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Six proofs
of the infinity of primes

It is only natural that we start these notes with probably the oldest Book
Proof, usually attributed to Euclid. It shows that the sequence of primes
does not end.

B Euclid’s Proof. For any finite set {p;,...,p,} of primes, consider
the number n = pyps---p, + 1. This n has a prime divisor p. But p is
not one of the p;: otherwise p would be a divisor of n and of the product
pip2 - - pr, and thus also of the difference n — pyps...p, = 1, which
is impossible. So a finite set {p;,... ,p,} cannot be the collection of all
prime numbers. O

Before we continue let us fix some notation. N = {1,2,3,...} is the set
of natural numbers, Z = {... ,—2,—-1,0,1,2,...} the set of integers, and
P={2,3,5,7,...} the set of primes.

In the following, we will exhibit various other proofs (out of a much longer
list) which we hope the reader will like as much as we do. Although they
use different view-points, the following basic idea is common to all of them:
The natural numbers grow beyond all bounds, and every natural number
n > 2 has a prime divisor. These two facts taken together force P to be
infinite. The next three proofs are folklore, the fifth proof was proposed by
Harry Fiirstenberg, while the last proof is due to Paul Erdés.

The second and the third proof use special well-known number sequences.

M Second Proof. Suppose P is finite and p is the largest prime. We
consider the so-called Mersenne number 2P — 1 and show that any prime
factor g of 2¥ — 1 is bigger than p, which will yield the desired conclusion.
Let g be a prime dividing 2 — 1, so we have 2” = 1 (modq). Since p is
prime, this means that the element 2 has order p in the multiplicative group
Z4\{0} of the field Z,. This group has ¢ — 1 elements. By Lagrange’s
theorem (see the box) we know that the order of every element divides the
size of the group, that is, we have p| ¢ — 1, and hence p < g. O

B Third Proof. Next let us look at the Fermat numbers F,, = 22" + 1 for
n=0,1,2,.... We will show that any two Fermat numbers are relatively
prime; hence there must be infinitely many primes. To this end, we verify
the recursion

n—1

[[F = F.-2

k=0

(n>1),

Chapter 1

Lagrange’s Theorem

If G is a finite (multiplicative) group
and U is a subgroup, then |U|
divides |G|.

B Proof. Consider the binary rela-
tion
a~bie> ba el

It follows from the group axioms
that ~ is an equivalence relation.
The equivalence class containing an
element a is precisely the coset

Ua= {za:z € U}.

Since clearly |Ua| = |U|, we find
that G decomposes into equivalence
classes, all of size |U|, and hence
that |U| divides |G|. ]

In the special case when U is a cyclic
subgroup {rt,ng.‘.. ,a™} we find
that m (the smallest positive inte-
ger such that a™ = 1, called the
order of a) divides the size |G| of
the group.




Six proofs of the infinity of primes

Fy
F
Fs
I3
Fy
Fs

The first few Fermat numbers

(o)

[}

17

257

65537

641 - 6700417

Steps above the function f(t) =

from which our assertion follows immediately. Indeed, if m is a divisor of,
say, Fy and F,, (k < n), then m divides 2, and hence m = 1 or 2. But
m = 2 is impossible since all Fermat numbers are odd.

To prove the recursion we use induction on n. Forn = 1 we have F, = 3
and F}, — 2 = 3. With induction we now conclude

n=1

I]:fl = (:[I Fl) n — (f1f-'2)fﬁ:':
k=0
2"+I

=2 -nE¥+1) =2 -1 =F,, -2 O

Now let us look at a proof that uses elementary calculus.

B Fourth Proof. Letw(x) := #{p < x : p € P} be the number of primes
that are less than or equal to the real number 2. We number the primes
P = {p1.p2.p3.-..} in increasing order. Consider the natural logarithm
log x, defined as logz = [ dt.

Now we compare the area below the graph of f(#) = i— with an upper step
function. (See also the appendix on page 10 for this method.) Thus for
n < <n+1wehave

logz < 1+1+1+ + ! +1
6= I T R
1
Z —, where the sum extends over all i € N which have
only prime divisors p < .

