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Preface

The best way to learn mathematics is to dive in and do it. Don’t just listen passively to a lec-
ture or read a book—you have got to take hold of the mathematical ideas yourself! Mount
yvour own mathematical analysis. Formulate your own mathematical assertions. Consider
your own mathematical examples. I recommend play—adopt an attitude of playful curios-
ity about mathematical ideas; grasp new concepts by exploring them in particular cases:
try them out; understand how the mathematical constructions from your proofs manifest
in your examples: explore all facets, going beyond whatever had been expected. You will
find vast new lands of imagination. Let one example generalize to a whole class of exam-
ples: have favorite examples. Ask questions about the examples or about the mathematical
idea you are investigating. Formulate conjectures and test them with your examples. Try to
prove the conjectures—when you succeed, you will have proved a theorem. The essential
mathematical activity is to make clear claims and provide sound reasons for them. Express
your mathematical ideas to others, and practice the skill of stating matters well, succinctly,
with accuracy and precision. Don’t be satisfied with your initial account, even when it is
sound, but seek to improve it. Find alternative arguments, even when you already have a
solid proof. In this way, you will come to a deeper understanding. Test the statements of
others: ask for further explanation. Look into the corner cases of your results to probe the
veracity of your claims. Set yourself the challenge either to prove or to refute a given state-
ment. Aim to produce clear and correct mathematical arguments that logically establish
their conclusions, with whatever insight and elegance you can muster.

This book is offered as a companion volume to my book Proof and the Art of Mathemat-
ics, which I have described as a mathematical coming-of-age book for students learning
how to write mathematical proofs. Spanning diverse topics from number theory and graph
theory to game theory and real analysis, Proof and the Art shows how to prove a mathe-
matical theorem, with advice and tips for sound mathematical habits and practice, as well
as occasional reflective philosophical discussions about what 1t means to undertake math-
ematical proof. In Proof and the Art, 1 offer a few hundred mathematical exercises. chal-
lenges to the reader to prove a given mathematical statement, each a small puzzle to figure
out; the intention 1s for students to develop their mathematical skills with these challenges
of mathematical reasoning and proof.
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Vil Preface

Here in this companion volume, I provide fully worked-out solutions to all of the odd-
numbered exercises, as well as a few of the even-numbered exercises. In many cases, the
solutions here explore beyond the exercise question itself to natural extensions of the ideas.
My attitude is that, once you have solved a problem, why not push the ideas harder to see
what further you can prove with them? These solutions are examples of how one might
write a mathematical proof. I hope that you will learn from them; let us go through them
together. The mathematical development of this text follows the main book, with the same
chapter topics in the same order, and all theorem and exercise numbers in this text refer to
the corresponding statements of the main text. This book was typeset using I¥TEX, and all
figures were created using TikZ in IXTEX, except in chapter 12 for the Konigsberg bridge
image, which I drew myself by hand, and the tnangulated torus image, released by user
AG2gach under a Creative Commons license,

Joel David Hamkins
January 2020

About the Author

I am an active research mathematician and mathematical philosopher at Oxford University.
[ work on diverse topics in mathematical logic and the philosophy of mathematics, includ-
ing especially the mathematics and philosophy of the infinite. For me, mathematics is a
lifelong process of learning and exploring. Truly one of life’s great joys is to share interest-
ing new mathematical ideas or puzzles with others, and I find myself doing so not only in
my research papers and books but also on my blog, on Twitter, and on MathOverflow. I cor-
dially invite you to join the conversations on all these forums (links below). My new book,
Lectures on the Philosophy of Mathematics, forthcoming with MIT Press, emphasizes a
mathematically grounded perspective on the philosophy of mathematics, an approach that
[ believe will appeal both to mathematicians and to philosophers of mathematics,

Joel David HamKins

Professor of Logic & Sir Peter Strawson Fellow in Philosophy
Oxford University, University College

