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In PROGRAMMING LANGUAGES - THE FIRST 25 YEARS [IEEE Transac-
tions on Computers, December 1976], Wegner gives a list of milestones that greatly
influenced the realm of programming. This list, slightly adapted and expanded, is
printed below. The dates are somewhat approximate due to the fact that many of the

A LIST OF MILESTONES

development efforts have taken years to come about.
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19th century: Ch. Babbage and Ada Lovelace’s
analytical machine

40's: Tiiring Machines

1944: the EDVAC report by von Neuman.
50’s: the first symbolic code assemblers.
50’s and 60’s: macro-processors

1958: FORTRAN

50's: formal language theory

60’s: Compiler theory

1960: ALGOL60

1960: COBOL

1964: PL1

1960: LISP

1963: SNOBOL

1968: ALGOLGS

60’s: functional programming

60’s: program semantics and verification
1967: interactive APL

1970: PASCAL

70’s: Structured Programming

70’s: information hiding and data abstraction
70’s: the concept of Software Engineering
1971: PROLOG

1973: C

1979: ADA

70’s: the relational data model

70’s: data-base management systems

70's: fourth generation technology

70’s: Expert Systems



Chapter 1
THE YEARS OF ASSEMBLER AND
FORTRAN

A more or less historical view of the simplicities of
the 50°s, including assembler, macroprocessor and
Fortran.

Let there be the machine

In the beginning there were the bars and the pebbles used to count and add num-
bers. Crude devices which were mechanized into the familiar abacus by the Greek
and the Chinese. For centuries they remained the only computing devices used by
mankind. In the 17-th century the German Wilhelm Schikard and the Frenchman
Blaise Pascal created the very first computing machines based on revolving cog-
wheels. These machines used decimal numbers and were able to perform carry oper-
ations in such a way that the basic arithmetic operations (add and subtract) became
possible at the mere turn of a crank. The machines underwent a number of improve-
ments (such as automatic multiplication and division, a numeric keyboard and a
paper roll printer) but the basic principle remained unchanged so that their descend-
ants were still in use, not so many years ago, in almost all accountancy offices and
banks. At the beginning of the 19-th century, however, another -parallel- develop-
ment took place: in 1801 Jacquard used punched cardboard strips to control weaving
machines. And then there was Charles Babbage, a British mathematician at Cam-
bridge University. He was the real pioneer: in 1822 and 1848 he designed two mech-
anical differential engines that could process tables of numbers. In 1833 he created
the very famous analytical engine, a real computer as we mean it today, which could
read in punched cards comprising the input, perform any arithmetic operation, print
the results, and repeat any computation sequence at will. The fact that Babbage could
only use mechanical components to assemble his machine and had to rely on steam
power is the reason why he did not succeed in building it. Nevertheless, he and his
assistant, Ada Lovelace, described very many computation sequences that could
solve a class of problems. These were truly the first programs! The ideas were in the
air now; in 1890 Hollerith built statistical machines that used punched cards. They
were used during the great census held in those years. The success was such that Hol-
lerith founded a company which evolved into IBM. It took another fifty years before
the next step came about: using telephone central relay technology, George Stibitz
created a computing machine based on relays, which performed its operations con-
siderably faster than any of its predecessors. During World War II, Tiring and a
team built Colossus, a machine intended to decipher the German ciphered mess-
ages. The trend was set now. In 1944, Howard Aiken built the first relay-based ma-
chine that incorporated Babbage’s analytical principles. IBM took an interest and
produced a host of devices that could together perform business computations. You
may remember the tabulators, card punches, sort-merging machines, duplicating ma-
chines, card readers and electric typewriters which were the equipment of the very first
computing centres. The tabulating machines were programmed by wiring the sequen-
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The Years of Assembler and Fortran

ces of operations upon the now prehistoric pin-board. Once wired by the user, the
pin-board was carefully archived in a pin-board cabinet, the first program library
ever! Evolution took hold of these machines and the relays were replaced by elec-
tronic valves. Witness the birth of the ENIAC (Electronic Numeric Integrator and
Computer), conceived by Mauchly and Eckert at the University of Pennsylvania
(1944-46). So there it was: the Machine. A huge, somewhat awe-inspiring beast, full
of lamps that flickered, and radiating a discomforting heat. It contained 18000 valves
and needed an enormous amount of energy. In 1949, von Neuman, at Princeton
University, created the EDVAC (Electronic Discrete Variable Computer), the very
first computer that held a program in core and could execute it. The modern com-
puter was born. It had the so-called von Neuman architecture: program and data
held in core, without any difference. A great achievement. The unit of information
handled by the machine was the binary digit (the bit) represented as an electronic
signal that could be on or off, thus implementing the values 1 and 0. The memory of
the machine was an assembly of such bits (better: groups of bits called byres) which
were laid out upon a revolving magnetic drum. The drum was described by means of
a location map indicating exactly were each byte was registered. This location was
called an address. Program execution consisted of reading and writing byte values at
specified addresses of the memory. A byte could hold anything: an encoded program
instruction (or part of it) or a data value. And it is a sad fact: the existence of a mem-
ory layout with addresses (of places in an array of core locations) forcing programs to
manipulate one memory location at a time proves to be the greatest bottleneck in
present day computers... But in the days of the first hardware generation, the concept
was fantastic.

The older tabulating machines were, so it appeared, great at adding and counting
(binary) numbers. Therefore, if a problem could be broken down into a flow of num-
bers and a series of computations upon them, it could be computed on the machine.
Problem solving was in essence thought to be the writing of sequences of purely
arithmetic operations upon the binary digits. And this was the very first misunder-
standing: the (en)coding of the (numerical) problem solution was seen as the import-
ant aspect. The need for designing the solution was totally ignored; indeed, one was
not even aware that this could be a need. In fact, the machine called for a court of
tinkerers around itself, not of thinkers. How could this have been different? Indeed,
machines were so limited that the problem solution was highly conditioned by the
very way in which the coding was to be expressed. Everything was machine-oriented,
and coders were cheerfully bending problems to suit the Machine. One computed,
sorted and tabulated quite happily. The Machine beamed and almost purred. When
the Machine took on the von Neuman philosophy and discarded its pin board coding
interface to replace it by punched cards that could be read by a specialized appara-
tus -cards that could be produced very cheaply, cards that could be stored- a new era
seemed to open. The Machine itself seemed to feel it, as it became faster, became
bigger but also less monstrous. Initially, punched cards contained the programs in
pure binary code, created by the programmers. A tedious and error-prone activity.
There was a rather limited attempt at improving the quality: pseudo-code of a more
symbolic nature, read in and interpreted by a small program residing in the machine.
A rather inefficient way of using the machine. But very soon, the binary code work
was doomed to vanish altogether as assembler came about.
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In retrospect, that was a normal, predictable step in computer evolution. Assem-
bler language: merely a set of symbolic codes to replace the operations previously
coded in bits. Assembler: a program, loaded from binary cards into and running on
the Machine, almost organically linked to it, able to translate the symbolic code se-
quences into pure binary code. Nothing very smart about assemblers, but comfort-
able animals as compared to pin board coding. Now, behold the birth of the assem-
bler fanatic! Writing assembler programs was considered to be a higher level spe-
ciality, reserved for Data Processing wizards. This was mainly because the rise of as-
sembler language coincided with the extension of the machine’s basic instruction set.
Programming (understand: the writing of assembler programs) became an art. A to-
tally self-justified one. The assembler programmers of those days (late 50’s, early
60s) wanted problems to solve, not because of the need to solve them, but for the
pure delight of writing assembler code. The Data Processing people, even more than
before, concentrated on programming (the word that replaced coding) and still did
not worry about solution design. Huge books were written by smart authors, who de-
livered to the crowds their knowledge of assembler "tricks", standard programs (soon
called routines) doing standard things, catalogs of prestidigitation and legerdemain.
Sophistication increased as assemblers allowed symbolic addressing and as the ma-
chine took on register-based addressing. Assembler programs were now an irresis-
tible must. Pin board coders were considered senile, of another age, and promptly
discarded. Assembler was for the second generation. And very unfortunately, the as-
sembler programmer became totally infatuated with his "principles of operation” and
lost sight of objective and perspective. Something was very wrong indeed.

The first to feel it were the numerical analysts. They did not want to lose time on
pure programming. They had immense problems to solve and needed to express sol-
utions easily. They had some other, more special needs as well. In fact, what they
wanted the machine to do was the computation step by step of very involved arith-
metic sequences. A process of repetition was the core of the numerical problems.
And such repetitions (or iterations) were, more often than not, to contain other itera-
tions, possibly at rather deep level of nesting. Iteration step width had to be easily
modifiable. Computations themselves had to be updatable in their tiniest details. In
fact, programs had to be "legible" and maintainable and transferable to other ma-
chines. Moreover, in this context, the accent was upon values, not upon where the
data was stored in the machine (a concept designated by address). All these criteria
could not be truly obeyed by assembler language. Something new came about: FOR-
TRAN or the FORmula TRANGlator.

Machines kept evolving at a fast rate. The valve-based first generation machines
(IBM 600 series) gave way to the second generation machines which were transistor-
based. Five years later, the creation of integrated circuit technology was the start of the
third hardware generation, which characterizes the era of the sixties. The fourth
hardware generation is based on the (Very) Large Scale Integration technology (LSI
and VLSI). Currently the Japanese are working at the fifth generation hardware.

First there was machine code and assembler followed

Let us come back to the beginning. Before we investigate FORTRAN, let us look
at some machine code first. Machines of the pioneer era were simple (programming
them was, however, not so simple...). They had a behaviour very much inspired by
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the mechanical desk calculators. And they had memory, which was a nice new fea-
ture. Memory allowed the machine to record data, but most importantly, it allowed
programs to reside in the machine. Von Neuman had had that brilliant idea: to the
machine, whatever resided in memory was data. But according to the way in which
the programmer activated the machine, some piece of data would be interpreted as a
program and executed.

[NOTE: The assembler and machine characteristics given in this section and the fol-
lowing do not reflect the intricacies of programming for the first generation of machines
(IBM series 600 and 700); indeed, my intention is not to concentrate on these pre-his-
toric hardwares, but rather to give an apergu of assembler philosophy from the language
side; therefore I have prefered to use examples in the spirit of the third generation of ma-
chines, those of the 60’s].

Execution of a program was controlled by a special register the so-called program
counter, which holds the address in memory (the cell number as it were) of the next
instruction to be executed. The machine also had one basic rule: unless otherwise
forced, the execution of the instruction pointed to by the program counter would
cause an increase of the counter so that it would now point to the following instruc-
tion (the next cell as it were), and execution would proceed from there. Other special
memory cells also existed: the registers. Typically, there was an accumulator, used
for plain arithmetic and a B-register used for extended arithmetic such as multiplica-
tion and division. The instructions were words, i.e. numbers that could be contained
in a fixed number of cells (for instance four contiguous cells, something which would
later be called a 4-byte instruction). An instruction was composed of an operation
code and the address of a memory cell serving as the object of the operation. For
electronic reasons, everything in the machine was binary based. Early machines had
cells that could hold a value of maximum 2°-1 (i.e. 63) and they were called octal ma-
chines because 2°=100g, which in turn means that an octal cell can contain octal
numbers comprised between 00 and 77. In such a machine, one digit is necessarily
comprlsed between 0 and 7. Later machines were going to increase the cell size so
that 25-1 (i.e. 255) became representable. These machines are hexadecimal and use
digits between 0 and F (the hexadecimal digits A to F stand for the decimal values 10
to 15).

Let us now come back to the instructions of the machine. For the sake of the
example, we will assume an octal machine with 4-byte instructions. A typical instruc-
tion is the one that loads the contents of a given machine word into the accumulator.
The machine word whose contents have to be loaded is 4 bytes long and is desig-
nated by the cell address of its leftmost byte (high order byte). This is the operand.
The layout of such an instruction could be as indicated in figure 1. Cell 1 holds the
operation code (i.e. 01g), cell 2 is not used (and there-
fore set to 0), and cells 3 and 4 contain the address of

celll cell2 cell3 cell4 the operand. Quite often, the accumulator and the B-
B register were the first and second word of memory, so
o [1 Jo]o oo ]a |a that they could be addressed by the instructions as

need arose. Later machines, however, would have ex-
plicit registers, for instance 8 of them (on octal hard-
ware) or 16 (on hexadecimal hardware), numbered 0
to 7 (or 0 to F). The instruction layout was modified so
that one byte in cell 2 could now indicate a register as a second operand. Our typical

opcode oddress
figure 1
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load instruction could now be as in figure 2,
celll cellz cell3 celld which now means: load the contents of ad-
dress aaaa into register r. But registers were
also used to allow more involved addressing
schemes. For instance, our load instruction

D|1 D‘r‘ calo o |e

opcode L address could be even further complicated by the ap-
register to load into | pearance of a so-called index register. This
figure 2 is one of the registers but it is used to keep

an address. The address of the cell where to
load from is now computed as the sum

celll cellz cell3d celld of the value held in i and aaaa (see
1 figure 3). On some machines the ad-
dressing scheme could be even more in-
0 ll i l'" a ‘Q “JQ— volved: for instance, if the address com-
opcode L address puted as indicated above gave a nega-
register to load into tive number, then the cell located at the
_ index register absolute value of this address was inter-
preted to contain the address of the
figure 3 operand (and so on, if this was also a ne-

gative value). .

Entering a program into the machine’s memory was not exactly an obvious mat-
ter. Using the pin board was one way. Another way was to use toggle switches on the
machine itself: one first set an address of a cell which was to receive an instruction,
and next one set the toggles to the binary value of the instruction. A very cumber-
some way of doing this. So, it was quite a relief when card readers came about that
allowed reading of punched cards upon which the instructions could reside in some
form coded (and punched) by means of a typewriter-like keyboard. Of course, now
the machine needed a built-in program that could handle the card reader and load
the read in instructions into the correct memory cells. That built-in program was the
seed of today’s gigantic operating systems... The comfort brought by the card reader
incited programmers to wish for even more comfort. And that was the motive for
having assemblers. In fact, assemblers are programs, residing in the machine, and
able to read instructions written not in binary or octal or hexadecimal code, but in
some symbolic language and translate them into the binary code, which could then
be punched onto cards for later usage. Typically, an assembler would replace our
load instruction 0100aaaa by the symbolic equivalent LD address. An immense im-
provement. But the real trick of assembler was in the way it allowed programmers to
specify the address part of the instruction. An assembler statement has the following
layout: label opcode symbolic-address. The symbolic address could be a mere num-
ber, literally the address of a memory cell. So, LD 734 stands for 01000734. But, as-
sembler also allowed an address to be given a name, by using a pseudo-instruction
such as label DEF value. Thus ABC DEF 635 gives the symbolic name ABC to a cer-
tain cell and moreover places the value 635 in that cell. Thus, the label ABC stands
for the address of a cell and can be used in the address part of an instruction: LD
ABC loads the contents of cell ABC. Obviously, also instructions could be so la-
belled. This allows branching instructions to have such a label as a target. The ques-
tion as to which cell exactly corresponds to ABC is solved by assembler, in the sense
that it assigns monotonously increasing addresses to each line (statement or pseudo-
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instruction) of the program. Very soon, assembler came up with another pseudo-in-
struction, ORG address, which allowed programmers to force the assembler to aban-
don its address numbering scheme, accept an explicit address given by ORG and go
on numbering from there. A way of working with explicit addresses. The revolution
of assembler was that it created the impression of readability. Programs could be
read and were found very self-documentary indeed. This, of course, was an illusion.
Assembler language was a mere one- to-one transliteration of binary code, in which
addresses were given names. And that was all there was to it. Assembler language
programs did not at all allow the casual reader (and for that matter, not even the at-
tentive one!) to see from the code what problem the program was supposed to solve.
Problem visibility was very very low. FORTRAN was going to improve things in that
respect.

And then there was FORTRAN

Many computer scientists of today condemn FORTRAN as an unsound language.
I will, for the moment being, reserve my opinion. It is a fact that in the nothingness
of the fifties, Fortran was an amazing novelty. It was the very first language that
brought an amazing collection of new concepts. Paramount was the notion of vari-
able, which was the start of naming theory. So, what was new there? Not much, but
quite a lot. Let us come back to assembler, and see what a name stands for in that
environment. All names in assembler are in fact labels of either the DEF instruction
or the EQU instruction. Suppose we have an assembler line ABC DEF 123 and an-
other one LD ABC. So, the value 123 is loaded into the accumulator, The name ABC
stands for the value 123. This is misleading, however. Suppose the DEF instruction
was assembled at address 743; then the octal representation of the LD instruction is
01000743. This means that for the LD instruction, the name ABC acts like the ad-
dress 743. If on the other hand we had written ABC EQU 123 and LD ABC, this
would have loaded the contents of cell 123 into the accumulator. In octal, the in-
struction would now have been 01000123. In this case ABC is the address 123. So,
the interpretation of LD ABC depends on the way in which ABC is defined (by EQU
or DEF). Both however stand for an address. But, if we write the assembler instruc-
tions ABC EQU 123 and LD =ABC then the assembler first creates a dummy in-
struction xxx1 DEF ABC and really sees the LD as LD xxxI meaning that the value
123 gets loaded into the accumulator. In this case, ABC, although defined by an
EQU, stands for a value. This is because the operand of a DEF is interpreted as a
value. To say the least, this is confusing: the interpretation of a name depends on the
usage that is made of it. In other words, the name does not unambiguously represent
an object. Fortran changed this: a name stands for a variable, i.e. for a well-defined
object that has a value of a precise type. And this is true whatever usage is made of
the name. As a consequence, Fortran needed a statement to give a value to a vari-
able. This was the assignment statement. Of course, a statement that serves to assign
avalue to a variable is powerful only if the value can be computed. Therefore, the as-
signment statement also defined the computable expression, usually as an arithmetic
polynomial such as ABC*3 + H35. In even more general terms, Fortran introduced
the concept of action. An action is defined in terms of an operation that causes one
or more variables to change value in a finite and deterministic way (of course, For-
tran also had actions that changed no values but had another type of effect, such as
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printing on paper) . In essence, therefore, Fortran was the first true data manipulat-
ing language and a Fortran program is nothing more than a scheme of consecutive
actions upon variables, submitted to rules of behaviour. Indeed, variables need to
have values before they can be used in expressions. So a program must somehow
start by giving values to variables. As long as a variable has not received a value, it is
unvalued and it cannot undergo any other action than valueing, Moreover, for a vari-
able to be able to receive a value, it must, in its internal machine implementation, be
realized somewhere. It must have an address. We say that it must be sited. Now the
Fortran compiler sited variables implicitly, which was very wise: the programmer had
no need any more to even think in terms of addresses. And in many Fortran compi-
lers, a variable was also valued by default to 0, so that no problems could arise. So
Fortran did a very nice job in creating variables. But what about actions? These were
covered by the statements of the language. And although this looked like a rather
human concept, it was too vague. A good part of the problems that were going to
arise later in programming techniques is due to exactly that vagueness. Statement is a
very fuzzy notion; it implies nothing special, and in many cases not even an action.
Fortran statements could be actions, but they could be other things as well. And this
was very much inspired by assembler. In assembler programming, there existed in-
structions that allowed one to test certain conditions and the result of the test could
be used in specialized branch instructions so as to transfer execution flow to some
other place in the program. This was considered natural, since the data a program
worked with varied from run to run, so that specific cases could appear for which al-
ternative instructions were needed. And Fortran was in the same situation: it was not
possible to imagine that all programs could be constituted of mere sequences of, say,
assignment statements. One needed the breaks of sequence. And Fortran did it in a
very simple way by introducing the GOTO and IF statements. Are these statements
actions? Actually, they do something: they conduct program execution flow. But they
are of a meaning quite different to those statements that modify values.

It is time now to have a look at programming in Fortran.

Fortran defined a program as a portion of text comprised between a card with the
word PROGRAM and a card with the word END. The bulk of the contained text
was to be composed of executable statements such as:

(1) The assignment statement, e.g. x=732*(abc + def*3)/(klm + 7). Clearly, this
notation (with nested parentheses) is much more comfortable than assembler, which
would need at least 10 instructions using 3 intermediate "variables" to achieve the
same result.

(2) The branching statement GOTO statement-label, a statement which intro-
duces the label notion. In Fortran each statement can be labelled by means of a
number. This number does not at all represent an address. It is a mere name given to
a statement by the programmer. The statement has the effect of transferring execu-
tion flow to the specified label. The GOTO statement has a second format, largely
inspired by assembler, the so-called computed GOTO, as follows: GOTO
(labell,...,labeln),i. This statement branches to labelj if at the moment of branching
the variable i has value j. By using this statement, the programmer can create a so-
called case structure; in other words he can set up specific actions triggered by spe-
cific discrete values of a control variable. There was yet a third format of the GOTO,
the assigned GOTO, as follows GOTO i,(labell,...labeln). In this case i must have a
label number as value and more precisely one of the labels between the brackets.

