — stmtJist stmt
0 stmt_list 2 sum := A ... shift stmt_list

0 stmtlist 2 id 3 = A+, shift id (sum)

0 stmtlist 2 id 3 := 5 A+B.. shift :=

0 stmtlist 2 id 3 := 5 factor + B ... shift id (A) & reduce by factor — id

0 stmtlist 2 id 3 := 5 term + B ... shift factor & reduce by term — factor

0 stmtlist 2 id 3 := 5 term 7 + B write ... shift term

0 stmtlist 2 id 3 := 5 expr + B write ... reduce by expr — term

0 stmt_list 2 1d 3 := 5 expr 9 + B write ... shift expr

0 stmtlist 2 id 3 := 5 expr 9 add_op B write... shift + & reduce by add_op — +

0 stmt_list 2 1d 3 := 5 expr 9 add_op 10 B write sum... shift add_ap

0 stmtlist 2 id 3 := 5 expr 9 add_op 10 factor write sum... shift id(B) & reduce by factor — id

0 stint_list 2 1d 3 := 5 expr 9 add_op 10 term write sum ... shift factor & reduce by term — factor

O stmtlist 2 id 3 := 5 expr 9 add_op 10 term 13 write sum... shift term

0 stmtlist 2 id 3 := 5 exprwrite sum... reduce by expr — expr add_op term

0 stmtlist 2 id 3 := 5 expr 9 write sum... shift expr

0 stmt_list 2 stmt write sum... reduce by stmt —+ id := expr

0 stmt_list write sum ... shift stmt & reduce by stmt_list — stmt

0 stmt_list 2 write sum... shift stont_list

0 stmt_list 2 write 4 sum write sum... shift write

0 stmt_list 2 write 4 factor write sum... shift id(sum) & reduce by factor —» id

0 stnt_list 2 urite 4 ferm write sum... shift factor & reduce by term — factor

0 stmtlist 2 write 4 term 7 write sum... shift term

0 stmt_list 2 urite 4 expr write sum... reduce by expr — term

0 stmtlist 2 write 4 expr 6 write sum... shift expr

0 stmt_list 2 stmt write sum... reduce by stmt — write expr

0 stmt list write sum ... shift stmt & reduce by stmt_list — stmt_list stmt
0 stmt_list 2 write sum /... shift stmt_list

0 stmt_list 2 write 4 sum / 2... shift write

0 stmt_list 2 write 4 factor / 2. shift id (sum) & reduce by factor —+ id

0 stmtlist 2 write 4 term / 2 ... shift factor & reduce by term — factor

0 stmtlist 2 write 4 term 7 /2 8% shift term

0 stmt_list 2 write 4 term 7 mult_op 2 $$ shift / & reduce by mult op — /

0 stmtlist 2 write 4 term 7 mult_op 11 2 8% shift mult_op

0 stmt_list 2 write 4 term 7 mult_op 11 factor $$ shift number (2) & reduce by factor — number
0 stmtlist 2 write 4 term $$ shift factor & reduce by term — term mult_op factor
0 stint_list 2 write 4 term 7 $8 shift term

0 stmtlist 2 write 4 expr $% reduce by expr — term

0 stmt list 2 write 4 expr 6 $$ shift expr

0 stmt_list 2 stmt $$ reduce by stmt — write expr

0 stmnt_list $3 shift stmt & reduce by stmt_list — stmt_list stmt
0 stmt_list 2 $$ shift stmt list

0 program shift $8 & reduce by program — stmt list $$

[done]

Figure 230 Trace of a table-driven SLR(I) parse of the sum-and-average program. States in the parse stack are shown in
boldface type. Symbols in the parse stack are for clarity only; they are not needed by the parsing algorithm. Parsing begins with
the initial state of the CFSM (State 0) in the stack. It ends when we reduce by program — stmt_list $$, uncovering State 0
again and pushing program onto the input stream.

EXAMPLE 24 I

CFSM with epsilon
productions

2.3 Parsing 101

a parallel program (or the operating system) to wait for a signal from another
process or an [/O device.

If we look at the CFSM for the calculator language, we discover that State 0 is
the only state that needs to be changed in order to allow empty statement lists.
The item

stmt_list — o stmt
becomes

stmt_list —3 o€
which is equivalent to

stmtlist — ce
or simply

stmt_list — o

The entire state is then

program — e stmit_list $$ on stmt_list shift and goto 2

stmt_list — o stmt_list stmt

stmt_list — o on $$ reduce (pop O states, push stmt_list on input)
stmt — o id := expr on id shift and goto 3

stmt —+ o read id on read shift and goto 1

stmt — o write expr on write shift and goto 4

The look-ahead for item

stmt_list —

is FOLLOW (stmt_list), which is the end-marker, $$. Since $$ does not appear in
the look-aheads for any other item in this state, our grammar is still SLR(1). It is
worth noting that epsilon productions commonly prevent a grammar from being
LR(0): if such a production shares a state with an item in which the dot precedes
a terminal, we won’t be able to tell whether to “recognize” ¢ without peeking

ahead.

JCHECK YOUR UNDERSTANDING
31. What is the handle of a right sentential form?

38. Explain the significance of the characteristic finite-state machine in LR pars-
ing.

39. What is the significance of the dot () in an LR item?
40. What distinguishes the basis from the closure of an LR state?

41. What is a shift-reduce conflict? How is it resolved in the various kinds of LR-
family parsers?

102 Chapter 2 Programming Language Syntax

EXAMPLE 242

A syntax error in C

4. Outline the steps performed by the driver of a bottom-up parser.
43. What kind of parser is produced by yacc/bison? By ANTLR?

44. Why are there never any epsilon productions in an LR(0) grammar?

235 Syntax Errors

Suppose we are parsing a C program and see the following code fragment in a
context where a statement is expected:

A=B:C+D;

We will detect a syntax error immediately after the B, when the colon appears
from the scanner. At this point the simplest thing to do is just to print an error
message and halt. This naive approach is generally not acceptable, however: it
would mean that every run of the compiler reveals no more than one syntax er-
ror. Since most programs, at least at first, contain numerous such errors, we really
need to find as many as possible now (we’d also like to continue looking for se-
mantic errors). To do so, we must modify the state of the parser and/or the input
stream so that the upcoming token(s) are acceptable. We shall probably want to
turn off code generation, disabling the back end of the compiler: since the input is
not a valid program, the code will not be of use, and there’s no point in spending
time creating it.

In general, the term syntax error recovery is applied to any technique that al-
lows the compiler, in the face of a syntax error, to continue looking for other
errors later in the program. High-quality syntax error recovery is essential in any
production-quality compiler. The better the recovery technique, the more likely
the compiler will be to recognize additional errors (especially nearby errors) cor-
rectly, and the less likely it will be to become confused and announce spurious
cascading errors later in the program.

IN MORE DEPTH

On the companion site we explore several possible approaches to syntax error re-
covery. In panic mode, the compiler writer defines a small set of “safe symbols”
that delimit clean points in the input. Semicolons, which typically end a state-
ment, are a good choice in many languages. When an error occurs, the compiler
deletes input tokens until it finds a safe symbol, and then “backs the parser out”
(e.g., returns from recursive descent subroutines) until it finds a context in which
that symbol might appear. Phrase-level recovery improves on this technique by
employing different sets of “safe” symbols in different productions of the gram-
mar (right parentheses when in an expression; semicolons when in a declara-
tion). Context-specific look-ahead obtains additional improvements by differenti-
ating among the various contexts in which a given production might appear in a

2.4 Theoretical Foundations 103

syntax tree. To respond gracefully to certain common programming errors, the
compiler writer may augment the grammar with error productions that capture
language-specific idioms that are incorrect but are often written by mistake.
Niklaus Wirth published an elegant implementation of phrase-level and
context-specific recovery for recursive descent parsers in 1976 [Wir76, Sec. 5.9].
Exceptions (to be discussed further in Section 9.4) provide a simpler alternative
if supported by the language in which the compiler is written. For table-driven
top-down parsers, Fischer, Milton, and Quiring published an algorithm in 1980
that automatically implements a well-defined notion of locally least-cost syntax
repair. Locally least-cost repair is also possible in bottom-up parsers, but it is sig-
nificantly more difficult. Most bottom-up parsers rely on more straightforward
phrase-level recovery; a typical example can be found in yacc/bison.

Theoretical Foundations

Our understanding of the relative roles and computational power of scanners,
parsers, regular expressions, and context-free grammars is based on the formal-
isms of automata theory. In automata theory, a formal language is a set of strings
of symbols drawn from a finite alphabet. A formal language can be specified ei-
ther by a set of rules (such as regular expressions or a context-free grammar) that
generates the language, or by a formal machine that accepts (recognizes) the lan-
guage. A formal machine takes strings of symbols as input and outputs either
“yes” or “no.” A machine is said to accept a language if it says “yes” to all and only
those strings that are in the language. Alternatively, a language can be defined as
the set of strings for which a particular machine says “yes.”

Formal languages can be grouped into a series of successively larger classes
known as the Chomsky hierarchy.'* Most of the classes can be characterized in
two ways: by the types of rules that can be used to generate the set of strings,
or by the type of formal machine that is capable of recognizing the language. As
we have seen, regular languages are defined by using concatenation, alternation,
and Kleene closure, and are recognized by a scanner. Context-free languages are
a proper superset of the regular languages. They are defined by using concatena-
tion, alternation, and recursion (which subsumes Kleene closure), and are recog-
nized by a parser. A scanner is a concrete realization of a finite automaton, a type
of formal machine. A parser is a concrete realization of a push-down automaton.
Just as context-free grammars add recursion to regular expressions, push-down
automata add a stack to the memory of a finite automaton. There are additional
levels in the Chomsky hierarchy, but they are less directly applicable to compiler
construction, and are not covered here.

14 Noam Chomsky (1928-), a linguist and social philosopher at the Massachusetts Institute of Tech-
nology, developed much of the early theory of formal languages.

104

Chapter 2 Programming Language Syntax

It can be proven, constructively, that regular expressions and finite automata
are equivalent: one can construct a finite automaton that accepts the language
defined by a given regular expression, and vice versa. Similarly, it is possible to
construct a push-down automaton that accepts the language defined by a given
context-free grammar, and vice versa. The grammar-to-automaton constructions
are in fact performed by scanner and parser generators such as lex and yacc.
Of course, a real scanner does not accept just one token; it is called in a loop
so that it keeps accepting tokens repeatedly. As noted in Sidebar 2.4, this detail
is accommodated by having the scanner accept the alternation of all the tokens
in the language (with distinguished final states), and by having it continue to
consume characters until no longer token can be constructed.

IN MORE DEPTH

On the companion site we consider finite and pushdown automata in more detail.
We give an algorithm to convert a DFA into an equivalent regular expression.
Combined with the constructions in Section 2.2.1, this algorithm demonstrates
the equivalence of regular expressions and finite automata. We also consider the
sets of grammars and languages that can and cannot be parsed by the various
linear-time parsing algorithms.

Summary and Concluding Remarks

In this chapter we have introduced the formalisms of regular expressions and
context-free grammars, and the algorithms that underlie scanning and parsing
in practical compilers. We also mentioned syntax error recovery, and presented a
quick overview of relevant parts of automata theory. Regular expressions and
context-free grammars are language generators: they specify how to construct
valid strings of characters or tokens. Scanners and parsers are language recogniz-
ers: they indicate whether a given string is valid. The principal job of the scanner
is to reduce the quantity of information that must be processed by the parser, by
grouping characters together into tokens, and by removing comments and white
space. Scanner and parser generators automatically translate regular expressions
and context-free grammars into scanners and parsers.

Practical parsers for programming languages (parsers that run in linear time)
fall into two principal groups: top-down (also called LL or predictive) and
bottom-up (also called LR or shift-reduce). A top-down parser constructs a parse
tree starting from the root and proceeding in a left-to-right depth-first traversal.
A bottom-up parser constructs a parse tree starting from the leaves, again working
left-to-right, and combining partial trees together when it recognizes the children
of an internal node. The stack of a top-down parser contains a prediction of what
will be seen in the future; the stack of a bottom-up parser contains a record of
what has been seen in the past.

2.6 Exercises 105

Top-down parsers tend to be simple, both in the parsing of valid strings and in
the recovery from errors in invalid strings. Bottom-up parsers are more power-
ful, and in some cases lend themselves to more intuitively structured grammars,
though they suffer from the inability to embed action routines at arbitrary points
in a right-hand side (we discuss this point in more detail in Section €-4.5.1). Both
varieties of parser are used in real compilers, though bottom-up parsers are more
common. Top-down parsers tend to be smaller in terms of code and data size, but
modern machines provide ample memory for either.

Both scanners and parsers can be built by hand if an automatic tool is not
available. Handbuilt scanners are simple enough to be relatively common. Hand-
built parsers are generally limited to top-down recursive descent, and are most
commonly used for comparatively simple languages. Automatic generation of
the scanner and parser has the advantage of increased reliability, reduced devel-
opment time, and easy modification and enhancement.

Various features of language design can have a major impact on the complex-
ity of syntax analysis. In many cases, features that make it difficult for a compiler
to scan or parse also make it difficult for a human being to write correct, main-
tainable code. Examples include the lexical structure of Fortran and the if...
then ... else statement of languages like Pascal. This interplay among language
design, implementation, and use will be a recurring theme throughout the re-
mainder of the book.

Exercises

2.l Write regular expressions to capture the following.

(a) Strings in C. These are delimited by double quotes ("), and may not
contain newline characters. They may contain double-quote or back-
slash characters if and only if those characters are “escaped” by a pre-
ceding backslash. You may find it helpful to introduce shorthand nota-
tion to represent any character that is not a member of a small specified
set.

(b) Comments in Pascal. These are delimited by (* and *) or by { and }.
They are not permitted to nest.

() Numeric constants in C. These are octal, decimal, or hexadecimal inte-
gers, or decimal or hexadecimal floating-point values. An octal integer
begins with 0, and may contain only the digits 0-7. A hexadecimal
integer begins with 0x or 0X, and may contain the digits 0-9 and a/A—
£/F. A decimal floating-point value has a fractional portion (beginning
with a dot) or an exponent (beginning with E or e). Unlike a decimal
integer, it is allowed to start with 0. A hexadecimal floating-point value
has an optional fractional portion and a mandatory exponent (begin-
ning with P or p). In either decimal or hexadecimal, there may be digits

106

Chapter 2 Programming Language Syntax

11

13

(d)

U]

to the left of the dot, the right of the dot, or both, and the exponent it-
selfis given in decimal, with an optional leading + or - sign. An integer
may end with an optional U or u (indicating “unsigned”), and/or L or
1 (indicating “long”) or LL or 11 (indicating “long long™). A floating-
point value may end with an optional F or £ (indicating “float”—single
precision) or L or 1 (indicating “long”—double precision).
Floating-point constants in Ada. These match the definition of real in
Example 2.3, except that (1) a digit is required on both sides of the dec-
imal point, (2) an underscore is permitted between digits, and (3) an
alternative numeric base may be specified by surrounding the nonex-
ponent part of the number with pound signs, preceded by a base in
decimal (e.g., 16#6.a7#e+2). In this latter case, the letters a .. £ (both
upper- and lowercase) are permitted as digits. Use of these letters in
an inappropriate (e.g., decimal) number is an error, but need not be
caught by the scanner.

Inexact constants in Scheme. Scheme allows real numbers to be ex-
plicitly inexact (imprecise). A programmer who wants to express all
constants using the same number of characters can use sharp signs (#)
in place of any lower-significance digits whose values are not known. A
base-10 constant without exponent consists of one or more digits fol-
lowed by zero of more sharp signs. An optional decimal point can be
placed at the beginning, the end, or anywhere in-between. (For the
record, numbers in Scheme are actually a good bit more complicated
than this. For the purposes of this exercise, please ignore anything you
may know about sign, exponent, radix, exactness and length specifiers,
and complex or rational values.)

Financial quantities in American notation. These have a leading dollar
sign ($), an optional string of asterisks (*—used on checks to discour-
age fraud), a string of decimal digits, and an optional fractional part
consisting of a decimal point (.) and two decimal digits. The string of
digits to the left of the decimal point may consist of a single zero (0).
Otherwise it must not start with a zero. If there are more than three
digits to the left of the decimal point, groups of three (counting from
the right) must be separated by commas (,). Example: $*%2,345.67.
(Feel free to use “productions” to define abbreviations, so long as the
language remains regular.)

Show (as “circles-and-arrows” diagrams) the finite automata for Exer-
cise 2.1.

Build a regular expression that captures all nonempty sequences of letters
other than file, for, and from. For notational convenience, you may
assume the existence of a not operator that takes a set of letters as argument
and matches any ofher letter. Comment on the practicality of constructing
a regular expression for all sequences of letters other than the keywords of a
large programming language.

14

15

16

11

18

19

210

111

112

2.6 Exercises 107

(3) Show the NFA that results from applying the construction of Figure 2.7
to the regular expression letter (letter | digit)*.

(b) Apply the transformation illustrated by Example 2.14 to create an
equivalent DFA.

(0 Apply the transformation illustrated by Example 2.15 to minimize the
DFA.

Starting with the regular expressions for integer and decimal in Exam-
ple 2.3, construct an equivalent NFA, the set-of-subsets DFA, and the min-
imal equivalent DFA. Be sure to keep separate the final states for the two
different kinds of token (see Sidebar 2.4). You may find the exercise easier if
you undertake it by modifying the machines in Examples 2.13 through 2.15.
Build an ad hoc scanner for the calculator language. As output, have it print
a list, in order, of the input tokens. For simplicity, feel free to simply halt in
the event of a lexical error.

Write a program in your favorite scripting language to remove comments
from programs in the calculator language (Example 2.9).

Build a nested-case-statements finite automaton that converts all letters in
its input to lower case, except within Pascal-style comments and strings. A
Pascal comment is delimited by { and }, or by (* and *). Comments do
not nest. A Pascal string is delimited by single quotes (' ... "). A quote
character can be placed in a string by doubling it ('Madam, I''m Adam.').
This upper-to-lower mapping can be useful if feeding a program written
in standard Pascal (which ignores case) to a compiler that considers upper-
and lowercase letters to be distinct.

(3) Describe in English the language defined by the regular expression a*
(ba* ba*)*. Your description should be a high-level characteriza-
tion—one that would still make sense if we were using a different regu-
lar expression for the same language.

(b) Write an unambiguous context-free grammar that generates the same
language.

() Using your grammar from part (b), give a canonical (right-most)
derivation of the stringb a abaaab b.

Give an example of a grammar that captures right associativity for an expo-
nentiation operator (e.g., ** in Fortran).

Prove that the following grammar is LL(1):

decl —s 1D decl_tail
decl_tail — , decl

— : ID ;

(The final ID is meant to be a type name.)
Consider the following grammar:

108 Chapter 2 Programming Language Syntax

G — S $%
S — AM
M — S|e¢
A— aE|bAA
E— aB|bAle
B — bE|aBB

(3) Describe in English the language that the grammar generates.
(b) Show a parse tree for the stringa b a a.

() TIs the grammar LL(1)? If so, show the parse table; if not, identify a
prediction conflict.

213 Consider the following grammar:

stmt — assignment
— subr_call

assignment — id := expr
subr_call — id (arg_list)
expr —» primary expr_tail
expr_tail — op expr

— €
primary — id

— subr_call

— (expr)
op — +| =]/
arg list — expr args_tail
args_tail — , arglist

— €

a) Construct a parse tree for the input strin
C p for the inp ing
foo(a, b).
(b) Give a canonical (right-most) derivation of this same string.
(() Prove that the grammar is not LL(1).
Modify the grammar so that it is LL(1).
(@) Modity the g hatitis LL()
114 Consider the language consisting of all strings of properly balanced paren-
theses and brackets.
(a) Give LL(1) and SLR(1) grammars for this language.
b) Give the corresponding LL(1) and SLR(1) parsing tables.
P g P g
(C) For each grammar, show the parse tree for ([1([1))[1(0).

(d) Give a trace of the actions of the parsers in constructing these trees.

115 Consider the following context-free grammar.

116

117

(@

(b)
(d
(d)

(¢)

2.6 Exercises 109

G — GB
— G N
— €
B — C(E)
E — E (E)
— €
— (L]
L — LE
— L (
— €

Describe, in English, the language generated by this grammar. (Hint:
B stands for “balanced”; N stands for “nonbalanced”) (Your descrip-
tion should be a high-level characterization of the language—one that
is independent of the particular grammar chosen.)

Give a parse tree for the string ((] ().

Give a canonical (right-most) derivation of this same string.

What is FIRST(E) in our grammar? What is FOLLOW(E)? (Recall that
FIRST and FOLLOW sets are defined for symbols in an arbitrary CFG,
regardless of parsing algorithm.)

Given its use of left recursion, our grammar is clearly not LL(1). Does
this language have an LL(1) grammar? Explain.

Give a grammar that captures all levels of precedence for arithmetic expres-
sions in G, as shown in Figure 6.1. (Hint: This exercise is somewhat tedious.
You'll probably want to attack it with a text editor rather than a pencil.)
Extend the grammar of Figure 2.25 to include if statements and while
loops, along the lines suggested by the following examples:

abs :=n
if n < 0 then abs := 0 - abs fi
sum := 0

read count
while count > 0 do

read n
sum := sum + n
count := count - 1

od
write sum

Your grammar should support the six standard comparison operations in
conditions, with arbitrary expressions as operands. It should also allow an
arbitrary number of statements in the body of an if or while statement.

110

Chapter 2 Programming Language Syntax

118

219

2.20

111

121
13

1.4

Consider the following LL(1) grammar for a simplified subset of Lisp:

P — E $%
E — atom
— * E
—+ (EEs)
Es — E Es

—

(3) What is FIRST(Es)? FOLLOW(E)? PREDICT(Es — €)?

(b) Give a parse tree for the string (cdr '(a b ¢)) $$.

() Show the left-most derivation of (cdr '(a b c)) $$.

(d) Show a trace, in the style of Figure 2.21, of a table-driven top-down
parse of this same input.

(¢) Now consider a recursive descent parser running on the same input.
At the point where the quote token (’) is matched, which recursive
descent routines will be active (i.e., what routines will have a frame on
the parser’s run-time stack)?

Write top-down and bottom-up grammars for the language consisting of
all well-formed regular expressions. Arrange for all operators to be left-
associative. Give Kleene closure the highest precedence and alternation the
lowest precedence.

Suppose that the expression grammar in Example 2.8 were to be used in
conjunction with a scanner that did not remove comments from the input,
but rather returned them as tokens. How would the grammar need to be
modified to allow comments to appear at arbitrary places in the input?

Build a complete recursive descent parser for the calculator language. As
output, have it print a trace of its matches and predictions.

Extend your solution to Exercise 2.21 to build an explicit parse tree.

Extend your solution to Exercise 2.21 to build an abstract syntax tree di-
rectly, without constructing a parse tree first.

The dangling else problem of Pascal was not shared by its predecessor Al-
gol 60. To avoid ambiguity regarding which then is matched by an else,
Algol 60 prohibited if statements immediately inside a then clause. The
Pascal fragment

if C1 then if C2 then S1 else S2
had to be written as either
if C1 then begin if C2 then S1 end else S2

or

2.6 Exercises 11

if C1 then begin if C2 then S1 else 52 end

in Algol 60. Show how to write a grammar for conditional statements that
enforces this rule. (Hint: You will want to distinguish in your grammar
between conditional statements and nonconditional statements; some con-
texts will accept either, some only the latter.)

1.25 Flesh out the details of an algorithm to eliminate left recursion and common
prefixes in an arbitrary context-free grammar.

126 In some languages an assignment can appear in any context in which an
expression is expected: the value of the expression is the right-hand side
of the assignment, which is placed into the left-hand side as a side effect.
Consider the following grammar fragment for such a language. Explain
why it is not LL(1), and discuss what might be done to make it so.

expr — id := expr

— term term_tail
term_tail — + term term_tail | e
term — factor factor_tail
factor_tail — * factor factor_tail | €

factor — (expr) | id

121 Construct the CFSM for the id_list grammar in Example 2.20 and verify that
it can be parsed bottom-up with zero tokens of look-ahead.