High Street, Oxford 0X1 4BH

joeldavid.hamkins @ philosophy.ox.ac.uk

joeldavid.hamkins @ maths.ox.ac.uk

Blog: http://jdh.hamkins.org

MathOverflow: http:/mathoverflow.net/users/1946/joel-david-hamkins
Twitter: @JDHamkins
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1 A Classical Beginning

The classical theorem that V2 is irrational is a gem of antiquity, proved by a beautiful
argument that has endured millennia, a pinnacle of human insight and achievement. Here,
we begin with exercises that solidify the foundations, establishing facts used in the proof
of this classic result, and then move on to exercises that generalize the result beyond V2,
proceeding in small steps that achieve the same conclusion in more and more cases, until
ultimately we provide a complete general criterion for when +/n is irrational.

1.1 Prove that the square of any odd number is odd.

Following the theorem-proof format, let us make the claim here as a formal theorem
statement, for which we then provide proof.

Theorem. If n is an odd integer, then n* also is odd.

Proof. Assume that n is an odd integer. By definition, this means that n = 2k + 1 for some
integer k. In this case, we can calculate that

W= 2k+ 1P =Qk+ D2k + 1) =4k + 4k + 1.

We can write this final sum as 2(2& + 2k) + 1. which is 27 + 1, if we let r = 2k + 2k. And
so n° also is odd, as desired. O

More generally, this theorem is a consequence of the following familiar fact:

Theorem. The product of any two odd integers is odd.

Proof. Suppose that n and m are odd integers. By definition, this means that n = 2k + |
and m = 2r + | for some integers k and r. Now observe that

nm=2k+ 1)2r+1)=4kr+ 2k + 2r + 1.

This is equal to 2(2kr + k + r) + 1, which is 2 times an integer, plus 1: and so nm is odd, as
desired. O
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2 Chapter |

1.3 Prove that V2 is irrational. Give a direct argument, but kindly also deduce it as
a corollary of theorem | in the main text.

Theorem. V2 is irrational.

Proof as direct argument. Suppose toward contradiction that V2 is rational. In this case.
we may express it as a fraction

where p and g are integers, and ¢ is not zero. We may furthermore assume that this fraction
1s in lowest terms, so that p and ¢ have no common factors. By raising both sides to the 4th

power, we conclude that
<4

2=F

g

and therefore that 2¢* = p*. It follows that p* is even. Since the product of any number of
odd numbers remains odd, it follows that p cannot be odd, and so p is even. So p = 2k for
some integer k, and consequently, 2¢"* = p* = (2k)* = 16k*, which implies that ¢* = 8k*.
So ¢* also is even, and so g is even. So the fraction p/q was not in lowest terms after all,
contradicting our assumption. So V2 cannot have been rational in the first place, and so it
is irrational. O

Alternative proof as corollary to theorem I. Theorem | in the main text was the assertion
that V2 is irrational. The key thing to notice is that V2 is simply the square of V2,

V2= (),
and so if V2 were a rational number p/q, then V2 would be the square of this number

V2 = ( plgy¥ = p*/4¢°. which remains rational. This would contradict theorem 1. So we
conclude that V2 cannot be rational. O

We can generalize this observation to the following theorem:

Theorem. If r is irrational, then so is \r and indeed \[r for any positive integer k.

. . . . . 4
The exercise is a special case of this, since V2 = \f V2,

Proof. Notice that r = ({/7)", and so if {7 were a rational number p/g., then we would
have r = (p/q)* = p*/q"*, which is rational, contrary to our assumption. O
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A Classical Beginning 3

1.5 Prove that V5 and V7 are irrational. Prove that /p is irrational, whenever p is
prime.

Let's warm up with a direct argument for V5 and then generalize it to \/p for arbitrary
primes. We shall make use of the fundamental theorem of arithmetic, stating that every
positive integer has a unique prime factorization.

Theorem. V5 is irrational.

Proof. Suppose toward contradiction that V5 = n/m is rational, represented by a fraction
with integers n and m # 0. By squaring both sides and clearing the denominator, we see
that
Sm = n".