9
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Assigning such a label value to i is done by means of a specialized statement: AS-
SIGN label-value TO i. This statement is a true assignment but somehow labels were
considered different to "usual" variables and this explains the special form of the
statement. A rather messy situation, which would have to wait for PL1 to clean it up.

(3) The conditional statement IF(conditional expression) statement meaning
that if the stated condition is true, the statement is executed. Otherwise, processing
continues just after the IF statement. As an example consider:

IF (A.GT.BCD.AND.Z.EQ.3) GOTO 1002

This would once more cost about 10 assembler instructions with some intermediate
labels. There is another format of the IF statement:

IF (numeric expression) labell,label2,label3

which means that if the numeric expression is negative, control is transferred to
labell, if the expression is zero control goes to label2 and otherwise it goes to label3.

(4) Finally, Fortran also defined the iteration as a group of statements executed
repeatedly under the control of a counting variable, also called a control variable.
The structure is as follows:

DO label I = from,to,increment

)

| contained statements
label CONTINUE

It means: execute the contained statements with the variable I equal to the from
value. Execute it a second time with variable I augmented by increment, and go on
like that till variable I exceeds the to value, in which case processing continues just
after the CONTINUE statement. Notice, and this is important, that the DQ label and
the statement having that label (it need not be CONTINUE) constitute delimiters,
which define a group of statements. In this group there may be other groups, which
allows for nested iterations. Moreover, a GOTO may not branch from outside to
within an iterable group. These rules make the construct much more attractive than
what could be achieved in assembler language.

Very comfortable and readable programming had become possible for the first
time ever. That there were many problems in Fortran would appear only later. Even
the most modern common languages have not yet cleaned up all the weaknesses. In
fact, most of the known languages of today (Algol, PL1, Pascal, C, ADA) are true de-
scendants of Fortran. Had Fortran been different, our present day languages would
also have been different. The inheritance is heavy. Other languages such as LISP,
PROLOG, APL, were based on totally different premises, as we will see, but they
never had the same public audience. Many computer scientists consider this an un-
fortunate historical mistake.

Assembler’s revenge

And yet, the deed was not done. Again, the machine grew in complexity. Its pe-
ripherals now included magnetic tape drives, allowing bulk input/output (the story of
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input/output will be told in chapter 15). And, of course there was Fortran. Fortran
was comfortable, but it was totally incomprehensible to the machine. The machine
wanted binary code, so its human worshippers still fed symbolic code into assem-
blers. A Fortran compiler was needed, a program that would read in Fortran state-
ments and franslate them into executable binary code. And such a compiler was natu-.
rally itself written in assembler. Since Fortran was essentially a simple language, the
process of translation was not very difficult, apart from the treatment of expressions.
Expressions could be very involved, with lots of parentheses. The pioneers had had a
hard time in setting up a correct translator for such beings. There had been ap-
proaches which somehow counted parentheses and created a so-called Klammerge-
birge. The theory of languages had not yet been invented. Refer to chapter 11 for the
story of that field. The Fortran compiler was something very new: for the first time
computer people had created a program that constructed another program. A very
powerful thought, but its richness was not perceived until later. One still needed as-
sembler to create such specialized programs.

At the same time, other evolutions came about. The machine became undisci-
plined. Computer people had given it too many powers. Uncontrolled, the machine
started wreaking havoc. It needed a Master. This was the Monitor. A program (de-
veloped in assembler, of course!) which resided in the machine and exercised control
over various activities, such as device management (reading from the card reader,
writing to the printer, handling tapes). Monitor also reshaped the machine’s com-
prehension of happenings: Monitor wanted the machine to accept jobs, which it ex-
ecuted by scheduling them, one after the other. Jobs were programs, framed by a
number of control statements (job control language) indicating the beginning and
the end of the stack of cards the program was residing on, and also the designation of
the devices this job needed to operate with. Jobs could be stacked as a batch in the
card reader and Monitor would be able to differentiate them. So, the machine was
tamed. Those were IBM’s days of IBSYS and IBJOB (Monitor names, actually).
Monitor distributed machine power to jobs. And what could have been anticipated
happened: Monitor became a tyrant. An uncontainable trend towards huge opera-
ting systems was set. A cleavage immediately appeared: there were men and women
alike who created, extended and worshipped the Monitor. They were the systems pro-
grammers and, because Fortran did not allow systems programming, they took an as-
sembler oath and despised Fortran. These people were under the hardest of stresses:
they had to keep the monitor operational. But the monitor was a very harsh mistress.
It had needs, and due to its growing complexity, it resisted changes in very subtle
ways. So it coaxed its developers into very ad hoc programming avenues, and as a re-
sult, the complexity grew and grew and grew. The systems developers became mere
handworkers, having nervous breakdowns and stomach ulcers. They lost grip and dis-
cipline. Their programs became more and more difficult to read and maintain. So,
they needed help in that wilderness. Help came in the guise of the macroprocessor.
This was a very essential being, but once more, people failed to grasp its real implica-
tions.

The wicked flow-charts this way came

Meanwhile, part of the truth had hit some of the Computer worshippers. They
realized that program design was called for. A method would be welcome. And in
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search of something -anything- they unearthed an oldie:
flow-charting. All of a sudden, a discipline
—— | was inflicted upon the Data Processing
ACTION world. The flow-chart was alive and well
and meant to stay. A flow-chart expresses

Figure 4 the flow of control through program execu-
tion. In this context, the notion of action is
all-important. An action is anything that modifies the value
of variables (or has some more esoteric side effect such as
Input/Output). The action therefore is made equivalent to
one or a group of program statements. This easy equivalence
explains the unbelievable success flow-charting had. Flow-
charting uses a graphical syntax, in which the action is ex- |__

figure S

pressed as a rectangular box (figure 4). The chart also con-

nects the boxes by means of vertical descending arrows, thus signifying control flow.
A rule that people manipulated is that although many arrows can enter a box, only
one arrow can leave it. This means that there always is one
and only one action that follows a given action (even if it

condition only were the conventional action stop which ends the pro-
. gram). Flow is synonymous to sequence, and therefore it was
action taken to be synonymous to programming also: the writing of

a sequential list of statements. But pure sequence was not
enough. One also needed to express that some actions could
be executed only if a certain condition held. The flow-chart
uses a lozenge and some arrows to indicate just that (figure 5). Now, looking at the
drawing, one may wonder if that is a truly natural representation. Does this flow-
chart indeed indicate a conditional statement? Or does it rather show conditional
skipping of an action? Wouldn't it be more natural to represent a conditional action
as the structure in figure 67 Using the lozenge introduces a new type of connective
arrow, one that goes horizontally, then descends and again goes horizontally towards
the next action. Nothing prevents us, of
course, from bypassing many sequential
action boxes with this kind of connective
line. Another usage of such graphical
structures is in representing Fortran’s
iteration. Iterations are necessarily con-
ditional: at each step of the iteration
some test is required to verify whether a
next step is required. Thus, the flow- \A
chart naturally expresses this in one of

two ways, as figure 7 indicates. Both ]

ways use the lozenge to indicate the test.

Both somehow enclose the iteration

body by using a connective line that ac-
tually branches back (goes upwards). Of |
course, the two structures do not mean
the same. If the iteration condition is
such that iteration is no longer needed,

figure 6

figure 7
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from the start, then the rightmost
structure will still execute the itera-
tion body once before abandoning it.
The important consideration is that
only connective flow lines indicate
the extension of an iteration or of a
conditional action. And that is rather
weak for such important execution
profiles. Flow-charts express flow,
and are not particularly concerned
about structure. This becomes appar-
ent when we try to draw nested itera-
tions as in figure 8. Not very readable
any more. The interesting thing to no-
tice is that the connective flow lines
(those that span one or more actions)
correspond very precisely to Fortran
statements such as IF and GOTO.

i Even more interesting is the fact that

figure 8 the DO statement is a shorthand for

the combination of IF and GOTO.

An intriguing question is: can connective lines cross each other in a flow-chart?
Of course they can! But is that a sound situation? I will let this question rest for the
moment being. Still, because of such questions, some computer people started hav-
ing doubts about the usability of flow-charts. It did not seem very wise to confuse ex-
ecution flow and program meaning.

inner cuier
loop loop

Assembler gets pregnant

Computers had begun their conquest of another realm: the business application
world was being engulfed slowly but surely. But what happened here was very differ-
ent to the Fortran world. Numerical analysts made their own programs: they con-
sidered the computer (with Fortran) as a tool to be used in their daily work. In busi-
ness applications the situation was that although the computer was needed in order
to speed up the business processes, most of the people concerned considered that ac-
cessing the computer was beyond their grasp. So, they quite naturally turned to the
Data Processing specialists themselves and required them to work on business prob-
lems. A new breed emerged: the application programmer. He was recruited in the
ranks of systems programmers and therefore he was allowed to stick to his ways: as-
sembler language became the language of applications as well. Fortran and its world
was another planet.

In the business field, problems were usually simple, but were burdened by huge
volumes of data to be processed. This was very different to numerical analysis where
there was not so much data but there were immense computations to be conducted.
So, the applications world needed ways to efficiently access and produce the data.
This gave birth to the files (for their story, see chapter 15) and all programs in this
field were bent under the yoke of file management. Data could not reside in the pro-
gram, on the one hand because it was too bulky and on the other hand because it had
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to survive the program’s execution for re-usage in a later execution. In such cases,
Fortran used punched cards. But this was much too impractical for the business data.
So, magnetic tapes were used instead. These peripherals had until then served to
hold the Monitor programs when the computer slept. Now it gained a new actuality.
Programs were also going to use them. And, as expected, Monitor took over the re-
sponsibility of managing the tape drives and the access to them. But Monitor failed
in one respect: it did not hide the peripherals from the programs. Instead, it defined
a set of device-dependent commands for usage within the programs. In retrospect,
this way of doing this has been the most effective of brakes upon program concep-
tion for years. It has also severely hampered the design of truly high-level languages.

As the number of application programs grew, it was felt by systems people that
these programs could just not sit in with the Monitor and happily interfere with it.
Systems programmers came up with the notion of interface: a small slot through
which application programs could communicate with the Monitor and ask for ser-
vices, mainly of file management scope. Other connections were totally banned. To
this effect, hardware grew a new assembler instruction: the monitor call instruction
(which I will designate by MC (IBM calls it SVC)), an instruction that allowed as-
sembler programs to request a Monitor service. This type of requesting needed oper-
ands both for informing Monitor about the service required and for allowing it to re-
turn information to the requester. A discipline was needed, which was reflected by
standard sequences of assembler code one had to use lest failure ensued. A great
cause of mistakes and unpredictable program behaviour. Alleviation came, however.
The standard code sequences were grouped under some more human generic name
with some operands, a macroscopic assembler instruction as it were. Some ten to
twenty such macroscopic instructions were added to assembler language in order to
cover file and device management. This was the birth of the macroprocessor. Did
the people who invented this new feature realize what they had unleashed? I am
convinced they didn’t. Even nowadays, programmers using conventional languages
fail to grasp the importance of macroprocessors. Only those who took the other av-
enue, that of Artificial Intelligence, understood what it was all about. In its own, as
yet very limited way, the macroprocessor was the basis of it all. Initially, the macro-
processor was used by systems people to create macroscopic instructions to cover file
management with. Very soon, however, the set of such instructions was extended to
contain other important services such as obtaining the date and time of day, or pro-
ducing a binary listing of program contents (a dump).

Fiat macroprocessor

The macroprocessor was a remarkable being. It had been spawned by assembler,
but soon it developed an independent life. At its birth, the macroprocessor was seen
as the means of replacing a number of lines of (assembler) code by a more symbolic
name. Usage of this name in a program would cause its replacement by the assem-
bler lines. When such a name was used, this was called a macre-call, Thus, the
macro-call DATE would, for instance, be replaced by the assembler code LA 1,0/
MC 37. Obviously, in using DATE, a program is more readable than when it uses the
two assembler instructions that do not at all indicate what the monitor call (MC) in-
tends to do (i.e. obtain a date). Increased program readability is, in my opinion, the
most important achievement of macroprocessors. But it must be that no one yet had
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any use for readability: macroprocessors were never used to achieve this goal on a
large enough scale.

On the side of the macroprocessor: how does it know that DATE must be re-
placed by the assembler instructions as indicated? Two possibilities were offered.
Either (a) the program could contain in a kind of prologue the information that
DATE was once and for all equivalent to LA 1,0 / MC 37 . Or (b) this fact was kept
somewhere in the macroprocessor. The replacement rule was called macro-defini-
tion, and the symbolic statement DATE is the macro-statement or macro-call. Both
the definition and the call were soon called just macros and the context would clarify
whatever was meant. So, the macro-definition could reside in the program. This was
not very practical: if many program texts needed DATE, each of them had to contain
the definition. Thus, in most cases, the macroprocessor had to keep this information
elsewhere. It was decided to store definitions in a file instead of in the processor it-
self, thus giving the possibility of creating new macro-definitions easily. The macro-
library was also born.

More was needed however. Consider the example of a device management read
operation. The record must be delivered into a program area, a so called buffer. In as-
sembler language this could, for instance, be done as follows:

XR 0,0/ LA 1,BUFFER / MC 89

Now one could define a macro called READS, containing the XR 0,0 / MC 89 se-
quence so that a program could do LA 1LBUFFER / READS. This however is an-
noying. Why indeed, was the LA instruction not part of the macro-definition? Be-
cause the name of the buffer is program-dependent, i.e. variable. In other words, if
the macro-definition was to contain the LA instruction it needed the possibility to
use any name a program might need for a buffer. The solution was to equip the
macro-definition with a parameter corresponding to an argument in the macro-call.
In order to allow this, the macro-definition needed a header statement in which the
expected parameter was to be written. Thus, the macro-definition could be as fol-
lows:

READS MACRO BUFFERNAME / XR 0,0 / LA 1,BUFFERNAME / MC 89
The macro-call could then be READS BUFFER, so that the replacement would be
XR 0,0/LA 1,BUFFER/MC 89

In other words, the program-specified name BUFFER was used in place of the name
BUFFERNAME of the macro-definition. The name used in the program is the argu-
ment while the name used in the macro-definition header is the parameter. At the
moment the macro gets replaced, the argument substitutes for the parameter. The
interesting aspect is that the macro-definition does not even have to know what
BUFFER actually means. It doesn’t see it as a name in program context but merely
as a word in macro-context. Therefore, if the parameter was the name of a word,
then the argument in the program-based macro-call was supplying the value of the
word. This was very new: a word that had a name and a value! Of course, in macro-
processor context, the value of a word was usually the name of some program field.
In Fortran something comparable was known. Fortran had variables that had a name
and a value. ABC was a name and 743 was a value. This is clear. Not so in macropro-
cessor context. The string ABC could just as well be the name of a word as the value
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of it. And that is where the macroprocessor creators made a mistake. They con-
sidered that only arguments were values of words, so that they only appeared in
macro-calls, whereas names of words were always parameters, so that these only ap-
peared in macro-definitions. Therefore, there did not seem to be any ambiguity. The
macroprocessor creators did nothing to distinguish between a text constant (a value)
and a text variable (a name). Unfortunately, macro-definitions could also contain
text constants. Suppose indeed that register 0 is not called 0, but R0. In that case, our
macro-definition must contain the line XR R0,R0 and here we have a problem: in-
deed, how do we know that R0 stands for itself and is not a name in macro context?
So, the macroprocessor creators decided to distinguish the cases and they particu-
larized the name by giving it a prefix, the ampersand. The macro-definition for
READS thus becomes:

READS MACRO &BUFFERNAME
XR R0,0 / LA R1,&BUFFERNAME / MC 89

The &names were soon called macro-variables. In summary therefore, the macro-
processor is a program that replaces a macro-call by the lines present in the macro-
definition while replacing the macro-variables this definition contains by values
taken from the macro-call arguments. Thus, the macroprocessor was the first string
processing program ever made.

It was soon obvious that the macroprocessor need not be committed to assembler
language but could create any text in fact. The assembler world however was not
aware of the value of this fact, so that the macroprocessor’s syntax was condemned to
an assembler-like syntax and to the exclusive generation of assembler code lines. Ex-
ceptions were however tolerated via an auxiliary statement that could be used only
within a macro-definition: PUNCH. This statement would not appear in the replaced
code. However, it has the effect of producing some text onto a file and does this dur-
ing macroprocessing itself. This was the first of another new being: the macro-state-
ment. So, what does PUNCH ABC mean? Due to the same ambiguity as explained
earlier, how do we know whether ABC means the three characters A,B, and C oris a
name which stands for a value? The macroprocessor designers introduced yet an-
other distinction: on macro-statements a string without ampersand was taken to
mean a name, whereas when a constant was needed one had to quote it. Why these
people did not obey their own & convention within macro-statements is sheer mys-
tery. That is not the end of the story. In many cases system functions covered by a
macro-definition allowed minute variations. For instance, one way to read from a de-
vice is given by the assembler sequence

LA 0,1/LA 1,buffer / LA 2,key / MC 89
while another way is given by
XR 0,0 / LA 1,buffer / MC 89

Obviously we need two macro-definitions to cover these cases, one with only one
parameter for buffer and the other with two parameters for buffer and key. But in fact
those two macro-definitions were not so different. So, it was desirable to have only
one macro-definition able to generate both sequences. This meant that decisions had
to be taken within the macro-definition. To that effect another macro-statement was
introduced: AIF. Also, an AGO macro-statement was added which allowed branch-
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ing within the macro-definition body. In order to decide what to generate it must be
possible within the macro-definition to find out whether an argument is given for the
key parameter or not, since that is essentially the difference between the two possi-
bilities. Therefore, the macroprocessor introduced a number of internal attribute
functions allowing for instance to know whether an argument exists or not (in the
example below that is the K’ function). Let us now write the macro-definition for a
general READ macro (RO,R1 and R2 are the symbolic names of registers 0,1,2):

READ MACRO &BUFFERNAME,&KEY
AIF  (K'&KEY =0).LAB1
LA ROl
AGO LAB2
LABI1 ANOP
XR  RORO
LAB2 ANOP

LA  R1&BUFFERNAME
AIF  (K'&KEY=0).LAB3
LA  R2&KEY

LAB3 ANOP
MC 89

In this macro-definition the first AIF tests whether the &KEY argument exists and if
not it branches to the label LAB1. The macroprocessor only allowed macro-state-
ments to have labels. For that reason, it was required to introduce a macro-statement
with no effect, ANOP. Notice also that labels are prefixed by a dot. The syntax and
semantics of AIF and AGO were remarkably close to those of Fortran and this is no
surprise since both languages originated at the same moment. In considering our
macro-definition more closely, we make some interesting observations. It contains
two types of lines: macro-statements which serve to govern the macro replacement
process and ready assembler instructions with or without &variables which are
generated as a result of the macroprocessing. The second observation is that a
macro-definition looks very much like a program. Suppose indeed that we introduce
a new macro-statement which we will call AGEN and which will generate the value
of its operand, with &variables replaced, into the original text. If it has more than
one operand, these are concatenated (strung together). Using AGEN we can re-write
our macro-definition:

READ MACRO&BUFFERNAME,&KEY
AIF  (K'&KEY =0).LABI
AGEN ('LARO,T)

AGO .LAB2
LAB1 AGEN (’XR RO,R0")
LAB2 AGEN (LAR1, &BUFFERNAME)

ATF  (K'&KEY =0).LAB3
AGEN (LA R2’ &KEY)
LAB3 AGEN ('MC 89)

What we have now is very clearly a program of which the actions are the generation
of assembler text lines. Macro-definitions are string processing programs, em-
bedded in a gigantic outer string which is the receiving text. What I mean is: a text
contains macro-calls which invoke a macroprocessor that reads another text (macro-de-
finitions) and interprets them as programs that cause the macro-definition to be re-
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placed by text. A question is: if a macro-definition is a program, then where are its
variables? Well, we already saw some of them: the parameters. But what is to pre-
vent us from defining more variables for usage within the macro-statements? This
was indeed offered by means of the LCL declarative macro-statement allowing the
writer of a macro-definition to declare variables internal to the macro-text. LCL
ABC defined the macro-variable ABC. Such variables could be given a value by
means of the SET macro-statement which had an incredibly garbled syntax: ABC
SET 'XYZ’ gives the value XYZ to the macro-variable ABC.