108 Modify the grammar in Exercise 2.27 to allow an id_list to be empty. Is the
grammar still LR(0)?

119 Repeat Example 2.36 using the grammar of Figure 2.15.

130 Consider the following grammar for a declaration list:

decl list — decl list decl ; | decl ;
decl — id : type
type — int | real | char
— array const .. const of Iype

— record decl_list end

Construct the CFSM for this grammar. Use it to trace out a parse (as in
Figure 2.30) for the following input program:

foo : record
a : char;
b : array 1 .. 2 of real;
end;

@ 231-2.37 In More Depth.

112

Chapter 2 Programming Language Syntax

Explorations

138 Some languages (e.g., C) distinguish between upper- and lowercase letters
in identifiers. Others (e.g., Ada) do not. Which convention do you prefer?
Why?

139 The syntax for type casts in C and its descendants introduces potential am-
biguity: is (x)-y a subtraction, or the unary negation of y, cast to type x?
Find out how C, C++, Java, and C# answer this question. Discuss how you
would implement the answer(s).

240 What do you think of Haskell, Occam, and Python’s use of indentation
to delimit control constructs (Section 2.1.1)? Would you expect this con-
vention to make program construction and maintenance easier or harder?
Why?

141 Skip ahead to Section 14.4.2 and learn about the “regular expressions” used
in scripting languages, editors, search tools, and so on. Are these really
regular? What can they express that cannot be expressed in the notation
introduced in Section 2.1.1%

141 Rebuild the automaton of Exercise 2.8 using 1lex/flex.

143 Find a manual for yacc/bison, or consult a compiler textbook [ALSU07,
Secs. 4.8.1 and 4.9.2] to learn about operator precedence parsing. Explain
how it could be used to simplify the grammar of Exercise 2.16.

2.44 Use 1ex/flex and yacc/bison to construct a parser for the calculator lan-
y P
guage. Have it output a trace of its shifts and reductions.

145 Repeat the previous exercise using ANTLR.
@ 2.46-2.47 In More Depth.

Bibliographic Notes

Our coverage of scanning and parsing in this chapter has of necessity been
brief. Considerably more detail can be found in texts on parsing theory [AU72]
and compiler construction [ALSU07, FCL10, App97, GBJ*12, CT04]. Many
compilers of the early 1960s employed recursive descent parsers. Lewis and
Stearns [LS68] and Rosenkrantz and Stearns [RS70] published early formal stud-
ies of LL grammars and parsing. The original formulation of LR parsing is due to
Knuth [Knu65]. Bottom-up parsing became practical with DeRemer’s discovery
of the SLR and LALR algorithms [DeR71]. W. L. Johnson et al. [JPAR68] describe
an early scanner generator. The Unix lex tool is due to Lesk [Les75]. Yacc is due
to S. C. Johnson [Joh75].

Further details on formal language theory can be found in a variety of
textbooks, including those of Hopcroft, Motwani, and Ullman [HMUO07] and

2.8 Bibliographic Notes 113

Sipser [Sip13]. Kleene [Kle56] and Rabin and Scott [RS59] proved the equiva-
lence of regular expressions and finite automata.!®> The proof that finite automata
are unable to recognize nested constructs is based on a theorem known as the
pumping lemma, due to Bar-Hillel, Perles, and Shamir [BHPS61]. Context-free
grammars were first explored by Chomsky [Cho56] in the context of natural lan-
guage. Independently, Backus and Naur developed BNF for the syntactic descrip-
tion of Algol 60 [NBB*63]. Ginsburg and Rice [GR62] recognized the equiva-
lence of the two notations. Chomsky [Cho62] and Evey [Eve63] demonstrated
the equivalence of context-free grammars and push-down automata.

Fischer et al’s text [FCL10] contains an excellent survey of error recovery
and repair techniques, with references to other work. The phrase-level recov-
ery mechanism for recursive descent parsers described in Section C-2.3.5 is due
to Wirth [Wir76, Sec. 5.9]. The locally least-cost recovery mechanism for table-
driven LL parsers described in Section €-2.3.5 is due to Fischer, Milton, and Quir-
ing [FMQ80]. Dion published a locally least-cost bottom-up repair algorithm in
1978 [Dio78]. Tt is quite complex, and requires very large precomputed tables.
McKenzie, Yeatman, and De Vere subsequently showed how to effect the same
repairs without the precomputed tables, at a higher but still acceptable cost in
time [MYD?95].

I5 Dana Scott (1932-), Professor Emeritus at Carnegie Mellon University, is known principally for
inventing domain theory and launching the field of denotational semantics, which provides a
mathematically rigorous way to formalize the meaning of programming languages. Michael Ra-
bin (1931-), of Harvard University, has made seminal contributions to the concepts of nondeter-
minism and randomization in computer science. Scott and Rabin shared the ACM Turing Award
in 1976.

This page intentionally left blank

Names, Scopes, and Bindings

Early languages such as Fortran, Algol, and Lisp were termed “high level”
because their syntax and semantics were significantly more abstract—farther
from the hardware—than those of the assembly languages they were intended
to supplant. Abstraction made it possible to write programs that would run well
on a wide variety of machines. It also made programs significantly easier for hu-
man beings to understand. While machine independence remains important, it
is primarily ease of programming that continues to drive the design of modern
languages. This chapter is the first of six to address core issues in language de-
sign. (The others are Chapters 6 through 10.) Much of the current discussion will
revolve around the notion of names.

A name is a mnemonic character string used to represent something else.
Names in most languages are identifiers (alphanumeric tokens), though certain
other symbols, such as + or :=, can also be names. Names allow us to refer to
variables, constants, operations, types, and so on using symbolic identifiers rather
than low-level concepts like addresses. Names are also essential in the context of
a second meaning of the word abstraction. In this second meaning, abstraction is
a process by which the programmer associates a name with a potentially compli-
cated program fragment, which can then be thought of in terms of its purpose or
function, rather than in terms of how that function is achieved. By hiding irrel-
evant details, abstraction reduces conceptual complexity, making it possible for
the programmer to focus on a manageable subset of the program text at any par-
ticular time. Subroutines are control abstractions: they allow the programmer to
hide arbitrarily complicated code behind a simple interface. Classes are data ab-
stractions: they allow the programmer to hide data representation details behind
a (comparatively) simple set of operations.

We will look at several major issues related to names. Section 3.1 introduces the
notion of binding time, which refers not only to the binding of a name to the thing
it represents, but also in general to the notion of resolving any design decision in
a language implementation. Section 3.2 outlines the various mechanisms used
to allocate and deallocate storage space for objects, and distinguishes between

15

16

Chapter 3 Names, Scopes, and Bindings

the lifetime of an object and the lifetime of a binding of a name to that object.’
Most name-to-object bindings are usable only within a limited region of a given
high-level program. Section 3.3 explores the scope rules that define this region;
Section 3.4 (mostly on the companion site) considers their implementation.

The complete set of bindings in effect at a given point in a program is known as
the current referencing environment. Section 3.5 discusses aliasing, in which more
than one name may refer to a given object in a given scope, and overloading, in
which a name may refer to more than one object in a given scope, depending on
the context of the reference. Section 3.6 expands on the notion of scope rules
by considering the ways in which a referencing environment may be bound to a
subroutine that is passed as a parameter, returned from a function, or stored in a
variable. Section 3.7 discusses macro expansion, which can introduce new names
via textual substitution, sometimes in ways that are at odds with the rest of the
language. Finally, Section 3.8 (mostly on the companion site) discusses separate
compilation.

The Notion of Binding Time

A binding is an association between two things, such as a name and the thing it
names. Binding time is the time at which a binding is created or, more generally,
the time at which any implementation decision is made (we can think of this
as binding an answer to a question). There are many different times at which
decisions may be bound:

Language design time: In most languages, the control-flow constructs, the set of
fundamental (primitive) types, the available constructors for creating complex
types, and many other aspects of language semantics are chosen when the lan-
guage is designed.

Language implementation time: Most language manuals leave a variety of issues
to the discretion of the language implementor. Typical (though by no means
universal) examples include the precision (number of bits) of the fundamental
types, the coupling of I/O to the operating system’s notion of files, and the
organization and maximum sizes of the stack and heap.

Program writing time: Programmers, of course, choose algorithms, data struc-
tures, and names.

Compile time: Compilers choose the mapping of high-level constructs to ma-
chine code, including the layout of statically defined data in memory.

I For want of a better term, we will use the term “object” throughout Chapters 3-9 to refer to
anything that might have a name: variables, constants, types, subroutines, modules, and oth-
ers. In many modern languages “object” has a more formal meaning, which we will consider in
Chapter 10.

3.1 The Notion of Binding Time 17

Link time: Since most compilers support separate compilation—compiling dif-
ferent modules of a program at different times—and depend on the availability
of a library of standard subroutines, a program is usually not complete until
the various modules are joined together by a linker. The linker chooses the
overall layout of the modules with respect to one another, and resolves inter-
module references. When a name in one module refers to an object in another
module, the binding between the two is not finalized until link time.

Load time: Load time refers to the point at which the operating system loads the
program into memory so that it can run. In primitive operating systems, the
choice of machine addresses for objects within the program was not finalized
until load time. Most modern operating systems distinguish between virtual
and physical addresses. Virtual addresses are chosen at link time; physical ad-
dresses can actually change at run time. The processor’s memory management
hardware translates virtual addresses into physical addresses during each indi-
vidual instruction at run time.

Run time: Run time is actually a very broad term that covers the entire span from
the beginning to the end of execution. Bindings of values to variables occur at
run time, as do a host of other decisions that vary from language to language.
Run time subsumes program start-up time, module entry time, elaboration
time (the point at which a declaration is first “seen”), subroutine call time,
block entry time, and expression evaluation time/statement execution.

The terms static and dynamic are generally used to refer to things bound before
run time and at run time, respectively. Clearly “static” is a coarse term. So is
“dynamic.”

Compiler-based language implementations tend to be more efficient than
interpreter-based implementations because they make earlier decisions. For ex-
ample, a compiler analyzes the syntax and semantics of global variable declara-
tions once, before the program ever runs. It decides on a layout for those variables
in memory and generates efficient code to access them wherever they appear in
the program. A pure interpreter, by contrast, must analyze the declarations every
time the program begins execution. In the worst case, an interpreter may reana-
lyze the local declarations within a subroutine each time that subroutine is called.
If a call appears in a deeply nested loop, the savings achieved by a compiler that
is able to analyze the declarations only once may be very large. As we shall see in

DESIGN & IMPLEMENTATION

3.1 Binding time

It is difficult to overemphasize the importance of binding times in the design
and implementation of programming languages. In general, early binding
times are associated with greater efficiency, while later binding times are as-
sociated with greater flexibility. The tension between these goals provides a
recurring theme for later chapters of this book.

118

Chapter 3 Names, Scopes, and Bindings

the following section, a compiler will not usually be able to predict the address of
a local variable at compile time, since space for the variable will be allocated dy-
namically on a stack, but it can arrange for the variable to appear at a fixed offset
from the location pointed to by a certain register at run time.

Some languages are difficult to compile because their semantics require funda-
mental decisions to be postponed until run time, generally in order to increase the
flexibility or expressiveness of the language. Most scripting languages, for exam-
ple, delay all type checking until run time. References to objects of arbitrary types
(classes) can be assigned into arbitrary named variables, as long as the program
never ends up applying an operator to (invoking a method of) an object that is
not prepared to handle it. This form of polymorphism—applicability to objects or
expressions of multiple types—allows the programmer to write unusually flexi-
ble and general-purpose code. We will mention polymorphism again in several
future sections, including 7.1.2, 7.3, 10.1.1, and 14.4.4.

Object Lifetime and Storage Management

In any discussion of names and bindings, it is important to distinguish between
names and the objects to which they refer, and to identify several key events:

Creation and destruction of objects
Creation and destruction of bindings
Deactivation and reactivation of bindings that may be temporarily unusable

References to variables, subroutines, types, and so on, all of which use bindings

The period of time between the creation and the destruction of a name-to-
object binding is called the binding’s lifetime. Similarly, the time between the
creation and destruction of an object is the object’s lifetime. These lifetimes need
not necessarily coincide. In particular, an object may retain its value and the po-
tential to be accessed even when a given name can no longer be used to access it.
When a variable is passed to a subroutine by reference, for example (as it typically
is in Fortran or with ‘¢’ parameters in C++), the binding between the parame-
ter name and the variable that was passed has a lifetime shorter than that of the
variable itself. It is also possible, though generally a sign of a program bug, for a
name-to-object binding to have a lifetime longer than that of the object. This can
happen, for example, if an object created via the C++ new operator is passed as a
& parameter and then deallocated (delete-ed) before the subroutine returns. A
binding to an object that is no longer live is called a dangling reference. Dangling
references will be discussed further in Sections 3.6 and 8.5.2.

Object lifetimes generally correspond to one of three principal storage alloca-
tion mechanisms, used to manage the object’s space:

I. Static objects are given an absolute address that is retained throughout the
program’s execution.

EXAMPLE 3.'

Static allocation of local
variables

3.2 Object Lifetime and Storage Management 119

2. Stack objects are allocated and deallocated in last-in, first-out order, usually in
conjunction with subroutine calls and returns.

3. Heap objects may be allocated and deallocated at arbitrary times. They require
a more general (and expensive) storage management algorithm.

3.2.1 Static Allocation

Global variables are the obvious example of static objects, but not the only one.
The instructions that constitute a program’s machine code can also be thought
of as statically allocated objects. We shall see examples in Section 3.3.1 of vari-
ables that are local to a single subroutine, but retain their values from one invo-
cation to the next; their space is statically allocated. Numeric and string-valued
constant literals are also statically allocated, for statements such as A = B/14.7
or printf ("hello, world\n"). (Small constants are often stored within the
instruction itself; larger ones are assigned a separate location.) Finally, most
compilers produce a variety of tables that are used by run-time support routines
for debugging, dynamic type checking, garbage collection, exception handling,
and other purposes; these are also statically allocated. Statically allocated ob-
jects whose value should not change during program execution (e.g., instructions,
constants, and certain run-time tables) are often allocated in protected, read-only
memory, so that any inadvertent attempt to write to them will cause a processor
interrupt, allowing the operating system to announce a run-time error.

Logically speaking, local variables are created when their subroutine is called,
and destroyed when it returns. If the subroutine is called repeatedly, each invo-
cation is said to create and destroy a separate instance of each local variable. It is
not always the case, however, that a language implementation must perform work
at run time corresponding to these create and destroy operations. Recursion was
not originally supported in Fortran (it was added in Fortran 90). As a result, there
can never be more than one invocation of a subroutine active in an older Fortran
program at any given time, and a compiler may choose to use static allocation
for local variables, effectively arranging for the variables of different invocations
to share the same locations, and thereby avoiding any run-time overhead for cre-
ation and destruction.

DESIGN & IMPLEMENTATION

3.1 Recursion in Fortran

The lack of recursion in (pre-Fortran 90) Fortran is generally attributed to the
expense of stack manipulation on the IBM 704, on which the language was
first implemented. Many (perhaps most) Fortran implementations choose to
use a stack for local variables, but because the language definition permits the
use of static allocation instead, Fortran programmers were denied the benefits
of language-supported recursion for over 30 years.

120 Chapter 3 Names, Scopes, and Bindings

EXAMPLE }2

Layout of the run-time
stack

In many languages a named constant is required to have a value that can be
determined at compile time. Usually the expression that specifies the constant’s
value is permitted to include only other known constants and built-in functions
and arithmetic operators. Named constants of this sort, together with constant
literals, are sometimes called manifest constants or compile-time constants. Mani-
fest constants can always be allocated statically, even if they are local to a recursive
subroutine: multiple instances can share the same location.

In other languages (e.g., C and Ada), constants are simply variables that cannot
be changed after elaboration (initialization) time. Their values, though unchang-
ing, can sometimes depend on other values that are not known until run time.
Such elaboration-time constants, when local to a recursive subroutine, must be
allocated on the stack. C# distinguishes between compile-time and elaboration-
time constants using the const and readonly keywords, respectively.

3.2.) Stack-Based Allocation

If a language permits recursion, static allocation of local variables is no longer an
option, since the number of instances of a variable that may need to exist at the
same time is conceptually unbounded. Fortunately, the natural nesting of sub-
routine calls makes it easy to allocate space for locals on a stack. A simplified
picture of a typical stack appears in Figure 3.1. Each instance of a subroutine at
run time has its own frame (also called an activation record) on the stack, contain-
ing arguments and return values, local variables, temporaries, and bookkeeping
information. Temporaries are typically intermediate values produced in complex
calculations. Bookkeeping information typically includes the subroutine’s return
address, a reference to the stack frame of the caller (also called the dynamic link),
saved values of registers needed by both the caller and the callee, and various other
values that we will study later. Arguments to be passed to subsequent routines lie
at the top of the frame, where the callee can easily find them. The organization
of the remaining information is implementation-dependent: it varies from one
language, machine, and compiler to another.

Maintenance of the stack is the responsibility of the subroutine calling se-
quence—the code executed by the caller immediately before and after the call—
and of the prologue (code executed at the beginning) and epilogue (code executed
at the end) of the subroutine itself. Sometimes the term “calling sequence” is used
to refer to the combined operations of the caller, the prologue, and the epilogue.
We will study calling sequences in more detail in Section 9.2.

While the location of a stack frame cannot be predicted at compile time (the
compiler cannot in general tell what other frames may already be on the stack),
the offsets of objects within a frame usually can be statically determined. More-
over, the compiler can arrange (in the calling sequence or prologue) for a par-
ticular register, known as the frame pointer to always point to a known location
within the frame of the current subroutine. Code that needs to access a local vari-
able within the current frame, or an argument near the top of the calling frame,

Sp —>

ifp—

Direction of stack
growth (usually
lower addresses)

3.2 Object Lifetime and Storage Management 121

procedure C

D; E
Subroutine D - Arguments
- to called procedure B
2 routines if ... thenBelse C

procedure A

Temporaries B
—— main program
Subroutine C A
Local
variables
] NS Miscellaneous
Subroutine B s bookkeeping
. <«— fp (when subroutine

.| Return address C is running)

Subroutine B

Subroutine A

Figure 3.1 Stack-based allocation of space for subroutines. We assume here that subroutines have been called as shown
in the upper right. In particular; B has called itself once, recursively, before calling C. If D returns and C calls E, E's frame
(activation record) will occupy the same space previously used for D’s frame. At any given time, the stack pointer (sp) register
points to the first unused location on the stack (or the last used location on some machines), and the frame pointer (£p)
register points to a known location within the frame of the current subroutine. The relative order of fields within a frame may
vary from machine to machine and compiler to compiler:

can do so by adding a predetermined offset to the value in the frame pointer.
As we discuss in Section C-5.3.1, almost every processor provides a displacement
addressing mechanism that allows this addition to be specified implicitly as part
of an ordinary load or store instruction. The stack grows “downward” toward
lower addresses in most language implementations. Some machines provide spe-
cial push and pop instructions that assume this direction of growth. Local vari-
ables, temporaries, and bookkeeping information typically have negative offsets
from the frame pointer. Arguments and returns typically have positive offsets;
they reside in the caller’s frame.

Even in a language without recursion, it can be advantageous to use a stack for
local variables, rather than allocating them statically. In most programs the pat-
tern of potential calls among subroutines does not permit all of those subroutines
to be active at the same time. As a result, the total space needed for local vari-
ables of currently active subroutines is seldom as large as the total space across all

122 Chapter 3 Names, Scopes, and Bindings

EXAMPLE }3

External fragmentation in
the heap

Heap

N I N

Allocation request

Figure 3.2 Fragmentation. The shaded blocks are in use; the clear blocks are free. Cross-
hatched space at the ends of in-use blocks represents internal fragmentation. The discontiguous
free blocks indicate external fragmentation. While there is more than enough total free space
remaining to satisfy an allocation request of the illustrated size, no single remaining block is large
enough.

subroutines, active or not. A stack may therefore require substantially less mem-
ory at run time than would be required for static allocation.

3.23 Heap-Based Allocation

A heap is a region of storage in which subblocks can be allocated and deallocated
at arbitrary times.> Heaps are required for the dynamically allocated pieces of
linked data structures, and for objects such as fully general character strings, lists,
and sets, whose size may change as a result of an assignment statement or other
update operation.

There are many possible strategies to manage space in a heap. We review the
major alternatives here; details can be found in any data-structures textbook. The
principal concerns are speed and space, and as usual there are tradeoffs between
them. Space concerns can be further subdivided into issues of internal and ex-
ternal fragmentation. Internal fragmentation occurs when a storage-management
algorithm allocates a block that is larger than required to hold a given object; the
extra space is then unused. External fragmentation occurs when the blocks that
have been assigned to active objects are scattered through the heap in such a way
that the remaining, unused space is composed of multiple blocks: there may be
quite a lot of free space, but no one piece of it may be large enough to satisfy some
future request (see Figure 3.2).

Many storage-management algorithms maintain a single linked list—the free
list—of heap blocks not currently in use. Initially the list consists of a single block
comprising the entire heap. At each allocation request the algorithm searches the
list for a block of appropriate size. With a first fit algorithm we select the first block
on the list that is large enough to satisfy the request. With a best fit algorithm we
search the entire list to find the smallest block that is large enough to satisfy the

2 Unfortunately, the term “heap” is also used for the common tree-based implementation of a
priority queue. These two uses of the term have nothing to do with one another.

3.2 Object Lifetime and Storage Management 123

request. In either case, if the chosen block is significantly larger than required,
then we divide it into two and return the unneeded portion to the free list as a
smaller block. (If the unneeded portion is below some minimum threshold in
size, we may leave it in the allocated block as internal fragmentation.) When a
block is deallocated and returned to the free list, we check to see whether either
or both of the physically adjacent blocks are free; if so, we coalesce them.

Intuitively, one would expect a best fit algorithm to do a better job of reserving
large blocks for large requests. At the same time, it has higher allocation cost than
a first fit algorithm, because it must always search the entire list, and it tends to
result in a larger number of very small “left-over” blocks. Which approach—first
fit or best fit—results in lower external fragmentation depends on the distribution
of size requests.

In any algorithm that maintains a single free list, the cost of allocation is lin-
ear in the number of free blocks. To reduce this cost to a constant, some stor-
age management algorithms maintain separate free lists for blocks of different
sizes. Each request is rounded up to the next standard size (at the cost of inter-
nal fragmentation) and allocated from the appropriate list. In effect, the heap is
divided into “pools,” one for each standard size. The division may be static or
dynamic. Two common mechanisms for dynamic pool adjustment are known as
the buddy system and the Fibonacci heap. In the buddy system, the standard block
sizes are powers of two. If a block of size 2% is needed, but none is available, a
block of size 25+ is split in two. One of the halves is used to satisfy the request;
the other is placed on the kth free list. When a block is deallocated, it is coa-
lesced with its “buddy”—the other half of the split that created it—if that buddy
is free. Fibonacci heaps are similar, but use Fibonacci numbers for the standard
sizes, instead of powers of two. The algorithm is slightly more complex, but leads
to slightly lower internal fragmentation, because the Fibonacci sequence grows
more slowly than 2%,

The problem with external fragmentation is that the ability of the heap to sat-
isfy requests may degrade over time. Multiple free lists may help, by clustering
small blocks in relatively close physical proximity, but they do not eliminate the
problem. It is always possible to devise a sequence of requests that cannot be
satisfied, even though the total space required is less than the size of the heap. If
memory is partitioned among size pools statically, one need only exceed the maxi-
mum number of requests of a given size. If pools are dynamically readjusted, one
can “checkerboard” the heap by allocating a large number of small blocks and
then deallocating every other one, in order of physical address, leaving an alter-
nating pattern of small free and allocated blocks. To eliminate external fragmen-
tation, we must be prepared to compact the heap, by moving already-allocated
blocks. This task is complicated by the need to find and update all outstanding
references to a block that is being moved. We will discuss compaction further in

Section 8.5.3.