From this, it follows that #° is a multiple of 5. This implies that » itself must be a multiple
of 5, since the only way to get 5 into the prime factorization of #? is to have it already in n,
as the prime factorization of n* is obtained from the prime factorization of n by squaring
every term. And so n = 5k and thus 5m* = n* = (5k)* = 25k*. So we can cancel 5 and
deduce m* = 5k*. So 5 must also appear in the prime factorization of m® and hence also
in that of m. So n/m was not in lowest terms after all, contrary to our assumption. So V5

must be irrational. O

Essentially the same argument works with any prime number, since the only thing we
had used about the number 5 in the argument was that it was prime. So let us set out and
prove this more general fact.

Theorem. If p is a prime number, then «\[p is irrational.

Proof. Let p be a prime number, and suppose toward contradiction that 4/p is rational. So

we may represent it as a fraction
H

VP=",

m

where n and m are integers, and m # 0. By squaring both sides, we see that p = n’/m’
and consequently pm® = n*. It follows that p appears in the prime factorization of n”.
Therefore, it must also appear in the prime factorization of n. So n = pk, and so pm* =
n* = (pk)* = p*k*. By canceling one p, we deduce that m* = pk®. And so p must appear
in the prime factorization of m’, and consequently also in that of m. So both n and m are
multiples of p, which contradicts our assumption that p/g¢ was in lowest terms. So /p must
be irrational. O
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4 Chapter |

We may now deduce the original cases of the question as a corollary.

Corollary. V5 and V7 are each irrational.
Proof. This is an instance of the theorem, since 5 and 7 are each prime. O

One might object that we needn’t have proved the first theorem above. that V5 is irra-
tional, since we've just now deduced it as a corollary to the more general theorem that /p
is irrational for every prime p. But I would find that objection mistaken. Just because you
can deduce a theorem as a consequence of a more general theorem doesn’t mean that you
should only do the argument that way. The earlier, more elementary proof retains value
simply because it 1s a more elementary or concrete instance, one that furthermore exhibits
the main idea that led to the more general theorem in the first place. It was easier to under-
stand the first argument simply because it has used the particular number 5 instead of the
variable p, which meant one fewer abstraction woven into the argument. In addition, let me
say categorically that there i1s absolutely nothing wrong with proving the same fact twice
or more times with different arguments. I find it to be good mathematical style, even in a
formal mathematical research paper, to warm up with an easier case of what will ultimately
be a more general or abstract argument.

1.7 Prove that V2m is irrational, whenever m is odd.

For example, V10, V14, V30, and V50 are each irrational.

Theorem. V2m is irrational, whenever m is odd.

Proof. Suppose toward contradiction that m is odd and that V2m = p/q is rational, where
p and ¢ # 0 are integers, and where this fraction is in lowest terms. Squaring both sides
leads 10 2mg® = p*. Therefore, p” is even, and so p also must be even. So p = 2k and thus
2mg* = p* = (2k)* = 4k*. Canceling the 2 leads to mg® = 2k*. So mg* is even. But since
m is odd, this means that ¢g° must be even, and so ¢ also is even. So p/g was not in lowest
terms after all, and so V2m cannot have been rational. U

1.9 Criticize this “proof.” Claim. +/n is irrational for every natural number n.
Proof. Suppose toward contradiction that n = p/qg in lowest terms. Square
both sides to conclude that ng®> = p°. So p” is a multiple of n. and therefore p
is a multiple of n. So p = nk for some k. So ng® = (nk)* = n°k*, and therefore
g* = nk*. So ¢* is a multiple of n, and therefore ¢ is a multiple of n, contrary to
the assumption that p/g 1s in lowest terms. CJ
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A Classical Beginning 5

Let us criticize the proposed proof, which is not correct. To begin, let us consider care-
fully the claim that is being made.

“Claim.” \/n is irrational for every natural number n.