The Fortran spawn

Without realizing it, the oldies had given birth to a first construct that would
become important in the structuring of programs. In fact, assembler had created the
idea, but Fortran really formalized it: here comes the subroutine. The subroutine re-
sulted from the consideration that writing a same piece of code more than once in a
program text was uneconomical. In assembler, this situation could be cleaned up in
two ways. One could create a macro-definition to generate the code, and use macro-
calls at all places where this code was needed. A solution that was satisfying as far as
the program text went, but in translated binary code, the whole thing was still present
more than once. The advantage was however that the code had to be written only
once, so that it could also be maintained in a coherent way. Another solution was to
isolate the code in the program text, and wherever it was needed one could then in-
voke it. To that effect, IBM360 assembler gave the BAL (and BALR) instruction
which branches to a certain address (its operand) and stores in a register the address
following the BAL. By branching to that register, a return to the mainline coding
could be achieved. The isolated piece of code was called routine or subroutine. As-
sembler did not force any discipline upon this new being. The piece of program that
issued the BAL instruction was the caller. The relationship between caller and sub-
routine can be depicted as follows:

caller line subroutine line

BAL R14,ABC ABC first instruction
next instruction

BAL R14,ABC BR R14 return
next instruction

An immediate extension of the subroutine was the module. A subroutine could
be assembled separately (i.e. as an independent piece of program), and thus can con-
stitute a separate entity, which is called module. The concept of subroutine raises a
number of important questions such as:

(a) should a subroutine be technically and conceptually separate from the program
text in which it is written? In assembler, one couldn’t care less;

(b) Can a subroutine call another subroutine? The answer is yes, but in assembler it
is up to the programmer to make sure that no confusion arises;

(c) Can a subroutine have "variables" of its own? In assembler, all variables are ac-
cessible by the whole program, therefore, there is no question of ownership. Assem-
bler language tried to introduce some protection there by defining addressing ranges
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(supported by the USING instruction), but this could be breached at any moment;
(d) Is a subroutine clearly delimited, i.e. does it have a first and a last instruction? In
assembler, the answer is: not really. Subroutine texts can overlap, since the BAL(R)
instruction branches to any valid label.

As a conclusion, assembler subroutines are not at all formalized. Programmers could
(and did) misuse the subroutine in various devilishly tricked ways. Program reada-
bility decreased immensely.

Fortran, on the other hand, did all it could to preserve and formalize the subrou-
tine. The subroutine is a piece of code, written in the program line. It is however
clearly delimited by a SUBROUTINE and an END statement. The SUBROUTINE
statement gives a name to the subroutine. The subroutine has to be invoked by
means of its name in a CALL statement, and there is no other way to get at it. In
other words, program execution flow will never enter a subroutine spontaneously.
The subroutine can only be entered at its top (although later versions of Fortran
would allow secondary entry points). Returning to the caller was to be done by
means of a RETURN statement or by reaching the END statement. The subroutine
body cannot access variables of the calling line. If it uses names already defined in
the main line, this is still taken to mean another variable, local to the subroutine; ac-
cidents cannot happen. Conversely, the calling line cannot access any variables with-
in the subroutine. Although a subroutine could not contain another subroutine, it
could call any other subroutine of the same program. Subroutines could also be com-
piled separately. All this was nice and clean, and certainly gave programmers a well
formed way to structure their programs. In fact, subroutines offered an important
new philosophy: procedural abstraction, a mental process by which detailed code is
replaced by a name that stands for the functionality of that code. There was more to
it, though. Subroutines offered the all-important feature of parameters and argu-
ments, in the same vein as what we have seen in the macroprocessor. The SUBROU-
TINE heading can contain a list of names, which are parameters, and the CALL
statement must then contain a list of values, which are arguments. Arguments and
parameters correspond one to one. Thus, if we have a subroutine SUBROUTINE
XYZ (K,L,M) and a call CALL XYZ (A,B,C), then, in the course of execution of the
subroutine XYZ, the parameters K,LLM have the values of the mainline variables
A,B,C. Fortran achieves this by first making a copy of the values of A,B,C into work
fields. The parameters K,L,M are then sited over these copies. In other words, For-
tran parameters have a storage piece of their own. Many subroutines need to give
back values to their callers; this is done by the inverse mechanism: whenever a RE-
TURN (or END) is executed, the copies of the arguments (i.e. the parameters, poss-
ibly modified by the subroutine’s execution) are copied back onto the original vari-
ables. This looks acceptable, but contains danger. What indeed if we have a subrou-
tine

SUBROUTINE XYZ(X)/ X=4/END

and call it by CALL XYZ(3)? The result of this situation is that the constant 3 is re-
placed by the constant 4. A nasty side effect. It would take Algol to clean this one
up... As an important first, Fortran also allows parameters to be subroutine names.
Consider the following example:
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mainline subroutinel subroutine2

A=5 SUBROUTINE ADD(X,Y,Z) SUBROUTINE FCT(X,Y,Z,0P)
B=7 Z=X+Y CALL OP(X,Y,Z)

CALL FCT(A,B,R,ADD) END END

The call to FCT in the mainline gives the value ADD to OP, so that the call to OP in
subroutine2 actually executes as a CALL ADD(...). For such cases to work correctly,
Fortran wants the programmer to declare the ADD subroutine by means of the
statement EXTERNAL ADD. A powerful mechanism had been created here, but it
did not seem to have a huge success with programmers. Nevertheless, other lan-
guages such as LISP were going to continue in that line. Another aspect was that of
passing labels to a subroutine. The subroutine could use those label parameters to
return to some specific point of the calling program. Of all the nasty things this was
really the worst! It allowed programs to become very abstruse, illegible and incom-
prehensible. Even the syntax was weird: in the call statement, labels needed a "&"
prefix; in the subroutine header, label parameters had to be written as asterisks and
had to be at the end of the list. Fortran implicitly numbered the asterisks from one
upwards and the RETURN statement could use these implicit numbers. As an
example consider a subroutine SUBROUTINE SUBR (A,B,C,*,*) and a call CALL
SUBR (X,Y,Z,&10,&20), then RETURN 1 in the subroutine would actually go to the
first asterisk, i.e. to label 10 of the mainline, and RETURN 2 would go to the second
asterisk, i.e. to label 20 of the mainline. A RETURN without a number will return to
just after the subroutine call as usual.

A very essential new feature in Fortran was the function subroutine, or more
briefly function. Such functions were subroutines but were special in the sense that
the subroutine call had to be part of an expression and replaced itself by a computed
value on return. This allowed for very powerful formulations. As an example con-
sider the following subroutine:

FUNCTION MULTX,Y) / MULT=X*Y/ END

This can be used in a program as follows: X=A+MULT(7,B). The statement
MULT=X*Y in the subroutine assigns a value to the function name, and this is the
value that replaces the call in the mainline. As far as terminology goes, one does not
say that a function is called, but rather that it is invoked. Allowing for functions was
certainly one of the most essential features introduced by Fortran. A whole new
world opened, which was going to culminate, much later, in functional languages.



Chapter 2
THE YEARS OF SYSTEM AND COBOL

Towards the end of the 50°s things became more
complicated and Cobol hit the scene.

Monitor leaves the scene, System makes it

As Monitor kept growing, a number of new needs had risen. One of these was in-
terface calling. What was that all about? Monitors grew bigger; they offered more
functions such as device management. Monitors very soon became systems. And sys-
tems would be defined as the set of such functions, offered for better or worse. One
might imagine that any one function was implemented as one (system) program. And
in the beginning that was indeed the way it was done. Such a program, as part of a
system, was called a module. A system was nothing other than a set of modules. Al-
most immediately it became clear that modules were going to need the functionality
of other (co-resident) modules. They were going to call one another, so as to avoid
repeated programming effort. But, a module called by another module, almost cer-
tainly had never been created to be called in such a manner. The functionality it ap-
peared to offer was a fortunate by-product of the actions it performed. Moreover,
the notion of environment started to appear. The machine had registers, the modules
had data. The modules had to be able to preserve these objects when calling one an-
other, otherwise the return would not be possible. And also the return point had to
be remembered ... Part of the data was to be passed back. This set of rules con-
stituted the interface between two modules. And that is where the problem suddenly
appeared. The interface was particular to each pair of modules. Therefore, if » mo-
dules composed the system, and if calls were restricted to the obvious cases, there
were n(n 1)/2 interfaces possnble It was soon admitted that system complexity, for
increasing n, grew like n2. Obviously, if a module had not been developed to receive
a call from one caller, it certainly was not apt to accept calls from many ... The mo-
dule was a hermit. When it was used on a call basis by its neighbours, it started losing
grip and programmers tended to garble the module’s code. The whole thing was
heading towards catastrophe. Modules grew numerous entry points, for slightly dif-
ferent interfaces but for almost the same functlonahty Modules behaved slightly dif-
ferently for different callers. They became caller-anxious. And no one attempted to
solve the situation. Programmers, if anything, started to cherish the complexlty (a
common streak in a specialized field), did all they could to protect it, to avoid sim-
plicity. It made them 1nd|spensable It called for tricks, not for skills. It made ob]ec-
tive evaluation of the programmmg effort impossible. There was something rotten in
that kingdom. A new invention, which claimed to be the solution, and indeed had
possibilities, was immediately misused: modular programming. Modular programm-
ing came from the trivial observation that if P programs can associate to form a mo-
dule, then a module can dissociate into P programs. Modular programming claimed
that doing just this would clarify the programs since they became smaller and it
would also alleviate the interface problems because of possible program (module)
regrouping, at least in the long run. It was a first, timid, attempt at structured pro-
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gramming. But something very different happened. Modular programming had said
that a system module A, receiving a number of calls and issuing another number of
calls could be fractioned into submodules, say Al, A2 and A3, where Al would re-
ceive the calls that were originally destined for A and all calls that A had to issue
would come from somewhere within the submodules A2 and A3. The calls from A1l
to A2 and A2 to A3 could be standardized as they were a purely internal and inten-
tional situation. That is where it went wrong. Modular programming increased the
number of modules, and programmers soon appreciated the granular functionality
this brought. They issued calls to the submodules as well. The complexity of systems
grew dramatically. No solution was yet in sight.

The overlay fanaticism

The formalization of subroutines brought new life to the concept of modular pro-
gramming. Indeed, a module was a subroutine, or wasn’t it? The step towards saying
that therefore a subroutine is a module was very easily taken. A dangerous step this
was ... But it all came about in such a pompous and emphatic way that everyone ac-
claimed it as the long-expected rescuer. Gradually, machines had become too small
to hold a program’s object code (another name for binary executable code). Ma-
chines of those days typically had 32 to 64 Kbytes of physical storage. And part of
that was devoted to the resident system portion. Thus, not enough memory was left
for the Fortran (later: Cobol) programs. Making programs smaller was certainly
called for, and compilers did their best to achieve that goal. Also assembler pro-
grammers did their utmost, causing the appearance of a new breed of programmer:
the bit splitter (that was the true specialist ... at a higher level we found the byte
crunchers ...). Noble causes these were (or so one believed). But there is a limit to
everything. So there were still programs that could not possibly fit in memory. The
solution was, obviously, modular programming. It was argued that a program did not
need to reside in core as a whole, but could rather be fetched into core piece by
piece, as need arose. It remained to define the piece. It was called a segment. As a
consequence we needed ways to segment programs, This was achieved by decompos-
ing the programs into control sections (CSECTSs) and by defining the segment as a
sequence of such CSECTs. Now, a CSECT is an arbitrary grouping of statements,
with some rules governing the addressing of data fields inside or outside the
CSECT’s text. The assembler programmer was free in this respect. Fortran (and
later Cobol) however, defined CSECT by
convention: a main program, a subroutine
(or a Cobol segment, something that was
to appear only much later). Suppose a

figure 1
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program is composed of 8 consecutive
CSECTs (this concerns the writing order,
not the execution flow!) named
AB,C,D,EF,G,H. We then could set up a
plan for loading these CSECTs into mem-
ory, by defining loadable segments and by
specifying how these can overlay one an-
other in core. Consider the tree structure
of figure 1. The tree contains 6 loadable
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segments (S1 to S6) which contain CSECTs and it also indicates an overlay policy:
the loader (i.e. the system component that actually fetches objects into core) will
start by loading only segment S1 (i.e. CSECT A). This is the root segment, which
will remain in core at all times. Next, the loader will load only one of the segments
S2 (CSECTs B and C) or S3 (CSECT D) or S4 (CSECT E). These segments can
overlay one another on request basis, and it is up fo the program logic to make sure
that this gets done in a safe way, since the segment the loader overlays upon, is lost
(well, it can be loaded again of course, but that is a fresh copy, with data fields in an
initial state). In other words, the
program’s logical structure has to
be bent into something that allows | . —
overlay to take place. A lot of fea-

tures were brought into the overlay St I A
picture, so that CSECTs could be
forced to be physically loaded in

some segment even if they were ac- B {» D[S3 Elg 4
se

region 1

tually written as source in another region 2
one. You see, when a scgment gets
overloaded, data is lost, without any
hope of restoring it. This means F
that data one still needed after an S5 region 3
: G

overlay, has to be placed in seg-
ments of higher level in the overlay
tree. The concept of region was also figure 2
introduced, allowing independent
overlay activity in different portions
of physical core. An example is given in figure 2. The handling of segments S6 and S5
is unaffected by that of either S2 or S3 or S4. The programmer had two ways of pro-
voking the actual overlay activity: either by demanding that a segment be loaded (by
means of the brute force LPOV macro), or by calling a CSECT within another seg-
ment than the one currently loaded (done by the more gentle XCALL macro), a pro-
cess which is different to the calling of a CSECT within the currently loaded seg-
ment. Tricks ... The result of it all was that a new specialist emerged: the overlay
coder. Fanatics that considered it a sport to force big programs into very small core
slots. Rule by exception was their motto. Incredible but true. On the other hand,
overlay was the only way to get big programs to work. It was going to take very many
years before overlay would evolve into more noble techniques ...

What’s in a name?

It is time now to bring up an important question. What indeed does a name stand
for? This may sound like an obvious question but it isn’t. John Done clearly desig-
nates a person. The name stands for the object resulting from the conglomerate of
fair hair, brown eyes, bright complexion, slight scar on left cheek, big mouth, athletic
arms, large torso, small hips, short legs that make up the Done person. This is rather
obvious. Let us rule out once and for all the deviation created by duplicate names:
there is no other John Done. Thus, the conglomerate (the person) described above,
is the value of Done. Exactly what a Fortran variable is and an Assembler variable is
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not. But that is not all there is to it. In the early 50’s Korzybsky claimed that Aristote-
lian logic was not a good way to describe reality. True logic was non-Aristotelian, he
said. This statement was the foundation of general semantics. In Science and Sanity
(1958), Korzybsky indicated that an object could be at the same time in the set A and
in the set non-A (Aristotle had said A or non-A, but not both), from which followed
that if a=b and b=c, then a=c and a=c are both possible. Let us consider an
example: is a cat a cat? Aristotle said yes, and he was right if the word cat really
means the sleek animal we all know. Korzybsky said no, and he is just as right if the
word cat does not always mean the animal. It amounts to saying that the cat is not
necessarily a cat. During World War 11, a general having been informed that taking
the town X cost 15.000 casualties, said it was a lot to pay for a mere name on the map.
Applying these views to John Done leads to the following statements: [Done is a
(proper) noun], [Done is the person described as a short fair-haired athlete], [Done is
the group of four letters D, O, N, E], [Done is the past participle of the verb fo do).
The fourth possibility is purely incidental but the three first possibilities always exist.
It is not all that simple anymore. Indeed, what do we mean when we use the word
done?

What is the link with names in Data Processing? A name designates an object. In
Assembler language the object itself comes to live only by its usage type. This is not
true for Fortran nor for the macroprocessor. In these langnages an object is clear by
its mere definition. It is a variable. A variable has a value. It also has an address (i.e.
it is located somewhere). Thus, a name stands for both aspects of the variable: value
and address. And it also stands for itself as a group of characters. Note that a variable
(a name) must have an address (must be sited) if it is ever to hold a value. Somehow
one sees the address as a rather fixed object, while the value is more volatile. Better:
a variable is important by its value and much less by its address. But what about the
name of a parameter of a subroutine? The parameter is only a place-holder for the
argument that it really is at the time of execution. Could one say that the parameter’s
name is an alias for the argument? Certainly one could. It would mean that the par-
ameter is a name which has the same address and value as the corresponding argu-
ment when the subroutine containing the parameter is active. The parameter has
neither address nor value when the subroutine is not active. This however creates
technical problems in a compiled language: all statements using the parameter must
be resolved at compile time. Technically therefore, the parameter is a named object
having an address at all times. This location will contain a value only when the sub-
routine is active. The value will be the address of the argument. What we now have is
the parameter as a truly existing object, no longer alias of the argument, but a ref-
erence to it. This kind of argument-parameter linkage is called by reference. Another
way of seeing a parameter is by conceiving it as a copy of the argument. This means
that there is no strict identity anymore between argument and parameter. If the par-
ameter’s (i.e. the copy’s) value is changed, that of the argument stays unmodified.
This kind of argument-parameter linkage is called by value. We have seen that For-
tran uses a mixture of both policies: it creates the copy but moves it back onto the ar-
gument after the subroutine has terminated. Apparently, compiler makers had the
choice of the policy. It was however not clear at all times. Indeed, what if an argu-
ment is an expression such as a+b? What is an expression? It is certainly an object,
but has no name. Whenever the expression is written down somewhere it is immedi-
ately evaluated and is replaced by its value. Thus, an expression is an unnamed ob-
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ject with a value (and, of course, an address to hold the value). The value (and prob-
ably also the address) is essentially volatile. The expression can certainly not be as-
signed a value by means of an assignment statement. When an expression gets used
as an argument, a link by reference is rather meaningless; in fact, it means exactly the
same as a link by value. However, an expression can also be seen in another way: the
expression’s syntactic form can be taken as its name! And why not? Whenever this
name appears anywhere, it stands for the computed value of it. Under this philos-
ophy, an expression argument can be linked to its parameter by reference. Each time
the parameter is used, this causes evaluation of the expression the parameter actually
stands for. Passing by value, in this case, means the expression is evaluated just be-
fore entering the subroutine, and this value is passed once and for all. Various lan-
guages such as Algol and PL1 would have various policies in this area.

This situation is more or less the same for constants. What is a constant? It is an
object that remains constant. It is also an object whose name is its value. Such objects
are said to be self-defining. Any reference to a constant reproduces its value, which
therefore cannot be changed. A constant cannot be assigned to. There is a major dif-
ference however between a constant and an expression. A constant’s value is perma-
nent while an expression’s value is essentially volatile. The constant is sited once and
for all (and in many cases it is not sited at all, because the binary instructions can
contain constants within themselves). What happens when a constant is used as an
argument? When it is linked by reference, it stands for itself. We have seen in For-
tran that this could cause modification of a constant’s value! When it passes by value,
it is a copy of the constant’s value that gets passed. Some authors have introduced
the named constant. This is no longer a self-defining object, since it has an explicit
name and an explicit, unmodifiable, value. Such constants are truly sited, but have
the same behaviour as unnamed constants. They allow us to give the name three to
the value 3, and this may greatly improve the readability of our programs. On the
other hand, we cannot distinguish such constants from variables anymore. Unnamed
constants nicely indicated what they were, either because they were plain numbers
(including a sign and a decimal point) or they were string constants, in which case
they had to be surrounded by quotes. Thus, 'abc’ is a constant, whereas abc is the
name of a variable or constant.

There are even stranger objects

Fortran had introduced another new object: the array. In fact, an array is a col-
lection of many values which are somehow ordered. The ordering is a numbering:
each value in an array is numbered by its coordinates. In other words, the values can
be organized in a line, in which case they are numbered 1,2,3,... (or any equivalent
scheme). The values can also be organized in a rectangle, in which case we speak of
rows and columns, and the numbering is two-dimensional, e.g.
(1,1),(1,2),...,(4,1),(4,2). Generally speaking, arrays can be n-dimensional. For arrays,
the name stands for the conglomerate of all the values. The address is taken as that
of the first element. But this does not suffice. The array object needs other attributes
in its description: not only do we need to know how many values the array contains,
but also how they are organized. In other words, we need to know how many dimen-
sions and the numbering bounds in each dimension the array has. Compiler makers
have always had problems in allowing arrays as arguments to subroutines. The prob-

25



The Years of System and Cobol

lems were technical, not conceptual, however. Thus there is nothing that prevents us
from passing an array to a subroutine, either by reference or by value. Most lan-
guages, however, do not or only partially cover these needs. A problem that is spe-
cific to conglomerates is that they are composed of lower level beings. An array con-
tains elements. But it also contains rows and columns (this is generalized to the no-
tion of cross section for n-dimensioned arrays). How do we identify those objects?
What is their name? Obviously, part of their name must be that of the containing
structure, i.e. of the array itself. The name must be further extended by the coordi-
nates of the element (or the cross section). This is done by means of indices. In a
two-dimensional array A, the notation (the name) A(3,4) designates the element at
the crossing of row 3 and column 4. Such an element is called scalar. The name
A(*,4) stands for the cross section composed of all values in column 4. This is itself
an array, with only one dimension. Other authors have used the notation isub(A3,4)
to designate an array element. This is a strange notation, as we will see later. The im-
portant thing to remember for now is that A(x,y) acts as a name, which is not unlike
an expression. Indeed, indices can be expressions, so that the array element coordi-
nates are actually computed.

Subroutines and functions: what’s in a name?