124

Chapter 3 Names, Scopes, and Bindings

3.24 Garbage Collection

Allocation of heap-based objects is always triggered by some specific operation in
a program: instantiating an object, appending to the end of a list, assigning a long
value into a previously short string, and so on. Deallocation is also explicit in
some languages (e.g., C, C++, and Rust). As we shall see in Section 8.5, however,
many languages specify that objects are to be deallocated implicitly when it is no
longer possible to reach them from any program variable. The run-time library
for such a language must then provide a garbage collection mechanism to identify
and reclaim unreachable objects. Most functional and scripting languages require
garbage collection, as do many more recent imperative languages, including Java
and C#.

The traditional arguments in favor of explicit deallocation are implementa-
tion simplicity and execution speed. Even naive implementations of automatic
garbage collection add significant complexity to the implementation of a lan-
guage with a rich type system, and even the most sophisticated garbage collector
can consume nontrivial amounts of time in certain programs. If the programmer
can correctly identify the end of an object’s lifetime, without too much run-time
bookkeeping, the result is likely to be faster execution.

The argument in favor of automatic garbage collection, however, is compel-
ling: manual deallocation errors are among the most common and costly bugs in
real-world programs. Ifan object is deallocated too soon, the program may follow
a dangling reference, accessing memory now used by another object. If an object
is not deallocated at the end of its lifetime, then the program may “leak memory,”
eventually running out of heap space. Deallocation errors are notoriously diffi-
cult to identify and fix. Over time, many language designers and programmers
have come to consider automatic garbage collection an essential language feature.
Garbage-collection algorithms have improved, reducing their run-time overhead;
language implementations have become more complex in general, reducing the
marginal complexity of automatic collection; and leading-edge applications have
become larger and more complex, making the benefits of automatic collection
ever more compelling.

JCHECK YOUR UNDERSTANDING
|. What is binding time?

1. Explain the distinction between decisions that are bound statically and those
that are bound dynamically.

3. What is the advantage of binding things as early as possible? What is the
advantage of delaying bindings?

4. Explain the distinction between the lifetime of a name-to-object binding and

its visibility.

3.3 Scope Rules 125

5. What determines whether an object is allocated statically, on the stack, or in
the heap?

List the objects and information commonly found in a stack frame.
What is a frame pointer? What is it used for?

What is a calling sequence?

- 00 = o~

What are internal and external fragmentation?
[0. What is garbage collection?

Il. What is a dangling reference?

Scope Rules

The textual region of the program in which a binding is active is its scope. In
most modern languages, the scope of a binding is determined statically, that is,
at compile time. In C, for example, we introduce a new scope upon entry to a
subroutine. We create bindings for local objects and deactivate bindings for global
objects that are hidden (made invisible) by local objects of the same name. On
subroutine exit, we destroy bindings for local variables and reactivate bindings for
any global objects that were hidden. These manipulations of bindings may at first
glance appear to be run-time operations, but they do not require the execution of
any code: the portions of the program in which a binding is active are completely
determined at compile time. We can look at a C program and know which names
refer to which objects at which points in the program based on purely textual
rules. For this reason, C is said to be statically scoped (some authors say lexically
scoped*). Other languages, including APL, Snobol, Tcl, and early dialects of Lisp,
are dynamically scoped: their bindings depend on the flow of execution at run
time. We will examine static and dynamic scoping in more detail in Sections 3.3.1
and 3.3.6.

In addition to talking about the “scope of a binding,” we sometimes use the
word “scope” as a noun all by itself, without a specific binding in mind. Infor-
mally, a scope is a program region of maximal size in which no bindings change
(or at least none are destroyed—more on this in Section 3.3.3). Typically, a scope
is the body of a module, class, subroutine, or structured control-flow statement,
sometimes called a block. In C family languages it would be delimited with {. ..}
braces.

3 Lexical scope is actually a better term than static scope, because scope rules based on nesting can
be enforced at run time instead of compile time if desired. In fact, in Common Lisp and Scheme
it is possible to pass the unevaluated text of a subroutine declaration into some other subroutine
as a parameter, and then use the text to create a lexically nested declaration at run time.

126

Chapter 3 Names, Scopes, and Bindings

Algol 68 and Ada use the term elaboration to refer to the process by which
declarations become active when control first enters a scope. Elaboration entails
the creation of bindings. In many languages, it also entails the allocation of stack
space for local objects, and possibly the assignment of initial values. In Ada it
can entail a host of other things, including the execution of error-checking or
heap-space-allocating code, the propagation of exceptions, and the creation of
concurrently executing fasks (to be discussed in Chapter 13).

At any given point in a program’s execution, the set of active bindings is called
the current referencing environment. The set is principally determined by static
or dynamic scope rules. We shall see that a referencing environment generally
corresponds to a sequence of scopes that can be examined (in order) to find the
current binding for a given name.

In some cases, referencing environments also depend on what are (in a con-
fusing use of terminology) called binding rules. Specifically, when a reference to a
subroutine S is stored in a variable, passed as a parameter to another subroutine,
or returned as a function value, one needs to determine when the referencing en-
vironment for S is chosen—that is, when the binding between the reference to
S and the referencing environment of S is made. The two principal options are
deep binding, in which the choice is made when the reference is first created, and
shallow binding, in which the choice is made when the reference is finally used.
We will examine these options in more detail in Section 3.6.

3.3.] static Scoping

In a language with static (lexical) scoping, the bindings between names and ob-
jects can be determined at compile time by examining the text of the program,
without consideration of the flow of control at run time. Typically, the “current”
binding for a given name is found in the matching declaration whose block most
closely surrounds a given point in the program, though as we shall see there are
many variants on this basic theme.

The simplest static scope rule is probably that of early versions of Basic, in
which there was only a single, global scope. In fact, there were only a few hundred
possible names, each of which consisted of a letter optionally followed by a digit.
There were no explicit declarations; variables were declared implicitly by virtue
of being used.

Scope rules are somewhat more complex in (pre-Fortran 90) Fortran, though
not much more. Fortran distinguishes between global and local variables. The
scope of a local variable is limited to the subroutine in which it appears; it is not
visible elsewhere. Variable declarations are optional. If a variable is not declared,
it is assumed to be local to the current subroutine and to be of type integer if its
name begins with the letters I-N, or real otherwise. (Different conventions for
implicit declarations can be specified by the programmer. In Fortran 90 and its
successors, the programmer can also turn off implicit declarations, so that use of
an undeclared variable becomes a compile-time error.)

exampLe 3.4
Static variables in C

3.3 Scope Rules 127

/*
Place into *s a new name beginning with the letter 'L' and
continuing with the ASCII representation of a unique integer.
Parameter s is assumed to point to space large enough to hold any
such name; for the short ints used here, 7 characters suffice.
*/
void label_name (char *s) {
static short int n; /* C gnarantees that static locals
are initialized to zero */
sprintf (s, "L%d\0", ++n); /#* "print" formatted output to s */
}

Figure 3.3 C code to illustrate the use of static variables.

Semantically, the lifetime of a local Fortran variable (both the object itself and
the name-to-object binding) encompasses a single execution of the variable’s sub-
routine. Programmers can override this rule by using an explicit save statement.
(Similar mechanisms appear in many other languages: in C one declares the vari-
able static; in Algol one declares it own.) A save-ed (static, own) variable has
a lifetime that encompasses the entire execution of the program. Instead of a log-
ically separate object for every invocation of the subroutine, the compiler creates
a single object that retains its value from one invocation of the subroutine to the
next. (The name-to-variable binding, of course, is inactive when the subroutine
is not executing, because the name is out of scope.)

As an example of the use of static variables, consider the code in Figure 3.3.
The subroutine 1abel_name can be used to generate a series of distinct character-
string names: L1, L2, A compiler might use these names in its assembly
language output.

3.3.] Nested Subroutines

The ability to nest subroutines inside each other, introduced in Algol 60, is a fea-
ture of many subsequent languages, including Ada, ML, Common Lisp, Python,
Scheme, Swift, and (to a limited extent) Fortran 90. Other languages, including C
and its descendants, allow classes or other scopes to nest. Just as the local variables
of a Fortran subroutine are not visible to other subroutines, any constants, types,
variables, or subroutines declared within a scope are not visible outside that scope
in Algol-family languages. More formally, Algol-style nesting gives rise to the clos-
est nested scope rule for bindings from names to objects: a name that is introduced
in a declaration is known in the scope in which it is declared, and in each inter-
nally nested scope, unless it is hidden by another declaration of the same name in
one or more nested scopes. To find the object corresponding to a given use of a
name, we look for a declaration with that name in the current, innermost scope.
If there is one, it defines the active binding for the name. Otherwise, we look
for a declaration in the immediately surrounding scope. We continue outward,

128

EXAMPLE 3.5

Nested scopes

Chapter 3 Names, Scopes, and Bindings

examining successively surrounding scopes, until we reach the outer nesting level
of the program, where global objects are declared. If no declaration is found at
any level, then the program is in error.

Many languages provide a collection of built-in, or predefined objects, such as
I/O routines, mathematical functions, and in some cases types such as integer
and char. It is common to consider these to be declared in an extra, invisible,
outermost scope, which surrounds the scope in which global objects are declared.
The search for bindings described in the previous paragraph terminates at this ex-
tra, outermost scope, if it exists, rather than at the scope in which global objects
are declared. This outermost scope convention makes it possible for a program-
mer to define a global object whose name is the same as that of some predefined
object (whose “declaration” is thereby hidden, making it invisible).

An example of nested scopes appears in Figure 3.4.* In this example, procedure
P2 is called only by P1, and need not be visible outside. It is therefore declared
inside P1, limiting its scope (its region of visibility) to the portion of the program
shown here. In a similar fashion, P4 is visible only within P1, P3 is visible only
within P2, and F1 is visible only within P4. Under the standard rules for nested
scopes, F1 could call P2 and P4 could call F1, but P2 could not call F1.

Though they are hidden from the rest of the program, nested subroutines are
able to access the parameters and local variables (and other local objects) of the
surrounding scope(s). In our example, P3 can name (and modify) A1, X, and A2,
in addition to A3. Because P1 and F1 both declare local variables named X, the
inner declaration hides the outer one within a portion of its scope. Uses of X in F1
refer to the inner X; uses of X in other regions of the code refer to the outer X.

A name-to-object binding that is hidden by a nested declaration of the same
name is said to have a hole in its scope. In some languages, the object whose name
is hidden is simply inaccessible in the nested scope (unless it has more than one
name). In others, the programmer can access the outer meaning of a name by
applying a qualifier or scope resolution operator. In Ada, for example, a name may
be prefixed by the name of the scope in which it is declared, using syntax that
resembles the specification of fields in a record. My_proc.X, for example, refers
to the declaration of X in subroutine My_proc, regardless of whether some other
X has been declared in a lexically closer scope. In C++, which does not allow
subroutines to nest, : : X refers to a global declaration of X, regardless of whether
the current subroutine also has an X.’

Access to Nonlocal Objects

We have already seen (Section 3.2.2) that the compiler can arrange for a frame
pointer register to point to the frame of the currently executing subroutine at run

4 This code is not contrived; it was extracted from an implementation (originally in Pascal) of the
FMQ error repair algorithm described in Section C-2.3.5.

5 The C++ :: operator is also used to name members (fields or methods) of a base class that are
hidden by members of a derived class; we will consider this use in Section 10.2.2.

3.3 Scope Rules 129

procedure P1{AT1) Al X P2 P4
var X —— local to P1
procedure P2(A2) A2 P3
procedure P3(A3) A3
begin
—— body of P3
end
begin
. —— body of P2
end 1 1
procedure P4{A4) Ad F1
function F1(AS) B A5 X
var X —-local to F1
begin
—— body of F1
end —
begin
. —— body of P4
end 4 L
begin
. —— body of P1
end 4 1 L L

Figure 34 Example of nested subroutines, shown in pseudocode. Vertical bars indicate the
scope of each name, for a language in which declarations are visible throughout their subroutine.
Note the hole in the scope of the outer X.

time. Using this register as a base for displacement (register plus offset) address-
ing, target code can access objects within the current subroutine. But what about
objects in lexically surrounding subroutines? To find these we need a way to find
the frames corresponding to those scopes at run time. Since a nested subroutine
may call a routine in an outer scope, the order of stack frames at run time may not
necessarily correspond to the order of lexical nesting. Nonetheless, we can be sure
that there is some frame for the surrounding scope already in the stack, since the
current subroutine could not have been called unless it was visible, and it could
not have been visible unless the surrounding scope was active. (It is actually pos-
sible in some languages to save a reference to a nested subroutine, and then call
it when the surrounding scope is no longer active. We defer this possibility to
Section 3.6.2.)

The simplest way in which to find the frames of surrounding scopes is to main-
tain a static link in each frame that points to the “parent” frame: the frame of the

130

EXAMPLE 3¢6

Static chains

A
B
C
o> c —]
— D —]
D
B—-—-_
E E———-..
A

Chapter 3 Names, Scopes, and Bindings

FIglII’E 3.5 Static chains. Subroutines A, B, C, D, and E are nested as shown on the left. If the
sequence of nested calls at run time is A, E, B, D, and C, then the static links in the stack will
look as shown on the right. The code for subroutine C can find local objects at known offsets
from the frame pointer: It can find local objects of the surrounding scope, B, by dereferencing its
static chain once and then applying an offset. It can find local objects in B's surrounding scope,
A, by dereferencing its static chain twice and then applying an offset.

most recent invocation of the lexically surrounding subroutine. If a subroutine is
declared at the outermost nesting level of the program, then its frame will have a
null static link at run time. If a subroutine is nested k levels deep, then its frame’s
static link, and those of its parent, grandparent, and so on, will form a static chain
of length k at run time. To find a variable or parameter declared j subroutine
scopes outward, target code at run time can dereference the static chain j times,
and then add the appropriate offset. Static chains are illustrated in Figure 3.5. We
will discuss the code required to maintain them in Section 9.2.

3.3.3 Declaration Order

In our discussion so far we have glossed over an important subtlety: suppose an
object x is declared somewhere within block B. Does the scope of x include the
portion of B before the declaration, and if so can x actually be used in that portion
of the code? Put another way, can an expression E refer to any name declared in
the current scope, or only to names that are declared before E in the scope?
Several early languages, including Algol 60 and Lisp, required that all declara-
tions appear at the beginning of their scope. One might at first think that this rule

3.3 Scope Rules 131

would avoid the questions in the preceding paragraph, but it does not, because
declarations may refer to one another.®

exampie 3.1 In an apparent attempt to simplify the implementation of the compiler, Pas-
A “gotcha” in cal modified the requirement to say that names must be declared before they are
declare-before-use used. There are special mechanisms to accommodate recursive types and sub-

routines, but in general, a forward reference (an attempt to use a name before its
declaration) is a static semantic error. At the same time, however, Pascal retained
the notion that the scope of a declaration is the entire surrounding block. Taken
together, whole-block scope and declare-before-use rules can interact in surpris-
ing ways:

const N = 10;

H
procedure foo;

M=N; (* static semantic error! *)

1
2
3
4. const
5
6
7

N = 20; (* local constant declaration; hides the outer N *)

Pascal says that the second declaration of N covers all of foo, so the semantic
analyzer should complain on line 5 that N is being used before its declaration.
The error has the potential to be highly confusing, particularly if the programmer
meant to use the outer N:

const N = 10;

procedure foo;
const

M= N; (* static semantic error! x*)
var

A : array [1..M] of integer;

N : real; (* hiding declaration *)

Here the pair of messages “N used before declaration” and “N is not a constant”
are almost certainly not helpful.

DESIGN & IMPLEMENTATION

3.3 Mutual recursion
Some Algol 60 compilers were known to process the declarations of a scope in
program order. This strategy had the unfortunate effect of implicitly outlawing

mutually recursive subroutines and types, something the language designers
clearly did not intend [Atk73].

6 We saw an example of mutually recursive subroutines in the recursive descent parsing of Sec-
tion 2.3.1. Mutually recursive types frequently arise in linked data structures, where nodes of two
types may need to point to each other.

132 Chapter 3 Names, Scopes, and Bindings

exampie 3.8
Whole-block scope in C#

EXAMPLE }.9

“Local if written” in Python

EXAMPLE 3'0

Declaration order in
Scheme

In order to determine the validity of any declaration that appears to use a
name from a surrounding scope, a Pascal compiler must scan the remainder of
the scope’s declarations to see if the name is hidden. To avoid this complication,
most Pascal successors (and some dialects of Pascal itself) specify that the scope of
an identifier is not the entire block in which it is declared (excluding holes), but
rather the portion of that block from the declaration to the end (again excluding
holes). If our program fragment had been written in Ada, for example, or in C,
C++, or Java, no semantic errors would be reported. The declaration of M would
refer to the first (outer) declaration of N.

C++ and Java further relax the rules by dispensing with the define-before-use
requirement in many cases. In both languages, members of a class (including
those that are not defined until later in the program text) are visible inside all
of the class’s methods. In Java, classes themselves can be declared in any order.
Interestingly, while C# echos Java in requiring declaration before use for local
variables (but not for classes and members), it returns to the Pascal notion of
whole-block scope. Thus the following is invalid in C#:

class A {
const int N = 10;
void foo() {
const int M = N; // uses inner N before it is declared
const int N = 20;

Perhaps the simplest approach to declaration order, from a conceptual point
of view, is that of Modula-3, which says that the scope of a declaration is the en-
tire block in which it appears (minus any holes created by nested declarations),
and that the order of declarations doesn’t matter. The principal objection to this
approach is that programmers may find it counterintuitive to use a local variable
before it is declared. Python takes the “whole block” scope rule one step further
by dispensing with variable declarations altogether. In their place it adopts the
unusual convention that the local variables of subroutine S are precisely those
variables that are written by some statement in the (static) body of 8. If S is
nested inside of T, and the name x appears on the left-hand side of assignment
statements in both 8 and T, then the x’s are distinct: there is one in S and one
in T. Non-local variables are read-only unless explicitly imported (using Python’s
global statement). We will consider these conventions in more detail in Sec-
tion 14.4.1, as part of a general discussion of scoping in scripting languages.

In the interest of flexibility, modern Lisp dialects tend to provide several op-
tions for declaration order. In Scheme, for example, the letrec and let* con-
structs define scopes with, respectively, whole-block and declaration-to-end-of-
block semantics. The most frequently used construct, let, provides yet another
option:

(let ((A 1)) ; outer scope, with A defined to be 1
(let ((A 2) ; inner scope, with A defined to be 2
(B A)) : and B defined to be A

B)) ; return the value of B

EXAMPLE 3.' I

Declarations vs definitions
inC

3.3 Scope Rules 133

Here the nested declarations of A and B don’t take effect until after the end of the
declaration list. Thus when B is defined, the redefinition of A has not yet taken
effect. B is defined to be the outer A, and the code as a whole returns 1.

Declarations and Definitions

Recursive types and subroutines introduce a problem for languages that require
names to be declared before they can be used: how can two declarations each
appear before the other? C and C++ handle the problem by distinguishing be-
tween the declaration of an object and its definition. A declaration introduces a
name and indicates its scope, but may omit certain implementation details. A
definition describes the object in sufficient detail for the compiler to determine
its implementation. If a declaration is not complete enough to be a definition,
then a separate definition must appear somewhere else in the scope. In C we can
write

struct manager; /* declaration only */
struct employee {

struct manager *boss;

struct employee *next_employee;

};
struct manager { /* definition */
struct employee *first_employee;
};
and
void list_tail(follow_set fs); /* declaration only #*/
void list(follow_set fs)
{
switch (input_token) {
case id : match(id); list_tail(fs);
}
void list_tail(follow_set fs) /* definition */
{
switch (input_token) {
case comma : match(comma); list(fs);
}

The initial declaration of manager needed only to introduce a name: since point-
ers are generally all the same size, the compiler can determine the implementa-
tion of employee without knowing any manager details. The initial declaration
of list_tail, however, must include the return type and parameter list, so the
compiler can tell that the call in 1ist is correct.

134

Chapter 3 Names, Scopes, and Bindings

Nested Blocks

In many languages, including Algol 60, C89, and Ada, local variables can be de-
clared not only at the beginning of any subroutine, but also at the top of any
begin...end ({...}) block. Other languages, including Algol 68, C, and all of
C’s descendants, are even more flexible, allowing declarations wherever a state-
ment may appear. In most languages a nested declaration hides any outer dec-
laration with the same name (Java and C# make it a static semantic error if the
outer declaration is local to the current subroutine).

DESIGN & IMPLEMENTATION

3.4 Redeclarations

Some languages, particularly those that are intended for interactive use, permit
the programmer to redeclare an object: to create a new binding for a given
name in a given scope. Interactive programmers commonly use redeclarations
to experiment with alternative implementations or to fix bugs during early
development. In most interactive languages, the new meaning of the name
replaces the old in all contexts. In ML dialects, however, the old meaning of
the name may remain accessible to functions that were elaborated before the
name was redeclared. This design choice can sometimes be counterintuitive.
Here’s an example in OCaml (the lines beginning with # are user input; the
others are printed by the interpreter):

let x = 1;;

val x : int = 1
#let £ y=x+y;;
val £ : int -> int = <fun>
let x = 2;;

val x : int = 2

£ 3;;

- : int = 4

The second line of user input defines £ to be a function of one argument (y)
that returns the sum of that argument and the previously defined value x.
When we redefine x to be 2, however, the function does not notice: it still
returns y plus 1. This behavior reflects the fact that OCaml is usually com-
piled, bit by bit on the fly, rather than interpreted. When x is redefined, £
has already been compiled into a form (bytecode or machine code) that ac-
cesses the old meaning of x directly. By comparison, a language like Scheme,
which is lexically scoped but usually interpreted, stores the bindings for names
in known locations. Programs always access the meanings of names indirectly
through those locations: if the meaning of a name changes, all accesses to the
name will use the new meaning.

EXAMPLE 3 IZ

Inner declarations in C

3.3 Scope Rules 135

Variables declared in nested blocks can be very useful, as for example in the
following C code:

{
int temp = a;
a=b;
b = temp;

}

Keeping the declaration of temp lexically adjacent to the code that uses it makes
the program easier to read, and eliminates any possibility that this code will in-
terfere with another variable named temp.

No run-time work is needed to allocate or deallocate space for variables de-
clared in nested blocks; their space can be included in the total space for local
variables allocated in the subroutine prologue and deallocated in the epilogue.
Exercise 3.9 considers how to minimize the total space required.

J CHECK YOUR UNDERSTANDING

[2. What do we mean by the scope of a name-to-object binding?
[3. Describe the difference between static and dynamic scoping.
14. What is elaboration?

[5. What is a referencing environment?

16. Explain the closest nested scope rule.

I7. What is the purpose of a scope resolution operator?

18. What is a static chain? What is it used for?

19. What are forward references? Why are they prohibited or restricted in many
programming languages?

20. Explain the difference between a declaration and a definition. Why is the dis-
tinction important?

3.3.4 Modules

An important challenge in the construction of any large body of software is to
divide the effort among programmers in such a way that work can proceed on
multiple fronts simultaneously. This modularization of effort depends critically
on the notion of information hiding, which makes objects and algorithms invisi-
ble, whenever possible, to portions of the system that do not need them. Properly
modularized code reduces the “cognitive load” on the programmer by minimiz-
ing the amount of information required to understand any given portion of the

136 Chapter 3 Names, Scopes, and Bindings

EXAMPLE 3. |3

Pseudorandom numbers as
a motivation for modules

system. In a well-designed program the interfaces among modules are as “nar-
row” (i.e., simple) as possible, and any design decision that is likely to change is
hidden inside a single module.