But this claim is not true! We can easily find many counterexamples. Consider the case
n = 25, for example, for which yin = V25 = 5, which is certainly a rational number, and
similarly V49 = 7 and V100 = 10. So sometimes /7 is rational, and these are counterex-
amples that refute the claim. It follows, of course, that the proof cannot be right, and so
we should expect to find some kind of mistake. But where exactly does the argument go
wrong? Let’s go through each sentence of the argument.

“Proof.” Suppose toward contradiction that \Jn = p/q in lowest terms.

The proof starts out completely fine. It seems that we shall try to prove the claim by con-
tradiction, by supposing that v/ is rational and then trying to derive a contradiction from
this assumption.

!‘

Square both sides to conclude that ng* = p*.

This step also 1s fine: it follows similar reasoning as we used when proving the theorem on
V2 and the other cases.

So p? is a multiple of n, and therefore p is a multiple of n.

Yes, p* is a multiple of n, since we observed above that ng”> = p?, so the first part of this
is correct. But the next statement, “and therefore p is a multiple of n” is not right. Just
because a number p° is a multiple of a number, it doesn't follow that p must be a multiple
of the number. For example, 100 is a multiple of 25, but 10 is not. In the main argument
about V2, we did argue that if p? is a multiple of 2, then p also is a multiple of 2. And it is
fine in that case, but what makes it correct is that 2 is a prime number, and so if it shows
up in the prime factorization of p”, then it must have been already in the factorization of
p itself. In general, if p* is a multiple of a number n, this doesn’t mean that p has to be a
multiple of n. So this is where the argument is incorrect.

So p = nk for some k. Song”® = (nk)* = n°k*, and therefore ¢° = nk*.
If we did know that p was a multiple of n, then this part would be correct.

So ¢* is a multiple of n, and therefore ¢ is a multiple of n, contrary to the assump-
tion that p/q 1s in lowest terms. [

This 1s the same mistake as earlier, but with g instead of p. We can’t conclude in either
case that p or ¢ is a multiple of n, and so no contradiction 1s reached after all; the proof is
not valid.
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6 Chapter |

1.11 For which natural numbers n is v/ irrational? Prove your answer.

Our answer to this question will generalize and unify all the answers we gave above,
which will become special cases of this general result. This process therefore illustrates a
frequent pattern in mathematics, where one finds the general argument only after having
made arguments in various special cases. Faced with a mathematical question or collection
of questions, one proves at first what one can about it; and when the argument is therefore
grasped more fully as a result of this progress, one often realizes that a slightly more
general argument can prove a more general fact: and then a still more general argument
proves a still more general fact, generalizing again and again. Eventually, in the fortunate
cases, one arrives at a satisfying summative result, which unifies the earlier arguments
while using essentially similar reasoning, reaching the unifying general fact to which the
argument was tending, from which all the earlier results follow as immediate special cases.
That is the pattern of this case, where at first we proved V2 is irrational, but then generalized
to /p for prime numbers p, and V2m where m is odd. What is it, really, that is making the
arguments work? We can generalize to the following general account.

Theorem. For any natural number n, the number \n is rational if and only if n is a perfect
square. That is, \n is rational if and only if n = k* for some natural number k, in which

case \Jn = k.

In particular, it follows that v is a rational number if and only if it is itself a natural
number. Much of the argument is contained in the following lemma.

Lemma. A natural number n is a perfect square if and only if every exponent in the prime
Jactorization of n is even.