There are still other objects that have a name: subroutines and functions. And we
have seen that Fortran allows us to pass them as arguments to subroutines. So what
does the name of a subroutine stand for? Let us first consider non-functional subrou-
tines, Does the name of such a subroutine have a value? Yes, of course. The value is
the subroutine text itself (or better: its compiled equivalent). And what is its site?
The first address in core where the executable code of the subroutine starts (the
entry point). Does this mean that the name of a subroutine stands for a variable? Can
we assign something to the name of a subroutine? If we can, then the assignment
a=Db where a and b are subroutine names, would replace the text (i.e. the code) of
subroutine a by that of subroutine b. This however, is not what compiler makers have
done. They have considered that the name of a subroutine is in fact the name of a
constant, so that one cannot assign to such a name. Passing the name of a subroutine
as an argument therefore cannot happen by reference. It only happens by value.
Moreover, the actual value that gets passed is the address of the subroutine’s code.
This being said, there is a certain amount of ambiguity regarding the name of a sub-
routine. According to the way in which this name is used, the interpretation is differ-
ent. When used as an argument, we mean the subroutine as a piece of code. How-
ever, when used in the call statement we actually mean execution of the subroutine.

As far as functional subroutines are concerned, we can see them in the same way
as the other subroutines. But, since a functional subroutine’s invocation can take the
place of an expression, it is more usual to see the functional subroutine as a named
expression with exactly the same semantics. This interpretation is true whenever a
function is invoked, but it is the other interpretation that holds true when the name
of a function is passed as an argument.

Let us come back to the assignment of one subroutine to another. If we allow an
object to be a subroutine without text, then it must be possible to assign a subroutine
text to such an object. What we have now defined is a subroutine variable as opposed
to a subroutine constant. For technical reasons such an assignment is never done by
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moving the text or code, but rather by saying that in the statement a=b we actually
mean that a is another name for b. Technically the value of a is not the code of b, but
the address of the code of b. It appears that assignment can take place either by mov-
ing values, or by moving addresses of values.

A last question is: can there be an unnamed, self-defining, subroutine constant?
Could we, for instance, do A="T=M#*2 X=T+M#*3’ where A is a subroutine vari-
able? Why not, provided we also add the definition of the parameters? In fact, some
macroprocessors and also the LISP and PROLOG languages allow this. It is not at
all common practice in current programming languages however (apart from the
short-lived and controversial Algol68).

Those magnificent men with their sparkling Cobol

Meanwhile the world had not stood still. Dijkstra once said that Fortran was an
infantile disease. What was to come next was catastrophic! Cobol was its name. A
language meant for business application programmers. A language intended to be
the epitome of all languages. A totally naive approach to writing programs in terms
readable by human beings. The conceptors of Cobol decided to replace all oper-
ations by words and to rephrase the lot. A simple Fortran statement like X=A+B
was replaced by ADD A TO B GIVING X. Many such verbs and phrases were
spawned and the result was that although indeed readable, Cobol became very hard
to master. As a result, this induced the appearance of fanatics of the long live Cobol
species. They promoted the sophism that Cobol was easy. This misconception, added
to the fact that the language was truly general-purpose and the sole available one, is
the cause of the overwhelming enthusiasm that engulfed the application world and
still exists today. Cobol kept some of the finer points of Fortran: it is a variable-based
language and it wants all variables to be pre-defined. This of course is nice. Cobol
also kept the conditional statement of Fortran and replaced numeric labels by more
human-looking paragraph names. In inventing paragraphs, Cobol was the first lan-
guage to offer program structuring. But it did more: it required the program to be
divided into four divisions thus isolating the identification, the environment and the
data of the program from its executable statements, the procedure division. Although
the idea was not bad, the implementation left a lot to be desired: each division has
different syntax rules; division contents are extremely verbose; each division can be
present only once, thus not allowing the writing of a subroutine within a program.
The environment and data divisions are further divided in fixed sections with very
strict syntax and contents requirements. The claimed reason for it all was: documen-
tation value and consistency of non-procedural declaratives. The procedure division
itself can be divided freely into paragraphs (and in later versions also into sections
and segments). What (if anything) is a paragraph? In reality a paragraph is a se-
quence of statements extending from the paragraph name up to, and not including,
the name of the next paragraph (or to the end of the text). In essence, the paragraph
name is a mere label one can branch to. Thus, the paragraph is the target of a GOTO
statement. This means that the paragraph is not of very high semantic value by itself.
But Cobol had a bag of tricks: it introduced another connective, a purely paragraph-
bound one, the PERFORM statement. This statement takes a paragraph name as an
operand and merely indicates that the paragraph must be executed completely after
which control must come back to the statement following the PERFORM statement.
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Somehow, this looks like calling a subroutine without parameters. However, it was
much less clean than that:

(a) a performed paragraph is part of the procedure division and uses exactly the
same variables as the program;

(b) a performed paragraph cannot be abstracted since it can have no parameters;

(c) a paragraph can also be branched to, in which case it does not return;

(d) a paragraph can also be flowed into sequentially in which case it has no spe-
cial meaning;

(e) within a performed paragraph there can be other PERFORM statements or
branches to other paragraphs: what happens then is rather involved.
The last point is the real troublemaker: it makes code truly unreadable. In Cobol the
program flow did not at all follow the writing sequence anymore. People found it
necessary to document the flow by using flow-charts. This mere fact indicates how
badly adapted Cobol was. Last but not least, the Cobol makers concocted the
ALTER statement. A very doubtful feature which allowed programmers to modify
the interpretation of the target on a GOTO statement.

Cobol alternates

So Cobol had invented the not so very usual notion of paragraph. Nevertheless,
this was an improvement, notwithstanding its awful semantics. Cobol did not stop
there: it invented something else, something of which it certainly did not immediate-
ly realize the implications. Fortran had an IF statement which allowed the condi-
tional execution or skipping of an action. Cobol used the same type of IF statement.
In order to skip a group of actions, one could write IF condition GOTO label. But
Cobol also allowed the IF statement to contain executable statements, for example:
IF condition ADD A TO B GIVING X, The next step was to bring many statements
under the rule of the IF. This could have been done by using the paragraph concept.
Cobol however decided otherwise. The normal termination of a statement in Cobol
is the period (»). When many statements are grouped under an IF, only the last one
may have a period. The intermediate statements are separated by a mere blank or, if
one so wishes, by a comma. So, the period was not really the statement terminator but
rather the action terminator. Incidentally, the various uses of the period in divisions
other than the procedure division is totally bewildering! Nevertheless, it was a nicety
of Cobol that it invented the truly conditional statement, something Fortran did not
have. An immediate consequence of this is that we don’t need a label anymore for
skipping and that we also have the possibility of choosing between two actions. If we
have to execute either action A or action B depending on a condition being true or
false, we can write IF condition actionA ELSE actionB. This structure is a true alter-
native. Its possibilities are enormous but in the Cobol world they were not that well
used. Many Cobol programmers tend to avoid the ELSE part and prefer to do some
branching instead. Moreover, something was lacking in the expression of the condi-
tion. Cobol allows a condition to be a comparison for equality and various inequal-
ities. It does not really allow conditional expressions . In particular, boolean express-
ions cannot be written. On the other hand however, Cobol introduced testing for set
inclusion and exclusion: the two tests Ac{X,Y,..,Z} and A ¢{X,Y,...,Z} can be written

A=XORYOR..ORZandA= XAND YAND ... AND Z
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It is unfortunate that the conjunctions and and or were used in this context since they
do not have their usual boolean meaning. Another nicety is that IF statements can be
nested: the statement executed by an IF or by the ELSE can be another IF. In order
to avoid ambiguities, each ELSE part was considered to belong to the nearest IF
without ELSE. This introduces the requirement to write ELSEs on nested IFs even
if there is no action needed. In this case, Cobol wants the programmer to code the
standard statement NEXT SENTENCE. As an example, we want to execute actionA
if X<3 and actionB if X >3 and Y >4. We can write

IFX > 3IFY > 4 actionB ELSE NEXT SENTENCE ELSE actionA

Since Cobol cannot use AND in its boolean meaning, executing actionC if x> 3 and
y <5 and actionD otherwise, must be written:

IFX > 31IFY < 5 actionC ELSE actionD ELSE actionD

As a consequence actionD is written twice! Cobol programmers avoided this by split-
ting off actionD as a paragraph and PERFORMING it where needed:

IF X > 31IFY < 5 actionC ELSE PERFORM D ELSE PERFORM D

Because actionD is taken out of context, this gives it another textual weight, different
to actionC. This is semantically unclean. Most programmers therefore will resort to
branching:

IF X > 3GOTO PARL

GOTO ACTD.
PARI.
IFY < 5actionC,GOTO PAR2.
ACTD.
actionD.
PAR2.

Cobol tried to avoid boolean calculus. In doing so, it causes program writing to de-
generate into extremely baroque and ad hoc solutions.

Cobol iterates

Cobol-based applications had a need for looping, in somewhat the same way as in
Fortran, although usually Cobol loops contained input/output statements, rather
than operations with a running variable. Of course, a Cobol program could achieve
its loops (as in Fortran) by branching back on a given loop condition. However, the
Cobol makers thought, since paragraphs had been created, why not use them for just
the purpose of looping? As soon as said, as soon as done. The PERFORM statement
received variants including the UNTIL and the VARYING clause, allowing the re-
peating of the named paragraph(s) any number of times. It is this feature, although at
first sight quite appealing, that makes most Cobol programs totally unreadable. All
the shortcomings of the paragraph are multiplied by the iteration feature. In particu-
lar, the mere fact that a paragraph may be "fallen” into is more than dangerous for
program consistency. Cobolists will reply that programming discipline will avoid the
traps. This may be so (although I doubt it), but what if the individual programmer
breaks discipline? Is there any way of detecting it? On the other hand, the perform
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logic for loops has compelled Cobol programmers into the weirdest of tricks, Indeed,
let us look somewhat closer at a loop . A loop is a sequence of actions (constituting
its body), which are repeated for a given condition. We might represent it as in figure
3. The large circles are actions, and the
black squares mere delimiters of the loop
7@‘“‘0—_07”‘ body. Within the body, there must be at
_—— least one action that changes the value of
some variable, otherwise the loop body
would have the same effect at each itera-
tion step, making the step indistinguishable
and thus forbidding any test for loop termination: the loop would become endless.
The major question now is:
where does the termination
test take place? Cobol
\ reply: in the PERFORM
— statement. Therefore, the
_‘é’"”lxﬁo_O‘ A DO loop is in reality repre-
\ﬂ“m-_‘_ o sented as in figure 4. How-
ever, realistically speaking,
PERFORM fiqure 4 itis true that the loop step
- | condition could be tested
before the step or after the
step. This makes quite a difference as far as the first step (and thus the number of
steps) is con-
cerned. In
other words,
the test could
be in the in-
itial black dot
or in the ter-
minal one of
the para- ITERABLE PERFORM Figure S
graph (or
both...). Thus Cobol must clarify its PERFORM logic. Figure 5 represents what it is
all about. From this figure we observe that, the test is at the beginning of the loop
step. As a consequence, if the test is to be done at the end of the body, there must be
a first execution of the loop body outside the loop. This is generally done by doing a
non-iterable PERFORM of the loop just before the iterable PERFORM. Let us
generalize somewhat. Consider the case where the body of a loop contains some-

figure 3

PERFORMED PARAGRAPH

—

——

N
------- R RO oN -

notice the crder !

. —

ITERABLE PERFRM figure 6
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NON-
ITERABLE

PERFORM
figure 7

[TERABLE PERFORM

where a mandatory termination condition which causes immediate end of the loop, a
not uncommon situation. For Cobol, there is no obvious way out (with GOTO or
something like it), so that the structure of figure 6 comes into existence, or even that
of figure 7 which is much worse. These structures are daily bread for the Cobolist.
One thing is clear: the semantics of the paragraph are corrupted by the existence of
the PERFORM. Indeed, there are a number of ways to launch the execution of a
paragraph:

(a) the paragraph may be fallen into by mere sequence of operation; in this case,
when the last statement of the paragraph is executed, continuation is with the state-
ment following the paragraph;

(b) the paragraph may be the target of a GOTO, in which case termination of the
paragraph is as for the sequential case;

(c) the paragraph may be the object of a non-iterable PERFORM,; in that case,
when the paragraph ends, the control returns to just after the PERFORM;

(d) the paragraph may be the object of an iterable PERFORM, in that case, when
the paragraph ends, return is to somewhere within the PERFORM and iteration may
occur.

All paragraphs can be reached in these four ways. This means that the environment
in which a paragraph is destined to operate is vague, to say the least. Error-prone is
the qualifier I use to describe it. It also raises the question: what if a performed para-
graph contains a GOTO to a place outside its text? Is that allowed? And if so, does it
ever come back to the PERFORM statement? Possibly when it reaches the end of
some (any?) paragraph it encounters during execution? Mystery. Bewilderment. And
there is more: a PERFORM may name a list of paragraph names. This means that all
paragraphs of the list are executed in sequence, and only the last one returns to the
PERFORM. Of course, any of these paragraphs may be reached by GOTO as well.
A variation of this type of PERFORM is PERFORM name-1 THRU name-2
meaning: execute in sequence all paragraphs, as they appear in the program text, start-
ing at name-1 and ending with name-2 (included). This sounds comfortable. It allows
programmers to add paragraphs in the list, change their order, etc. Nice for main-
taining the program ... But it is not comfortable at all: it is utterly dangerous! The re-
sult of the THRU notation is that in no way the PERFORM statement indicates
what it is really intended for: it becomes context-dependent (maybe I should call this
abtext-dependency!). Self-documenting they said about Cobol! There is worse to
come: Cobol also allowed the following: PERFORM name THRU EXIT which
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means: go and perform at the named paragraph and go on in sequence, over para-
graph boundaries, until an EXIT statement is met (by the way, this statement must
be written in a paragraph that contains only the EXIT: so one can branch to it and
achieve a break effect). And if one falls into an EXIT paragraph without being in a
perform environment, then what? Mystery. The whole thing means that the para-
graph is really a two-headed and two-tailed being. Depending on the way it is entered,
there is a different way of getting out of it. Thus, at object code level, there are two
(if not three!) entries into the paragraph, if only to set some flag allowing the deci-
sion of how to get out again. Due to the THRU EXIT form of the PERFORM, the
paragraph is in fact a three-headed/three-tailed being, since, when entered in that
fashion, the continuation after paragraph end is to the next paragraph. And don’t be-
lieve that the whole thing is a matter purely internal, to be seen by the compiler only.
The truth is that the paragraph is a being with a three-way split personality, a situ-
ation the programmer must take very seriously into account when writing his pro-
gram. This appalling semantics fascinated programmers who used it in an almost
mystic way to do things one would never have deemed possible. In those days, tric-
kery hit the scene. Prestidigitation was more appraised than real craftsmanship. And
it was only the beginning.

What'’s in a Cobol name?

Let us now come back to the concept of variable. As I already stated, a variable is
an object with a definite meaning of its own, and a name that uniquely identifies it.
The variable is able to receive a value (or has one unmodifiable value, in which case
it is a named constant) and therefore it needs to be sited. Siting can be permanent or
variable ... How does Cobol stand here? Something new (not that new: Fortran had
it implicitly) was offered for variables: the usage mode. The variables now had an ex-
plicit type. Types existed in two major categories: numeric (COMPUTATIONAL)
and non-numeric (DISPLAY), i.e. character strings. Finer types were offered within
the numeric ones, and these were {(and still are) all machine-dependent: floating,
packed,... Along with type, some idea of precision and length was given. This resulted
in the picture clause (essentially indicating the number of digits or bytes, decimal
comma position, sign ...). As from Cobol, a variable has the following attributes: a
name, a type, a precision, a value, a site. The type implied the operations that a vari-
able could undergo. So far, so good. But Cobol offered more. The intention was to
formalize the notion of record (from a file), or in fact any wser form. Such a record is
an agglomerate of Data. Fortran had already introduced the array as a dimensioned
agglomerate (i.e. a variable with one name and many simultaneously existing or-
dered occurrences of values). Cobol wanted more. It wanted the agglomerate to be
made up of a fixed list of named variables. The structure was born. A major break-
through that was! All subsequent languages would contain it, with semantics almost
exactly copied from Cobol. Via Cobol, the structure was synonymous with a record:
the operations it could undergo were essentially read/write operations of the file
management system. But, the structure was also a way to regroup data into objects
with a well-defined semantic profile, objects that could be moved by means of the as-
signment statement, which in Cobol was called MOVE. Moreover, the structure
could be made up from other (sub)structures, to any depth (well: Cobol set some
limit there, but it was high enough). The structure is only one way of representing
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data. The greatest advantage of the Cobol structure is its fixed layout. But this fixed
layout prevents it from representing more dynamic data types. At the time Cobol’s
coming about (early 60’s), there were no other needs though. In other words, the
structure was a recursive refinement of the variable. As a consequence, a name could
now stand for a list of names, of which each name could also mean a list of names
and so on. And still Cobol did more. First of all, it allowed for two or more variables
to have the same site. Formally, this was already an established possibility for the
parameter-argument pair in a subroutine call. Cobol extended on this by allowing
any variable to be a redefinition of any other variable. Fortunately, this was for usage
only within a structure. Redefinition in Cobol means that two variables will have
exactly the same site. But that would be none other than creating a mere alias? Not
so: the redefinition could span variables of different types ... In the vast majority of
cases, this feature would be used to allow actions upon data that Cobol would other-
wise forbid. Breach of discipline! The common usage of this feature was to allow
string handling. But Cobol really offered it for another reason: since a structure rep-
resented a record, and since the contents of a record could be of different layout for
each (of a group of) occurrences, the redefinition was a must. The major question
was: why should there be such unpredictable records? (Incidentally this question has
been investigated more formally, and the consequence has been the data-base. An-
other story, told in chapter 15). In the early 60’s such wild records existed, and pro-
grammers had to cope with them... It was not all Cobol’s fault. In fact Cobol had the
merit of at least trying to discipline the weird cases. Unfortunately, misusage im-
mediately appeared... Another new situation Cobol introduced was the 88-level. A
remarkable typographic shortcut. In fact, the 88-level was a list of names of values
that a variable (part of a structure) could take, and with the mere intention of mak-
ing the testing of such a variable more readable, thus more significant. In fact, the
88-level was a mere compiler trick, and came rather close to a macroprocessor vari-
able name, for substitution during compilation but with no effect (nor existence) at
program execution time. It was not a bad thing, as it increased program readability,
but it confused two semantic environments. On the other hand, it could have been
extended much further (e.g. value validation). Apparently, Cobol was somewhat
unclear in its naming formalisms. This appears very much in its writing scheme: non-
structure variables must have a level number 77! Names of values must have a level
number 88! Moreover, the introduction of type for variables increased the semantic
possibilities, but also caused them to become complicated. Indeed, in considering
the two questions: (a) what operations are possible on which data types? (a non-tri-
vial question, since Cobol has some 100 operations upon variables); (b) do data-
types convert into one another? (important since Cobol programs do a lot of editing
of paper listings for human consumption), Cobol has preferred to state the answer,
operation per operation, thus creating the highest set of semantic rules ever (and
thirty years of Cobol have made it even worse!). It was a wilderness. Trends in lan-

guages to come would aim at avoiding such a jungle. At the price of other difficulties
though.

The conclusion is obvious

A Cobol program is certainly readable. But is it understandable? How future-
friendly is such a program: can it be easily extended? Over twenty five years of ex-
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perience with Cobol all over the world has given the answer: NO!! Nevertheless,
Cobol still has the widest of acclaims: almost the whole application world uses Cobol
on an exclusive basis. Why is that? Why don’t programmers switch to more adequate
means and techniques? In my experience, people find changes awkward because of
the effort of changing, causing turbulence; the possible inability to cope with the
novelty; some inertia: everybody uses Cobol; a misplaced feeling of challenge: mas-
tering Cobol is the game; a fondness towards the cause of problems... On the other
hand, for EDP managers, Cobol is comforting because Cobolists are readily avail-
able, a Cobolist needs no training (a true misconception!), all Cobol problems can be
solved with discipline (another complete misconception!), Cobol, being a subset of
English, the program can easily be transferred to other persons (the third miscon-
ception!), Cobol being ignored by all theoriticians there is no danger of seeing the
formalism overwhelm the practice, there is no obsolescence of means, there are no
theoretical fashions: the Cobol world is stable (this is true, but it is counterbalanced
by the fact that so-called work groups introduce unbelievable idiosyncrasies in the
language). The major question: what is the price companies have paid for Cobol has
never really been answered, even if one is aware of the high cost of maintenance.
Maintenance costs have universally been considered to be problem-bound and not
method-bound (yet another misconception!), thus unavoidable. Well, unavoidable
does not mean irreducible!

This being said, Cobol brought a number of important new ideas to the world of
languages. It was the first language that tackled the business application realm; this
brought the recognition of data structures and more types than Fortran had. Cobol
also incorporated a more flexible file management syatem than Fortran. Clear separ-
ation of program and data (by means of divisions) is a sound idea (implemented in a
non-uniform syntax). Cobol also introduced a full if-then-else construct and it gener-
alized the loop construct. Furthermore, it created the notion of performable para-
graph which is an interesting way to give structure to programs (unfortunately, it
went off the rails). Without Cobol, there would have been no PL1 and Pascal would
not have been able to introduce its record type. Without Cobol, file management
and data-base management systems might not have become the strong systems they
are nowadays. So, despite its shortcomings, Cobol is a language that has an important
pioneering value.