Information hiding is crucial for software maintenance (bug fixes and en-
hancement), which tends to significantly outweigh the cost of initial development
for most commercial software. In addition to reducing cognitive load, hiding re-
duces the risk of name conflicts: with fewer visible names, there is less chance
that a newly introduced name will be the same as one already in use. It also safe-
guards the integrity of data abstractions: any attempt to access an object outside
of the module to which it belongs will cause the compiler to issue an “undefined
symbol” error message. Finally, it helps to compartmentalize run-time errors: ifa
variable takes on an unexpected value, we can generally be sure that the code that
modified it is in the variable’s scope.

Encapsulating Data and Subroutines

Unfortunately, the information hiding provided by nested subroutines is limited
to objects whose lifetime is the same as that of the subroutine in which they are
hidden. When control returns from a subroutine, its local variables will no longer
be live: their values will be discarded. We have seen a partial solution to this
problem in the form of the save statement in Fortran and the static and oun
variables of C and Algol.

Static variables allow a subroutine to have “memory”—to retain information
from one invocation to the next—while protecting that memory from acciden-
tal access or modification by other parts of the program. Put another way, static
variables allow programmers to build single-subroutine abstractions. Unfortu-
nately, they do not allow the construction of abstractions whose interface needs
to consist of more than one subroutine. Consider, for example, a simple pseudo-
random number generator. In addition to the main rand_int routine, we might
want a set_seed routine that primes the generator for a specific pseudorandom
sequence (e.g., for deterministic testing). We should like to make the state of
the generator, which determines the next pseudorandom number, visible to both
rand_int and set_seed, but hide it from the rest of the program. We can
achieve this goal in many languages through use of a module construct.

Modules as Abstractions

A module allows a collection of objects—subroutines, variables, types, and so
on—to be encapsulated in such a way that (1) objects inside are visible to each
other, but (2) objects on the inside may not be visible on the outside unless they
are exported, and (3) objects on the outside may not be visible on the inside un-
less they are imported. Import and export conventions vary significantly from
one language to another, but in all cases, only the visibility of objects is affected;
modules do not affect the lifetime of the objects they contain.

EXAMPLE 3.'4

Pseudorandom number
generator in C++

3.3 Scope Rules 137

#include <time.h>

namespace rand_mod {
unsigned int seed = time (0) ; // initialize from current time of day
const unsigned int a = 48271;
const unsigned int m = Ox7fffffff;

void set_seed(unsigned int s) {

seed = s;
}
unsigned int rand_int() {

return seed = (a * seed) % m;
}

}

Figure 3.6 Pseudorandom number generator module in C++. Uses the linear congruential
method, with a default seed taken from the current time of day. While there exist much better
(more random) generators, this one is simple, and acceptable for many purposes.

Modules were one of the principal language innovations of the late 1970s and
early 1980s; they appeared in Clu” (which called them clusters), Modula (1, 2,
and 3), Turing, and Ada 83, among others. In more modern form, they also
appear in Haskell, C++, Java, C#, and all the major scripting languages. Several
languages, including Ada, Java, and Perl, use the term package instead of module.
Others, including C++, C#, and PHP, use namespace. Modules can be emulated
to some degree through use of the separate compilation facilities of C; we discuss
this possibility in Section C-3.8.

As an example of the use of modules, consider the pseudorandom number
generator shown in Figure 3.6. As discussed in Sidebar 3.5, this module (names-
pace) would typically be placed in its own file, and then imported wherever it is
needed in a C++ program.

Bindings of names made inside the namespace may be partially or totally hid-
den (inactive) on the outside—but not destroyed. In C++, where namespaces can
appear only at the outermost level of lexical nesting, integer seed would retain its
value throughout the execution of the program, even though it is visible only to
set_seed and rand_int.

Outside the rand_mod namespace, C++ allows set_seed and rand_int to be
accessed as rand_mod : : set_seed and rand_mod: :rand_int. The seed variable
could also be accessed as rand_mod: : seed, but this is probably not a good idea,
and the need for the rand_mod prefix means it’s unlikely to happen by accident.

7 Barbara Liskov (1939-), the principal designer of Clu, is one of the leading figures in the history
of abstraction mechanisms. A faculty member at MIT since 1971, she was also the principal de-
signer of the Argus programming language, which combined language and database technology
to improve the reliability and programmability of distributed systems. She received the ACM
Turing Award in 2008.

138 Chapter 3 Names, Scopes, and Bindings

EXAMPLE 3 |5

Module as “manager” for a

type

The need for the prefix can be eliminated, on a name-by-name basis, with a using
directive:

using rand_mod::rand_int;
int r = rand_int();

Alternatively, the full set of names declared in a namespace can be made available
at once:

using namespace rand_mod;

set_seed(12345);
int r = rand_int();

Unfortunately, such wholesale exposure of a module’s names increases both the
likelihood of conflict with names in the importing context and the likelihood
that objects like seed, which are logically private to the module, will be accessed
accidentally.

Imports and Exports

Some languages allow the programmer to specify that names exported from mod-
ules be usable only in restricted ways. Variables may be exported read-only, for
example, or types may be exported opaquely, meaning that variables of that type
may be declared, passed as arguments to the module’s subroutines, and possibly
compared or assigned to one another, but not manipulated in any other way.

Modules into which names must be explicitly imported are said to be closed
scopes. By extension, modules that do not require imports are said to be open
scopes. Imports serve to document the program: they increase modularity by
requiring a module to specify the ways in which it depends on the rest of the pro-
gram. They also reduce name conflicts by refraining from importing anything
that isn’t needed. Modules are closed in Modula (1, 2, and 3) and Haskell. C++
is representative of an increasingly common option, in which names are auto-
matically exported, but are available on the outside only when qualified with the
module name—unless they are explicitly “imported” by another scope (e.g., with
the C++ using directive), at which point they are available unqualified. This op-
tion, which we might call selectively open modules, also appears in Ada, Java, C#,
and Python, among others.

Modules as Managers

Modules facilitate the construction of abstractions by allowing data to be made
private to the subroutines that use them. When used as in Figure 3.6, however,
each module defines a single abstraction. Continuing our previous example, there
are times when it may be desirable to have more than one pseudorandom num-
ber generator. When debugging a game, for example, we might want to obtain
deterministic (repeatable) behavior in one particular game module (a particular

3.3 Scope Rules 139

#include <time.h>
namespace rand_mgr {

const unsigned int a = 48271;

const unsigned int m = Ox7fffffff;

typedef struct {
unsigned int seed;
} generator;

generator* create() {
generator* g = new generator;
g->seed = time(0);
return g;
}
void set_seed(generator* g, unsigned int s) {
g->seed = s5;
}
unsigned int rand_int(generator* g) {
return g->seed = (a * g->seed) Y% m;

}

Figure 3.1 Manager module for pseudorandom numbers in C++.

character, perhaps), regardless of uses of pseudorandom numbers elsewhere in
the program. If we want to have several generators, we can make our namespace
a “manager” for instances of a generator type, which is then exported from the
module, as shown in Figure 3.7. The manager idiom requires additional subrou-
tines to create/initialize and possibly destroy generator instances, and it requires
that every subroutine (set_seed, rand_int, create) take an extra parameter,
to specify the generator in question.

Given the declarations in Figure 3.7, we could create and use an arbitrary num-
ber of generators:

using rand_mgr::generator;
generator *gl = rand_mgr::create();
generator *g2 = rand_mgr::create();

using rand_mgr::rand_int;
int rl1 = rand_int(gl);
int r2 = rand_int(g2);

In more complex programs, it may make sense for a module to export several
related types, instances of which can then be passed to its subroutines.

3.3.5 Module Types and Classes

An alternative solution to the multiple instance problem appeared in Eu-
clid, which treated each module as a type, rather than a simple encapsulation

140 Chapter 3 Names, Scopes, and Bindings

EXAMPLE 3 |6

A pseudorandom number
generator type

construct. Given a module type, the programmer could declare an arbitrary
number of similar module objects. As it turns out, the classes of modern object-
oriented languages are an extension of module types. Access to a module instance
typically looks like access to an object, and we can illustrate the ideas in any
object-oriented language. For our C++ pseudorandom number example, the
syntax

generator *g = rand _mgr::create();
int r = rand_int(g);
might be replaced by
rand_gen *g = new rand_gen();
int r = g->rand_int();

where the rand_gen class is declared as in Figure 3.8. Module types or classes
allow the programmer to think of the rand_int routine as “belonging to” the
generator, rather than as a separate entity to which the generator must be passed

DESIGN & IMPLEMENTATION

3.5 Modules and separate compilation

One of the hallmarks of a good abstraction is that it tends to be useful in multi-
ple contexts. To facilitate code reuse, many languages make modules the basis
of separate compilation. Modula-2 actually provided two different kinds of
modules: one (external modules) for separate compilation, the other (internal
modules) for textual nesting within a larger scope. Experience with these op-
tions eventually led Niklaus Wirth, the designer of Modula-2, to conclude that
external modules were by far the more useful variety; he omitted the internal
version from his subsequent language, Oberon. Many would argue, however,
that internal modules find their real utility only when extended with instan-
tiation and inheritance. Indeed, as noted near the end of this section, many
object-oriented languages provide both modules and classes. The former sup-
port separate compilation and serve to minimize name conflicts; the latter are
for data abstraction.

To facilitate separate compilation, modules in many languages (Modula-2
and Oberon among them) can be divided into a declaration part (header) and
an implementation part (body), each of which occupies a separate file. Code
that uses the exports of a given module can be compiled as soon as the header
exists; it is not dependent on the body. In particular, work on the bodies of
cooperating modules can proceed concurrently once the headers exist. We will
return to the subjects of separate compilation and code reuse in Sections C-3.8
and 10.1, respectively.

3.3 Scope Rules 141

class rand_gen {
unsigned int seed = time(0);

const unsigned int a = 48271;

const unsigned int m = Ox7Iffffff;
public:
void set_seed(unsigned int s) {
seed = s;
}

unsigned int rand_int() {

return seed = (a * seed) % m;

}
}

Figure 3.8 Pseudorandom number generator class in C++.

as an argument. Conceptually, there is a dedicated rand_int routine for every
generator (rand_gen object). In practice, of course, it would be highly wasteful
to create multiple copies of the code. As we shall see in Chapter 10, rand_gen
instances really share a single pair of set_seed and rand_int routines, and the
compiler arranges for a pointer to the relevant instance to be passed to the routine
as an extra, hidden parameter. The implementation turns out to be very similar
to that of Figure 3.7, but the programmer need not think of it that way.

Object Orientation

The difference between module types and classes is a powerful pair of features
found together in the latter but not the former—namely, inheritance and dynamic
method dispatch.® Inheritance allows new classes to be defined as extensions or
refinements of existing classes. Dynamic method dispatch allows a refined class
to override the definition of an operation in its parent class, and for the choice
among definitions to be made at run time, on the basis of whether a particular
object belongs to the child class or merely to the parent.

Inheritance facilitates a programming style in which all or most operations are
thought of as belonging to objects, and in which new objects can inherit many of
their operations from existing objects, without the need to rewrite code. Classes
have their roots in Simula-67, and were further developed in Smalltalk. They ap-
pear in many modern languages, including Eiffel, OCaml, C++, Java, C#, and sev-
eral scripting languages, notably Python and Ruby. Inheritance mechanisms can
also be found in certain languages that are not usually considered object-oriented,
including Modula-3, Ada 95, and Oberon. We will examine inheritance, dynamic
dispatch, and their impact on scope rules in Chapter 10 and in Section 14.4.4.

8 A fewlanguages—notably members of the ML family—have module types with inheritance—but
still without dynamic method dispatch. Modules in most languages are missing both features.

142 Chapter 3 Names, Scopes, and Bindings

EXAMPLE 3 I?

Modules and classes in a
large application

Module types and classes (ignoring issues related to inheritance) require only
simple changes to the scope rules defined for modules in Section 3.3.4. Every
instance A of a module type or class (e.g., every rand_gen) has a separate copy
of the module or class’s variables. These variables are then visible when executing
one of A’s operations. They may also be indirectly visible to the operations of
some other instance B if A is passed as a parameter to one of those operations.
This rule makes it possible in most object-oriented languages to construct binary
(or more-ary) operations that can manipulate the variables (fields) of more than
one instance of a class.

Modules Containing Classes

While there is a clear progression from modules to module types to classes, it is
not necessarily the case that classes are an adequate replacement for modules in
all cases. Suppose we are developing an interactive “first person” game. Class
hierarchies may be just what we need to represent characters, possessions, build-
ings, goals, and a host of other data abstractions. At the same time, especially on
a project with a large team of programmers, we will probably want to divide the
functionality of the game into large-scale subsystems such as graphics and ren-
dering, physics, and strategy. These subsystems are really not data abstractions,
and we probably don’t want the option to create multiple instances of them. They
are naturally captured with traditional modules, particularly if those modules are
designed for separate compilation (Section 3.8). Recognizing the need for both
multi-instance abstractions and functional subdivision, many languages, includ-
ing C++, Java, C#, Python, and Ruby, provide separate class and module mecha-
nisms.

3.3.6 Dynamic Scoping

In a language with dynamic scoping, the bindings between names and objects
depend on the flow of control at run time, and in particular on the order in which
subroutines are called. In comparison to the static scope rules discussed in the
previous section, dynamic scope rules are generally quite simple: the “current”
binding for a given name is the one encountered most recently during execution,
and not yet destroyed by returning from its scope.

Languages with dynamic scoping include APL, Snobol, Tcl, TgX (the type-
setting language with which this book was created), and early dialects of Lisp
[MAE* 65, Moo78, TM81] and Perl.’ Because the flow of control cannot in gen-
eral be predicted in advance, the bindings between names and objects in a lan-
guage with dynamic scoping cannot in general be determined by a compiler. As a

9 Scheme and Common Lisp are statically scoped, though the latter allows the programmer to
specify dynamic scoping for individual variables. Static scoping was added to Perl in version 5;
the programmer now chooses static or dynamic scoping explicitly in each variable declaration.
(We consider this choice in more detail in Section 14.4.1.)

EXAMPLE 3'8

Static vs dynamic scoping

3.3 Scope Rules 143

1. n:integer —— global declaration

2. procedure first()
3. n:=1

4, procedure second()

5. n:integer —— local declaration
6. first()

7. n:i=2

8. if read_integer() > 0

9. second()
10. else
11. first()

12. write_integer(n)

Figure 3.9 Sstatic versus dynamic scoping. Program output depends on both scope rules and,
in the case of dynamic scoping, a value read at run time.

result, many semantic rules in a language with dynamic scoping become a matter
of dynamic semantics rather than static semantics. Type checking in expressions
and argument checking in subroutine calls, for example, must in general be de-
ferred until run time. To accommodate all these checks, languages with dynamic
scoping tend to be interpreted, rather than compiled.

Consider the program in Figure 3.9. If static scoping is in effect, this program
prints a 1. If dynamic scoping is in effect, the output depends on the value read
at line 8 at run time: if the input is positive, the program prints a 2; otherwise it
prints a 1. Why the difference? At issue is whether the assignment to the variable
n at line 3 refers to the global variable declared at line 1 or to the local variable
declared at line 5. Static scope rules require that the reference resolve to the closest
lexically enclosing declaration, namely the global n. Procedure first changes n to
1, and line 12 prints this value. Dynamic scope rules, on the other hand, require
that we choose the most recent, active binding for n at run time.

DESIGN & IMPLEMENTATION

3.6 Dynamic scoping

It is not entirely clear whether the use of dynamic scoping in Lisp and other
early interpreted languages was deliberate or accidental. One reason to think
that it may have been deliberate is that it makes it very easy for an interpreter to
look up the meaning of a name: all that is required is a stack of declarations (we
examine this stack more closely in Section C-3.4.2). Unfortunately, this simple
implementation has a very high run-time cost, and experience indicates that
dynamic scoping makes programs harder to understand. The modern consen-
sus seems to be that dynamic scoping is usually a bad idea (see Exercise 3.17
and Exploration 3.36 for two exceptions).

144 Chapter 3 Names, Scopes, and Bindings

EXAMPLE 3 |9

Run-time errors with
dynamic scoping

We create a binding for n when we enter the main program. We create another
when and if we enter procedure second. When we execute the assignment state-
ment at line 3, the n to which we are referring will depend on whether we entered
first through second or directly from the main program. If we entered through
second, we will assign the value 1 to second’s local n. If we entered from the
main program, we will assign the value 1 to the global n. In either case, the write
at line 12 will refer to the global n, since second’s local n will be destroyed, along
with its binding, when control returns to the main program.

With dynamic scoping, errors associated with the referencing environment
may not be detected until run time. In Figure 3.10, for example, the declara-
tion of local variable max_score in procedure foo accidentally redefines a global
variable used by function scaled_score, which is then called from foo. Since the
global max_score is an integer, while the local max_score is a floating-point num-
ber, dynamic semantic checks in at least some languages will result in a type clash
message at run time. If the local max_score had been an integer, no error would
have been detected, but the program would almost certainly have produced in-
correct results. This sort of error can be very hard to find.

Implementing Scope

To keep track of the names in a statically scoped program, a compiler relies on a
data abstraction called a symbol table. In essence, the symbol table is a dictionary:
it maps names to the information the compiler knows about them. The most ba-
sic operations are to insert a new mapping (a name-to-object binding) or to look
up the information that is already present for a given name. Static scope rules add
complexity by allowing a given name to correspond to different objects—and thus
to different information—in different parts of the program. Most variations on
static scoping can be handled by augmenting a basic dictionary-style symbol table
with enter_scope and leave_scope operations to keep track of visibility. Nothing
is ever deleted from the table; the entire structure is retained throughout compi-
lation, and then saved for use by debuggers or run-time reflection (type lookup)
mechanisms.

In a language with dynamic scoping, an interpreter (or the output of a com-
piler) must perform operations analogous to symbol table insert and lookup at
run time. In principle, any organization used for a symbol table in a compiler
could be used to track name-to-object bindings in an interpreter, and vice versa.
In practice, implementations of dynamic scoping tend to adopt one of two spe-
cific organizations: an association list or a central reference table.

IN MORE DEPTH

A symbol table with visibility support can be implemented in several different
ways. One appealing approach, due to LeBlanc and Cook [CL83], is described on
the companion site, along with both association lists and central reference tables.

3.5 The Meaning of Names within a Scope 145

max_score : integer —— maximum possible score

function scaled_score(raw_score : integer} : real
return raw_score / max_scare * 100

procedure foo()
max_score : real .= 0 ——highest percentage seen so far

foreach student in class
student.percent := scaled_score(student.points)
if student.percent > max_score
max_score ;= student.percent

Flglll’e 3.10 The problem with dynamic scoping. Procedure scaled_score probably does not
do what the programmer intended when dynamic scope rules allow procedure foo to change
the meaning of max_score.

An association list (or A-list for short) is simply a list of name/value pairs.
When used to implement dynamic scoping it functions as a stack: new declara-
tions are pushed as they are encountered, and popped at the end of the scope in
which they appeared. Bindings are found by searching down the list from the top.
A central reference table avoids the need for linear-time search by maintaining
an explicit mapping from names to their current meanings. Lookup is faster, but
scope entry and exit are somewhat more complex, and it becomes substantially
more difficult to save a referencing environment for future use (we discuss this
issue further in Section 3.6.1).

The Meaning of Names within a Scope

So far in our discussion of naming and scopes we have assumed that there is
a one-to-one mapping between names and visible objects at any given point in
a program. This need not be the case. Two or more names that refer to the
same object at the same point in the program are said to be aliases. A name
that can refer to more than one object at a given point in the program is said
to be overloaded. Overloading is in turn related to the more general subject of
polymorphism, which allows a subroutine or other program fragment to behave
in different ways depending on the types of its arguments.

3.5.1 Aliases

Simple examples of aliases occur in the variant records and unions of many pro-
gramming languages (we will discuss these features detail in Section C-8.1.3).

146 Chapter 3 Names, Scopes, and Bindings

They also arise naturally in programs that make use of pointer-based data struc-
examee 3.20 tures. A more subtle way to create aliases in many languages is to pass a variable
Aliasing with parameters by reference to a subroutine that also accesses that variable directly. Consider the

following code in C++:

double sum, sum_of_squares;

void accumulate(double& x) { // x is passed by reference
sum += x;
sum_of_squares += x * Xx;

If we pass sum as an argument to accumulate, then sum and x will be aliases for
one another inside the called routine, and the program will probably not do what
the programmer intended.

As a general rule, aliases tend to make programs more confusing than they
otherwise would be. They also make it much more difficult for a compiler

examee 3.21 to perform certain important code improvements. Consider the following
Aliases and code C code:
improvement

int a, b, *p, *q;

a = *p; /* read from the variable referred to by p */
q = 3; / assign to the variable referred to by g */
b = *p; /* read from the variable referred to by p */

DESIGN & IMPLEMENTATION

3.1 Pointers in C and Fortran

The tendency of pointers to introduce aliases is one of the reasons why For-
tran compilers tended, historically, to produce faster code than C compilers:
pointers are heavily used in C, but missing from Fortran 77 and its predeces-
sors. It is only in recent years that sophisticated alias analysis algorithms have
allowed C compilers to rival their Fortran counterparts in speed of generated
code. Pointer analysis is sufficiently important that the designers of the C99
standard decided to add a new keyword to the language. The restrict qual-
ifier, when attached to a pointer declaration, is an assertion on the part of the
programmer that the object to which the pointer refers has no alias in the cur-
rent scope. It is the programmer’s responsibility to ensure that the assertion is
correct; the compiler need not attempt to check it. C99 also introduced strict
aliasing. This allows the compiler to assume that pointers of different types
will never refer to the same location in memory. Most compilers provide a
command-line option to disable optimizations that exploit this rule; other-
wise (poorly written) legacy programs may behave incorrectly when compiled
at higher optimization levels.

EXAMPLE 322

Overloaded enumeration
constants in Ada

EXAMPLE 323

Resolving ambiguous
overloads

3.5 The Meaning of Names within a Scope 147

declare
type month is (jan, feb, mar, apr, may, jun,
jul, aug, sep, oct, nov, dec);
type print_base is (dec, bin, oct, hex);
mo : month;
pb : print_base;

begin
mo := dec; -- the month dec (since mo has type month)
pb := oct; -- the print_base oct (since pb has type print_base)
print (oct); -- error! insufficient context
- to decide which oct is intended
Figure 301 Overloading of enumeration constants in Ada.

The initial assignment to a will, on most machines, require that *p be loaded into
aregister. Since accessing memory is expensive, the compiler will want to hang on
to the loaded value and reuse it in the assignment to b. It will be unable to do so,
however, unless it can verify that p and g cannot refer to the same object—that
is, that *p and *q are not aliases. While compile-time verification of this sort is
possible in many common cases, in general it’s undecidable.

35.2 Overloading

Most programming languages provide at least a limited form of overloading. In
C, for example, the plus sign (+) is used to name several different functions, in-
cluding signed and unsigned integer and floating-point addition. Most program-
mers don’t worry about the distinction between these two functions—both are
based on the same mathematical concept, after all—but they take arguments of
different types and perform very different operations on the underlying bits. A
slightly more sophisticated form of overloading appears in the enumeration con-
stants of Ada. In Figure 3.11, the constants oct and dec refer either to months or
to numeric bases, depending on the context in which they appear.