Proof. For the forward direction, notice that if one has a perfect square n = k°, then the
prime factorization of n is obtained by simply squaring the prime factorization of &, and
this will result in all even exponents. That is, if we have the prime factorization of k as

k=py'py--p;
then the prime factorization of the square is

4
.i‘| -I‘;

=k =(p)'ps - pi) =Py p3 e PR
and this has all exponents even.
Conversely, if the prime factorization of a natural number n has all even exponents

u'!".r

=py Py e



Copyrighted material



A Note to the Instructor

In this book. I have assembled a collection of what I find to be compelling mathematical
statements with interesting elementary proofs, illustrating diverse proof methods and in-
tended to develop a beginner’s proof-writing skills. All who aspire toward mathematics,
who want to engage fully with the mathematical craft by undertaking a mathematical anal-
ysis and constructing their own proofs of mathematical statements, will benefit from this
text, whether they read it as part of a university proof-writing course or study it on their
own,

[ should like to emphasize, however, that the book is not an axiomatic development of its
topics from first principles. The reason is that, while axiomatic developments certainly in-
volve proof writing, I find that they are also often burdened, especially in their beginnings,
with various tedious matters. Think of the need, for example, to establish the associativ-
ity of integer addition from its definition. I find it sensible, in contrast, to separate the
proof-writing craft in its initial or introductory stages from the idea that an entire mathe-
matical subject can be developed from weak axiomatic principles. I also find it important
to teach proof writing with mathematically compelling, enjoyable examples, which can in-
spire a deeper interest in and curiosity about mathematics; students will then be motivated
to work through other examples on their own,

So the proofs in this book are not built upon any explicitly given list of axioms but, rather,
appeal to very general mathematical principles with which I expect the reader is likely
familiar. My hope is that students, armed with the proof-writing skills they have gained
from this text, will go on to undertake axiomatic treatments of mathematical subjects, such
as number theory, algebra, set theory, topology, and analysis.

The book is organized around mathematical themes, rather than around methods of proof,
such as proofs by contradiction, proofs by cases, proofs of if-then statements, or proofs of
biconditionals. To my way of thinking, mathematical ideas are best conceived of and
organized mathematically; other organizational plans would ultimately be found artificial.
I do not find proofs by contradiction, for example, to be a natural or robust mathematical
category. Such a proof, after all, might contain essentially the same mathematical insights

Copvrighted material



2 Multiple Proofs

Mathematical progress is often achieved when one explores alternative proofs for a theo-
rem. A different argument may reveal different aspects of the problem or different avenues
of generalization. Here, we explore several such aspects arising from the various alterna-
tive proofs given in the main text of the simple fact that #° —n is always even for any natural
number.

2.1 Prove that the sum, difference, and product of two even numbers is even. Sim-
tlarly, prove that the sum and difference of two odd numbers is even, but the
product of odd numbers is odd.

To provide a solution to this exercise, we need first to know exactly what it means to be
an even number or an odd number. What is the definition? The even integers are those that
are a multiple of 2, the numbers of the form 2k, where k is an integer. The odd integers have
the form 2k + |, with a remainder of 1 when dividing by 2. By the Euclidean algorithm,
every number has a remainder either of 0 or 1 when dividing by 2, and so every number is
either even or odd, but never both.

Theorem. The sum, difference, and product of even numbers remain even.

Proof. This is quite easy to see. Suppose we have two even numbers, say, 2k and 2r. If
we add them, we get 2k + 2r = 2(k + r). which 1s even because it 1s a multiple of 2. If we
subtract, we get 2k — 2r = 2(k — r), which is even because it is a multiple of 2. And if we
multiply them, we get 2k - 2r = 2(2kr), which is even because it is a multiple of 2. So the
sum, difference, and product of any two even numbers remain even. O

Theorem. The sum and difference of two odd numbers are even, but the product of two
odd numbers is odd.

¥ i TP P e e e
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10 Chapter 2

Proof. Suppose that we have two odd numbers, 2k + | and 2r + 1. If we add them, we get

2k+ D)+ 2r+ 1) =2k+2r+2=2(k+r+1),

which is even, because it is a multiple of 2. If we subtract them, we get

k+D)=-2r+1)=2k=2r =2k -r),
which is even, because it i1s a multiple of 2. But if we multiply them, we get

2k+ 1) 2r+ 1) =2k-2r+2k+2r+ 1 =2kr+k+nr)+ 1,
which is odd because it is a multiple of 2 plus 1. O

This latter argument was the same we had considered in exercise 1.1 as a generalization
of the claim that the square of any odd number is odd.