Fortran, the infantile disease?

Cobol, apart from some good points, is not a very good language. But what about
Fortran? Certainly, Fortran is a good early language. It is also the first high level lan-
guage, one to which the Data Processing community owes a lot. Experience and posi-
tive criticism of Fortran have led directly to Algol60. Moreover, Backus” endeavours
to provide a formal syntactic description of Fortran has led to BNF syntax (revised
by Naur and used extensively for Algol60) on the one hand, and constituted one of
the initial sparks that would start the theory of formal languages (by Chomsky) on
the other hand.

But Fortran had also negative aspects. So, what was wrong? A number of things.
Fortran introduced the variable with the assignment statement as the major action.
This has set the philosophy of all later languages. Concurrently other computer
scientists were inventing the applicative style (explained in chapter 14) which did not
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at all use assignments. Nowadays, this style is considered formally cleaner. However,
due to Fortran’s overwhelming success, the applicative style is still confined to only
the academic circles. If Fortran deserves a criticism this is probably the most serious
one! Apart from that, Fortran also had abusive implicit variable declaration and typ-
ing (type of a variable was REAL or INTEGER according to the first letter of its
name, based upon a tacit convention of mathematics). The later attempt to create ex-
plicit types by allowing the specification of which initial characters corresponded to
which type is totally ludicrous. Full explicit typing was enforced only for LOGICAL,
DOUBLE PRECISION and COMPLEX (it was optional for REAL and IN-
TEGER), but did not include the CHARACTER type, although this type was made
available in input/output operations (via a FORMAT statement). Fortran showed a
lack of uniformity in the usage of dimensioned variables (i.e. arrays); an element of
an array (i.e. an indiced variable) cannot be used in all places where a non-dimen-
sioned variable can. This causes the necessity to write more assignments and also
more GOTO statements. There was also a confusing handling of labels, based upon
the atrocious computed and assigned GOTO statements which tend to create hard to
follow program flows. Especially nasty is the passage of label parameters to a subrou-
tine (of course, one may wonder: is such a mechanism really needed?). The way of
handling parameter passage, was rather conspicuous since it contained the possibility
of destroying data. The later introduction of by name parameter linkage (see Algol in
chapter 3) did not really clean up the mess. Another drawback of Fortran was the ex-
istence of the storage classes COMMON (allowing the sharing of data areas between
separately compiled program portions) and EQUIVALENCE (instructing the com-
piler to assign the same memory addresses to different variables) with rather compli-
cated semantics and usage (not further described in this book). These features in-
duced programming tricks that were deemed clever, but are in fact heavily error-
prone.

But let me state it again, in the 50’s, FORTRAN really hit the scene. It had many
good points, important firsts:

(1) the expression, both arithmetic and logical, allowing involved computations;

(2) the iterated loop, with a control variable and nesting, even though the con-
struct had holes in it (present day computer scientists condemn that construct, but
when it came about, it was much better than what existed in Assembler);

(3) the first successful attempt at setting up a machine-independent I/O system (a
topic covered in chapter 15); it is not perfect and is limited to formatted I/O only, but
it serves its purpose amazingly well; in fact no language has really done better (in the
realm of formatted 1/O);

(4) a formalization of the subroutine -especially the function- concept, allowing
procedural abstraction; that was a real achievement;

(5) the pragmatic proof that a high-level language was possible, efficient and
usable; in achieving this, Fortran became an essential milestone in computer science.



This page intentionally left blank



Chapter 3
THE YEARS OF ALGOL AND PL1

The roaring 60’s with its line of new languages and
constructs, including Algol and PL1 as well as the
"what’s in a name?" question.

Meanwhile, in some dark recess ...

While some were brewing, others were thinking. They were thinkers by nature,
those first computer scientists... They knew what they wanted: programming (pro-
gram composition) should not be allowed to degenerate. It had to become an art,
reach heights heretofore unattained. It was reserved for those who had the true spirit
and the good blood... Sunday programmers could go on smearing paper with their
approximate charts... The real artists, the brotherhood, were going to receive fa-
cilities never before available. The result was Algol60. An algorithmic language. A
language apt to express thought, able to describe algorithms. Algol60 did what Cobol
was very soon going to undo... It delivered the largest package of structural items
ever concocted for program writing. Algol had the block structure no other language
had had before. Block structure means that a program text is composed of a list of
grouped statements (blocks), which can themselves be composed of yet other
(nested) blocks. The blocks are delimited by (special) parentheses written as begin
and end. The statements within the blocks are separated by a semicolon (3). Algol
had semantics strictly reduced to what its syntax implied at first sight. Compared to
Cobol, this is amazingly fresh, but it is in fact the inheritance of Fortran. A deviation
from Fortran is that all variables must be declared. As a novelty (or progression),
Algol also introduced scope in a formal way. This works as follows: variables must be

declared (there is a statement to

ScoPE OF that effect). Such declaratives

B b e normally follow the begin

_ begin bracket of a block. The declara-
integer a tive assigns a type to a name,
integer b and implicitly sites it (or better:

— legin - fixes the way in which it will
rreaer < eventually be sited). But, the
mgt'eger " — | declarative also delimits the part

begin of the program text in which the

[ integer x variable mame is known (and
ond L thus its value is usable): this

end knowledge is  established

| end throughout the begin-end block
- where the declaration is written,
and all contained blocks. The

Figure 1 knowledge is however sus-

pended by another declarative
of the same name in a deeper block, and the rule now applies to this new declarative.
Figure 1 illustrates the scheme. A remarkable situation: for the first time the what’s-
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in-a-name question became really preoccupying. It also implied some new vistas as
far as siting was concerned: variables were sited only when the block that contained
their declaration became active (by reaching begin) and as long as the block stayed
active (until reaching the corresponding end). The variable became un-sited (and its
value lost) when the block was deactivated. This was going to have more annoying
consequences than helpful ones. Scope was an invention which allowed subroutines
(procedures) to have free variables with a meaningful value. Thus it solved some
problems to do with nesting depth. But it created huge deviation possibilities. I'll
cover this aspect later.

For functions, Algol did still more: it also formalized the returning of a value,
thus creating a functional sub-language. The way in which Algol introduced functions
was an extension of the built-in functions of Fortran. Fortran had something like
A=MIN(X,Y), clearly a functional notation, meaning A was assigned the lowest
value of X and Y. X and Y were arguments of the function, and MIN was its name.
Any reference to MIN meant execution of the code that realized the necessary com-
putations: no permanent value, no (apparent) site, no way to assign to the name. On
the other hand, the writing of the MIN(X,Y) largely resembled a subroutine call.
This aspect was used by Algol to allow user-defined functions. In fact, the pro-
grammer was enabled to define the expression that realized the computation of the
function, and to do so in subroutine syntax (a procedure) including argument-par-
ameter usage. The subroutine text had to contain an assignment of a value to the
function name: a somewhat remarkable statement, but quite normal, given the fact
that a function could only have a value when invoked (i.e. when referred to in an ex-
pression) and the invocation resulted (internally) in the computation and equation of
value with function name! Algol did not call itself a functional language, and indeed
it is not. However, function calls can and may appear wherever a constant may ap-
pear. This means that an expression may be composed of function call(s), whose ar-
gument(s) may be other function calls, to any depth. Algol allows functions to have
side-effects. By this is meant the fact that the function has more effects than just re-
turning a value; such effects could be the modification of a variable in the function’s
outer scope, the output of a parameter by name, input/output operations, modifica-
tion of data structures or the usage of variables internal to the function body but
whose value is remembered from one invocation to another (so-called own vari-
ables). Side-effects are desirable in a number of cases (see for instance the sum func-
tion below which has two parameters by name). But they are always (potentially)
dangerous and must be considered with care (see the procedure incr below).

Algol also formalized the parameter-argument linkage by allowing the receiving
subroutine (procedure) to specify either by value or by name linkage, for each of its
formal parameters. When a parameter is passed by name, any usage of the parameter
name within the procedure body causes re-evaluation of the corresponding argu-
ment, in the current scope environment! When a parameter is passed by value, the
argument is evaluated at the moment of the call and the value is stored in a tempor-
ary memory slot which holds the value of the parameter. Passage by value protects
the argument against assignments from within the procedure’s body: such parame-
ters can only be used as input parameters. Of course, in many cases procedures must
output values to their parameters also. It is exactly here that passage by name comes
in. But this kind of parameters is more powerful. Imagine that we would like to cre-
ate a function that computes the result of E}L a¥[i]. But, we have the further require-
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ment that nesting must be allowed so that we can program 2? az J[ij] in a natural
way. The following function will do the trick:

integer procedure sum(i,l,u,v);value Lu;jinteger i,1,u,v;
begin integer s;s: =0;for i: =1 step 1 until u do s: =s +v;sum: =s end

(parameters that are not declared by value are by name). We can now write the pro-
gram for our problem as sum(i,a,b,sum(j,c,d,V{ij])). When sum is invoked, the i and
v are not evaluated. They are evaluated at the first reference during the execution of
the function body. In other words, v is evaluated repeatedly within the for loop. Each
of these evaluations concerns the inner sum: sum(j,c,d,V/ij]) which restitutes the
sum of V{x;j] for * being the current i of the outer sum, and this works since i is a
parameter by name.

Although passage by name seems interesting, it is rather dangerous: the argu-
ment (which can be an expression) may very well deliver new values each time, since
some of its operand values might have been changed by the procedure as they are ex-
ternal variables of the procedure, and therefore modifiable! Moreover, it is im-
possible to write a generally valid procedure that increments a variable by 1 (or any
other amount). Consider indeed integer procedure incr(x); integer x; begin x: =x+1
end. Parameter x must be by name, otherwise the procedure cannot output the new
value. Suppose we call incr(V{func(i)]) and func is a function that has side-effects in
such a way that it does not necessarily evaluate to the same value for the same argu-

ment. In that case, the two references
choice 1 :action 1 if choicel then actionl tc.. x (which mean V/func(i)]) yield a
choice 2 :action 2 else if choice2 then action2 | different array element so that our
choice 3 :action 3 else if choice3 then action3 | procedure has not the desired result.

Algol introduced new (or ex-
tended) connectives. These were spe-
cifically the right alternation and vari-
figure 2 ous iteration connectives. The right al-
ternation corresponds to the ordered
multi-case alternative (i.e. the ordered choice) as indicated below left. Algol writes
this as indicated in the right column of figure 2. As such, the ordered choice is a not
uninteresting extension of the normal if ... then ... else .... The iterative connectives
are of three types:

(a) conditional with test at top: while condition do statement;

(b) conditional with test at end: repeat block until condition;

(c) controlled (with a so-called current variable):

for control-variable: = initial-value step increment until end-value do statement.

The for connective has caused much concern. Indeed, Algol creators stated that
the control variable was valued only within the execution of the for connective. The
variable takes its initial value when the for is reached from outside. The statement is
executed repeatedly, and at each step of the loop, the control variable is increased by
increment, until it becomes greater than end, in which case the loop terminates.
When this occurs, the control variable is un-valued. One might say that the control
variable is a variable of scope local to the for block. One might just as well say that it
is not a problem-solving variable, but a mere connective counter. The result is that
the variable cannot be used outside the for block. This is perfectly acceptable, were
it not that compiler builders mostly leave the variable to its last attained value... thus

choice n :action n else il choice n then action n
other cases :actionm else action m
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causing programmers to rely on it after leaving the for loop. Apart from this, it
looked as if Algol took the decision of turning its connectives into statements (super-
statements as it were). This apparently increased the block nature of the language
since statements could be grouped into an alternation or iteration. But in fact Algol
merely created 6 types of statements:

(1) the indicative statement (assignment, procedure call);

(2) the conditional statement (if);

(3) the alternative statement (if ...then... else);

(4) the repetitive statement (while ..., repeat ... until);

(5) the iterative statement (for ...);

(6) the declarative statement.
Of course, Algol contains a goto statement also, which allows the transfer of control
to any other statement by using its label as the target of the goto. The additional note
that a begin-end block (which, if it does not contain any declaratives is called a com-
pound statement) can always replace any statement, thus allowing statements control-
led by connectives to be quite large, complements this survey and indicates the full
writing power of the language and the possibilities, hitherto unheard of, it offered its
educated writers. Algol also introduced another notion. It has already been said that
all variables had to be declared (quite amazingly, a for-control variable needed dec-
laration outside the for!). There was more: Algol introduced the procedure declara-
tive which declared a name to be a subroutine (or function text) and gave the subrou-
tine text as its value. This had a number of consequences, the principal one being
that a procedure name had a scope, just like any other variable (but was it a vari-
able?), thus making it callable from places within the scope only. The procedure text
comnsisted of a begin-end block, containing declaratives, thus participating in the
scope rules. Notice in particular that a procedure name is part of the containing
block, thus is known in the containing block. But since it is (by writing) also known
within the begin-end block that defines the procedure, the procedure can call itself.
Recursive calling all of a sudden became possible. Was mankind too young for it? Re-
cursion never really made it outside of academic groups... Anyhow, the scope rules
proved to be consistent. Some final remarks (for this section): Algol allowed the full
boolean conditional expression with the A and v operations, as well as the boolean
negation. It also allowed boolean expressions to be assigned to boolean variables.
This created an ambiguity in the meaning of the =, used by Fortran to express as-
signment. Algol got out of it by imposing := for assignment (an excellent choice)
and = for comparison. Algol also had a goto statement. The target of the statement
had to be a label. Labels were words prefixing a statement. The paragraph notion of
Cobol was (fortunately) completely avoided. Nevertheless, it was the existence of the
goto statement that would culminate 10 years later in the Structured Programming
War,

Algol’s predicament

Algol, as a new language, had everything which could have avoided the war of
Structured Programming. It contained all the required artefacts for clean program
writing. Nevertheless, Algol did not make it. Why was that? In fact, there was a lack
of sponsoring. Algol was the achievement of scientists, and for quite a while, the pro-
duct remained confined to those circles. No practical compiler was readily available.
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In the meantime, numerical analysts got engulfed by Fortran, system programmers
stuck more than ever to assembler, as did application programmers (waiting for the
exodus to Cobol). And also, because no language of those days had sufficient string
handling features, the compilers themselves were written in assembler (which cre-
ated the rather strange situation that those who wrote the compilers did not use the
language and tended to offer involuntary deviations from it...). When an Algol com-
piler became available (mid 60’s), it had to cope with a lot of antagonism. Indeed,
the Algol creators had had the nice idea of distinguishing the Algol verbs (in bold
type) from the user variable names and constants. But this was in effect an ill-in-
spired decision. Machines were still card-based in those days and card punches had
no bold type. In some compilers, the Algol verbs were bracketised (in /* and */)!
This had the most unfortunate effect on the readability of an Algol text... A detail,
but a rather important one... Inmensely restrictive is the fact that Algol has no provi-
sion whatsoever for file operations.

And of course, since Algol was the first language to achieve a degree of sophisti-
cation, it suffered from childhood diseases. An important one is that Algol is in-
tended to program numerical processes and remains deficient in the area of symbolic
processes (characters for instance). This, of course, was also the case for Fortran.
The only success Algol encountered was as a publication language. It was ideally
suited to convey algorithms through literature. And indeed, for some 10 years, all
formal publications were going to use Algol (with extensions and deviations) and this
was a tidal wave... With adverse side effects. Cobolists could not read the language
and therefore segregated: they ruled out all formal literature and were doomed to
stick to the early 60’s spirit forever. Systems people, though capable of formal think-
ing, were more than suspicious. They had resilience to changes coming from non-sys-
tems groups such as the Algol creators. Plus, they said, whatever Algol could do, they
could do better, since they had Assembler, the most powerful of languages. As a re-
sult, also the Systems people became illiterate in Algol.

Algol was going to be successful in one aspect though. It was going to become a
reference. Most languages to come were going to be block-structured languages and
have easily recognizable Algol constructs in their syntax. This would be the case for
PL1, Pascal, C, ADA and even (to some degree) the preoccupying BASIC. But the
Algol makers would refuse to recognize the filiation... Instead, they started arguing
about their child and found that it was not general enough. They wanted even more
generality. This culminated in the creation of Algol68, a much too general language
which nevertheless contained a number of interesting features to be found back in
later languages. There were also those who loathed the new complexity. They made
simplified languages: AlgolW and SIMULA (which was Algol60, increased with
classes, something that came very close to object-oriented programming avant la let-
tre and led, much later, to SMALLTALK)... It was a funny world.

Meanwhile, in Vienna, in the early 60’s

‘Why ever IBM (the SHARE committee, in fact) undertook that piece of work is a
mystery. Admittedly, they had the intention of setting up the next version of Fortran
(version V and VT), but it turned out differently and, in 1964, they made PL1. PL1 is
an Algol-like language. Many will disagree with this statement, but it is a fact that
PL1 took over many of the structural ideas of Algol, in particular: the block struc-
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ture, the nesting of constructs, the scope rules and recursion. In truth, PL1 attempted
to merge the features and semantics of both Fortran and Cobol with the structures of
Algol. It was the first language that undertook honestly the task of offering resource
management as well as program flexibility. PL1 was going to contain file manage-
ment in a "portable" way, as well as memory management and task management. To
ensure the portability, the PL1 makers defined the language on an abstract machine .
In fact, the entire semantics of PL1 are the exact description of the abstract machine.
By doing so, the makers allowed any compiler builder to create PL1, by allowing him
to emulate the abstract machine to the physical one. The result is that PL1 needs a
so-called program manager, which is none other than the run-time package that rep-
resents the abstract machine.

Let us start with a syntactic overview, in the light of Algol. Like Algol, PL1 has
the block structure. A statement can be of the simple type, or be a block of state-
ments (to any depth), surrounded by the BEGINYEND); brackets (notice the semi-
colon). Algol made a distinction between blocks containing declaratives (a true
block) and those not containing declaratives (a compound statement). PL1 calls
compound statements groups and surrounds them by DOYEND; brackets. Such
groups are not affected by the scope rules.

The procedure declarations are seen as blocks and are contained in PROCE-
DURE...;/END; statements, without the need for BEGIN/END but with the same
scope rules as in Algol. The linkage between arguments and parameters is ruled by
the argument type: for a constant, an expression or a function call, passage is by
value; otherwise, it is by reference. This is a deviation from Algol’s by name: in fact it
is the same as by name as long as the argument is a variable or a constant in the
sense that any reference to it from within the body of the procedure is to the actual
variable or constant. Passage by reference is impossible for expressions. PL1 does
not allow the programmer to specify the passage mode; however, if passage by value
is needed, this can be forced by writing the argument between parentheses, which
turns it into an expression. On the other hand, passage by reference is really only in-
teresting for output parameters, and these must be variables anyhow. Of course, due
to the absence of by name passage, one cannot create the sum function that was ex-
plained in Algol. Instead, one creates a single function that effectuates the nested
sum (e.g. sumxy(a,b,c,d,V)). Just like Algol, PL1 allows the writing of function sub-
routines. These are procedures that have a RETURNS(type) clause on their PRO-
CEDURE header and contain at least one RETURN (expression) statement in their
body, by which the function actually returns a value. Any procedure can be exited by
executing a RETURN statement or by falling through the end.

The PL1 connectives are similar to those of Algol, but there are differences. The
major difference is that PL1 considers most of its connectives as statements in their
own right. And since PL1 uses the semi-colon as a statement terminator and not as a

In PL1: In Algol:
IF condition THEN action1;ELSE action2; if condition then action1 else action2
DO WHILE(condition); action; END; while condition do action

DO I=begin BY increment TO end;action;END; | for i: = begin step increment until end do action

figure 3
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separator (like Algol), the syntax is different. Merely compare the PL1 and Algol
syntax in figure 3. The semantics are identical, apart from the fact that the variable of
a controlled loop keeps its last value after the loop has ended. Algol needs a
begin/end bracket if the action contains more than one statement. PL.1 only needs
brackets on the THEN and ELSE, and uses DOYEND); instead (notice the semi-
colon!). PL1 also allows the two forms of the iterative DO construct to be combined
and alternatively allows an UNTIL(condition) or UNLESS(condition) instead of the
WHILE. This is only partly similar to ALGOL’s repeat-until construct. Nesting rules
of the iterative constructs are as for Algol. Later versions of PL1 have a SE-
LECT/WHEN construct which is similar to Pascal’s case structure (to be discussed
later). In the THEN and ELSE branches of the IF, PL1 allows unlimited nesting of
IFs (unlike Algol).