Within the symbol table of a compiler, overloading must be handled (resolved)
by arranging for the lookup routine to return a list of possible meanings for the
requested name. The semantic analyzer must then choose from among the ele-
ments of the list based on context. When the context is not sufficient to decide,
as in the call to print in Figure 3.11, then the semantic analyzer must announce
an error. Most languages that allow overloaded enumeration constants allow the
programmer to provide appropriate context explicitly. In Ada, for example, one
can say

print(month' (oct));

In Modula-3 and C#, every use of an enumeration constant must be prefixed with
a type name, even when there is no chance of ambiguity:

148 Chapter 3 Names, Scopes, and Bindings

EXAMPLE 324

Overloading in C++

EXAMPLE 325

Operator overloading
in Ada

EXAMPLE 3.26

Operator overloading
in C++

struct complex {
double real, imaginary;
};

enum base {dec, bin, oct, hex};

int 1i;
complex X;

void print_num(int n) { ...
void print_num(int n, base b) { ...

void print_num(complex c) { ...

print_num(i); // uses the first function above
print_num(i, hex); // uses the second function above
print_num(x) ; // uses the third function above

Figure 3.12 Simple example of overloading in C++. In each case the compiler can tell which
function is intended by the number and types of arguments.

mo := month.dec; (* Modula-3 *)

pb = print_base.oct; // Cc#

In C, one cannot overload enumeration constants at all; every constant visible in a
given scope must be distinct. C++11 introduced new syntax to give the program-
mer control over this behavior: enum constants must be distinct; enum class
constants must be qualified with the class name (e.g., month::oct).

Both Ada and C++ have elaborate facilities for overloading subroutine names.
Many of the C++ facilities carry over to Java and C#. A given name may refer
to an arbitrary number of subroutines in the same scope, so long as the subrou-
tines differ in the number or types of their arguments. C++ examples appear in
Figure 3.12.

Redefining Built-in Operators

Many languages also allow the built-in arithmetic operators (+, -, *, etc.) to be
overloaded with user-defined functions. Ada, C++, and C# do this by defining
alternative prefix forms of each operator, and defining the usual infix forms to be
abbreviations (or “syntactic sugar”) for the prefix forms. In Ada, A + B is short
for "+" (A, B). If "+" (the prefix form) is overloaded, then + (the infix form)
will work for the new types as well. It must be possible to resolve the overloading
(determine which + is intended) from the types of A and B.

Fortran 90 provides a special interface construct that can be used to
associate an operator with some named binary function. In C++ and C#,
which are object-oriented, A + B may be short for either operator+(A, B) or
A.operator+(B). In the latter case, A is an instance of a class (module type) that
defines an operator+ function. In C++ one might say

EXAMPLE 3.27

Infix operators in Haskell

EXAMPLE 328

Overloading with type
classes

3.5 The Meaning of Names within a Scope 149

class complex {
double real, imaginary;

public:
complex operator+(complex other) {
return complex(real + other.real, imaginary + other.imaginary);

}
};
a.::;:r-nplex A, B, C;
C= A+ B; // uses user-defined operator+

C# syntax is similar.
In Haskell, user-defined infix operators are simply functions whose names
consist of non-alphanumeric characters:

let a @@ b =a * 2 +b

Here we have defined a 2-argument operator named @@. We could also have de-
clared it with the usual prefix notation, in which case we would have needed to
enclose the name in parentheses:

let (@@) a b=a * 2+ b

Either way, both 3 @@ 4 and (@@) 3 4 will evaluate to 10. (An arbitrary function
can also be used as infix operator in Haskell by enclosing its name in backquotes.
With an appropriate definition, gcd 8 12 and 8 “gcd™ 12 will both evaluate
to 4.)

Unlike most languages, Haskell allows the programmer to specify both the as-
sociativity and the precedence of user-defined operators. We will return to this
subject in Section 6.1.1.

Both operators and ordinary functions can be overloaded in Haskell, using a
mechanism known as type classes. Among the simplest of these is the class Eq,
declared in the standard library as

DESIGN & IMPLEMENTATION

3.8 User-defined operators in 0Caml

OCaml does not support overloading, but it does allow the user to create new
operators, whose names—as in Haskell—consist of non-alphanumeric char-
acters. Each such name must begin with the name of one of the built-in op-
erators, from which the new operator inherits its syntactic role (prefix, infix,
or postfix) and precedence. So, for example, +. is used for floating-point addi-
tion; +/ is used for “bignum” (arbitrary precision) integer addition.

150 Chapter 3 Names, Scopes, and Bindings

EXAMPLE 329

Printing objects of multiple

types

class Eq a, where
(==) :: a -> a -> Bool

This declaration establishes Eq as the set of types that provide an == operator.
Any instance of ==, for some particular type a, must take two arguments (each of
type a) and return a Boolean result. In other words, == is an overloaded operator,
supported by all types of class Eq; each such type must provide its own equality
definition. The definition for integers, again from the standard library, looks like
this:

instance Eq Integer where
x ==y = x integerEq y

Here integerEq is the built-in, non-overloaded integer equality operator.

Type classes can build upon themselves. The Haskell 0rd class, for example,
encompasses all Eq types that also support the operators <, >, <=, and >=. The
Num class (simplifying a bit) encompasses all Eq types that also support addition,
subtraction, and multiplication. In addition to making overloading a bit more
explicit than it is in most languages, type classes make it possible to specify that
certain polymorphic functions can be used only when their arguments are of a
type that supports some particular overloaded function (for more on this subject,
see Sidebar 7.7).

Related Concepts

When considering function and subroutine calls, it is important to distinguish
overloading from the related concepts of coercion and polymorphism. All three
can be used, in certain circumstances, to pass arguments of multiple types to (or
return values of multiple types from) what appears to be a single named routine.
The syntactic similarity, however, hides significant differences in semantics and
pragmatics.

Coercion, which we will cover in more detail in Section 7.2.2, is the process
by which a compiler automatically converts a value of one type into a value of
another type when that second type is required by the surrounding context. Poly-
morphism, which we will consider in Sections 7.1.2, 7.3, 10.1.1, and 14.4.4, allows
a single subroutine to accept arguments of multiple types.

Consider a print routine designed to display its argument on the standard out-
put stream, and suppose that we wish to be able to display objects of multiple
types. With overloading, we might write a separate print routine for each type of
interest. Then when it sees a call to print(my_object), the compiler would choose
the appropriate routine based on the type of my_object.

Now suppose we already have a print routine that accepts a floating-point ar-
gument. With coercion, we might be able to print integers by passing them
to this existing routine, rather than writing a new one. When it sees a call to
printimy_integer), the compiler would coerce (convert) the argument automati-
cally to floating-point type prior to the call.

3.5 The Meaning of Names within a Scope 151

Finally, suppose we have a language in which many types support a to_string
operation that will generate a character-string representation of an object of that
type. We might then be able to write a polymorphic print routine that accepts
an argument of any type for which to_string is defined. The to_string operation
might itself be polymorphic, built in, or simply overloaded; in any of these cases,
print could call it and output the result.

In short, overloading allows the programmer to give the same name to multiple
objects, and to disambiguate (resolve) them based on context—for subroutines,
on the number or types of arguments. Coercion allows the compiler to perform
an automatic type conversion to make an argument conform to the expected type
of some existing routine. Polymorphism allows a single routine to accept argu-
ments of multiple types, provided that it attempts to use them only in ways that
their types support.

\/CHECK YOUR UNDERSTANDING

11. Explain the importance of information hiding.
1). What is an opaque export?

13. Why might it be useful to distinguish between the header and the body of a
module?

24. What does it mean for a scope to be closed?

25. Explain the distinction between “modules as managers” and “modules as
types.”
26. How do classes differ from modules?

21. Why might it be useful to have modules and classes in the same language?

18. Why does the use of dynamic scoping imply the need for run-time type check-
ing?
19. Explain the purpose of a compiler’s symbol table.

30. What are aliasest Why are they considered a problem in language design and
implementation?

31. Explain the value of the restrict qualifier in C.
3). What is overloading? How does it differ from coercion and polymorphism?

33. What are type classes in Haskell? What purpose do they serve?

152 Chapter 3 Names, Scopes, and Bindings

EXAMPLE 330

Deep and shallow binding

The Binding of Referencing Environments

We have seen in Section 3.3 how scope rules determine the referencing environ-
ment of a given statement in a program. Static scope rules specify that the refer-
encing environment depends on the lexical nesting of program blocks in which
names are declared. Dynamic scope rules specify that the referencing environ-
ment depends on the order in which declarations are encountered at run time.
An additional issue that we have not yet considered arises in languages that allow
one to create a reference to a subroutine—for example, by passing it as a parame-
ter. When should scope rules be applied to such a subroutine: when the reference
is first created, or when the routine is finally called? The answer is particularly im-
portant for languages with dynamic scoping, though we shall see that it matters
even in languages with static scoping.

A dynamic scoping example appears as pseudocode in Figure 3.13. Procedure
print_selected_records is assumed to be a general-purpose routine that knows
how to traverse the records in a database, regardless of whether they represent
people, sprockets, or salads. It takes as parameters a database, a predicate to make
print/don’t print decisions, and a subroutine that knows how to format the data
in the records of this particular database. We have hypothesized that procedure
print_person uses the value of nonlocal variable line_length to calculate the num-
ber and width of columns in its output. In a language with dynamic scoping, it is
natural for procedure print_selected_records to declare and initialize this variable
locally, knowing that code inside print_routine will pick it up if needed. For this
coding technique to work, the referencing environment of print_routine must not
be created until the routine is actually called by print_selected_records. This late
binding of the referencing environment of a subroutine that has been passed as a
parameter is known as shallow binding. Tt is usually the default in languages with
dynamic scoping.

For function older_than_threshold, by contrast, shallow binding may not work
well. If, for example, procedure print_selected_records happens to have a local
variable named threshold, then the variable set by the main program to influ-
ence the behavior of older_than_threshold will not be visible when the function
is finally called, and the predicate will be unlikely to work correctly. In such a
situation, the code that originally passes the function as a parameter has a par-
ticular referencing environment (the current one) in mind; it does not want the
routine to be called in any other environment. It therefore makes sense to bind
the environment at the time the routine is first passed as a parameter, and then
restore that environment when the routine is finally called. That is, we arrange
for older_than_threshold to see, when it is eventually called, the same referencing
environment it would have seen if it had been called at the point where the refer-
ence was created. This early binding of the referencing environment is known as
deep binding. It is almost always the default in languages with static scoping, and
is sometimes available as an option with dynamic scoping as well.

3.6 The Binding of Referencing Environments 153

type person = record
age : integer

threshold : integer
people : database

function older_than_threshold(p : person) : boolean
return p.age > threshold

procedure print_person(p : person)
—— Call appropriate 1/O routines to print record on standard output.
—— Make use of nonlocal variable line_length to format data in columns.

procedure print_selected_records(db : database;
predicate, print_routine : procedure)
line_length : integer

if device_type(stdout) = terminal
line_length := 80

else —— Standard output is a file or printer.
line_length := 132

foreach record r in db
—— |terating over these may actually be
——a lot more complicated than a 'for’ loop.
if predicatel(r)

print_routine(r)

—— main program

threshold := 35
print_selected_records(people, older_than_threshold, print_person)

Figure 3.3 Program (in pseudocode) to illustrate the importance of binding rules. One
might argue that deep binding is appropriate for the environment of function older_than.
threshold (for access to threshold), while shallow binding is appropriate for the environment
of procedure print_person (for access to line_length).

3.6.] Subroutine Closures

Deep binding is implemented by creating an explicit representation of a refer-
encing environment (generally the one in which the subroutine would execute
if called at the present time) and bundling it together with a reference to the
subroutine. The bundle as a whole is referred to as a closure. Usually the sub-
routine itself can be represented in the closure by a pointer to its code. In a lan-
guage with dynamic scoping, the representation of the referencing environment
depends on whether the language implementation uses an association list or a

154 Chapter 3 Names, Scopes, and Bindings

EXAMPLE 33 I

Binding rules with static
scoping

def A(I, P):

def B():
print (I)

body of A:
if I > 1:
PO
else:
A(2, B)

def C():
pass # do nothing

A1, C) # main program

Figure 3.14 Deep binding in Python. At right is a conceptual view of the run-time stack.
Referencing environments captured in closures are shown as dashed boxes and arrows. When
B is called via formal parameter P, two instances of T exist. Because the closure for P was
created in the initial invocation of A, B's static link (solid arrow) points to the frame of that earlier
invocation. B uses that invocation's instance of T in its print statement, and the output is a 1.

central reference table for run-time lookup of names; we consider these alterna-
tives at the end of Section ¢-3.4.2.

In early dialects of Lisp, which used dynamic scoping, deep binding was avail-
able via the built-in primitive function, which took a function as its argument
and returned a closure whose referencing environment was the one in which the
function would have executed if called at that moment in time. The closure could
then be passed as a parameter to another function. If and when it was eventually
called, it would execute in the saved environment. (Closures work slightly ditfer-
ently from “bare” functions in most Lisp dialects: they must be called by passing
them to the built-in primitives funcall or apply.)

At first glance, one might be tempted to think that the binding time of refer-
encing environments would not matter in a language with static scoping. After
all, the meaning of a statically scoped name depends on its lexical nesting, not on
the flow of execution, and this nesting is the same whether it is captured at the
time a subroutine is passed as a parameter or at the time the subroutine is called.
The catch is that a running program may have more than one instance of an ob-
ject that is declared within a recursive subroutine. A closure in a language with
static scoping captures the current instance of every object, at the time the closure
is created. When the closure’s subroutine is called, it will find these captured in-
stances, even if newer instances have subsequently been created by recursive calls.

One could imagine combining static scoping with shallow binding [VF82], but
the combination does not seem to make much sense, and does not appear to have
been adopted in any language. Figure 3.14 contains a Python program that illus-
trates the impact of binding rules in the presence of static scoping. This program
prints a 1. With shallow binding it would print a 2.

3.6 The Binding of Referencing Environments 155

It should be noted that binding rules matter with static scoping only when
accessing objects that are neither local nor global, but are defined at some inter-
mediate level of nesting. If an object is local to the currently executing subroutine,
then it does not matter whether the subroutine was called directly or through a
closure; in either case local objects will have been created when the subroutine
started running. If an object is global, there will never be more than one instance,
since the main body of the program is not recursive. Binding rules are therefore
irrelevant in languages like C, which has no nested subroutines, or Modula-2,
which allows only outermost subroutines to be passed as parameters, thus ensur-
ing that any variable defined outside the subroutine is global. (Binding rules are
also irrelevant in languages like PL/T and Ada 83, which do not permit subroutines
to be passed as parameters at all.)

Suppose then that we have a language with static scoping in which nested sub-
routines can be passed as parameters, with deep binding. To represent a closure
for subroutine S, we can simply save a pointer to S’s code together with the static
link that S would use if it were called right now, in the current environment.
When S is finally called, we temporarily restore the saved static link, rather than
creating a new one. When § follows its static chain to access a nonlocal object, it
will find the object instance that was current at the time the closure was created.
This instance may not have the value it had at the time the closure was created,
but its identity, at least, will reflect the intent of the closure’s creator.

3.6.2 First-Class Values and Unlimited Extent

In general, a value in a programming language is said to have first-class status
if it can be passed as a parameter, returned from a subroutine, or assigned into
a variable. Simple types such as integers and characters are first-class values in
most programming languages. By contrast, a “second-class” value can be passed
as a parameter, but not returned from a subroutine or assigned into a variable,
and a “third-class” value cannot even be passed as a parameter. As we shall see
in Section 9.3.2, labels (in languages that have them) are usually third-class val-
ues, but they are second-class values in Algol. Subroutines display the most vari-
ation. They are first-class values in all functional programming languages and
most scripting languages. They are also first-class values in C# and, with some
restrictions, in several other imperative languages, including Fortran, Modula-2
and -3, Ada 95, C, and C++.!% They are second-class values in most other imper-
ative languages, and third-class values in Ada 83.

Our discussion of binding so far has considered only second-class subroutines.
First-class subroutines in a language with nested scopes introduce an additional
level of complexity: they raise the possibility that a reference to a subroutine may

10 Some authors would say that first-class status requires anonymous function definitions—lambda
expressions—that can be embedded in other expressions. C#, several scripting languages, and all
functional languages meet this requirement, but many imperative languages do not.

156 Chapter 3 Names, Scopes, and Bindings

EXAMPLE 332

Returning a first-class
subroutine in Scheme

outlive the execution of the scope in which that routine was declared. Consider
the following example in Scheme:

1. (define plus-x

2 (lambda (x)

3. (lambda (y) (+ x y))))
4

(let ((f (plus-x 2)))
(f 3)) ; returns 5

o o

Here the let construct on line 5 declares a new function, £, which is the result of
calling plus-x with argument 2. Function plus-x is defined at line 1. It returns
the (unnamed) function declared at line 3. But that function refers to parameter x
of plus-x. When £ is called at line 6, its referencing environment will include the
X in plus-x, despite the fact that plus-x has already returned (see Figure 3.15).
Somehow we must ensure that x remains available.

If local objects were destroyed (and their space reclaimed) at the end of each
scope’s execution, then the referencing environment captured in a long-lived clo-
sure might become full of dangling references. To avoid this problem, most func-
tional languages specify that local objects have unlimited extent: their lifetimes
continue indefinitely. Their space can be reclaimed only when the garbage col-
lection system is able to prove that they will never be used again. Local objects
(other than own/static variables) in most imperative languages have limited ex-
tent: they are destroyed at the end of their scope’s execution. (C# and Smalltalk
are exceptions to the rule, as are most scripting languages.) Space for local ob-
jects with limited extent can be allocated on a stack. Space for local objects with
unlimited extent must generally be allocated on a heap.

Given the desire to maintain stack-based allocation for the local variables
of subroutines, imperative languages with first-class subroutines must generally
adopt alternative mechanisms to avoid the dangling reference problem for clo-
sures. C and (pre-Fortran 90) Fortran, of course, do not have nested subrou-
tines. Modula-2 allows references to be created only to outermost subroutines
(outermost routines are first-class values; nested routines are third-class values).
Modula-3 allows nested subroutines to be passed as parameters, but only outer-

DESIGN & IMPLEMENTATION

3.9 Binding rules and extent

Binding mechanisms and the notion of extent are closely tied to implementa-
tion issues. A-lists make it easy to build closures (Section C-3.4.2), but so do
the non-nested subroutines of C and the rule against passing nonglobal sub-
routines as parameters in Modula-2. In a similar vein, the lack of first-class
subroutines in many imperative languages reflects in large part the desire to
avoid heap allocation, which would be needed for local variables with unlim-
ited extent.

EXAMPLE 3.33

An object closure in Java

3.6 The Binding of Referencing Environments 157

= —
plus-x €= anon

Figure 3.15 The need for unlimited extent. When function plus-x is called in Example 3.32,
it returns (left side of the figure) a closure containing an anonymous function. The referencing
environment of that function encompasses both plus-x and main—including the local variables
of plus-x itself. When the anonymous function is subsequently called (right side of the figure),
it must be able to access variables in the closure’s environment—in particular, the x inside
plus-x—despite the fact that plus-x is no longer active.

most routines to be returned or stored in variables (outermost routines are first-
class values; nested routines are second-class values). Ada 95 allows a nested rou-
tine to be returned, but only if the scope in which it was declared is the same as,
or larger than, the scope of the declared return type. This containment rule, while
more conservative than strictly necessary (it forbids the Ada equivalent of Figure
3.14), makes it impossible to propagate a subroutine reference to a portion of the
program in which the routine’s referencing environment is not active.

3.63 Object Closures

As noted in Section 3.6.1, the referencing environment in a closure will be non-
trivial only when passing a nested subroutine. This means that the implementa-
tion of first-class subroutines is trivial in a language without nested subroutines.
At the same time, it means that a programmer working in such a language is
missing a useful feature: the ability to pass a subroutine with context. In object-
oriented languages, there is an alternative way to achieve a similar effect: we can
encapsulate our subroutine as a method of a simple object, and let the object’s
fields hold context for the method. In Java we might write the equivalent of Ex-
ample 3.32 as follows:

interface IntFunc {
public int call(int i);
}
class PlusX implements IntFunc {
final int x;
PlusX(int n) { x = n; }
public int call(int i) { return i + x; }

}

IntFunc £ = new PlusX(2);
System.out.println(f.call(3)); // prints 5

158 Chapter 3 Names, Scopes, and Bindings

exameLe 3.34
Delegates in C#

EXAMPLE 3.35

Delegates and unlimited
extent

EXAMPLE 336

Function objects in C++

Here the interface IntFunc defines a static type for objects enclosing a function
from integers to integers. Class PlusX is a concrete implementation of this type,
and can be instantiated for any integer constant x. Where the Scheme code in
Example 3.32 captured x in the subroutine closure returned by (plus-x 2), the
Java code here captures x in the object closure returned by new PlusX(2).

An object that plays the role of a function and its referencing environment
may variously be called an object closure, a function object, or a functor. (This is
unrelated to use of the term functor in Prolog, ML, or Haskell.) In C#, a first-class
subroutine is an instance of a delegate type:

delegate int IntFunc(int i);

This type can be instantiated for any subroutine that matches the specified argu-
ment and return types. That subroutine may be static, or it may be a methad of
some object:

static int Plus2(int i) return i + 2;

IntFunc f = new IntFunc(Plus2);
Console.WriteLine(£f(3)); // prints 5

class PlusX
int x;
public PlusX(int n) x = n;
public int call(int i) return i + x;

IntFunc g = new IntFunc(new PlusX(2).call);
Console.WriteLine(g(3)); // prints 5

Remarkably, though C# does not permit subroutines to nest in the general
case, it does allow delegates to be instantiated in-line from anonymous (unnamed)
methods. These allow us to mimic the code of Example 3.32:

static IntFunc PlusY(int y) {

return delegate(int i) { return i + v };

}
IntFunc h = PlusY(2);

Here y has unlimited extent! The compiler arranges to allocate it in the heap,
and to refer to it indirectly through a hidden pointer, included in the closure.
This implementation incurs the cost of dynamic storage allocation (and eventual
garbage collection) only when it is needed; local variables remain in the stack in
the common case.

Object closures are sufficiently important that some languages support them
with special syntax. In C++, an object of a class that overrides operator() can
be called as if it were a function:

exampie 3.37
A lambda expression in C#

EXAMPLE]38

Variety of lambda syntax

3.6 The Binding of Referencing Environments 159

class int_func {
public:
virtual int operator()(int i) = 0;
s
class plus_x : public int_func {
const int x;
public:
plus_x(int n) : x(m) { }

virtual int operator()(int i) { return i + x; }

+;
plus_x £(2);
cout << £(3) << "\n"; // prints 5

Object £ could also be passed to any function that expected a parameter of class
int_func.

3.64 Lambda Expressions

In most of our examples so far, closures have corresponded to subroutines that
were declared—and named—in the usual way. In the Scheme code of Exam-
ple 3.32, however, we saw an anonymous function—a lambda expression. Simi-
larly, in Example 3.35, we saw an anonymous delegate in C#. That example can
be made even simpler using C#’s lambda syntax:

static IntFunc PlusY(int y) {
return i => i + y;

}

Here the keyword delegate of Example 3.35 has been replaced by an => sign
that separates the anonymous function’s parameter list (in this case, just 1) from
its body (the expression i + y). In a function with more than one parameter, the
parameter list would be parenthesized; in a longer, more complicated function,
the body could be a code block, with one or more explicit return statements.

The term “lambda expression” comes from the lambda calculus, a formal no-
tation for functional programming that we will consider in more detail in Chap-
ter 11. As one might expect, lambda syntax varies quite a bit from one language
to another:

(lambda (i j) > i j) i j) ; Scheme
(int i, int j) =>1i > j 71 : j // C#

fun i j -> if 1 > j then i else j (% OCaml %)
S, Pp{i>j74i:3% # Ruby

Each of these expressions evaluates to the larger of two parameters.

160 Chapter 3 Names, Scopes, and Bindings

EXAMPLE 339

A simple lambda
expression in C++1 1

In Scheme and OCaml, which are predominately functional languages, a
lambda expression simply is a function, and can be called in the same way as
any other function:

3 Scheme:

((lambda (i j) (> i j) i j) 5 8) ; evaluates to 8
(* OCaml: *)

(fun i j => if i > j then i else j) 5 8 (* likewise *)

In Ruby, which is predominately imperative, a lambda expression must be called
explicitly:

print ->(i, j){ i >j 71 : j }.call(5, 8)

In C#, the expression must be assigned into a variable (or passed into a parameter)
before it can be invoked:

Funec<int, int, int> m = (i, j) => 1 > j 7 i : j;
Console.WriteLine(m.Invoke(5, 8));

Here Func<int, int, int> is how one names the type of a function taking two
integer parameters and returning an integer result.