2.3 True or false: if the product of one pair of positive integers is larger than the
product of another pair, then the sum also is larger.

The question is whether pg > rs implies p + g > r + s in the positive integers.

Theorem. The statement is false. It is not alwavs true that if the product of one pair of
positive integers is larger than the product of another pair, then the sum also is larger:

Proof. To prove that the statement is false, it suffices to give a counterexample. Consider
the two pairs 2,3 and 1.5. The product of the first pair i1s larger than the product of the
second pair, because 2-3 = 6 > 5 = | - 5, but the sum of the first pairisonly 2 + 3 = §,
whereas the sum of the second pair is 1 +5 = 6. So this pair of pairs is a counterexample
to the statement, and therefore the statement is not true in general. O

To refute a universal statement, it suffices to give a particular counterexample, and for
clarity it is often best to give a very specific counterexample when possible.

2.5 Prove that the product of k consecutive integers is always a multiple of k.

Theorem. The product of k consecutive integers is always a multiple of k.

This theorem exhibits a common situation in mathematics, where one proves a theorem
by one argument, perhaps by a comparatively straightforward argument, but actually, a
considerably stronger result can be proved, by a somewhat trickier argument. In this case,
we have the simple result here and a much stronger result, which I shall explain after
exercise 2.7. For now, let’s prove just the result that 1s claimed here.

Copyrighted maternal
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A Note to the Student xxiii

Please use the theorem-proof format of writing even when solving the exercises in this
text. For example, suppose the exercise says:

Exercise. Prove that every hibdab is hobnob.

Then you should begin your solution not by starting directly with your proof, or by
rewriting those instructions. Rather, you begin by writing a clear statement of what you
are proving, like this:

Theorem. Every hibdab is hobnob.

Proof. And so on with your argument. L

Notice that this turns the instruction statement of the exercise into a new, clear mathe-
matical statement. It would have made no sense to prove the original assertion, “Prove that
every hibdab is a hobnob,” because that is not a mathematical statement, a statement that
might be true or false, but is rather an imperative, an instruction about what we should do.
We carry out that instruction by formulating a clear mathematical statement as our theorem
and then proving this statement. In this way, you shall turn every exercise into your own
formal theorem statement and proof.

Let me say lastly that I have also gathered together in this text a collection of what I find
to be sound mathematical habits of mind. bits of mathematical wisdom or advice that |
believe to be beneficial or even fundamental to sound mathematical practice, highlighted
in boxes at the end of each chapter. Adopting these habits, I believe, will help an aspir-
ing mathematician solve a problem, find an elusive proof, or write better proofs. Let me
mention one of them right now that we have just discussed.

Use the theorem-proof format. In all your mathematical exercises, write in the
theorem-proof style. State a clear claim in your theorem statement. State lemmas,
corollaries, and definitions as appropriate. Give a separate, clearly demarcated proof
for every formally stated mathematical claim.
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1 A Classical Beginning

One of the classical gems of mathematics—and to my way of thinking, a pinnacle of hu-
man achievement—is the ancient discovery of incommensurable numbers, quantities that
cannot be expressed as the '

The Pythagoreans discc ) ¢ side and diagonal of a
square have no common unit of measure; there is no smaller unit length of which they are
both integral multiples; the quantities are incommensurable. If you divide the side of a
square into ten units, then the diagonal will be a little more than fourteen of them. If you
divide the side into one hundred units, then the diagonal will be a little more than 141; if
one thousand, then a little more than 1414, It will never come out exactly. One sees those
approximation numbers as the initial digits of the decimal expansion:

V2 = 1.41421356237309504880168872420969807856 . ..