A

Since every such m can be written in a unigue way as a product of the form
[T »"*7, we see that the last sum is equal to

I1 (3 )

peEP L>ﬂ
p=r

The inner sum is a geometric series with ratio ;—, hence

max)
P Pk
< = .
o < Ty = 11525 = 152
pET P peP k=1
p<ir p<
Now clearly p, > k + 1, and thus
Die 1 1 k+1
— =1+ <14+ = ——,
pr— 1 me—1 k k
and therefore
m(x)
k+1
logz < H R m(x) + 1.

Everybody knows that log z is not bounded, so we conclude that 7(x) is
unbounded as well, and so there are infinitely many primes.



Six proofs of the infinity of primes

B Fifth Proof. After analysis it's topology now! Consider the following
curious topology on the set Z of integers. For a,b € Z,b > 0 we set

Nop={a+mnb:ne€Z}

Each set N, ; is a two-way infinite arithmetic progression. Now call a set
O C Z open if either O is empty, or if to every a € O there exists some
b > 0 with Ny € O. Clearly, the union of open sets is open again. If
Oy, 04 are open, and @ € O, N Oy with Ny, € Oy and Ny, C Os,
thena € N, 5, € O N O2. So we conclude that any finite intersection
of open sets is again open. So, this family of open sets induces a bona fide
topology on Z.

Let us note two facts:
(A) Any non-empty open set is infinite.
(B) Any set N, 4 is closed as well.

Indeed, the first fact follows from the definition. For the second we observe

h—1
Noy = Z\ U Nastibs

=1

which proves that N, ; is the complement of an open set and hence closed.

So far the primes have not yet entered the picture — but here they come.
Since any number n # 1, —1 has a prime divisor p, and hence is contained
in Ny, ,,. we conclude

Z\{1,-1} = U-"‘Vo.p'

per

Now if I’ were finite, then U;p(EP‘ Ny, would be a finite union of closed sets
(by (B)), and hence closed. Consequently, {1, —1} would be an open set,

in violation of (A). O

B Sixth Proof. Our final proof goes a considerable step further and
demonstrates not only that there are infinitely many primes, but also that
the series Zpeﬂr_ﬁ diverges. The first proof of this important result was
given by Euler (and is interesting in its own right), but our proof, devised
by Erdds, is of compelling beauty.

Let py,p2,ps,... be the sequence of primes in increasing order, and
assume that Zpevi converges. Then there must be a natural number k
such that 37, == < 5. Letus call pj,...,py the small primes, and
Ph+1>Ph+2,--- the big primes. For an arbitrary natural number N we
therefore find

— < — (1)

) 7% N

£ W

Y
=R :;ﬂ A +

“Pitching flat rocks, infinitely”



Six proofs of the infinity of primes

Let IV, be the number of positive integers n < N which are divisible by at
least one big prime, and N, the number of positive integers n < N which
have only small prime divisors. We are going to show that for a suitable N

Ny+ N, < N,

which will be our desired contradiction, since by definition Ny + N; would
have to be equal to N.

To estimate N, note that []‘D—VJ counts the positive integers n < N which
are multiples of p;. Hence by (1) we obtain

. N N
Ny < ,-;;Z.H [pj <5 2)

Let us now look at V. We write every n < N which has only small prime
divisors in the form n = a,b%, where a,, is the square-free part. Every a,,
is thus a product of different small primes, and we conclude that there are
precisely 2¥ different square-free parts. Furthermore, as b,, < /n < V'N,
we find that there are at most \/IV different square parts, and so

Ny < 28VN.

Since (2) holds for any N, it remains to find a number N with 2¥ /N <
or 261 < /N, and for this N = 22+2 will do.

0 lz
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Bertrand’s postulate

We have seen that the sequence of prime numbers 2, 3,5, 7, ... is infinite.
To see that the size of its gaps is not bounded, let N :=2.3-5-...-p
denote the product of all prime numbers that are smaller than & + 2, and
note that none of the k numbers
N+2,N+3,N+4,... N+EkN+(k+1)
is prime, since for 2 < i < k + 1 we know that i has a prime factor that is
smaller than & + 2, and this factor also divides N, and hence also N + 1.
With this recipe, we find, for example, for k = 10 that none of the ten
numbers
2312,2313,2314,...,2321

is prime,

But there are also upper bounds for the gaps in the sequence of prime num-
bers. A famous bound states that “the gap to the next prime cannot be larger
than the number we start our search at.” This is known as Bertrand’s pos-
tulate, since it was conjectured and verified empirically for n < 3000 000
by Joseph Bertrand. It was first proved for all n by Pafnuty Chebyshev in
1850. A much simpler proof was given by the Indian genius Ramanujan.