In functional programming languages, lambda expressions make it easy to ma-
nipulate functions as values—to combine them in various ways to create new
functions on the fly. This sort of manipulation is less common in imperative lan-
guages, but even there, lambda expressions can help encourage code reuse and
generality. One particularly common idiom is the callback—a subroutine, passed
into a library, that allows the library to “call back” into the main program when
appropriate. Examples of callbacks include a comparison operator passed into a
sorting routine, a predicate used to filter elements of a collection, or a handler to
be called in response to some future event (see Section 9.6.2).

With the increasing popularity of first-class subroutines, lambda expressions
have even made their way into C++, where the lack of garbage collection and
the emphasis on stack-based allocation make it particularly difficult to solve the
problem of variable capture. The adopted solution, in keeping with the nature of
the language, stresses efficiency and expressiveness more than run-time safety.

In the simple case, no capture of nonlocal variables is required. If V is a vector
of integers, the following will print all elements less than 50:

for_each(V.begin(), V.end(),
[1(int e){ if (e < 50) cout << e << " "; }
);

Here for_each is a standard library routine that applies its third parameter—a
function—to every element of a collection in the range specified by its first two

EXAMPLE 340

Variable capture in C++
lambda expressions

3.6 The Binding of Referencing Environments 161

parameters. In our example, the function is denoted by a lambda expression,
introduced by the empty square brackets. The compiler turns the lambda expres-
sion into an anonymous function, which is then passed to for_each via C++’s
usual mechanism—a simple pointer to the code.

Suppose, however, that we wanted to print all elements less than k, where k is
a variable outside the scope of the lambda expression. We now have two options
in C++:

[=]1(int e){ if (e < k) cout << e << " "; }
[£] (int e){ if (e < k) cout << e << " "; }

Both of these cause the compiler to create an object closure (a function object in
C++), which could be passed to (and called from) for_each in the same way
as an ordinary function. The difference between the two options is that [=] ar-
ranges for a copy of each captured variable to be placed in the object closure;
[&] arranges for a reference to be placed there instead. The programmer must
choose between these options. Copying can be expensive for large objects, and
any changes to the object made after the closure is created will not be seen by the
code of the lambda expression when it finally executes. References allow changes
to be seen, but will lead to undefined (and presumably incorrect) behavior if the
closure’s lifetime exceeds that of the captured object: C++ does not have un-
limited extent. In particularly complex situations, the programmer can specify
capture on an object-by-object basis:

[j, &k]1(int e){ ... // capture j's value and a reference to k,
// so they can be used in here

DESIGN & IMPLEMENTATION

3.10 Functions and function objects

The astute reader may be wondering: In Example 3.40, how does for_each
manage to “do the right thing” with two different implementations of its third
parameter? After all, sometimes that parameter is implemented as a simple
pointer; other times it is a pointer to an object with an operator (), which re-
quires a different kind of call. The answer is that for_each is a generic routine
(a template in C++). The compiler generates customized implementations of
for_each on demand. We will discuss generics in more detail in Section 7.3.1.

In some situations, it may be difficult to use generics to distinguish among
“function-like” parameters. As an alternative, C++ provides a standard
function class, with constructors that allow it to be instantiated from a func-
tion, a function pointer, a function object, or a manually created object closure.
Something like for_each could then be written as an ordinary (nongeneric)
subroutine whose third parameter was a object of class function. In any given
call, the compiler would coerce the provided argument to be a function object.

162 Chapter 3 Names, Scopes, and Bindings

EXAMPLE]4'

Lambda expressions in
Java 8

EXAMPLE 342

A simple assembly macro

Lambda expressions appear in Java 8 as well, but in a restricted form. In situa-
tions where they might be useful, Java has traditionally relied on an idiom known
as a functional interface. The Arrays.sort routine, for example, expects a pa-
rameter of type Comparator. To sort an array of personnel records by age, we
would (traditionally) have written

class AgeComparator implements Comparator<Person> {
public int compare(Person pl, Person p2) {
return Integer.compare(pl.age, p2.age);
}
}

Person[] People = ...

Arrays.sort(People, new AgeComparator());

Significantly, Comparator has only a single abstract method: the compare rou-
tine provided by our AgeComparator class. With lambda expressions in Java 8, we
can omit the declaration of AgeComparator and simply write

Arrays.sort(People, (pl, p2) -> Integer.compare(pl.age, p2.age));

The key to the simpler syntax is that Comparator is a functional interface, and
thus has only a single abstract method. When a variable or formal parameter
is declared to be of some functional interface type, Java 8 allows a lambda ex-
pression whose parameter and return types match those of the interface’s single
method to be assigned into the variable or passed as the parameter. In effect, the
compiler uses the lambda expression to create an instance of an anonymous class
that implements the interface.

As it turns out, coercion to functional interface types is the only use of lambda
expressions in Java. In particular, lambda expressions have no types of their own:
they are not really objects, and cannot be directly manipulated. Their behav-
ior with respect to variable capture is entirely determined by the usual rules for
nested classes. We will consider these rules in more detail in Section 10.2.3;
for now, suffice it to note that Java, like C++, does not support unlimited
extent.

Macro Expansion

Prior to the development of high-level programming languages, assembly lan-
guage programmers could find themselves writing highly repetitive code. To ease
the burden, many assemblers provided sophisticated macro expansion facilities.
Consider the task of loading an element of a two-dimensional array from memory
into a register. As we shall see in Section 8.2.3, this operation can easily require

EXAMPLE 343

Preprocessor macros in C

EXAMPLE 344

“Gotchas” in C macros

3.7 Macro Expansion 163

half a dozen instructions, with details depending on the hardware instruction
set; the size of the array elements; and whether the indices are constants, values
in memory, or values in registers. In many early assemblers, one could define a
macro that would replace an expression like Id2d(target.reg, array_name, row, col-
umn, row_size, element_size) with the appropriate multi-instruction sequence. In
a numeric program containing hundreds or thousands of array access operations,
this macro could prove extremely useful.

When C was created in the early 1970s, it was natural to include a macro pre-
processing facility:

#define LINE_LEN 80
#define DIVIDES(a,n) (!((n) % (2)))

/* true iff n has zero remainder modulo a */
#define SWAP(a,b) {int t = (a); (a) = (b); (b) = t;}
#define MAX(a,b) ((a) > (b) 7 (a) : (b))

Macros like LINE_LEN avoided the need (in early versions of C) to support named
constants in the language itself. Perhaps more important, parameterized macros
like DIVIDES, MAX, and SWAP were much more efficient than equivalent C func-
tions. They avoided the overhead of the subroutine call mechanism (including
register saves and restores), and the code they generated could be integrated into
any code improvements that the compiler was able to effect in the code surround-
ing the call.

Unfortunately, C macros suffer from several limitations, all of which stem from
the fact that they are implemented by textual substitution, and are not understood
by the rest of the compiler. Put another way, they provide a naming and binding
mechanism that is separate from—and often at odds with—the rest of the pro-
gramming language.

In the definition of DIVIDES, the parentheses around the occurrences of a and
n are essential. Without them, DIVIDES(y + z, x) would be replaced by (! (x %
v + z)), which is the same as (! ((x % y) + z)), according to the rules of prece-
dence. In a similar vein, SWAP may behave unexpectedly if the programmer writes
SWAP(x, t): textual substitution of arguments allows the macro’s declaration of
t to capture the t that was passed. MAX(x++, y++) may also behave unexpect-
edly, since the increment side effects will happen more than once. Unfortunately,

DESIGN & IMPLEMENTATION

3.1 Generics as macros

In some sense, the ability to import names into an ordinary module provides a
primitive sort of generic facility. A stack module that imports its element type,
for example, can be inserted (with a text editor) into any context in which the
appropriate type name has been declared, and will produce a “customized”
stack for that context when compiled. Early versions of C++ formalized this
mechanism by using macros to implement templates. Later versions of C++
have made templates (generics) a fully supported language feature, giving them
much of the flavor of hygienic macros. (More on templates and on template
metaprogramming can be found in Section C-7.3.2.)

164 Chapter 3 Names, Scopes, and Bindings

in standard C we cannot avoid the extra side effects by assigning the parameters
into temporary variables: a C macro that “returns” a value must be an expression,
and declarations are one of many language constructs that cannot appear inside
(see also Exercise 3.23).

Modern languages and compilers have, for the most part, abandoned macros
as an anachronism. Named constants are type-safe and easy to implement, and
in-line subroutines (to be discussed in Section 9.2.4) provide almost all the per-
formance of parameterized macros without their limitations. A few languages
(notably Scheme and Common Lisp) take an alternative approach, and integrate
macros into the language in a safe and consistent way. So-called hygienic macros
implicitly encapsulate their arguments, avoiding unexpected interactions with as-
sociativity and precedence. They rename variables when necessary to avoid the
capture problem, and they can be used in any expression context. Unlike subrou-
tines, however, they are expanded during semantic analysis, making them gen-
erally unsuitable for unbounded recursion. Their appeal is that, like all macros,
they take unevaluated arguments, which they evaluate lazily on demand. Among
other things, this means that they preserve the multiple side effect “gotcha” of our
MAX example. Delayed evaluation was a bug in this context, but can sometimes
be a feature. We will return to it in Sections 6.1.5 (short-circuit Boolean eval-
uation), 9.3.2 (call-by-name parameters), and 11.5 (normal-order evaluation in
functional programming languages).

\/CHECK YOUR UNDERSTANDING

34. Describe the difference between deep and shallow binding of referencing en-
vironments.

35. Why are binding rules particularly important for languages with dynamic
scoping?

36. What are first-class subroutines? What languages support them?
31. What is a subroutine closure? What is it used for? How is it implemented?
38. What is an object closure? How is it related to a subroutine closure?

39. Describe how the delegates of C# extend and unify both subroutine and object
closures.

40. Explain the distinction between limited and unlimited extent of objects in a
local scope.

41. What is a lambda expression? How does the support for lambda expressions in
functional languages compare to that of C# or Ruby? To that of C++ or Java?

41. What are macros? What was the motivation for including them in C? What
problems may they cause?

3.8 Separate Compilation 165

Separate Compilation

Since most large programs are constructed and tested incrementally, and since the
compilation of a very large program can be a multihour operation, any language
designed to support large programs must provide for separate compilation.

IN MORE DEPTH

On the companion site we consider the relationship between modules and sepa-
rate compilation. Because they are designed for encapsulation and provide a nar-
row interface, modules are the natural choice for the “compilation units” of many
programming languages. The separate module headers and bodies of Modula-3
and Ada, for example, are explicitly intended for separate compilation, and reflect
experience gained with more primitive facilities in other languages. C and C++,
by contrast, must maintain backward compatibility with mechanisms designed in
the early 1970s. Modern versions of C and C++ include a namespace mechanism
that provides module-like data hiding, but names must still be declared before
they are used in every compilation unit, and the mechanisms used to accom-
modate this rule are purely a matter of convention. Java and C# break with the
C tradition by requiring the compiler to infer header information automatically
from separately compiled class definitions; no header files are required.

Summary and Concluding Remarks

This chapter has addressed the subject of names, and the binding of names to ob-
jects (in a broad sense of the word). We began with a general discussion of the
notion of binding time—the time at which a name is associated with a particular
object or, more generally, the time at which an answer is associated with any open
question in language or program design or implementation. We defined the no-
tion of lifetime for both objects and name-to-object bindings, and noted that they
need not be the same. We then introduced the three principal storage allocation
mechanisms—static, stack, and heap—used to manage space for objects.

In Section 3.3 we described how the binding of names to objects is governed by
scope rules. In some languages, scope rules are dynamic: the meaning of a name is
found in the most recently entered scope that contains a declaration and that has
not yet been exited. In most modern languages, however, scope rules are static, or
lexical: the meaning of a name is found in the closest lexically surrounding scope
that contains a declaration. We found that lexical scope rules vary in important
but sometimes subtle ways from one language to another. We considered what
sorts of scopes are allowed to nest, whether scopes are open or closed, whether the
scope of a name encompasses the entire block in which it is declared, and whether

166

Chapter 3 Names, Scopes, and Bindings

a name must be declared before it is used. We explored the implementation of
scope rules in Section 3.4.

In Section 3.5 we examined several ways in which bindings relate to one an-
other. Aliases arise when two or more names in a given scope are bound to the
same object. Overloading arises when one name is bound to multiple objects. We
noted that while behavior reminiscent of overloading can sometimes be achieved
through coercion or polymorphism, the underlying mechanisms are really very
different. In Section 3.6 we considered the question of when to bind a referencing
environment to a subroutine that is passed as a parameter, returned from a func-
tion, or stored in a variable. Our discussion touched on the notions of closures
and lambda expressions, both of which will appear repeatedly in later chapters. In
Sections 3.7 and 3.8 we considered macros and separate compilation.

Some of the more complicated aspects of lexical scoping illustrate the evolu-
tion of language support for data abstraction, a subject to which we will return
in Chapter 10. We began by describing the own or static variables of languages
like Fortran, Algol 60, and C, which allow a variable that is local to a subroutine
to retain its value from one invocation to the next. We then noted that simple
modules can be seen as a way to make long-lived objects local to a group of sub-
routines, in such a way that they are not visible to other parts of the program.
By selectively exporting names, a module may serve as the “manager” for one or
more abstract data types. At the next level of complexity, we noted that some
languages treat modules as types, allowing the programmer to create an arbitrary
number of instances of the abstraction defined by a module. Finally, we noted
that object-oriented languages extend the module-as-type approach (as well as
the notion of lexical scope) by providing an inheritance mechanism that allows
new abstractions (classes) to be defined as extensions or refinements of existing
classes.

Among the topics considered in this chapter, we saw several examples of useful
features (recursion, static scoping, forward references, first-class subroutines, un-
limited extent) that have been omitted from certain languages because of concern
for their implementation complexity or run-time cost. We also saw an example
of a feature (the private part of a module specification) introduced expressly to
facilitate a language’s implementation, and another (separate compilation in C)
whose design was clearly intended to mirror a particular implementation. In sev-
eral additional aspects of language design (late vs early binding, static vs dynamic
scoping, support for coercions and conversions, toleration of pointers and other
aliases), we saw that implementation issues play a major role.

In a similar vein, apparently simple language rules can have surprising implica-
tions. In Section 3.3.3, for example, we considered the interaction of whole-block
scope with the requirement that names be declared before they can be used. Like
the do loop syntax and white space rules of Fortran (Section 2.2.2) or the if...
then ... else syntax of Pascal (Section 2.3.2), poorly chosen scoping rules can
make program analysis difficult not only for the compiler, but for human beings
as well. In future chapters we shall see several additional examples of features that
are both confusing and hard to compile. Of course, semantic utility and ease of

3.10 Exercises 167

implementation do not always go together. Many easy-to-compile features (e.g.,
goto statements) are of questionable value at best. We will also see several ex-
amples of highly useful and (conceptually) simple features, such as garbage col-
lection (Section 8.5.3) and unification (Sections 7.2.4, C-7.3.2, and 12.2.1), whose
implementations are quite complex.

31

32

33

34

35

Exercises

Indicate the binding time (when the language is designed, when the pro-
gram is linked, when the program begins execution, etc.) for each of the
following decisions in your favorite programming language and implemen-
tation. Explain any answers you think are open to interpretation.

The number of built-in functions (math, type queries, etc.)

The variable declaration that corresponds to a particular variable refer-
ence (use)

The maximum length allowed for a constant (literal) character string

The referencing environment for a subroutine that is passed as a pa-

rameter

The address of a particular library routine

The total amount of space occupied by program code and data
In Fortran 77, local variables were typically allocated statically. In Algol
and its descendants (e.g., Ada and C), they are typically allocated in the
stack. In Lisp they are typically allocated at least partially in the heap. What
accounts for these differences? Give an example of a program in Ada or
C that would not work correctly if local variables were allocated statically.
Give an example of a program in Scheme or Common Lisp that would not
work correctly if local variables were allocated on the stack.

Give two examples in which it might make sense to delay the binding of an
implementation decision, even though sufficient information exists to bind
it early.

Give three concrete examples drawn from programming languages with
which you are familiar in which a variable is live but not in scope.

Consider the following pseudocode:

1. procedure main()

2. a:integer =1

3. b :integer := 2

4. procedure middle()
5. b :integer :=a
6. procedure inner()

7. print a, b

168

Chapter 3 Names, Scopes, and Bindings

3.6

8. ainteger =3

9. —— body of middle
10. inner()

11. print a, b

12. —— body of main

13. middle()

14. print a, b

Suppose this was code for a language with the declaration-order rules of C
(but with nested subroutines)—that is, names must be declared before use,
and the scope of a name extends from its declaration through the end of
the block. At each print statement, indicate which declarations of a and b
are in the referencing environment. What does the program print (or will
the compiler identify static semantic errors)? Repeat the exercise for the
declaration-order rules of C# (names must be declared before use, but the
scope of a name is the entire block in which it is declared) and of Modula-3
(names can be declared in any order, and their scope is the entire block in
which they are declared).

Consider the following pseudocode, assuming nested subroutines and static
scope:

procedure main()
g : integer

procedure Bla : integer)
X :integer

procedure Aln : integer)
g:=n

procedure R{m : integer)
write_integer(x)
X /:= 2 == integer division

ifx>1
Rim + 1)
else
Alm)
——body of B
X:i=aXa
R(1)
—— body of main

B(3)
write_integer(g)

(3) What does this program print?

3.10 Exercises

typedef struct list_node {
void#* data;
struct list_node* next;
} list_node;

list_node* insert(void* d, list_node* L) {
list_node* t = (list_nodex*) malloc(sizeof(list_node));
t->data = d;
t->next = L;

return t;

list_node* reverse(list_nodex L) {
list_node* rtn = 0;
while (L) {
rtn = insert(L->data, rtn);
L = L->next;
}
return rtn;

}

void delete_list(list_nodex L) {
while (L) {
list_node* t = L;
L = L->next;
free(t->data);
free(t);

}

Figure 3.16 List management routines for Exercise 3.7.

169

(b) Show the frames on the stack when A has just been called. For each

frame, show the static and dynamic links.
() Explain how A finds g.

3.1 As part of the development team at MumbleTech.com, Janet has written a
list manipulation library for C that contains, among other things, the code

in Figure 3.16.

(a) Accustomed to Java, new team member Brad includes the following

code in the main loop of his program:

list_node* L = 0;
while (more_widgets()) {

L = insert(next_widget(), L);
}
L

= reverse(L);

170

Chapter 3 Names, Scopes, and Bindings

3.8

3.9

3.10

(b)

Sadly, after running for a while, Brad’s program always runs out of
memory and crashes. Explain what’s going wrong.

After Janet patiently explains the problem to him, Brad gives it another
try:

list_node* L = 0;
while (more_widgets()) {

L = insert(next_widget(), L);
}
list_node* T = reverse(L):
delete_list(L);
L=T,

This seems to solve the insufficient memory problem, but where the
program used to produce correct results (before running out of mem-
ory), now its output is strangely corrupted, and Brad goes back to Janet
for advice. What will she tell him this time?

Rewrite Figures 3.6 and 3.7 in C. You will need to use separate compilation
for name hiding.

Consider the following fragment of code in C:

{

}
(3)
(b)

int a, b, c¢;
{ int 4, e;

{ int f;

{ int g, h, i;

Assume that each integer variable occupies four bytes. How much total
space is required for the variables in this code?

Describe an algorithm that a compiler could use to assign stack frame
offsets to the variables of arbitrary nested blocks, in a way that mini-
mizes the total space required.

Consider the design of a Fortran 77 compiler that uses static allocation for
the local variables of subroutines. Expanding on the solution to the pre-
vious question, describe an algorithm to minimize the total space required
for these variables. You may find it helpful to construct a call graph data

3.12

3.3

3.10 Exercises 171

structure in which each node represents a subroutine, and each directed arc

indicates that the subroutine at the tail may sometimes call the subroutine
at the head.

Consider the following pseudocode:

procedure P(A, B : real)
X :real

procedure Q(B, C : real)
Y :real

procedure R(A, C : real)
Z : real

Assuming static scope, what is the referencing environment at the location
marked by (¥)?

Write a simple program in Scheme that displays three different behaviors,
depending on whether we use let, let*, or letrec to declare a given set
of names. (Hint: To make good use of letrec, you will probably want your
names to be functions [1lambda expressions].)

Consider the following program in Scheme:

(define A
(lambda ()
(let* ((x 2)
(C (lambda (P)
(let ((x 4))
(P))))
(D (lambda ()
x))
(B (lambda ()
(let ((x 3))
(c D))
(B))))

What does this program print? What would it print if Scheme used dynamic
scoping and shallow binding? Dynamic scoping and deep binding? Explain
your answers.

3.14 Consider the following pseudocode:

X . integer ——global

procedure set x(n : integer)
X:I=n

172 Chapter 3 Names, Scopes, and Bindings

3.15

3.16

procedure print_x()
write_integer(x)

procedure first()
setx(1)
print_x()

procedure second()
X . integer
setx(2)
print_x()

setx(0)
first()
print_x{)
secondl()
print_x()

What does this program print if the language uses static scoping? What does
it print with dynamic scoping? Why?

The principal argument in favor of dynamic scoping is that it facilitates
the customization of subroutines. Suppose, for example, that we have a
library routine print_integer that is capable of printing its argument in any
of several bases (decimal, binary, hexadecimal, etc.). Suppose further that
we want the routine to use decimal notation most of the time, and to use
other bases only in a few special cases: we do not want to have to specify
a base explicitly on each individual call. We can achieve this result with
dynamic scoping by having print_integer obtain its base from a nonlocal
variable print_.base. We can establish the default behavior by declaring a
variable print_base and setting its value to 10 in a scope encountered early
in execution. Then, any time we want to change the base temporarily, we
can write

begin ——nested block
print_base : integer := 16 —— use hexadecimal
print_integer(n)

The problem with this argument is that there are usually other ways to
achieve the same effect, without dynamic scoping. Describe at least two
for the print_integer example.

As noted in Section 3.6.3, C# has unusually sophisticated support for first-
class subroutines. Among other things, it allows delegates to be instantiated
from anonymous nested methods, and gives local variables and parameters
unlimited extent when they may be needed by such a delegate. Consider the
implications of these features in the following C# program:

3.17

3.18

3.10 Exercises 173

using System;
public delegate int UnaryOp(int n);
// type declaration: UnaryOp is a function from ints to ints

public class Foo {
static int a = 2;
static UnaryOp b(int c) {
int d = a + c;
Console.WritelLine(d);

return delegate(int n) { return c + n; };
}

public static void Main(string[] args) {
Console.WriteLine(b(3)(4));
}

What does this program print? Which of a, b, ¢, and d, if any, is likely to be
statically allocated? Which could be allocated on the stack? Which would
need to be allocated in the heap? Explain.

If you are familiar with structured exception handling, as provided in Ada,
C++, Java, C#, ML, Python, or Ruby, consider how this mechanism relates
to the issue of scoping. Conventionally, a raise or throw statement is
thought of as referring to an exception, which it passes as a parameter to
a handler-finding library routine. In each of the languages mentioned, the
exception itself must be declared in some surrounding scope, and is sub-
ject to the usual static scope rules. Describe an alternative point of view, in
which the raise or throw is actually a reference to a handler, to which it
transfers control directly. Assuming this point of view, what are the scope
rules for handlers? Are these rules consistent with the rest of the language?
Explain. (For further information on exceptions, see Section 9.4.)