Major differences between PL1 and Algol appear in the area of variable defini-
tion. Variables need not be declared, in which case contextual or implicit declara-
tions take place (somewhat like in Fortran) with rather bizarre scope rules. Some-
thing I consider an immense minus point. Variables are defined by means of the DE-
CLARE statement and have Cobol-like semantics. PL1 variables have a number of
attributes, which are associated with the variable name, such as: the type and base,
the length and precision, the scope (an explicit deviation possibility from the regular
scope rules), the storage class (the way in which a variable is sited, see further), the
initial value or initial expression. PL1 also defines a number of new variable types,
given here for completeness: the label type, the entry type (a subroutine), the bit
string type (very different from Algol’s boolean type), the pointer and offset type, the
area type and the file type. These types are interesting, especially when building sys-
tems applications, but they cause a lot of semantics to appear in the language. They
are also dangerous (especially the pointers which may point anything without any
protection) Finally, PL1 allows data declaratives to be nested in Cobol-like leveled
structures. These structures can contain arrays, and there may also be arrays of struc-
tures. A LIKE clause allows the programmer to declare variables so that they have
the same structure as some pre-declared structured variable (this is a small step,
which Pascal was going to take much further).

Other major differences between PL1 and Algol reside in the procedural pack-
age: PL1 covers all needs by offering an immense set of built-in functions. String
handling, in particular, is covered in this way by (amongst others) the very important
SUBSTR function. This function is rather peculiar: it is a naming function (a notion
which will be dealt with later).

Another aspect of PL1 (much debated and rather controversial) is the freedom in
type intermixing. Most data types are compatible with one another, in that PL1 uses
an almost unbelievable apparatus of conversion semantics. To say the least, this may
cause rather awkward situations, as a result of programmers abandoning discipline. It
is also possible to exercise explicit conversion via the string editing features, a rather
nice asset.

A last point: PL1 offers a GOTO statement, similar to Algol’s, which uses a label
as a target. A dramatic oddity of the GOTO is that one can exit from a procedure
merely by GOing TO a label that is external to the procedure. This is a negative con-
sequence of the scope rules: labels also have a scope, and therefore, a procedure
knows the labels of the surrounding text.
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PL1’s misfortune

The makers of PL1 had a number of objectives: anything that makes sense and is
unambiguous should be legal; there should be no need to escape into machine (as-
sembler) language; machine characteristics should not be visible (abstract machine);
it should be possible to use the language in a novice way as well as a specialized way
(reduced training); the accent had to be upon the ease of programming. These were
completely new and commendable objectives: PL1 definitely aimed at providing
comfort and coherence to the programmer. However, PL1 shared Algol’s fate: it did
not succeed in hitting the market place. The reasons were not the same, though. PL1
was immensely superior to Cobol, and should have made it. However, it came too
late: Cobol was already a firmly established language, and was supported by the US
Ministry of Defense. As a consequence, PL1 enjoyed no initial thrust whatsoever.
Apart from these aspects, PL1 was a core devourer: the abstract machine could cost
up to 150K of memory, and the machines of those days could not always offer so
much physical core. Moreover, computer scientists largely condemned PL1, and
even though the application world was not really concerned with formal literature,
some echos came down and were damaging. The opposition of formalists, though un-
derstandable, was regrettable: a language that obeyed a number of sound principles
was condemned without mercy, only because its vast semantics contained some
potential contradictions. The bells were tolling for block-structured languages: none
of them would ever be a real success in the application world. The systems people
would not use PL1, because they found that the abstract machine stood in their way.
Still, and this is remarkable, a lot of systems development languages to be concocted
later, were going to have a PL1 look about them!

The objections to PL1 include the following: oversized object code; a difficult to
learn language (but how easy is Cobol?); unreadable source code because of the
nesting of blocks (but how readable are Cobol’s cascades of PERFORMSs?); unread-
able expressions (a strange argument: since when is ADD A TO B GIVING C more
readable than C=A + B ?); overwhelming semantics which are very context-depend-
ent and rather error-prone; the semi-colon as a delimiter rather than a separator (a
rather formal argument, which in practice has no importance at all); the "overwhelm-
ing" GOTO; the existence of POINTER variables allowing the implicit manipulation
of variables causing deviations from the semantics with high error-proneness; grot-
esque implicit conversion from one type into another; all brackets (DO, END,
BEGIN,...) are statements rather than delimiters in that they must be ended with a
semi-colon (a little bit superfluous, maybe, but nothing to get anxious about!).

A new question: what’s in a label?

PL1 and Algol introduced a new object: the label. And what is a label? An ob-
vious definition is; a label is a name given to a statement or a procedure. Does this
name have a value? Or a site? One could see the value of a label as the address of
the statement that carries the label, since a label is the target of a GOTO or a CALL.
Obviously, the label is constant: its value cannot be changed. A strange object, which
exists only because it appears in front of a statement. Is a label variable conceivable?
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It is. As a named object, whose value is a label constant. A label variable is therefore
sited quite normally and may be assigned to. The label variable can be used instead
of the label constant as the target of a GOTO.

Let us come back to Fortran. In that language, labels are numbers. But can they
act as a number? In particular, can a label be computed? Is something like this
possible: GOTO 2*X+32? In Fortran, it is not. But in some other languages, such as
BASIC, it is! Is it still allowed to consider a label as a mere name? More generally:
can a name be computed? This is a very general and important question with many
implications, which I will deal with in the section on macroprocessors.

Another new object that PL1 introduces is the procedure. Of course it exists also
in Algol and as a subroutine in Fortran. However, PL1 considers the name in front of
a procedure to be an object in its own right, somewhat akin to a label. PL1 sees such
a name as the name of an address (the address of the procedure, in fact, or better: its
entry point address). This is again a constant, and its value cannot be changed. But
PL1 also gives the possibility to declare entry variables, which are regularly sited and
can receive as value the name of a procedure. Such a variable can be used as target
in a CALL statement. As a consequence, there is no way in PL1 to distinguish from
the mere typography whether a name is a label/entry constant or variable. Semantics
have to come into the game: if such a name appears in front of a statement, and is
followed by a colon, it is a constant. Otherwise it may be a variable or a constant, and
only a dictionary of the names used in the program with their type (the so-called
cross-reference) will indicate which is which. This is a cause of confusion. Since con-
stants are the common situation in this area, it would have been well-advised to dis-
tinguish label/entry variables by means of a typography, such as for instance a special
first character to the name of the variable.

PL1 has got something else that is totally new: pointers. Pointers are variables,
thus they are sited and valued. Their value is an address. Any address? PL1 was care-
ful: the semantics only allow the address of another known variable to be the value
of a pointer variable. The only exception is the special pointer constant value NULL,
which can be used to indicate that a pointer variable has in fact no value. A built-in
function that comes in handy is the ADDR function, which returns the address of its
argument (itself a variable, not a constant nor an expression). The question is: why
do we need pointer variables? Surely, in a high-level language one can expect the
compiler to take care about all siting operations? Pointers are needed when one has
to manipulate non-static data structures, such as list structures. Such structures are
constructed out of a normal structured variable, which exists in more than one occur-
rence. The different occurrences are linked together by pointers: each occurrence
contains the address of the next occurrence, and, of course, the last occurrence has a
NULL value in that field. Using such structures can only be done with pointers.
There is an inherent danger: a pointer field in a list structure may very well contain
an impossible value, or even a wild value (a dangling pointer). There is no way to
validate such pointer values: everything is up to the programmer who must exercise
the required discipline. List structures abound in systems programming: all the con-
trol blocks used within a system are linked by addresses. Thus, if PL1 is used for sys-
tems-like applications, this cannot be conceived of without pointers. It looks like
pointers are an unavoidable evil. That this is not true was being proved in the same
years by the LISP language. But no one really cared.
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Storage classes: an evolution?

In PL1 it is possible to declare a variable so that it is sited at an address which is
given by the programmer as a pointer. Such a variable is said to have the storage
class based. For instance: DECLARE XYZ FIXED BASED(PT1); where PT1 is a
pointer variable. The variable XYZ is taken to reside at the address in PT1. This is
true at each moment, so that the site of XYZ actually "follows" the changes of the
value of PT1. The value of the variable is the value that exists at that moment at the
given address. Worse still, even a pointer variable can be based upon another
pointer, and this can be done to any depth. The whole pointer mechanism can give
rise to a true jungle.

PL1 has four more storage class possibilities. Their intention is to define the way
in which a variable gets sited.

(a) The automatic storage class: the siting of a variable in this class takes place
implicitly at the moment that the block (BEGIN or PROCEDURE) that contains
the variable is activated. The variable is un-sited when the block is terminated. The
siting remains in effect, however, when the concerned block activates another block.
Variables in this class have no permanent site, and can therefore not be used to
preserve values across different activations of the containing block.

(b) The static storage class: the siting of such variables is effectuated once and for
all by the compiler itself and is permanent. Values of such variables are preserved.
Notice that constants are static by definition.

(c) The controlled storage class: the siting of a variable is effectuated by means of
a special function, ALLOCATE, which must be invoked by the programmer prior to
using the variable. The ALLOCATE function returns the address of the variable
consecutive to siting, This way, a program may allocate the same variable more than
once: different sites will be allocated by the system; this is the way to create list struc-
tures. Un-siting is done by the converse function FREE. If many sitings of the same
variable have been effected, FREE always undoes the most recent one (a so-called
Last-in First-out allocation policy).

(d) The defined storage class: this is not really a storage class; it is rather the indi-
cation that the declared variable is a kind of alias of another variable, and therefore
it has the storage class of that other variable. It is absolutely identical to Cobol’s RE-
DEFINES clause. This possibility is therefore just as bad as it is in Cobol, if not more
s0 because scope rules may complicate matters (indeed, the defined variable may
have another scope -a more local one- than the variable it is defined upon).

A notion that is strongly connected with siting is initial valuing, PL1 makes the
not unreasonable claim that once a variable is sited, it is valued, because in a physical
machine there always exists a value at any address. This is the initial value of the vari-
able. Of course, an un-sited variable has no value and cannot be used at all. PL1 also
allows the programmer to define an initial value for a variable. This is indicated by
means of the INITIAL clause in the DECLARE statement. The initial value is as-
signed automatically to the variable at the moment it gets sited. In other words, the
initial value is assigned to an automatic variable each time the containing block is ac-
tivated. The initial value is pre-assigned for static variables. Other storage classes do
not allow such initial valuing. This is rather normal for based and defined variables,
but one may seriously wonder why controlled variables cannot be initialized (at the
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moment the ALLOCATE function creates them). On the other hand, most formal-
ists would like variables to have a status such as valued/un-valued and sited/un-sited
kept as a tag with the variable definition. Reference to an un-valued variable could
thus be recognized and prohibited, thereby increasing the reliability of programs. No
classic programming language however has this feature.

Scope, the great pretender

I have indicated earlier that scope rules are an almost inevitable consequence of
block structures. But I also hinted at problems with this new notion. Scope rules in
languages such as Algol, PL1, Pascal, C, ADA are lexical. In fact the scope of a vari-
able is the portion of text in which the variable is known (i.e. usable). The portion of
text is the block in which the variable declaration is actually written and all blocks
contained in this block (unless a superseding declaration of the same variable name
occurs). The place of the definition is the DECLARE statement for a variable, or the
labelled statement itself for a label or entry name. By this rule, the label of a proce-
dure is taken to be part not of the procedure but of the surrounding text, and this is
normal, since otherwise the surrounding block could never call the procedure! It all
sounds very disciplined. But is this true? A deeply nested block (such as a procedure)
has access to all variables of the higher level (containing) blocks. Thus, in the low-
level block one can assign values to variables of a higher level block. In other words,
subroutines, apart from predictable side effects (such as Input/Output) and modifica-
tion of arguments, can also have much less visible effects. This is called modification
of free variables (variables that a block can use, but which are defined in a higher
level block; this is in contradistinction with bound variables, i.e. variables defined in
the block itself, either as regular variables or as parameters of the procedure).
Allowing the modification of free variables is clearly a negative discipline, one that
will cause programs to be more error-prone. Scope rules would have been more ac-
ceptable if there had been a way to restrict the usage of free variables (for instance:
variables usable only in read mode, but not in modify mode). PL1 allows the pro-
grammer to restrict the scope of a variable to only the text in which it is declared and
not the contained texts. By default however, scope is as large as it can be. Another
problem appears with the GOTO statement: it can actually branch to any label in the
current scope, i.. to a label outside the block. This causes termination of the current
block and un-siting of all of the block’s automatic variables. Of course, if the GOTO
is in a very deep block and the target label in a

DECLARE E1ENTRY; (1) very high block, then this un-siting and termina-
A:PROCEDURE(X); (2) tion is effectuated for all intermediate blocks as
DECLAREX..; well: quite a cascade! And, a subroutine that
E1=P2: 3) exits in such a way does not come back to its
RETURN; calling point, but to some label. How acceptable

P2ZPROCEDURE(..); (4)| is this? In my opinion, it is not acceptable at all!

One can also create very serious inconsisten-
END FP2; y

END A n_:ies. Consider the follf)wing exgmple (figure 4).
in statement (1), a variable E1 is declared as an
CALL A(..); ) entry (i.e. a subroutine address). E1 has an
CALLEL ) outer scope. Statement (2) defines a procedure,

A, while statement (4) defines another proce-

figure 4
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dure, P2, nested in A. Statement (5), of the outer scope, calls A. Procedure A assigns
El in statement (3), and it can do so since both E1 and P2 are known in A. However,
when, at the end of A, control comes back to the mainline, the call to E1 (i.e. to P2)
in statement (6) will fail, because P2 is not a label that can be called from the main-
line. If an activation of P2 were possible from here, this would mean that P2 could go
and access variables of A (since they are known lexically within P2), but these vari-
ables were never sited! Scope rules are in fact more cumbersome than useful. If we
take a look at functions (also subroutines), the situation may become critical. Func-
tions are beings that replace expressions and therefore stand for a value, re-com-
puted at each invocation. The environment of functions is composed primarily of
their parameters. An extension to this environment is given by the outer scope. But it
is in conflict with the formal definition of the concept of a function that the execu-
tion of a function could change anything apart from creating a return value. Thus, the
pure function should not output any argument value nor modify any free variable. In-
deed, say some, a function should not even perform any visible action (such as
input/output) apart from computing a return value. But this is the purist’s view. PL1
does not at all protect functions. To PL1 a function is a procedure like any other one.
Thus, the programmers must exercise discipline, and we all know how reliable that
is. An unfortunate aspect is that functions in PL1 cannot return more than one value:
they cannot return structures nor arrays (and in some implementations not even a
character string); when programmers are in need of such returned values they use
free variables instead. An unfortunate situation. PL1 is not by any measure a func-
tional language. And yet, it would have been easy to protect functions: pass all argu-
ments by value, access outer scope in read mode only (or not at all), allow the RE-
TURN of agglomerate values, do not allow the RETURN of a pointer or label (since
these could refer to items in the function body itself which creates at least a concep-
tual conflict).

This being said, the idea of allowing scope to penetrate blocks, but restricting the
operations in a lower block to only reading the outer block’s variables, introduces a
very rich notion. Indeed, an object may be a variable in a given context and a con-
stant in another (deeper) context. Thus, the modifiability of an object may range
from constant, over more or less constant 10 not at all constant (i.e. truly variable). No
classic language offers anything like this, however.

Dijkstra has made an interesting proposal, which is based upon the strict disci-
pline that all variables used in a block must be declared. In fact, he stipulates that
also outer variables should be declared in an inner scope that desires to use them. In
the absence of such a declaration, the variable, though known, may not be used.
Thus, each block must commence with variable definitions, each such variable hav-
ing a scope attribute (which I take one step further than Dijkstra did) of either global
for a variable inherited from an outer scope, or local for a variable declared for the
first time here, or private for a variable declared for the first time here and which
cannot be inherited at a deeper scope level. When a name is re-declared by means of
global, it can also have the supplementary attribute variable or constant. It is also a
good idea to require that a variable be initialized in all cases, rather than make this
optional. Only local and private variables can be initialized, of course. Initialization
could be achieved by means of a clause in the DECLARE statement that contains a
value or a call to an initialization routine (a procedure), which could expect as a par-
ameter the variable itself, always passed by reference (otherwise it is meaningless).
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Such an initialization routine, if written in the scope of the variable to be initialized,
can obviously access the variable. However, there is not yet a value. Dijkstra pro-
poses to declare the variable in the routine, using the pseudo-scope virtual rather
than global. The initialization routine could in fact also be a BEGIN/END block
written in the DECLLARE statement. The whole thing is an attractive proposal,
which no single language has implemented.

Not really new, but renovated: the expression

Fortran (and autocoders) introduced expressions. Cobol, on the other hand, did
all it could to banish them. So, what is an expression, and why are people afraid of it?
Obviously, an expression is a recipe for the calculation of a value. a+ b is an express-
ion indicating that the value is obtained by adding the values of a and b. The simplest
expressions are single variables or constants. The most general form of an expression
is a list of variables and/or constants separated (connected, one could say) by oper-
ators. Fortran offered the operators + - * / **. Semantically it is not that simple,
however. Indeed, the world is composed of two classes of people: there are those
who think that 7+ 4*5 is 55, and those who claim it is 27. One can find pocket calcu-
lators that deliver 55 and others that deliver 27. Al desk calculators of the 60’s gave
55. So what is up? There were two ways of interpreting an expression: the mere left
to right way (result 55) on one hand, and taking into account operator precedence
(result 27) on the other hand. Indeed, for people who have taken algebra, it is a
known fact that multiplication has a higher priority than addition so that 4*5 is done
before adding 7 to it. And that is the problem: the syntax does not indicate which
order of evaluation is meant. A further complication arises when priorities are con-
sidered: how indeed could the result 55 be achieved if one wanted it? This implies a
deviation from the operator priorities, which can only be indicated by using paren-
theses: (7+4)*5. As a result, expressions may become rather complicated. The phil-
osophers of the left-to-right way will therefore prefer the way of Cobol:

MULTIPLY 4 BY 5 GIVING X. ADD X TO 7 GIVING RESULT.

In fact, this is a poor way of doing things: the programmer must anyhow decide about
effectuation order, so why can’t he write 7+4*5 and remember the precedence rule?
True: Cobol has a COMPUTE statement which swallows expressions, but no Cobol-
ist uses it. In the remainder of this section, I will use the precedence philosophy. But
even so, isn’t there another possibility of writing expressions, preserving priority and
avoiding ambiguity? Yes, there is. Let us make a detour first. Suppose we have a
function called add which takes two arguments and adds them together, and another
function mult which multiplies two arguments. We can rewrite our expression as
add(7,mult(4,5)). The writing order of the expression elements (the 7,4,5) is
preserved, but the delimiters are gone. There are no operators anymore. Instead we
have functional notation which replaces priority by nesting. Now let us make some ty-
pographical changes. First, drop the parentheses. Next, use the + sign instead of add
and the * sign instead of mult. Our expression becomes: + 7:*4:5 (the colon serves as
a separator), and this is strictly equivalent with the functional notation and therefore
unambiguous. It suffices to remember that both + and * mean an operation to be
performed upon the two operands that follow it left to right, and if such an operand
is itself an operator, first execute this one and so forth to any depth. The notation
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here presented is called Polish notation or prefix notation. It never needs any paren-
theses.
As an example:

(a+b*(3+T))*((x+y)*4+k) is equivalent to *+a*b+3:7+* +xzy:dk

Nothing of course prevents us from writing the operator after its operands. In this
case, we obtain the functional notation (7,(4,5)mult)add or with the same typo-
graphic shorthand as before: 7:4:5*+, and the more complicated expression would
be written

a:b3:7+*+xcy+4*k+*

This notation is called reverse Polish notation or postfix notation. Our more human
way of writing expressions is called infix notation, and this can never be parentheses-
free. Polish notation is very much in favour with compiler builders. There are pocket
calculators even that only accept this notation, just imagine! Notwithstanding the fact
that Polish notation is unambiguous and therefore to be preferred, it is never of-
fered. No language (apart from LISP and its clones) contains it. So infix notation it
is. This seems natural enough for so-called binary operators that have two operands
(in which case the operator separates the operands). There are also operators that
have only one operand (unary operators); these are written before their operand.
Operators with three operands (fernary operators) have special syntax rules and
other n-ary operators are written in functional notation. The rather special operators
that have no operands (0-ary operators) are written as such. In Fortran the operator
priority was established in conformity with algebra. Priority 1 (highest): unary -, +;
priority 2: **; priority 3: */; priority 4: +,-. Operators of equal priority evaluate from
left to right. Care must be exercised regarding division. Find out for yourself what is
the difference between the following expressions:

a*b/(c*d), a*b/c/d, a*b/(c/d), a*b*d/c

PL1 and Algol extended upon the expression, most notably by introducing the
conditional expression which can be used as the operand of the if or while connec-
tives. PL1 allowed very complicated expressions in this respect for instance:

(A+B*(7+5)>45*X & TUV< =15) | XYZ

which contains a number of new operators. The = > = <= > < are comparison
(or relational) operations which actually compare two operands and yield the
boolean values true or false. The & | - are boolean operators which perform the
logical and or logical or of two operands or the logical not of one operand (inciden-
tally, Algol uses A for and, v for or and merely not for inversion). In order to under-
stand the conditional expression given above, we also need to know what the priority
of relational and logical operators is with respect to arithmetic operators. Since com-
parisons are propositions in boolean calculus, the relational operators must have a
higher priority than the logical operators (the latter connect propositions). In a com-
parison the two operands are arithmetic (or similar) expressions. Therefore, the rela-
tional operators must have a lower priority than the arithmetic operators. This settles
the question, with the following additional remark: all relational operators have the
same priority, the logical and and or also have the same priority, but the logical not
has the highest priority of all operators. Unary operators still have some ambiguity
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when more than one of them occurs in sequence. Some languages consider them out-
side in (left to right) while others consider them inside out (right to left). As can be
seen, for a compiler maker the choice of operator priority is slightly subjective and,
indeed, various languages have various rules. An expression may also contain func-
tion invocations. These are in fact already in prefix form. Therefore, they also have
the highest priority. And remember that any argument of a function can also be an
expression. Algol has a supplementary operator, a ternary one: the if expression,
which is not the same as the if statement. It is written as follows:

if (condition)then(expression)else(expression)
It can be used to write the following statement:
xyz: = if(a > b)then(4*x)else(75) +43

and this has an obvious meaning. There is some confusion in Algol as to the priority
of the if expression: how far indeed does the else reach? This is not well described.
My proposal is to use the mandatory parentheses as indicated. Then the whole if
construct can be considered similar to a function and given the highest priority.