Our Book Proof is by Paul Erdés: it is taken from Erdds’ first published
paper, which appeared in 1932, when Erdds was 19.

Bertrand’s postulate.
For every n > 1, there is some prime number p withn < p < 2n.

M Proof. We will estimate the size of the binomial coefficient (z::) care-
fully enough to see that if it didn’t have any prime factors in the range
n < p < 2n. then it would be “too small.” Qur argument is in five steps.

(1) We first prove Bertrand’s postulate for n < 4000. For this one does not
need to check 4000 cases: it suffices (this is “Landau’s trick”) to check that

2,3,5,7,13,23,43,83,163, 317,631, 1259, 2503, 4001
is a sequence of prime numbers, where each is smaller than twice the previ-

ous one. Hence every interval {y : n < y < 2n}, with n < 4000, contains
one of these 14 primes.

Chapter 2

Joseph Bertrand

Beweis eines Satzes von Tschebyschef
Voo P. Exobs b Budapest

For den zuerst won TscHesvscwir bDewiesemen Satz, laut
dessen es awischen einer natUrlichen Zahl und ihrer zweifachen
sicts wenigstens cine Primeaki gibd, Segen in der Liscratur mehrere
Rewelse vor. Als einlachsien kann man ohne Zweifel den Reweis
von Ramasupast) hereichnen ln seinem Werk lVordeunges Ober
Zahlemtheorie (Leipaig. 1927), Band [, S, 08—68 gibt Herr Lanpay
einen besonders ¢inbichen Bewels Mr einen Satz uber die Anzahl
der Prmzahlea unter einer gegebenen Gremze, dus welchem un-
mitielbar folgt, dall 10r eln geeignetes ¢ zwischen einer natlilichen
Zahl und ihrer g-lachen siets cine Primzabl tieyt. For die augen-
hlicklichen Zwecken des Herrn Lasoau kommt es nicht auf die
rumerische Bestimmueng der im Beweis achiretenden Komstanien
an; man flberzeugt sich aber durch eine numerische Verfolgung
des Bewchics e fall ¢ jedenfalls grifer als 2 ausfdlit

In den folgenden Zeilen werde ich zeigen, daf man durch
dine Verschirfony Jer dem Lasoavschen Bewels zugrunde legen-
den ldeen zu einem Bewels dew oben erwihaten TSCHRBYSCHES
schen Satzes gelangen kann, der wie mir scheint — an Ein-
Eachkeit micht hinter dem Rasmastjanschen Beweis steht. Uiriechische
NMuchstaben sollen (m
Buchstaben nattrliche Zahlen bezeichnen; die Bezeichnuag p ist

ir Primzahlen trehalien

Folgenden duschwegs positive, labeinische

T W) Se Ramswiias, A Prot o
disn Mathenatical Sovietr. 11 (1911
Saniivass Ramampian (Cambraige, 1007) S 2

sadvic. feurnal of e fn-
Coltected Pupets of




Bertrand’s postulate

Legendre’s theorem

The number n! contains the prime
factor p exactly

2 L)

times.

M Proof. Exactly | 2| of the factors
of n! =1-2.3-...-n are divisible by
p. which accounts for I.%J p-factors.
Next, | % | of the factors of n! are
even divisible by p°, which accounts
for the next [;—:‘-_,—J prime factors p
of n!, etc. O

(2) Next we prove that

Hp < 4!

P

for all real @ > 2, (1)

where our notation — here and in the following — is meant to imply that
the product is taken over all prime numbers p < x. The proof that we
present for this fact is not from Erd6s’ original paper, but it is also due to
Erdds, and it is a true Book Proof. First we note that if ¢ is the largest prime
with ¢ < x, then

Hp = Hp and

pr r=q

4(.(—| S 4*= 1 .