Consider the following pseudocode:

X . integer ——global

procedure setx(n : integer)
X:=n

procedure print_x()
write_integer(x)

procedure foo(S, P : function; n : integer)
X :integer :== 5
if nin {1, 3}
setx(n)
else
S(n)

174

Chapter 3 Names, Scopes, and Bindings

3.19

3.20

3.21

ifnin {1, 2}
print_x()
else
P

set_x(0); foo(setx, print_x, 1); print_x()
set_x(0); foo(setx, printx, 2); print_x()
set_x(0); foo(setx, printx, 3); print_x()
set_x(0); foo(set_x, print_x, 4); print_x()

Assume that the language uses dynamic scoping. What does the program
print if the language uses shallow binding? What does it print with deep
binding? Why?

Consider the following pseudocode:

X > integer =1
y . integer ;= 2

procedure addi)
Xi=X+y

procedure second(P : procedure)
X :integer =2
Pl()

procedure first
y . integer ;=3
second(add)

firstl()
write.integer(x)

(3 What does this program print if the language uses static scoping?

(b) What doesit print if the language uses dynamic scoping with deep bind-
ing?

() What does it print if the language uses dynamic scoping with shallow
binding?

Consider mathematical operations in a language like C++, which supports
both overloading and coercion. In many cases, it may make sense to pro-
vide multiple, overloaded versions of a function, one for each numeric type
or combination of types. In other cases, we might use a single version—
probably defined for double-precision floating point arguments—and rely
on coercion to allow that function to be used for other numeric types (e.g.,
integers). Give an example in which overloading is clearly the preferable
approach. Give another in which coercion is almost certainly better.

In a language that supports operator overloading, build support for ration-

al numbers. Each number should be represented internally as a (numera-
tor, denominator) pair in simplest form, with a positive denominator. Your

30

3.3

3.11 Explorations 175

code should support unary negation and the four standard arithmetic oper-
ators. For extra credit, create a conversion routine that accepts two floating-
point parameters—a value and a error bound—and returns the simplest
(smallest denominator) rational number within the given error bound of
the given value.

In an imperative language with lambda expressions (e.g., C#, Ruby, C++, or
Java), write the following higher-level functions. (A higher-level function,
as we shall see in Chapter 11, takes other functions as argument and/or
returns a function as a result.)

compose(g, f)—returns a function h such that h(x) == g(£(x)).
map(f, L)—given a function £ and a list L returns a list M such that
the ith element of M is £ (e), where e is the ith element of L.
filter(L, P)—given a list L and a predicate (Boolean-returning

function) P, returns a list containing all and only those elements of L
for which P is true.

Ideally, your code should work for any argument or list element type.

Can you write a macro in standard C that “returns” the greatest common
divisor of a pair of arguments, without calling a subroutine? Why or why
not?

@ 3.24-3.31 In More Depth.

332

3.33

3.34

Explorations

Experiment with naming rules in your favorite programming language.
Read the manual, and write and compile some test programs. Does the
language use lexical or dynamic scoping? Can scopes nest? Are they open
or closed? Does the scope of a name encompass the entire block in which it
is declared, or only the portion after the declaration? How does one declare
mutually recursive types or subroutines? Can subroutines be passed as pa-
rameters, returned from functions, or stored in variables? If so, when are
referencing environments bound?

List the keywords (reserved words) of one or more programming languages.
List the predefined identifiers. (Recall that every keyword is a separate to-
ken. An identifier cannot have the same spelling as a keyword.) What cri-
teria do you think were used to decide which names should be keywords
and which should be predefined identifiers? Do you agree with the choices?
Why or why not?

If you have experience with a language like C, C++, or Rust, in which dy-
namically allocated space must be manually reclaimed, describe your ex-
perience with dangling references or memory leaks. How often do these

176

Chapter 3 Names, Scopes, and Bindings

3.35

3.36

337

3.38

3.39
3.40

bugs arise? How do you find them? How much effort does it take? Learn
about open-source or commercial tools for finding storage bugs (Valgrind
is a popular open-source example). Do such tools weaken the argument for
automatic garbage collection?

A few languages—notably Euclid and Turing, make every subroutine a
closed scope, and require it to explicitly import any nonlocal names it uses.
The import lists can be thought of as explicit, mandatory documentation of
a part of the subroutine interface that is usually implicit. The use of import
lists also makes it easy for Euclid and Turing to prohibit passing a variable,
by reference, to a subroutine that also accesses that variable directly, thereby
avoiding the errors alluded to in Example 3.20.

In programs you have written, how hard would it have been to document
every use of a nonlocal variable? Would the effort be worth the improve-
ment in the quality of documentation and error rates?

We learned in Section 3.3.6 that modern languages have generally aban-
doned dynamic scoping. One place it can still be found is in the so-called
environment variables of the Unix programming environment. If you are
not familiar with these, read the manual page for your favorite shell (com-
mand interpreter—ksh/bash, csh/tcsh, etc.) to learn how these behave.
Explain why the usual alternatives to dynamic scoping (default parameters
and static variables) are not appropriate in this case.

Compare the mechanisms for overloading of enumeration names in Ada
and in Modula-3 or C# (Section 3.5.2). One might argue that the (histor-
ically more recent) Modula-3/C# approach moves responsibility from the
compiler to the programmer: it requires even an unambiguous use of an
enumeration constant to be annotated with its type. Why do you think this
approach was chosen by the language designers? Do you agree with the
choice? Why or why not?

Learn about tied variables in Perl. These allow the programmer to asso-
ciate an ordinary variable with an (object-oriented) object in such a way
that operations on the variable are automatically interpreted as method in-
vocations on the object. As an example, suppose we write tie $my_var,
"my_class";. The interpreter will create a new object of class my_class,
which it will associate with scalar variable $my_var. For purposes of dis-
cussion, call that object O. Now, any attempt to read the value of $my_var
will be interpreted as a call to method O->FETCH(). Similarly, the assign-
ment $my_var = value will be interpreted as a call to O->STORE(value).
Array, hash, and filehandle variables, which support a larger set of built-in
operations, provide access to a larger set of methods when tied.

Compare Perl’s tying mechanism to the operator overloading of C++.
Which features of each language can be conveniently emulated by the other?

Do you think coercion is a good idea? Why or why not?

The syntax for lambda expressions in Ruby evolved over time, with the re-
sult that there are now four ways to pass a block into a method as a closure:

3.12 Bibliographic Notes 177

by placing it after the end of the argument list (in which case it become an
extra, final parameter); by passing it to Proc.new; or, within the argument
list, by prefixing it with the keyword lambda or by writing it in -> lambda
notation. Investigate these options. Which came first? Which came later?
What are their comparative advantages? Are their any minor differences in
their behavior?

3.41 Lambda expressions were a late addition to the Java programming language:
they were strongly resisted for many years. Research the controversy sur-
rounding them. Where do your sympathies lie? What alternative proposals
were rejected? Do you find any of them appealing?

3.4 Give three examples of features that are not provided in some language with
which you are familiar, but that are common in other languages. Why do
you think these features are missing? Would they complicate the implemen-
tation of the language? If so, would the complication (in your judgment) be
justified?

@ 3.43-3.47 In More Depth.

Bibliographic Notes

This chapter has traced the evolution of naming and scoping mechanisms
through a very large number of languages, including Fortran (several versions),
Basic, Algol 60 and 68, Pascal, Simula, C and C++, Euclid, Turing, Modula (1, 2,
and 3), Ada (83 and 95), Oberon, Eiffel, Perl, Tcl, Python, Ruby, Rust, Java, and
C#. Bibliographic references for all of these can be found in Appendix A.

Both modules and objects trace their roots to Simula, which was developed
by Dahl, Nygaard, Myhrhaug, and others at the Norwegian Computing Center
in the mid-1960s. (Simula I was implemented in 1964; descriptions in this book
pertain to Simula 67.) The encapsulation mechanisms of Simula were refined in
the 1970s by the developers of Clu, Modula, Euclid, and related languages. Other
Simula innovations—inheritance and dynamic method binding in particular—
provided the inspiration for Smalltalk, the original and arguably purest of the
object-oriented languages. Modern object-oriented languages, including Fiffel,
C++, Java, C#, Python, and Ruby, represent to a large extent a reintegration of the
evolutionary lines of encapsulation on the one hand and inheritance and dynamic
method binding on the other.

The notion of information hiding originates in Parnas’s classic paper, “On the
Criteria to be Used in Decomposing Systems into Modules” [Par72]. Compara-
tive discussions of naming, scoping, and abstraction mechanisms can be found,
among other places, in Liskov et als discussion of Clu [LSAS77], Liskov and Gut-
tag’s text [LG86, Chap. 4], the Ada Rationale [IBFW91, Chaps. 9-12], Harbison’s
text on Modula-3 [Har92, Chaps. 8-9], Wirth’s early work on modules [Wir80],
and his later discussion of Modula and Oberon [Wir88a, Wir07]. Further infor-
mation on object-oriented languages can be found in Chapter 10.

178 Chapter 3 Names, Scopes, and Bindings

For a detailed discussion of overloading and polymorphism, see the survey by
Cardelli and Wegner [CW85]. Cailliau [Cai82] provides a lighthearted discus-
sion of many of the scoping pitfalls noted in Section 3.3.3. Abelson and Suss-
man [AS96, p. 11n] attribute the term “syntactic sugar” to Peter Landin.

Lambda expressions for C++ are described in the paper of Jirvi and Free-
man [JF10]. Lambda expressions for Java were developed under JSR 335 of the
Java Community Process (documentation at jep.org).

Semantic Analysis

In Chapter 2 we considered the topic of programming language syntax.
In the current chapter we turn to the topic of semantics. Informally, syntax con-
cerns the form of a valid program, while semantics concerns its meaning. Meaning
is important for at least two reasons: it allows us to enforce rules (e.g., type con-
sistency) that go beyond mere form, and it provides the information we need in
order to generate an equivalent output program.

It is conventional to say that the syntax of a language is precisely that portion
of the language definition that can be described conveniently by a context-free
grammar, while the semantics is that portion of the definition that cannot. This
convention is useful in practice, though it does not always agree with intuition.
When we require, for example, that the number of arguments contained in a call
to a subroutine match the number of formal parameters in the subroutine defini-
tion, it is tempting to say that this requirement is a matter of syntax. After all, we
can count arguments without knowing what they mean. Unfortunately, we can-
not count them with context-free rules. Similarly, while it is possible to write a
context-free grammar in which every function must contain at least one return
statement, the required complexity makes this strategy very unattractive. In gen-
eral, any rule that requires the compiler to compare things that are separated by
long distances, or to count things that are not properly nested, ends up being a
matter of semantics.

Semantic rules are further divided into static and dynamic semantics, though
again the line between the two is somewhat fuzzy. The compiler enforces static
semantic rules at compile time. It generates code to enforce dynamic semantic
rules at run time (or to call library routines that do so). Certain errors, such as
division by zero, or attempting to index into an array with an out-of-bounds sub-
script, cannot in general be caught at compile time, since they may occur only for
certain input values, or certain behaviors of arbitrarily complex code. In special
cases, a compiler may be able to tell that a certain error will always or never occur,
regardless of run-time input. In these cases, the compiler can generate an error
message at compile time, or refrain from generating code to perform the check at
run time, as appropriate. Basic results from computability theory, however, tell
us that no algorithm can make these predictions correctly for arbitrary programs:

179

180

Chapter 4 Semantic Analysis

there will inevitably be cases in which an error will always occur, but the compiler
cannot tell, and must delay the error message until run time; there will also be
cases in which an error can never occur, but the compiler cannot tell, and must
incur the cost of unnecessary run-time checks.

Both semantic analysis and intermediate code generation can be described in
terms of annotation, or decoration of a parse tree or syntax tree. The annotations
themselves are known as attributes. Numerous examples of static and dynamic
semantic rules will appear in subsequent chapters. In this current chapter we
focus primarily on the mechanisms a compiler uses to enforce the static rules. We
will consider intermediate code generation (including the generation of code for
dynamic semantic checks) in Chapter 15.

In Section 4.1 we consider the role of the semantic analyzer in more detail,
considering both the rules it needs to enforce and its relationship to other phases
of compilation. Most of the rest of the chapter is then devoted to the subject
of attribute grammars. Attribute grammars provide a formal framework for the
decoration of a tree. This framework is a useful conceptual tool even in compilers
that do not build a parse tree or syntax tree as an explicit data structure. We
introduce the notion of an attribute grammar in Section 4.2. We then consider
various ways in which such grammars can be applied in practice. Section 4.3
discusses the issue of attribute flow, which constrains the order(s) in which nodes
of a tree can be decorated. In practice, most compilers require decoration of the
parse tree (or the evaluation of attributes that would reside in a parse tree if there
were one) to occur in the process of an LL or LR parse. Section 4.4 presents action
routines as an ad hoc mechanism for such “on-the-fly” evaluation. In Section 4.5
(mostly on the companion site) we consider the management of space for parse
tree attributes.

Because they have to reflect the structure of the CFG, parse trees tend to be
very complicated (recall the example in Figure 1.5). Once parsing is complete, we
typically want to replace the parse tree with a syntax tree that reflects the input
program in a more straightforward way (Figure 1.6). One particularly common
compiler organization uses action routines during parsing solely for the purpose
of constructing the syntax tree. The syntax tree is then decorated during a sepa-
rate traversal, which can be formalized, if desired, with a separate attribute gram-
mar. We consider the decoration of syntax trees in Section 4.6.

The Role of the Semantic Analyzer

Programming languages vary dramatically in their choice of semantic rules. Lisp
dialects, for example, allow “mixed-mode” arithmetic on arbitrary numeric types,
which they will automatically promote from integer to rational to floating-point
or “bignum” (extended) precision, as required to maintain precision. Ada, by
contract, assigns a specific type to every numeric variable, and requires the pro-
grammer to convert among these explicitly when combining them in expressions.

4.1 The Role of the Semantic Analyzer 181

Languages also vary in the extent to which they require their implementations to
perform dynamic checks. At one extreme, C requires no checks at all, beyond
those that come “free” with the hardware (e.g., division by zero, or attempted
access to memory outside the bounds of the program). At the other extreme,
Java takes great pains to check as many rules as possible, in part to ensure that
an untrusted program cannot do anything to damage the memory or files of the
machine on which it runs. The role of the semantic analyzer is to enforce all static
semantic rules and to annotate the program with information needed by the in-
termediate code generator. This information includes both clarifications (this is
floating-point addition, not integer; this is a reference to the global variable x)
and requirements for dynamic semantic checks.

In the typical compiler, analysis and intermediate code generation mark the
end of front end computation. The exact division of labor between the front end
and the back end, however, may vary from compiler to compiler: it can be hard
to say exactly where analysis (figuring out what the program means) ends and
synthesis (expressing that meaning in some new form) begins (and as noted in
Section 1.6 there may be a “middle end” in between). Many compilers also carry
a program through more than one intermediate form. In one common orga-
nization, described in more detail in Chapter 15, the semantic analyzer creates
an annotated syntax tree, which the intermediate code generator then translates
into a linear form reminiscent of the assembly language for some idealized ma-
chine. After machine-independent code improvement, this linear form is then
translated into yet another form, patterned more closely on the assembly lan-
guage of the target machine. That form may undergo machine-specific code
improvement.

Compilers also vary in the extent to which semantic analysis and intermedi-
ate code generation are interleaved with parsing. With fully separated phases, the
parser passes a full parse tree on to the semantic analyzer, which converts it to
a syntax tree, fills in the symbol table, performs semantic checks, and passes it
on to the code generator. With fully interleaved phases, there may be no need
to build either the parse tree or the syntax tree in its entirety: the parser can call
semantic check and code generation routines on the fly as it parses each expres-
sion, statement, or subroutine of the source. We will focus on an organization in
which construction of the syntax tree is interleaved with parsing (and the parse
tree is not built), but semantic analysis occurs during a separate traversal of the
syntax tree.

Dynamic Checks

Many compilers that generate code for dynamic checks provide the option of dis-
abling them if desired. It is customary in some organizations to enable dynamic
checks during program development and testing, and then disable them for pro-
duction use, to increase execution speed. The wisdom of this practice is ques-

182 Chapter 4 Semantic Analysis

EXAMPLE 4 I

Assertions in Java

tionable: Tony Hoare, one of the key figures in programming language design,’
has likened the programmer who disables semantic checks to a sailing enthusiast
who wears a life jacket when training on dry land, but removes it when going to
sea [Hoa89, p. 198]. Errors may be less likely in production use than they are
in testing, but the consequences of an undetected error are significantly worse.
Moreover, on modern processors it is often possible for dynamic checks to exe-
cute in pipeline slots that would otherwise go unused, making them virtually free.
On the other hand, some dynamic checks (e.g., ensuring that pointer arithmetic
in C remains within the bounds of an array) are sufficiently expensive that they
are rarely implemented.

Assertions

When reasoning about the correctness of their algorithms (or when formally
proving properties of programs via axiomatic semantics) programmers fre-
quently write logical assertions regarding the values of program data. Some pro-
gramming languages make these assertions a part of the language syntax. The
compiler then generates code to check the assertions at run time. An assertion
is a statement that a specified condition is expected to be true when execution
reaches a certain point in the code. In Java one can write

DESIGN & IMPLEMENTATION

4.1 Dynamic semantic checks

In the past, language theorists and researchers in programming methodology
and software engineering tended to argue for more extensive semantic checks,
while “real-world” programmers “voted with their feet” for languages like C
and Fortran, which omitted those checks in the interest of execution speed. As
computers have become more powerful, and as companies have come to ap-
preciate the enormous costs of software maintenance, the “real-world” camp
has become much more sympathetic to checking. Languages like Ada and Java
have been designed from the outset with safety in mind, and languages like C
and C++ have evolved (to the extent possible) toward increasingly strict defi-
nitions. In scripting languages, where many semantic checks are deferred until
run time in order to avoid the need for explicit types and variable declarations,
there has been a similar trend toward stricter rules. Perl, for example (one of
the older scripting languages), will typically attempt to infer a possible mean-
ing for expressions (e.g., 3 + "four") that newer languages (e.g., Python or
Ruby) will flag as run-time errors.

I Among other things, C. A. R. Hoare (1934-) invented the quicksort algorithm and the case
statement, contributed to the design of Algol W, and was one of the leaders in the development
of axiomatic semantics. In the area of concurrent programming, he refined and formalized the
monitor construct (to be described in Section 13.4.1), and designed the CSP programming model
and notation. He received the ACM Turing Award in 1980,

EXAMPLE 42

Assertions in C

4.1 The Role of the Semantic Analyzer 183

assert denominator != 0;

An AssertionError exception will be thrown if the semantic check fails at run
time.

Some languages (e.g., Euclid, Eiffel, and Ada 2012) also provide explicit sup-
port for invariants, preconditions, and postconditions. These are essentially struc-
tured assertions. An invariant is expected to be true at all “clean points” of a given
body of code. In Eiffel, the programmer can specify an invariant on the data in-
side a class: the invariant will be checked, automatically, at the beginning and
end of each of the class’s methods (subroutines). Similar invariants for loops are
expected to be true before and after every iteration. Pre- and postconditions are
expected to be true at the beginning and end of subroutines, respectively. In Eu-
clid, a postcondition, specified once in the header of a subroutine, will be checked
not only at the end of the subroutine’s text, but at every return statement as well.

Many languages support assertions via standard library routines or macros. In
C, for example, one can write

assert (denominator '= 0);
If the assertion fails, the program will terminate abruptly with the message
myprog.c:42: failed assertion ~denominator != 0'

The C manual requires assert to be implemented as a macro (or built into the
compiler) so that it has access to the textual representation of its argument, and
to the file name and line number on which the call appears.

Assertions, of course, could be used to cover the other three sorts of checks,
but not as clearly or succinctly. Invariants, preconditions, and postconditions are
a prominent part of the header of the code to which they apply, and can cover
a potentially large number of places where an assertion would otherwise be re-
quired. Euclid and Eiffel implementations allow the programmer to disable as-
sertions and related constructs when desired, to eliminate their run-time cost.

Static Analysis

In general, compile-time algorithms that predict run-time behavior are known
as static analysis. Such analysis is said to be precise if it allows the compiler to
determine whether a given program will always follow the rules. Type checking,
for example, is static and precise in languages like Ada and ML: the compiler
ensures that no variable will ever be used at run time in a way that is inappropriate
for its type. By contrast, languages like Lisp, Smalltalk, Python, and Ruby obtain
greater flexibility, while remaining completely type-safe, by accepting the run-
time overhead of dynamic type checks. (We will cover type checking in more
detail in Chapter 7.)

Static analysis can also be useful when it isn’t precise. Compilers will often
check what they can at compile time and then generate code to check the rest
dynamically. In Java, for example, type checking is mostly static, but dynamically
loaded classes and type casts may require run-time checks. In a similar vein, many

184 Chapter 4 Semantic Analysis

EXAMPLE 4.3

Bottom-up CFG for
constant expressions

compilers perform extensive static analysis in an attempt to eliminate the need for
dynamic checks on array subscripts, variant record tags, or potentially dangling
pointers (to be discussed in Chapter 8).

If we think of the omission of unnecessary dynamic checks as a performance
optimization, it is natural to look for other ways in which static analysis may
enable code improvement. We will consider this topic in more detail in Chap-
ter 17. Examples include alias analysis, which determines when values can be
safely cached in registers, computed “out of order,” or accessed by concurrent
threads; escape analysis, which determines when all references to a value will be
confined to a given context, allowing the value to be allocated on the stack in-
stead of the heap, or to be accessed without locks; and subtype analysis, which
determines when a variable in an object-oriented language is guaranteed to have
a certain subtype, so that its methods can be called without dynamic dispatch.

An optimization is said to be unsafe if it may lead to incorrect code in certain
programs. It is said to be speculative if it usually improves performance, but may
degrade it in certain cases. A compiler is said to be conservative if it applies op-
timizations only when it can guarantee that they will be both safe and effective.
By contrast, an optimistic compiler may make liberal use of speculative optimiza-
tions. It may also pursue unsafe optimizations by generating two versions of the
code, with a dynamic check that chooses between them based on information not
available at compile time. Examples of speculative optimization include nonbind-
ing prefetches, which try to bring data into the cache before they are needed, and
trace scheduling, which rearranges code in hopes of improving the performance
of the processor pipeline and the instruction cache.

To eliminate dynamic checks, language designers may choose to tighten se-
mantic rules, banning programs for which conservative analysis fails. The ML
type system, for example (Section 7.2.4), avoids the dynamic type checks of Lisp,
but disallows certain useful programming idioms that Lisp supports. Similarly,
the definite assignment rules of Java and C# (Section 6.1.3) allow the compiler to
ensure that a variable is always given a value before it is used in an expression, but
disallow certain programs that are legal (and correct) in C.

Attribute Grammars

In Chapter 2 we learned how to use a context-free grammar to specify the syntax
of a programming language. Here, for example, is an LR (bottom-up) grammar
for arithmetic expressions composed of constants, with precedence and associa-
tivity:?

2 The addition of semantic rules tends to make attribute grammars quite a bit more verbose than
context-free grammars. For the sake of brevity, many of the examples in this chapter use very
short symbol names: E instead of expr, TT instead of term_tail.

EXAMPLE 44

Bottom-up AG for
constant expressions

EXAMPLE 45

Top-down AG to count the
elements of a list

4.2 Attribute Grammars 185

E+ T
E-T
T

T * F
T/ F
F

- F
(E)

const

R A A A

This grammar will generate all properly formed constant expressions over the
basic arithmetic operators, but it says nothing about their meaning. To tie these
expressions to mathematical concepts (as opposed to, say, floor tile patterns or
dance steps), we need additional notation. The most common is based on at-
tributes. In our expression grammar, we can associate a val attribute with each
E, T, F, and const in the grammar. The intent is that for any symbol S, S.val
will be the meaning, as an arithmetic value, of the token string derived from S.
We assume that the val of a const is provided to us by the scanner. We must
then invent a set of rules for each production, to specify how the vals of different
symbols are related. The resulting attribute grammar (AG) is shown in Figure 4.1.