As can be seen, expressions are truly powerful beings and by inversion of this ar-
gument we have yet another sadly weak point of Cobol.

What’s in a name: the question recurs
q

The built-in functions of PL1 contain a number of special beings. One of them is
the SUBSTR function: SUBSTR(string,position,length). This function returns that
part of the string (argument 1) which starts at position and extends over length charac-
ters. So far, so good: obviously a useful function. But the PL1 makers invented
something: they allowed the SUBSTR function to be used as the receiver of an as-
signment (provided the string is a variable and not an expression or a constant). A
rather funny situation: SUBSTR is a function, but instead of delivering a value, it
now receives one. And how is this achieved? In fact, SUBSTR designates a portion of
the receiving string. And this is also a useful feature. PL1 calls such beings pseudo-
variables since they can indeed replace a variable anywhere, even as receiver in an
assignment. I prefer to call them designator functions since they actually designate a
site into which an assignment is to be done (or from which an "extraction” must
occur). We could also call them naming functions. In effect, they are unnamed ob-
jects that have a site and have or can receive a value. Other such designator functions
exist. One of them is UNSPEC, which allows the programmer to see the argument as
a pure bit string (and thus permits the modification of any bit in the argument). An-
other one is STRING, which takes two character variables as arguments, and sees
the concatenation of them as a new modifiable object. A last, very important one, is
the array reference, which I discussed in the context of Fortran, Indeed, if A is an
array, then what is the meaning of A(i)? Merely the designation of the i-th element
of A, and this can be used as a value or as a receiver of a value. Some people actually
use the notation isub(A,i) to designate an element of an array, and isub is clearly a
designator function. The important thing to see is that a designator function actually
computes a sife by refering to at least one really existing variable, using a number of
refining arguments.
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An interesting question is: can one construct such beings? PL1 says a hard "no"
here. And all other languages as well. Nevertheless, such functions are conceivable
enough. I can’t resist the pleasure of elaborating somewhat on this idea. So, let us as-
sume we want to create a designator function that designates the last character of a
string. We shall write it LAST(string). As a regular function that returns a value, it is
easy enough to define it (figure 5). Can

LAST:PROCEDURE(X)RETURNS(CHAR(*)); | LAST be used as the receiver of an as-
DECLARE X CHAR(*); signment? Well, since the RETURN is
ESIT)'_JRN(SUBSTR(XLENGTH(X)J))? itself a designator function, nothing

’ would really prevent us from using the
figure 5 function in this reversed way. This is

not always possible however. Suppose
we now want a function that designates the new string formed of all even-ordered
characters of an object string. We will write it as EVEN(string). Again, as a regular
function it is not hard to define (figure 6). This time, however, the RETURN is not
composed of a designator function, so
we cannot use EVEN in a reversed
way. A solution is possible, though.
We are free to consider that a desig-
nator function is an operator that es-
tablishes the siting mechanics of the

EVEN:PROCEDURE(X)RETURNS(CHAR(*));
DECLARE X CHAR(*), I FIXED;

DECLARE R CHAR VARYING;

DO I=1BY 1 WHILE(I*2< LENGTH(x));
SUBSTR(R,]I) = SUBSTR(X,1*2,1);

3

designation, rather than merely re- | RETURN(R);
turning a site. Thus, a designator func- | END;
tion used as a receiver (and I will call 5

igure 6

that an acceptor) must be able to ac-
cept a value and move it into some
site, which may designate contiguous or even linked cells. Figure 7 is a plausible syn-
tax for defining such an acceptor. This function will actually accept a value (as indi-
cated by the ACCEPTS clause that has taken the place of the RETURNS clause)
and move it into some site(s) defined by its parameter. Within the function body, the
ACCEPT statement serves to move into a local variable the value that is assigned to
the function at its invocation point. Notice the rather obvious symmetry between the
returner version and the acceptor version. I have not investigated whether such a sys-
tematic approach is always possible, but it is an intriguing thought to pursue.

A last observation is that some al-

EVEN:PROCEDURE(X)ACCEPTS(CHAR(*));
DECLARE X CHAR(*), I FIXED;
DECLARE R CHAR(*);
ACCEPT(R); /* value assigned to */
/* function at its */
/* invocation point */
/* is moved intoR */
DO 1=1BY 1 WHILE(I*2< LENGTH(X));
SUBSTR(X,1*2,1) = SUBSTR(R,]);
E .

END;

figure 7

52

golists tend to use the if expression as
an acceptor as well (at least when
they use Algol as a publication lan-
guage). Indeed, they write:

(if condition then name] else
name?2): = expression

Depending on the condition, the value
of the expression is assigned to either
namel or name2. The parentheses are
required in order to avoid ambiguity.
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Stacking: a new-looking oldie

Let us come back now to the mechanics that are used to effectuate a subroutine
call. The problem is the preservation of the environment of the caller, since when
control comes back, this environment must be put back in effect. A first annoying
thing is that the machine keeps some data of the caller in registers, which may very
well be used to other purposes in the subroutines. The easy way out, is to save the
registers into some compiler-created save area, and link all these areas together (in
order to cope with subroutines that call subroutines that call subroutines,...). The last
save area of the list holds the registers that are in effect upon entry into the currently
active subroutine. When the subroutine returns control, the previous save area is
used to refresh the registers, and all is well. Such a list is therefore used in a last-
in/first-out way, and it is usually called refurn stack because it holds the return ad-
dress of a subroutine caller. These dynamics sufficed for Assembler, Cobol and For-
tran. But what about Algol and PL1? There is a difference here. Indeed, consider the
automatic variables (in Algol, all variables are automatic). They are sited at the mo-
ment a subroutine (or block) becomes active and un-sited when the block termi-
nates. Siting (allocation) is dynamic, and must therefore be done somewhere. What
better place than in the stack, as an extension of the save area? The dynamics of the
stack imply siting and un-siting at the right moment. So, the machine register that
points the current stack area is also the register that will allow addressing of the
automatic variables. The stack has become a real data stack. PL1 and Algol are
called stack languages. The stack mechanism creates some overhead. So, people
tended to circumvent it by making variables static (these are allocated definitely,
without stack). The question was asked: since Fortran and Cobol live quite happily
without a data stack, why should we bother in PL1? Well, what if a routine calls it-
self? This is allowed in Algol and PL1 (and indeed, it is a powerful mechanism of ex-
treme value, as I will attempt to prove in chapter 7). If we use this feature, this means
that a subroutine can be active many times simultaneously. Each of these simulta-
neous activations must have its own incarnation of the routine’s local variables,
otherwise the whole thing will become unusable. The only way to do this is by having
a data stack, which nests the multiple incarnations of the automatic variables. Re-
markably enough, most computer centres of the business platform rejected, pro-
hibited, the usage of recursion. Why? For no other reason than fright. A grotesque
twist of minds, even of the best inclined ones. Still, it must be admitted that the exist-
ence of a stack is not without problems. Indeed, consider a program that contains
two procedures, A and B, which are not nested in one another. Subroutine A can call
subroutine B, since B is in the scope of the whole program and is therefore known in
A. When the program calls A which in turn calls B, the stack comprises the environ-
ment (the automatic data) of the program, followed by the environment of A, fol-
lowed by the environment of B. This creates the impression that B can access data
from the environment of A. However, this is false: since B is not nested in A, it has
no knowledge of the variables defined in A. In other words, the scope rules are not
reflected in the topology of the stack. Our scope rules are lexical (they pertain to
writing order). The stack on the other hand reflects a dynamic scope, a call scope.
The two are not necessarily the same. Some languages, such as LISP, use call scope
only. Others like Algol, PL1, Pascal, C, ADA, use lexical scope only. I think this is
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another indication of the potential dangers that lie in the notion of scope. There is
more. What about the return value of a function? Where is it held? It cannot be held
in the environment of the function itself, since that is deactivated (abandoned) when
the function terminates, and the return value would be lost. So the only place is the
environment of the function’s caller. In fact, the return value is associated to the
name of the function, and that is part of the caller’s environment (or some higher
scope). A consequence is that one must be very careful in creating functions that re-
turn addresses (pointers) or labels or even entry values: these should never point at
something that is part of the function’s internal data.

Exceptional Exceptions

PL1 was the first language to have exceptions. In other words, PL1 defines a num-
ber of errors or exceptional situations which it is able to detect. In PL1 terminology
these are called conditions. When such a condition occurs, the program manager is
then able to take some action upon it. The nice thing is that the action can be user-
defined. The programmer writes a so-called ON-UNIT, which is really a subroutine,
defined as a BEGIN-END block with normal scope rules. The whole problem is to
decide whether PL1 should take standard error action or should execute such an
ON- UNIT. To this effect PL1 defines 3 notions:

(a) the condition is defined if there exists an ON-UNIT for it (the ON-UNIT
names the error situation, using a standard set of PL1 names or some name of its
own, which then is a user-defined condition);

(b) the condition is activated as soon as the execution flow passes normally over
the ON-UNIT. It is deactivated by means of a REVERT statement. Different ON-
UNITS for a same condition may be activated. They are stacked, and REVERT
deletes the most recent one;

(c) the condition is enabled by the appearance of a prefix (condition- name):
somewhere in the text. It is disabled by the appearance of a prefix (NO condition-
name):. The whole portion of code comprised between the two prefixes is enabled
for detection of the error.

Now, when one of the standard errors occurs in a portion of code enabled for that
error, then, if the corresponding ON-UNIT is in an activated state, the ON-UNIT
will be executed. Otherwise the standard PL1 action is taken (which varies by type of
error). If such an error occurs in a disabled portion of code, no action is taken. How-
ever, for some errors, there is enabling by default anyhow, so that such errors are al-
ways treated. A user-defined condition does not correspond to a PL1-known case.
Thus, the user has to raise the condition by a SIGNAL statement. This is interesting
when PL1 programs are used to interface with non-standard resource handlers that
return error-codes of their own and for which some user-conventional action has to
be taken. The whole thing is rather nice and allows very interesting programming
avenues (of the event-driven type). However, there are severe shortcomings. Indeed,
where is control transferred to after execution of an ON-UNIT? Is the failing state-
ment retried? Does execution proceed with the next statement? Is the program ter-
minated? Is the containing procedure terminated? Or what? Can the programmer
decide? PL1 left this in the open. The programmer can do a GOTO to some place he
knows about. And I must admit, it is not very clear what a continue or refry may mean
at the object code level ...
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Chapter 4
THE YEARS OF MULTI AND
PASCAL

When System becomes overwhelming things get
locked. Macroprocessors reach a top. Pascal comes
in strong.

The roaring 60’s : SYSTEM went multi

While all these linguistic developments took place, something insidious, but with
enormous possibilities, was going on. SYSTEM came of age. The whole thing came
from performance requirements. Conventional runs (reading the program card deck,
execution, printing the listing) were lengthy, and mostly so because of the printing.
The printer was {(and still is) a slow device, and while it was doing its job, the CPU
nearly idled, losing time. So, a shrewd systems designer came up with the idea: why
don’t we spoolout the print output to a more rapid device (a tape, and later a disk),
thus gaining time? Printing could thus occur later (from the tape) by means of a sys-
tem-embedded routine. The question was: what is later? At the end of the day? A
possibility. But there was a better way. Why not perform the printing anyhow, and let
the CPU do normal work in the idle time of each printing line? All it needed was a
device by which CPU power could be switched between sending a print line and ex-
ecuting some user programs (or some system service). That was the beginning. Not
much to speak about, is it? But it was the first multi-acting system ever. And it con-
tained another novelty: a wait queue. Indeed, the outputs that were waiting for print-
ing were gqueued onto the help device. The waiting requests were serviced in order of
decreasing age: a first-in/first-out (FIFO) policy. The system went multi and found all
the queueing problems that it still has today. Quite soon, the multi approach ex-
tended from mere spooling to generalized multitasking (I'll stick to that word for
quite a while). Multitasking was the capability of the system to execute more than
one task at the same time (macroscopically speaking). And a task was some amount
of sequentially contiguous work. The way it was set up was: use the I/O idle times of
any task to do some other task in (or at least a portion thereof). The mechanics in-
volved were apparently obvious. Assume two tasks, Taskl and Task2. Assume fur-
thermore that task1 is executing, and task2 is not, as in figure 1. At a certain moment
task1 launches some I/O, by virtue of which it stops executing and waits for comple-
tion of the I/O. Task2 now gains control. This task may also do I/O, and idle. Since
there are no other

1/0 end 170 tasks, now the ma-

tosk 1 b | [ chine idles. When
10 task1’s 1/O is finished,

tosk L | this task regains con-
trol. Suppose that

figure 1 when task2’s I/O is

finished, taskl is still
in control. Task2 is
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runnable but cannot run before taskl abandons control once more, and so forth.
Thus, a task can be in any of 3 states: active, waiting or ready (i.e. able to become ac-
tive). The diagram in figure 2 depicts the possible transitions. The situation compli-
cates by the introduction of preemption and priorities. Tasks could have priorities, so
that a high-priority job would never have to wait in a ready state but rather takes
control and pushes the currently active task into a ready state. On top of it all the I/O
management system became a bottleneck. How was that possible? Merely because
——— I/O devices were slow (com-
/ \ pared to the CPU) and thus un-
N ~ able to serve concurrently all re-
) quests coming from simulta-
neously executing programs.
Some serving task was therefore
required, call it task 3. The serv-
\ ing task was going to schedule
— the demands for I/O against the
device (assume only 1 device,
for simplicity), which introduced
a queue of I/O requests . Task 1
and task 2, when requiring I/O, would hang their request on the I/O request queue.
Task 3, a never ending (cyclic) task inspected the queue and effectuated the request
by sending it to the device. Task 3, unable to do its own job in a zero time interval,
needed to be inserted in the give/take machine time mechanics, and probably
needed a higher priority than any user program task, since it helped in the effectua-
tion of these user tasks. I/O had become a resource. And that was only the beginning.
But an important notion was born: a resource manager that was to schedule the re-
source against the requests of a request queue, in some order. The queue was an ine-
vitable plague of the situation: the queue accounts for speed differences; only in a
system with all components acting at identical speed, can queues be avoided (al-
though even then, there may be queueing because of asymmetrical peaks). For a
queueing system to hold the road, it must be guaranteed that queues never grow un-
controllably, choking the system: if the system comes to a standstill, this is a cata-
strophe! The CPU in fact, was the major resource. All those tasks, active, waiting,
ready, needed to be followed; they needed a dispatcher, yet another scheduler, sche-
duling the CPU to the list (request queue) of ready tasks. This task dispatcher was
the heart of it all. It was a permanent, cyclic "program”, either idling or scanning the
task list for a ready task that it could turn active and thus allow to execute. In case of
preemption, a signal would be given to the dispatcher so that it could interrupt the
currently active task and give control to the preempting task. As a consequence, sys-
tems became synonymous with queuing systems. Other resources were going to be
scheduled (i.e. waited for), either because they were slow (and exclusive) or because
there was a limited amount of them... Early systems only scheduled I/O access and
acted dramatically when other temporarily unavailable resources were applied for
(by aborting the requestor); other systems were more lenient in that they caused the
requestor to wait for resources when unavailable. In these systems, a new problem
appeared: the deadly embrace.

active reacdy

figure 2
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The good old days were gone forever

By the mere fact that system had gone multi, programs could run simultaneously.
They were called concurrent. All programs that executed concurrently in the system
had to be physically present in core, on top of the system itself. Core management
services were needed to place a program in core. As a result, a program could reside
at different places in core for different executions, at different moments in time or
even simultaneously. This forced programs to use either relative or base/displace-
ment addressing instead of absolute addressing, since address 0 of the program no
longer corresponded to address 0 of the machine. As a result, the assembly (or com-
pilation) listing of a program would give addresses starting at 0, but a program dump
would give real addresses, starting at the true load point. Since some fields of a pro-
gram could not be anything but addresses of other fields, these had to be relocated by
the loader, i.e. recomputed to their real value. All programs present in core could ac-
cess all core, since the whole machine was one single range of accessible addresses:
an address space. This was dangerous; security was enforced by means of so-called
storage keys that prevented programs from accessing core not belonging to them.
Somehow, each program (and also the system) had its own portion of core, constitut-
ing an individual address space. Routines common to programs could not exist there-
fore. Either they had to be copied into each program or they had to be made part of
the system, so that they became indeed shareable (with some protected calling
mechanism, obviously, otherwise anyone would have been able to go and do things in
the system portion...). SYSTEM started spawning quite a number of resource mana-
gers. The primary resource had been I/O. Management of I/O led systems to the con-
cept of concurrence, so that the immediately next resource to be managed was the
CPU itself. Dispatcher handled that piece of fine craftsmanship. Core was another
important resource that received management. It was needed for loading programs,
but it was also needed for the allocation of the automatic storage (stacks) of Algol
and PL1 programs. The core manager decreed that a program would be loaded into
a region or partition big enough to contain it and also contain some free space for
stack allocation. The system had also needs for allocating volatile data structures, if it
were only because somehow all the managers needed to keep track of who used
which resources. This was done in lists kept in system space core, and these lists grew
and shrank as demands were satisfied. The managers needed their own space to
handle their data structures in. Early system versions would do it in pre-allocated
areas, but this proved rather inefficient as a lot of unused core might exist in some
such areas and still would not be usable elsewhere. So later versions had a gigantic
single area from which core blocks were allocated (on demand basis) to the mana-
gers. Core management, once more... Still: the whole thing could get full. What
would happen in that case? Easy: SYSTEM would collapse. Users would first weep,
next get angry, finally request action. A temporary solution was that only the unsatis-
fiable requesting program would be aborted. But this was not so acceptable either.
So, another new solution: the demander would have to wait until the resource was
free. As a consequence, the manager of the resource now had to maintain a list of
waiting demands, and ready (or post) the topmost demander when resources became
available. This in turn called for the task dispatcher to take such wait-post situations
into account. Such situations sound easy. They are not. Let us take a look at things. A
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first program (called Liza) is running in the machine, while a second one (shall we
say Robby?) also happily uses the CPU. Now, imagine that for some reason core
management is "called” in, and runs somewhat as a subroutine for the calling task.
The time-frame can very well be as in figure 3. Notice that core management when in-
voked (by MC or SVC for instance) runs under control of the demander. That is

liza rokby

needs storagel _
core
manager

— Jneeds storage
core

™ manager !Nq STORAGE AVAILABLE!
WAIT
frees storagel _ :
core o __ _ _ _ continue
- I"'IOI']QQE'!"
%time
figure 3

what I mean by drawing it in the left column or the right one.