The discovery shocked the Pythagoreans. It was downright heretical, in light of their
quasi-religious number-mysticism beliefs, which aimed to comprehend all through pro-
portion and ratio, taking numbers as a foundational substance. According to legend, the
man who made the discovery was drowned at sea, perhaps punished by the gods for impi-
ously divulging the irrational.
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4 Chapter |

Slightly revised proof of theorem I. Suppose toward contradiction that V2 is rational. So
V2 = p/q for some integers p and g, and we may assume that the numerator p is chosen
as small as possible for such a representation. It follows as before that 2¢° = p?, and
so p* and hence also p is even. So p = 2k for some k, which implies that ¢° = 2&°
as before, and so ¢° and hence also g is even. So g = 2r for some r, and consequently
V2 = plg = (2k)/(2r) = k/r. We have therefore found a rational representation of V2
using a smaller numerator, contradicting our earlier assumption. So V2 is not rational. [

This way of arguing, although very similar to the original argument, does not require
putting fractions in lowest terms. Furthermore, an essentially similar idea can be used to
prove that indeed every fraction can be put in lowest terms.

1.2 Lowest terms

What does it mean for a fraction p/g to be in lowest terms? It means that p and ¢ are
relatively prime, that is, that they have no common factor, a number & > 1 that divides both
of them. I find it interesting that the property of being in lowest terms is not a property of
the rational number itself but rather a property of the fractional expression used to represent
the number. For example. % is not in lowest terms and 1 is, yet we say that they are equal:
% = % But how can two things be identical if they have different properties? These two
expressions are equal in that they describe the same rational number; the values of the
expressions are the same, even though the expressions themselves are different. Thus, we
distinguish between the description of a number and the number itself, between our talk
about a number and what the number actually is. It is a form of the use/mention distinction,
the distinction between syntax and semantics at the core of the subject of mathematical

logic. How pleasant to see it arise in the familiar elementary topic of lowest terms.

Lemma 2. Every fraction can be put in lowest terms.

Proof. Consider any fraction p/q, where p and ¢ are integers and ¢ # 0. Let p’ be the
smallest nonnegative integer for which there is an integer ¢’ with E" = 5—:. That is, we
consider a representation 5 of the original fraction ';-’ whose numerator p’ is as small as
possible. 1 claim that it follows that p’ and ¢’ are relatively prime, since if they had a
common factor, we could divide it out and thereby make an instance of a fraction equal to
p/q with a smaller numerator. But p’ was chosen to be smallest, and so there is no such

common factor. Therefore, p’/¢" is in lowest terms. Ll

This proof and the previous proof of theorem 1 relied on a more fundamental principle,
the least-number principle, which asserts that if there i1s a natural number with a certain
property, then there is a smallest such number with that property. In other words, every
nonempty set of natural numbers has a least element. This principle is closely connected
with the principle of mathematical induction, discussed in chapter 4. For now, let us simply
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take it as a basic principle that if there is a natural number with a property, then there is a
smallest such number with that property.

1.3 A geometric proof

Let us now give a second proof of the irrationality of V2, one with geometric character,
due to Stanley Tennenbaum. Mathematicians have found dozens of different proofs of this
classic result, many of them exhibiting a fundamentally different character from what we
saw above,

A geometric proof of theorem 1. If V2 is rational p/q. then as before, we see that p* =
q° + ¢°, which means that some integer square has the same area as two copies of another
smaller integer square.

i o=

We may choose these squares to have the smallest
possible integer sides so as to realize this feature.
Let us arrange the two medium squares overlapping
inside the larger square, as shown here at the right.
Since the large blue square had the same area as the
two medium gold squares, it follows that the small
orange central square of overlap must be exactly
balanced by the two smaller uncovered blue squares
in the corners. That is, the area of overlap is exactly
the same as the area of the two uncovered blue corner spaces. Let us pull these smaller
squares out of the figure to illustrate this relation as follows.

PR B

Notice that the squares in this smaller instance also have integer-length sides, since their
lengths arise as differences in the side lengths of previous squares. So we have found a
strictly smaller integer square that is the sum of another integer square with itself, contra-
dicting our assumption that the original square was the smallest such instance. [J
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