In this simple grammar, every production has a single rule. We shall see more
complicated grammars later, in which productions can have several rules. The
rules come in two forms. Those in productions 3, 6, 8, and 9 are known as copy
rules; they specify that one attribute should be a copy of another. The other rules
invoke semantic functions (sum, quotient, additive_inverse, etc.). In this exam-
ple, the semantic functions are all familiar arithmetic operations. In general, they
can be arbitrarily complex functions specified by the language designer. Each se-
mantic function takes an arbitrary number of arguments (each of which must be
an attribute of a symbol in the current production—no global variables are al-
lowed), and each computes a single result, which must likewise be assigned into
an attribute of a symbol in the current production. When more than one sym-
bol of a production has the same name, subscripts are used to distinguish them.
These subscripts are solely for the benefit of the semantic functions; they are not
part of the context-free grammar itself.

In a strict definition of attribute grammars, copy rules and semantic function
calls are the only two kinds of permissible rules. In our examples we use a >
symbol to introduce each code fragment corresponding to a single rule. In prac-
tice, it is common to allow rules to consist of small fragments of code in some
well-defined notation (e.g., the language in which a compiler is being written),
so that simple semantic functions can be written out “in-line” In this relaxed
notation, the rule for the first production in Figure 4.1 might be simply E, .val :=
E,.val + T.val. As another example, suppose we wanted to count the elements of a
comma-separated list:

186

Chapter 4 Semantic Analysis

1. B, — E +T r> Ej.val :=suml(E;.val, Tval)

2. EE— E -T > Ej.val := difference(E;.val, T.val)
3. E— T > E.val :=Tval

4, T, — T, * F > T,.val := product(T,.val, Fval)
5. — T, / F > Ty.val ;= quotient(T,.val, Fval)
6. T — F > Tval:= Fval

7. F — - F = F,.val ;= additive_inverse(F,.val)
8. F — (E) r> Fval:= E.val

9. F — const > Fwval ;= const.val

Figure 41 A simple attribute grammar for constant expressions, using the standard arith-
metic operations. Each semantic rule is introduced by a = sign.

L — 4id LT > Le:=1+LTc
IT — , L > LTc:=Lc
LT — ¢ > LTc:=0

Here the rule on the first production sets the ¢ (count) attribute of the left-hand
side to one more than the count of the tail of the right-hand side. Like explicit
semantic functions, in-line rules are not allowed to refer to any variables or at-
tributes outside the current production. We will relax this restriction when we
introduce action routines in Section 4.4.

Neither the notation for semantic functions (whether in-line or explicit) nor
the types of the attributes themselves is intrinsic to the notion of an attribute
grammar. The purpose of the grammar is simply to associate meaning with the
nodes of a parse tree or syntax tree. Toward that end, we can use any notation
and types whose meanings are already well defined. In Examples 4.4 and 4.5, we
associated numeric values with the symbols in a CFG—and thus with parse tree
nodes—using semantic functions drawn from ordinary arithmetic. In a compiler
or interpreter for a full programming language, the attributes of tree nodes might
include

for an identifier, a reference to information about it in the symbol table

for an expression, its type

for a statement or expression, a reference to corresponding code in the com-
piler’s intermediate form

for almost any construct, an indication of the file name, line, and column
where the corresponding source code begins

for any internal node, a list of semantic errors found in the subtree below

For purposes other than translation—e.g., in a theorem prover or machine-
independent language definition—attributes might be drawn from the disciplines
of denotational, operational, or axiomatic semantics. Interested readers can find
references in the Bibliographic Notes at the end of the chapter.

EXAMPLE 4.6

Decoration of a parse tree

4.3 Evaluating Attributes 187

const .

Figure 42 Decoration of a parse tree for (1 + 3) * 2, using the attribute grammar of
Figure 4.1. The val attributes of symbols are shown in boxes. Curving arrows show the attribute
flow, which is strictly upward in this case. Each box holds the output of a single semantic rule;
the arrow(s) entering the box indicate the input(s) to the rule. At the second level of the tree,
for example, the two arrows pointing into the box with the 8 represent application of the rule
Ti.val ;= product(T; .val, Fval).

Evaluating Attributes

The process of evaluating attributes is called annotation or decoration of the parse
tree. Figure 4.2 shows how to decorate the parse tree for the expression (1 + 3)
* 2, using the AG of Figure 4.1. Once decoration is complete, the value of the
overall expression can be found in the val attribute of the root of the tree.

Synthesized Attributes

The attribute grammar of Figure 4.1 is very simple. Each symbol has at most one
attribute (the punctuation marks have none). Moreover, they are all so-called
synthesized attributes: their values are calculated (synthesized) only in produc-
tions in which their symbol appears on the left-hand side. For annotated parse
trees like the one in Figure 4.2, this means that the attribute flow—the pattern in
which information moves from node to node—is entirely bottom-up.

188 Chapter 4 Semantic Analysis

EXAMPLE 4?

Top-down CFG and parse
tree for subtraction

An attribute grammar in which all attributes are synthesized is said to be S-
attributed. The arguments to semantic functions in an S-attributed grammar are
always attributes of symbols on the right-hand side of the current production, and
the return value is always placed into an attribute of the left-hand side of the pro-
duction. Tokens (terminals) often have intrinsic properties (e.g., the character-
string representation of an identifier or the value of a numeric constant); in a
compiler these are synthesized attributes initialized by the scanner.

Inherited Attributes

In general, we can imagine (and will in fact have need of) attributes whose values
are calculated when their symbol is on the right-hand side of the current produc-
tion. Such attributes are said to be inherited. They allow contextual information
to flow into a symbol from above or from the side, so that the rules of that produc-
tion can be enforced in different ways (or generate different values) depending on
surrounding context. Symbol table information is commonly passed from sym-
bol to symbol by means of inherited attributes. Inherited attributes of the root of
the parse tree can also be used to represent the external environment (character-
istics of the target machine, command-line arguments to the compiler, etc.).

As a simple example of inherited attributes, consider the following fragment
of an LL(1) expression grammar (here covering only subtraction):

expr —> const expr_tail

expr_tail —s - const expr_tail | €

For the expression 9 - 4 - 3, we obtain the following parse tree:

expr
9/ }w'_mil
AN
- 4 expr_tail
4N
- 3 expr_tail

€

If we want to create an attribute grammar that accumulates the value of the
overall expression into the root of the tree, we have a problem: because subtrac-
tion is left associative, we cannot summarize the right subtree of the root with
a single numeric value. If we want to decorate the tree bottom-up, with an S-
attributed grammar, we must be prepared to describe an arbitrary number of
right operands in the attributes of the top-most expr_tail node (see Exercise 4.4).
This is indeed possible, but it defeats the purpose of the formalism: in effect, it
requires us to embed the entire tree into the attributes of a single node, and do all
the real work inside a single semantic function.

EXAMPLE 48

Decoration with
left-to-right attribute flow

EXAMPLE 4.9

Top-down AG for
subtraction

EXAMPLE 4'0

Top-down AG for constant
expressions

4.3 Evaluating Attributes 189

If, however, we are allowed to pass attribute values not only bottom-up but
also left-to-right in the tree, then we can pass the 9 into the top-most expr_tail
node, where it can be combined (in proper left-associative fashion) with the 4.
The resulting 5 can then be passed into the middle expr_tail node, combined with
the 3 to make 2, and then passed upward to the root:

expr ‘_-ﬁ
const E’ expr_tail ‘r‘

- const -- —

To effect this style of decoration, we need the following attribute rules:

expr —» const expr_tail
> expr_tail.st := const.val
r> expr.val := expr_tail.val

expr_taili — - const expr_tail,
L expr_tail,.st := expr_tail;.st — const.val
> expr_tail;.val := expr_tail,.val

expr_tail — €
r> expr_tail.val := expr_tail st

In each of the first two productions, the first rule serves to copy the left context
(value of the expression so far) into a “subtotal” (st) attribute; the second rule
copies the final value from the right-most leaf back up to the root. In the expr_tail
nodes of the picture in Example 4.8, the left box holds the st attribute; the right
holds val.

We can flesh out the grammar fragment of Example 4.7 to produce a more
complete expression grammar, as shown (with shorter symbol names) in Fig-
ure 4.3. The underlying CFG for this grammar accepts the same language as the
one in Figure 4.1, but where that one was SLR(1), this one is LL(1). Attribute flow
fora parse of (1 + 3) * 2, using the LL(1) grammar, appears in Figure 4.4. As in
the grammar fragment of Example 4.9, the value of the left operand of each oper-
ator is carried into the TT and FT productions by the st (subtotal) attribute. The
relative complexity of the attribute flow arises from the fact that operators are left
associative, but the grammar cannot be left recursive: the left and right operands
of a given operator are thus found in separate productions. Grammars to perform

190

Chapter 4 Semantic Analysis

1. E— TTIT

> TTst:= Tval > E.val := TTval
2. TT1 — + T TTZ

[= TTa.st:=TT;.st+ Tval > TTy.val ;= TTz.val
3. T, — - TTT,

> TTi.st:=TT,.st — Tval > TT,.val := TT;.val
4, TT — ¢

> TTval:=TTst
5. T— FFT

> FTst:= Fval > Tval := FTval
6. FT, — * F FI»

> FT,.st:= FTy.st x Fval > FTy.val := FT;.val
7. FT, — [/ F FT»

> FT,.st:=FT,.st = Fval > FTy.val .= FT,.val
8. FI — ¢

> FTval .= FTst
9. FL — - F

= Fi.val:= — Fyval
10. F— (E)
> Fval := E.val

1. F — const
> Fval := const.val

Figure 4.3 An attribute grammar for constant expressions based on an LL(1) CFG. In this
g P
grammar several productions have two semantic rules.

semantic analysis for practical languages generally require some non-S-attributed
flow.

Attribute Flow

Just as a context-free grammar does not specify how it should be parsed, an at-
tribute grammar does not specify the order in which attribute rules should be
invoked. Put another way, both notations are declarative: they define a set of valid
trees, but they don’t say how to build or decorate them. Among other things, this
means that the order in which attribute rules are listed for a given production is
immaterial; attribute flow may require them to execute in any order. If, in Fig-
ure 4.3, we were to reverse the order in which the rules appear in productions
1, 2, 3,5, 6, and/or 7 (listing the rule for symbol.val first), it would be a purely
cosmetic change; the grammar would not be altered.

We say an attribute grammar is well defined if its rules determine a unique set
of values for the attributes of every possible parse tree. An attribute grammar is
noncircular if it never leads to a parse tree in which there are cycles in the attribute
flow graph—that is, if no attribute, in any parse tree, ever depends (transitively)

4.3 Evaluating Attributes 191

Figure 44 Decoration of a top-down parse tree for (1 + 3) * 2, using the AG of Figure 4.3. Curving arrows again indicate
attribute flow; the arrow(s) entering a given box represent the application of a single semantic rule. Flow in this case is no
longer strictly bottom-up, but it is still left-to-right. At FT and TT nodes, the left box holds the st attribute; the right holds val.

on itself. (A grammar can be circular and still be well defined if attributes are
guaranteed to converge to a unique value.) As a general rule, practical attribute
grammars tend to be noncircular.

An algorithm that decorates parse trees by invoking the rules of an attribute
grammar in an order consistent with the tree’s attribute flow is called a translation
scheme. Perhaps the simplest scheme is one that makes repeated passes over a
tree, invoking any semantic function whose arguments have all been defined, and
stopping when it completes a pass in which no values change. Such a scheme is
said to be oblivious, in the sense that it exploits no special knowledge of either the
parse tree or the grammar. It will halt only if the grammar is well defined. Better
performance, at least for noncircular grammars, may be achieved by a dynamic
scheme that tailors the evaluation order to the structure of a given parse tree—for
example, by constructing a topological sort of the attribute flow graph and then
invoking rules in an order consistent with the sort.

The fastest translation schemes, however, tend to be static—based on an analy-
sis of the structure of the attribute grammar itself, and then applied mechanically
to any tree arising from the grammar. Like LL and LR parsers, linear-time static
translation schemes can be devised only for certain restricted classes of gram-

192

Chapter 4 Semantic Analysis

mars. S-attributed grammars, such as the one in Figure 4.1, form the simplest
such class. Because attribute flow in an S-attributed grammar is strictly bottom-
up, attributes can be evaluated by visiting the nodes of the parse tree in exactly
the same order that those nodes are generated by an LR-family parser. In fact, the
attributes can be evaluated on the fly during a bottom-up parse, thereby inter-
leaving parsing and semantic analysis (attribute evaluation).

The attribute grammar of Figure 4.3 is a good bit messier than that of Fig-
ure 4.1, but it is still L-attributed: its attributes can be evaluated by visiting the
nodes of the parse tree in a single left-to-right, depth-first traversal (the same or-
der in which they are visited during a top-down parse—see Figure 4.4). If we say
that an attribute A.s depends on an attribute B.t if B.t is ever passed to a semantic
function that returns a value for A.s, then we can define L-attributed grammars
more formally with the following two rules: (1) each synthesized attribute of a
left-hand-side symbol depends only on that symbol’s own inherited attributes or
on attributes (synthesized or inherited) of the production’s right-hand-side sym-
bols, and (2) each inherited attribute of a right-hand-side symbol depends only
on inherited attributes of the left-hand-side symbol or on attributes (synthesized
or inherited) of symbols to its left in the right-hand side.

Because L-attributed grammars permit rules that initialize attributes of the
left-hand side of a production using attributes of symbols on the right-hand
side, every S-attributed grammar is also an L-attributed grammar. The reverse
is not the case: S-attributed grammars do not permit the initialization of at-
tributes on the right-hand side, so there are L-attributed grammars that are not
S-attributed.

S-attributed attribute grammars are the most general class of attribute gram-
mars for which evaluation can be implemented on the fly during an LR parse.
L-attributed grammars are the most general class for which evaluation can be im-
plemented on the fly during an LL parse. If we interleave semantic analysis (and
possibly intermediate code generation) with parsing, then a bottom-up parser
must in general be paired with an S-attributed translation scheme; a top-down
parser must be paired with an L-attributed translation scheme. (Depending on
the structure of the grammar, it is often possible for a bottom-up parser to ac-
commodate some non-S-attributed attribute flow; we consider this possibility in
Section C-4.5.1.) If we choose to separate parsing and semantic analysis into sepa-
rate passes, then the code that builds the parse tree or syntax tree must still use an
S-attributed or L-attributed translation scheme (as appropriate), but the semantic
analyzer can use a more powerful scheme if desired. There are certain tasks, such
as the generation of code for “short-circuit” Boolean expressions (to be discussed
in Sections 6.1.5 and 6.4.1), that are easiest to accomplish with a non-L-attributed
scheme.

EXAMPLE 4' I

Bottom-up and top-down
AGs to build a syntax tree

4.3 Evaluating Attributes 193

One-Pass Compilers

A compiler that interleaves semantic analysis and code generation with parsing is
said to be a one-pass compiler.? It is unclear whether interleaving semantic analysis
with parsing makes a compiler simpler or more complex; it’s mainly a matter
of taste. If intermediate code generation is interleaved with parsing, one need
not build a syntax tree at all (unless of course the syntax tree is the intermediate
code). Moreover, it is often possible to write the intermediate code to an output
file on the fly, rather than accumulating it in the attributes of the root of the
parse tree. The resulting space savings were important for previous generations
of computers, which had very small main memories. On the other hand, semantic
analysis is easier to perform during a separate traversal of a syntax tree, because
that tree reflects the program’s semantic structure better than the parse tree does,
especially with a top-down parser, and because one has the option of traversing
the tree in an order other than that chosen by the parser.

Building a Syntax Tree

If we choose not to interleave parsing and semantic analysis, we still need to add
attribute rules to the context-free grammar, but they serve only to create the syn-
tax tree—not to enforce semantic rules or generate code. Figures 4.5 and 4.6
contain bottom-up and top-down attribute grammars, respectively, to build a
syntax tree for constant expressions. The attributes in these grammars hold nei-
ther numeric values nor target code fragments; instead they point to nodes of
the syntax tree. Function make_leaf returns a pointer to a newly allocated syntax
tree node containing the value of a constant. Functions make_un_op and make.
bin_op return pointers to newly allocated syntax tree nodes containing a unary or

DESIGN & IMPLEMENTATION

42 Forward references

In Sections 3.3.3 and C-3.4.1 we noted that the scope rules of many languages
require names to be declared before they are used, and provide special mech-
anisms to introduce the forward references needed for recursive definitions.
While these rules may help promote the creation of clear, maintainable code,
an equally important motivation, at least historically, was to facilitate the con-
struction of one-pass compilers. With increases in memory size, processing
speed, and programmer expectations regarding the quality of code improve-
ment, multipass compilers have become ubiquitous, and language designers
have felt free (as, for example, in the class declarations of C++, Java, and C#)
to abandon the requirement that declarations precede uses.

3 Most authors use the term one-pass only for compilers that translate all the way from source to
target code in a single pass. Some authors insist only that intermediate code be generated in a
single pass, and permit additional pass(es) to translate intermediate code to target code.

194 Chapter 4 Semantic Analysis

E, — E + T

> E;.ptr := make_bin_op(“+", E;.ptr, T.ptr)
E1 —_— Ez - T

> Ej.ptr:= make_bin_op(“-", E,.ptr, Tptr)
E— T

> E.ptr:=Tptr
T, — T, = F

> Ty.ptr ;= makebin_op("x", T,.ptr, Eptr)
T, — T / F

> T;.ptr := make_bin_op("=", T,.ptr, Eptr)
T— F

> Tptr:= Eptr
F1 —_— = Fz

> Fy.ptr:= make_un_op("+/_", F;.ptr)
F— (E)

> Fptr:=E.ptr

F — const
> Fptr ;= make_leaf(const.val)

Figure 45 Bottom-up (S-attributed) attribute grammar to construct a syntax tree. The
symbol */_ is used (as it is on calculators) to indicate change of sign.

binary operator, respectively, and pointers to the supplied operand(s). Figures 4.7
and 4.8 show stages in the decoration of parse trees for (1 + 3) * 2, using the
grammars of Figures 4.5 and 4.6, respectively. Note that the final syntax tree is the
same in each case.

\/CHECK YOUR UNDERSTANDING

|. What determines whether a language rule is a matter of syntax or of static
semantics?

1. Why is it impossible to detect certain program errors at compile time, even
though they can be detected at run time?

3. What is an attribute grammar?

4. What are programming assertions? What is their purpose?

5. What is the difference between synthesized and inherited attributes?

6. Give two examples of information that is typically passed through inherited
attributes.

1. What is attribute flow?

8. What is a one-pass compiler?

E— TTT
> TTst:=Tptr
> E.ptr:=TTptr

TT1 — + T TT;
> TTi.st:= make_bin_op("+", TT;.st, T.ptr)
> TTy.ptr:=TTa.ptr

T, — - T TT,
> TT,.st:= make_bin_op("=", TT;.st, T.ptr)
> TTy.ptr:=TT,.ptr

TT — ¢

> TTptr:=TTst
T — FFT

> FTst:=Fptr

> Tptr:= Flptr
FIy, — = F FT»
> FT;.st:= make_bin_op("x", FT;.st, Eptr)
> FT,.ptr := FT,.ptr
FT, — / F FTI;
> FT;.st:= make_bin_op("+", FT,.st, Fptr)
> FTy.ptr:= FT,.ptr
FI' — ¢
> Flptr:=Flst
F1 —_ = Fz
x> Fy.ptr:= make_un_op("+._", F,.ptr)
F— (E)
= Fptr:=E.ptr
F — const
> FEptr := make_leaf(const.val)

4.4 Action Routines 195

Figure 4.6 Top-down (L-attributed) attribute grammar to construct a syntax tree. Here the
st attribute, like the ptr attribute (and unlike the st attribute of Figure 4.3), is a pointer to a

syntax tree node.

9. What does it mean for an attribute grammar to be S-attributed? L-attributed?
Noncircular? What is the significance of these grammar classes?

Action Routines

Just as there are automatic tools that will construct a parser for a given context-
free grammar, there are automatic tools that will construct a semantic analyzer
(attribute evaluator) for a given attribute grammar. Attribute evaluator gen-

196 Chapter 4 Semantic Analysis

T[] * (d)
|
|
|
(c)
(b)
E + T
| |)
T[] Fl]
|) | @
F D const
|

const

Figure 41 Construction of a syntax tree for (1 + 3) * 2 via decoration of a bottom-up
parse tree, using the grammar of Figure 4.5. This figure reads from bottom to top. In diagram
(a), the values of the constants 1 and 3 have been placed in new syntax tree leaves. Pointers
to these leaves propagate up into the attributes of E and T. In (b), the pointers to these leaves
become child pointers of a new internal + node. In (c) the pointer to this node propagates up
into the attributes of T, and a new leaf is created for 2. Finally, in (d), the pointers from T and F
become child pointers of a new internal x node, and a pointer to this node propagates up into
the attributes of E.

4.4 Action Routines 197

E[]
const

(<)

Figure 48 Construction of a syntax tree via decoration of a top-down parse tree, using the grammar of Figure 4.6. In the
top diagram, (a), the value of the constant 1 has been placed in a new syntax tree leaf. A pointer to this leaf then propagates to
the st attribute of TT. In (b), a second leaf has been created to hold the constant 3. Pointers to the two leaves then become
child pointers of a new internal + node, a pointer to which propagates from the st attribute of the bottom-most TT, where
it was created, all the way up and over to the st attribute of the top-most FT. In (c), a third leaf has been created for the
constant 2. Pointers to this leaf and to the + node then become the children of a new x node, a pointer to which propagates
from the st of the lower FT, where it was created, all the way to the root of the tree.

198 Chapter 4 Semantic Analysis

EXAMPLE 4 |2

Top-down action routines
to build a syntax tree

erators have been used in syntax-based editors [RT88], incremental compil-
ers [SDB84], web-page layout [MTAB13], and various aspects of programming
language research. Most production compilers, however, use an ad hoc, hand-
written translation scheme, interleaving parsing with the construction of a syntax
tree and, in some cases, other aspects of semantic analysis or intermediate code
generation. Because they evaluate the attributes of each production as it is parsed,
they do not need to build the full parse tree.

An ad hoc translation scheme that is interleaved with parsing takes the form
of a set of action routines. An action routine is a semantic function that the pro-
grammer (grammar writer) instructs the compiler to execute at a particular point
in the parse. Most parser generators allow the programmer to specify action rou-
tines. In an LL parser generator, an action routine can appear anywhere within a
right-hand side. A routine at the beginning of a right-hand side will be called as
soon as the parser predicts the production. A routine embedded in the middle of
aright-hand side will be called as soon as the parser has matched (the yield of) the
symbol to the left. The implementation mechanism is simple: when it predicts a
production, the parser pushes all of the right-hand side onto the stack, including
terminals (to be matched), nonterminals (to drive future predictions), and point-
ers to action routines. When it finds a pointer to an action routine at the top of
the parse stack, the parser simply calls it, passing (pointers to) the appropriate
attributes as arguments.

To make this process more concrete, consider again our LL(1) grammar for
constant expressions. Action routines to build a syntax tree while parsing this
grammar appear in Figure 4.9. The only difference between this grammar and
the one in Figure 4.6 is that the action routines (delimited here with curly braces)
are embedded among the symbols of the right-hand sides; the work performed
is the same. The ease with which the attribute grammar can be transformed into
the grammar with action routines is due to the fact that the attribute grammar is
L-attributed. If it required more complicated flow, we would not be able to cast it
as action routines.

DESIGN & IMPLEMENTATION

4.3 Attribute evaluators

Automatic evaluators based on formal attribute grammars are popular in lan-
guage research projects because they save developer time when the language
definition changes. They are popular in syntax-based editors and incremental
compilers because they save execution time: when a small change is made to
a program, the evaluator may be able to “patch up” tree decorations signifi-
cantly faster than it could rebuild them from scratch. For the typical compiler,
however, semantic analysis based on a formal attribute grammar is overkill: it
has higher overhead than action routines, and doesn’t really save the compiler
writer that much work.