It is obvious that a problem will occur in some cases, namely when the core man-
agement executions of one single module overlap. Is this allowed? Is it possible? The
whole thing raises the suspicion that a program is also a resource, and might very well
need to be scheduled. But couldn’t such programs, that might be executed concur-
rently by many tasks, be arranged? A program, after all, is a set of instructions and
some data. The set of instructions is absolutely stable, it is only read (at least if pro-
gram execution does not modify the set of instructions, and unfortunately some pro-
grams do, but let us assume for the moment being that this is not the case). The data
might also be classified into read-only and not-read-only fields. Clearly, concurrent
execution of programs that only have read-only data is allowed without further ado,
that is, no manager is needed. If programs have modifiable data as well, the question
then is: can these data values be particularized per user (calling task) of the program?
If yes, such data might be allocated in (an extension of) the task’s address space, and
the program might use an address scheme to access the various incarnations of the
data. Again: core management is needed. Programs that do not modify their own in-
structions and have read-only data and use task-based incarnations of their modifi-
able data make up the very important class of reentrant programs. Reentrancy is a de-
sirable attribute of programs in a multi environment, that much is clear. But not all
programmers were able to see this: it is somewhat like the difference between plane-
geometry and space-geometry. Allocation of data areas to programs so as to achieve
reentrancy, added a perspective view to the program flow... Now, if programs could
not be made reentrant, maybe there was another way out. Was the program reu-
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sable? In other words, could it be used for one execution after it had completely
ended the previous execution? For most programs this would certainly be the case. If
this was guaranteed, one could imagine that a manager might come into the game, so
as to schedule program executions to its demanders. As an example suppose that our
core management program is not reentrant but is reusable. One way to use this pro-
gram is to create a "core management" task with it, running on its own, and normally
asleep. This task is woken up by a storage demand from any other task and proceeds
to satisfy it. When in this interval, another storage demand occurs, the demander has
to wait. At the end of execution of the first demand, the next demand (the waiting
one) is serviced, and if there is none, the core management task goes to sleep again.
So that problem is solved. But bear with me for a moment, as I'll show yet another
problem. Suppose that two resources are to be managed, and that the situation of
figure 4 comes into existence. The situation is that no task gets out of this situation
anymore! They wait forever. The situation is the now familiar deadly embrace or fatal
osculation. The system world had discovered
a severe disease, and was going to suffer
from it. Lots of solutions were proposed and
— ¢&lve resource 2 found unsatisfactory. But in due time the

give resource 1 __|

give resource 2 _| vaccine was found by Dijkstra: Semaphores.
WAITIL give resource 1| A very important notion, that will be widely

!
I Macroprocessor pops up again

time New languages such as Algol and PL1
figure 4 had come up, and although they did not re-
ally invade the everyday field, they did cause
linguistic views to evolve. The Macroprocessor was not left untouched. One of my fa-
vourites is the MP1000 macroprocessor (a Philips product) which I'll use here as an
example, with extensions of my own (the product doesn’t exist anymore in any
case...). No doubt, you remember what a macroprocessor does: it reads a text, con-
taining macro-calls and replaces these by text, as generated by the corresponding
macro-definition which is the procedure actually invoked by the macro-call. Let me
formalize the definition just slightly. A macro-call is a being with the #ype text and
stands for "inserted lines" (indeed a string!). A macro-call is clearly very similar to a
function invocation. The macro-definition is the function definition. This brings us
rather close to the Algol/PL1 functions. Are other properties of block-structured lan-
guage also present? There are data types and scope rules. But there is no if-then-
else, nor statement "grouping". But the macroprocessor has improved its syntax.
There is a MASSIGN statement (assignment of macro-variables), a MIF statement, a
MGOTO statement. There are declaratives : MINT (define an integer) and MCHAR
(define a character string). There are built-in functions, most notably MSUBSTR
(designate a portion of a string) and MSUBLIST (designate an element of a list).
The pure macro statements are enclosed between markers ($ and ;). This makes the
macro language nestable in any other language (especially if the $ can be freely
changed to some other special character). The true novelty however was the func-
tional approach. Let me concentrate somewhat upon the macro-definition, in that
light. Consider the left-hand Macro-definition in figure 5. Now this means exactly the

|
| | pFaBLACK dealt with in chapter S.
|
I
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same as the definition on the

SMA_CRO abc(parameters) ;$MACRO abc (parameters); | right, provided we define the

text-line-1 SMRETURN (text-line 1/ | §MRETURN statement as the

text-line-2 "text-line 27); .

$MEND; $MEND: statement that assigns the re-
turn value of the function

figure 5 name and also introduce the

slash operator for concaten-
ation of variables (with an inserted line feed). We already know that macroproces-
sors do not want quotes around lines to be returned, as we can observe on the non-
RETURN version. But we also need a way to set up conditional concatenation. The
Philips macroprocessor does it by using the MIF statement in-line with the concaten-
ation. The macro definition on the left corresponds to the MRETURN version on
the right in figure 6. A rather important point appears: the operand of a macro-state-
ment (here MRETURN) could be a text that looks like a macro-definition body or
portion thereof. This is called a macro-expression. No macroprocessor actually has
an MRETURN. But a feature

SMACRO abe () SMACRO 2be () like it is needed. Suppose we
abc (...); abc (...);

textline-1 SMRETURN('text fine-17 r..ram admacro fth}z]at creates a
$MIF condition GOTO labl; $MIF condition GOTO lab1; | !IN€ made up of the concaten-
text-line-2 ‘text-line-2’ $labl:;); ation of two parameters (say
labl:MEND; $MEND; ABC and XYZ), with one
fioure 6 blank separating them. It will
lgure not be sufficient to write some-

thing like ABC XYZ as this
would be taken at face value to mean the characters A and B and C and the blank
and X and Y and Z. We need to indicate that ABC and XYZ are macro-variables, So
let us stipulate that such a name must be prefixed by a $; our statement becomes
$ABC $XYZ. This is fine. But what if the generated text must be followed (without
intervening blank) by the characters TUV? Can we write $ABC $XYZTUV? Cer-
tainly we can’t. In fact we need some kind of separator. For reasons that will become
clear somewhat later, the dot was used here. Thus we write: SABC.$XYZ.TUV. The
$ and . brackets were said to delimit a replacement statement. Let us investigate it
somewhat further. Whatever is between $ and . must be any valid macro-expression.
Thus if we introduce the comma as a concatenation operator (without generation of
an intervening blank), we might also have written: $ABC,’ ,XYZ,’'TUV’. (and notice
that we need quotes in the expression to delimit constants). We have already seen
that a macro-instruction can also act as a macro-expression. We are allowed to write
$MASSIGN A=B+C., (instead of MASSIGN A=B+C;). The effect is peculiar
though. In fact, the $. brackets cause whatever is contained between them to be
evaluated. The result should be a string, and this string replaces the whole statement.
So, MASSIGN A =B + C will be evaluated. The evaluation of a macro-statement re-
sults in its effectuation (causing the effect of A acquiring a new value) but also re-
sults in the actual value empty (this is the case for any macro-statement evaluated as
an expression). So the replacement statement has no value by itself, but provokes a
side-effect. Replacement statements can also be nested. The statement $$ABC..
means that the inner $ABC. is replaced by its value, say XYZ (a string). This means
that we now have $XYZ. to be evaluated, and this will work, if XYZ is itself a macro-
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expression (textually) or, at the least, the name of a macro-variable. Another
example is

$MASSIGN X ="$MIF condition GOTO LAB1;GLITCH $LAB1:;FLUKE’; $X,

The replacement statement for X will actually execute the text contained in X and
leave as a result the string FLUKE or GLITCHFLUKE. Replacement statements
can also be used within macro-statements:

$MASSIGN ABC="LAB1*$MIF condition GOTO $ABC,;

will result in conditional branching to LABI. Finally, also notice the very important
fact that string variables (defined by MCHAR) have no limited length: the macropro-
cessor copsiders them to have varying length; in other words, the length is adapted to
what is needed at any given moment. This allows us to perform any kind of concaten-
ation such as $SMASSIGN X=Y,Z; or even MASSIGN X =X,X; which merely repli-
cates X behind itself.

Let us recapitulate: the operand of a replacement statement can be either a
macro-variable or a constant string or a macro-expression. If it is a variable, the
value of the variable is fetched. If it is an expression, this is evaluated first. Variable,
constant and expression thus yield a string. This string is scanned to see if it doesn’t
contain any macro-statement. If so, this is considered a nested replacement and
evaluated, and so on. A macro-call is a function invocation, as we have seen. Thus, a
macro-call yields a string, and therefore we could just as well write $macro-call. in-
stead of $macro-call;. The latter notation considers the macro-call as a statement. A
striking example is given by the three texts following. We will admit that the value of
a MACRO/MEND block is empty. We will also require that quotes contained in a
quoted string should be doubled. The texts, with body standing for one valid macro-

definition body are given in figure 7.

I leave it to you to find out how

:MACRO abc; ’$$M ACRO abe; ,?MACRO Jbe. | these three texts achieve exactly the

‘body’ body "body™ " | same net end result: that of setting
. $MEND;’ . up the macro-definition for abe.

$MEND; . SMEND;’ The importance of macroproces-

- sors cannot be underestimated: they

figure 7 were (and still are) the tool which

allowed programmers to extend any
given language. Languages could be
given the essential property of open-endedness. Alas, not many bothered.

Macroprocessors were the first string processors ever. They did it in a functional
way: macros are functions that are used for their replacement value. They opened the
world of string processing, a very important domain which would be further explored
by SNOBOL. One of the interesting applications of macro-processors was in creating
two-level compilers for high-level languages: the compiler itself translated the lan-
guage lines into macro-calls. A macro-library was then used to further translate the
macro-calls into assembler code (which was processed by an assembler). The advant-
age to this approach was in the fact that for a given language only one compiler had
to be developed and a specific macro-library was delivered for each target machine.
long the same lines, macro-processing was sometimes used to help translate one lan-
guage into another or to create full jargons of a language.
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ened out. Pascal brings the usual Algol types such as integer and real. It also allows
the programmer to regroup variables in agglomerate structures (like PL1) and calls
these records. It has (multi-dimensioned) arrays. But Pascal does more. First of all, it
makes a sharp distinction between constants and variables, and introduces the
named constant (protected against a change of value). Label constants (for use as a
target in a goto statement) must also be pre-declared at the top of the program,
otherwise they can not be used. This is a timid attempt at imposing discipline upon
the usage of the goto. Pascal introduces also many new data types. The most import-
ant one is the scalar type. To allow declaration of such beings, Pascal offers a new
declarative: the type declarative. This permits the programmer to define new data
types of his own. For instance, suppose a program needs to work with colours. Then
one can define the scalar notion of colour: type colour = (white,yellow,red,blue,vi-
olet,black). The type declaration establishes the name colour and also establishes the
possible constant values this name stands for. Mind you, a type declarative does not
create a variable. Instead, it now allows one to declare variables that have the type
colour. The variable "paint" can be declared as follows: var paint:colour. From now
on, the variable paint can be manipulated in the program. It can receive values, but
only those allowed in the type colour. And of course, it is not possible to perform
arithmetic upon such variables. They can however be tested in comparison oper-
ations. The definition set of colour is also considered ordered. Thus yellow is higher
than white. An important aspect is that the Pascal for statement allows only the use
of such scalar types. for paint: =yellow to blue do action will execute the action re-
peatedly, while the variable paint takes the values yellow, red, blue in succession.
Many of the standard types are also scalar: integers have a definition set that is the
range of integers; booleans range over false and true (in that order); the new type
char ranges over a standardized representation of one-character codes (the so-called
ASCII set).

Another important data type is the subrange type. This is in fact a subset of a sca-
lar type. If we keep our definition of colour, we can define a new type as a subrange:
type dark=Dblue..black and declare a variable to have the type dark: var mork-
paint:dark. Morkpaint can only take the values between blue and black. An interes-
ting feature. One can also define a subrange over the standard types: type let-
ter="a"..’z’ and type onedigit=0..9. Scalar types and Subranges are also used as
bounds for arrays:

var x:array[1..25]of integer and var y:array[colour]of integer
Pascal also allows one to define a type as a structure (i.e. a record):
type mystr =record name:array[1..30]of char;id:integer;status:(married,single) end

A variable can now be declared to have that type: var employee: mystr. This means
that employee is a record and contains the sub-variables employee.name (which is an
array of 30 characters), employee.id (an integer) and employee.status (a scalar with
possible values married and single). PL1 and Cobol allow the siting of one variable
over another one (DEFINED and REDEFINES). This is a dangerous feature. Pas-
cal decided to clean it up. First of all such identical sitings are allowed only within
records. Next, they can oniy be done over the tail of the record (only the last portion
-possibly the whole- of a record can be redefined as something else). The notion is
that of variant. In fact, says Pascal, a record (or portion thereof) can have more than

64



The Years of Multi and Pascal

proc([]Jint,real)struct(int,int). A very important feature of Algol68 was that proce-
dures could have procedures as parameters. Suppose an integer array-returning pro-
cedure that takes another procedure with an integer parameter and an integer result
as a parameter, it would have the type proc(proc(int)int)[]int. Features like these
would certainly have been welcome in Pascal.

Pascal’s misfortune

Notwithstanding its shortcomings, Pascal is a truly excellent language. It is clean
and simple. It is much more powerful than Algol (especially in its objects). But it was
not a (commercial) success. Not at all. Everyone spoke about Pascal, but no one,
apart from the academic circles, used it. Cobol continued its unchallenged reign in
the applications world. Assembler held the throne in the systems world. Of course,
Pascal had no file management (or very little). But had file management been avail-
able, I do not think it would have made any difference: it was too late. Thus Pascal
went the same way as Algol: it became a publication language for formalists. And it
also became a model for later languages such as MODULA, C (to an extent), ADA.
Pascal had its revenge, though: it is possibly the most widespread micro-computer
language of today (after BASIC, though). The 60’s were roaring indeed. But most
people were deaf to the noise.

Is there still something in 2 name?

Pascal is a fantastic language, full of marvellous beauties. Especially the new ob-
ject: the type. Pascal allows one to define and name a type, which becomes usable in
variable declarations and in other type declarations (so types are nested). But, one
may rightly ask, what kind of object is a type? Can it be assigned? The answer is no.
Thus a type is a (named) constant. So far so good. Next question: does it have a
value? It does: the value is structure, since there are recognizable tokens in the string
(type within type). It sounds somewhat like a procedure definition, where the body is
a piece of text. A type is a declaration subroutine... But a type of object cannot be
manipulated at all. There is no single executable statement that uses a type name as
operand... The only usage is within declaratives. And at that level there are fype ex-
pressions, limited to self defining type constants or type names. One can indeed write :
type xyz = 1..25; var abe : xyz where we use a type name or var abc : 1..25 where we
use a type "constant”. The idea that type names (and type self-definers) are the
beings with which you program declaratives, is somewhat new. And intriguing
enough. The case variant within a record type looks a lot like programming within
the declaratives... Is a type-name sited? An awkward question. Since a type-name
cannot be used within an executable statement, there seems to be no need for siting.
And this is true, for execution time. But the fact is that type names are most definite-
ly sited during compiler time. The location is in the symbol dictionary that the com-
piler maintains while compiling (some compilers append the dictionary to the object
code, which allows symbolic tracing, but that is another, rather marginal, matter).
The type definition is the first real emergence of compile-time objects... (in a way,
macro features are also compile-time objects)
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programs had to be complicated, otherwise they were wrong. Programs were not ex-
plainable. Programs could only be made by the upper class, the intelligentsia. Thus
anyone making programs was part of it. A specialist. And very soon, each pro-
grammer started considering his fellow programmer as particularly inept. Then, each
programmer felt entitled to dictate the word to his colleagues and called himself an
Analyst. The Analyst was the knower of the Truth. His own truth, obviously. The
only possible truth. Negating all other truths claimed by... well, by whom? ... just look
at the other paupers. So they all were analysts. They spoke the truth(s). They were
however not applying it anymore and needed workers to do just that. Data Process-
ing had found its first elite. Now, the elite wanted slaves. So they started hiring
"coders": people, generally untrained, able to rewrite the analysts dogma’s in true
programming languages. It mattered not how they did it. And very soon the coders
wanted to be gods too. So they became programmers (the job had been vacated, re-
member?) and analyst-programmers or programmer-analysts or senior-programmers
or expert programmers or whatever they pleased to call themselves. They (the
coders) started speaking truths about the truths. The successful ones indicated what
not to do if you had to implement a truth. So they said don’t use anything but assem-
bler for systems programming; don’t use anything but Cobol for applications; do not nest
IF statements; do not make programs of more than so many lines; do not use macropro-
cessors; do not use this fine construct; do not use that other fine technique; do not be
smart about your job! The 60’s gave all the tools needed to really make a great job of
it. No one used them.

Decision tables: A matter of style?

With such a psychology oozing into the job, what could programming style
amount to? Right: chaos! Everyone decided to garble programs as much as possible,
$0 as to create the impression of utmost difficulty and thus of specialized work. Pro-
gram authors made themselves indispensable. Analysts confused agitation and action
and therefore couldn’t care less. Programs, as a result, became huge, illegible, in-
comprehensible. Moreover, they were untestable, unamendable. Maintenance be-
came an ovcrwhelming and self-justified business. Managers started really worrying:
programming costs rocketed sky-high. Performance (in terms of program quality)
was poor. It was in those days that the myth was born: programming was unavoidably
complicated and expensive. Darkness triumphed over clarity. But at the same time,
the search for light was begun. When things are complicated, so managers said,
methods are needed to keep things under control.

minterm x y  z Fa | It was in the realm of application programming
that methods started appearing. In those days, an
0 0 0 0 0 1 interest decision tables. A decisi
. o o 1 1 interesting one was decision es. A decision
5 0 1 0o 0 tab]e is a.graph:cal way to map condlt:ops against
3 0 1 1 1 actions: it expresses the fact that certain actions
4 1 0 0 1 are to be performed only if certain conditions (or
2 i ? 10 combination thereof) are satisfied.
7 1 1 (1’ (1} Consider an action A. Let us also define a
boolean function Fa(x,y,z) which if true indicates
figure 11 that A must be executed, and if false prohibits

such execution. x,y,z are three conditions which
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We assume that the above registers take information when they receive a fake
signal.

There are also some hard-coded constants:

- a hard-coded constant of value 1 (C1); in fact a read-only register containing the
value 1; it is used to add or subtract one to or from other registers when needed;

- a hard coded constant of value 4 (C4).

All these hardware elements are connected to a 32-bit large bus-bar. This is a
cable of 32 wires, which allows the machine to transport 32 (or less) signals from one
hardware element to another. The connection of an element to the bus-bar is dis-
abled (i.e. the signals present in an element do not flow into the bus-bar), but can be
enabled electronically by means of a signal combined with a clock pulse. It remains
enabled for only a very short while. Thus the connections are like sophisticated
points in a railway network. There also exists a secondary 4-bit large bus-bar. We can
now draw our complete simplified machine, see figure 19. Each dot on the bus-bar is
a connection (which can be enabled). The instruction register (IR) is given a 32-bit
instruction. However, it is seen as a set of four 4-byte registers as well, of which IR1
is separately wired for read-out; IR2 is decomposed in two separately readable 4-bit
sub-registers: L and H; IR3 and IR4 together form a 16-bit register (IR34), also
wired for read-out. We now assume that the assembler language for which the u-pro-
gram is intended is composed of only 4-byte instructions, having a one-byte opcode,
two 4-bit index registers and a two-byte displacement. Typically, we could have the
instruction ADD R1,R2(D). This instruction means: add to R1 the contents of the
cell whose address is obtained by adding the contents of R2 to D. I will note such an
operation as [R1]«<[[R2] +D] + [R1], where the square brackets mean contents of.
The instruction, when loaded in the IR register, fills it as follows: IR1 holds the op-
code, H holds R1, L holds R2, IR34 holds the displacement (D). How would our
ADD object instruction actually be executed by the Simple Machine? It would take
place according to the following steps:

(1) get the instruction into IR:

- place [PC] into AR (by enabling the two connections and delivering a take sig-
nal to AR, along with a clock pulse)

- get memory contents into MR (by delivering a read signal to the store, along
with a clock pulse)

- place [MR] into IR (by enabling the two connections and delivering a take sig-
nal to IR, along with a clock pulse)

(2) analyze [IR 1], to see what the operation is; in our case it is an ADD (say code
78)

(3) select in the p-program the appropriate sequence of actions for code 78, and
execute them (a p-program subroutine), which implies the following actions:

- place [L] (i.e. R2) in the addressing selector of the index store, via bus-bar 2 (by
enabling the L connection of bus 2; L acts as address register for the index store)

- get index contents into the A-register of the ALU (by delivering a read signal to
the index store and enabling the connection to A: the contents are put immediately
into A, which acts as memory register for the index store)

- add [IR34] to [R2] into the C-register (by enabling the connection from IR34 to
the left-side (LS) of the ALU, and giving an add signal to the ALU); this gives in C
the memory location of the first operand to be processed by the ADD instruction.
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- the real w-program starts at the 257th word

- there is a p-program compiler which allows us to write the p-instructions in a
friendly way; in particular, it allows us to write addresses of p-words as their sequence
number, and will translate these to the true addresses; it also allows symbolic ad-
dressing.

The syntax of a p-instruction is:

[symbolic address] command [B address] [:comments]

where the B address part indicates a branch to a constant address. Otherwise, the ad-
dress of the next sequential p-instruction is taken. The u-program portion that inter-
prets our ADD instruction is given in figure 21. The formats of the various com-
mands are explained in flight.

As can be seen, p-programming is programming. However, the objects one man-
ipulates are not the usual ones. They are the raw hardware components. The lan-
guage of p-programming is a command language, as could have been expected. This
command-language has also evolved: Algol-like connectives are used (if then else)
and macroscopic functions also became available (in fact, they refer either to subrou-
tines which are standard or to more evolved built-in hardware functions).

Lots of things can be achieved with micro-programming. Powerful and concise
assembler languages can be created. Operating system functions could even be im-
plemented as micro-programs. A fascinating domain. But one we will now abandon
and will not take up again.
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