Thus it suffices to check (1) for the case where z = ¢ is a prime number. For
g = 2 we get “2 < 4,” 5o we proceed to consider odd primes g = 2m + 1.
For these we split the product and compute

- n- < 4™ 2m + 1) < 4mtm = 47
ng']z;‘!j) pflr:Iﬂp m.+|<1;12uf(j-l = ( mn a
All the pieces of this “one-line computation”™ are easy to see. In fact,
[T » < 4
p<m+l
holds by induction. The inequality

H )< (Qm+l)
m

m—+1<p<2m+1

: )] L
follows from the observation that [2"::') = m,{’:% is an integer, where

the primes that we consider all are factors of the numerator (2 + 1)!, but
not of the denominator m!(mn + 1)!. Finally

2m+ 1 < og2m
1 -
(2?11 + l) (2m - 1)
and
m m—+1

are two (equal!) summands that appear in

241
Z 2m+1 — 22m+1>
k

k=0

holds since

'..’n) _ (2n)!
n'! T nln!

(3) From Legendre’s theorem (see the box) we get that (
tains the prime factor p exactly

> ([F1-[#)

con-



Bertrand’s postulate

times. Here each summand is at most 1, since it satisfies

2n n 2n n
— | = — — =2 —=-1] = 2,
Lﬂ“j ? LU"'J S ? (;v“ ) '

and it is an integer. Furthermore the summands vanish whenever pF > 2n.
Thus (*") contains p exactly

(|5 o[]) =t <20

k=1
2n

times. Hence the largest power of p that divides (') is not larger than 2n.
In particular, primes p > /2n appear at most once in (‘:1‘] .

Furthermore — and this, according to Erdds, is the key fact for his proof
— primes p that satisfy %n < p < n do not divide (2;‘] at all! Indeed,
3p > 2n implies (for n > 3, and hence p > 3) that p and 2p are the only
multiples of p that appear as factors in the numerator of %’;)—,' while we get
two p-factors in the denominator.

(4) Now we are ready to estimate (*”'). For n > 3, using an estimate from

n

page 12 for the lower bound, we get
4" 2n
ES(ﬂ)SH?ﬂ- HrP'H'IJ
p<v2n chS?” n<p<2n

and thus, since there are not more than v/2n primes p < v/2n,

4" < (2n)' VR IIT » - H p for n>3.  (2)
VIn<p<in n<p<2n

(5) Assume now that there is no prime p with n < p < 2n, so the second
product in (2) is 1. Substituting (1) into (2) we get

4n < (2”)11—\/2?4%:1
or
41;/3 S (2_n)|+\/§_"n.] (3)

which is false for 72 large enough! In fact, using a + 1 < 2% (which holds
for all @ > 2, by induction) we get

= (V2n)" < (| V2n) +1)° < 25L¥%) co¥mm (g
and thus for n > 50 (and hence 18 < 2+/2n) we obtain from (3) and (4)
92n o (Q.”_)?*[H\/?ﬁ] < 2%"/27(18+|xm] < 920V2nv2n _ 920(2m)*/%

This implies (2r)'/? < 20, and thus n < 4000. O
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Bertrand’s postulate

One can extract even more from this proof: from (2) the same type of esti-
mates that we just used proves that

I[[ »>25" for n >4000,

n<p<in

and thus that there are at least
1 1 n 1 n
log, (23") = — —— > — _
B2n ( ) 30 log, n+1 30 log, n
primes in the range between n and 2n.

This is not that bad an estimate: the “true” number of primes in this range is
roughly n/logn. This follows from the famous “prime number theorem,”
which says that the limit

. #{p < n:pisprime}
1111
fiprens n/logn

exists, and equals 1. This was first proved by Hadamard and de la Vallée-
Poussin in 1896; Selberg and Erdds found an elementary proof (without
complex analysis tools, but still long and involved) in 1948,

On the prime number theorem itself the final word, it seems, is still not in:
for example a proof of the Riemann hypothesis (see page 33), one of the
major unsolved open problems in mathematics, would also give a substan-
tial improvement for the estimates of the prime number theorem. But also
for Bertrand’s postulate, one could expect dramatic improvements. In fact,
the following is an unsolved problem [3, p. 19]:

Is there always a prime between n* and (n + 1)*?

Appendix: Some estimates
Estimating via integrals

There is a very simple-but-effective method of estimating sums by integrals
(as already encountered on page 4). For estimating the harmonic numbers

T 1
H, = z ;
k=1

we draw the figure in the margin and derive from it

n n
H,-1= Z% < fl %di = logn

k=2

by comparing the area below the graph of f(f) = :— (1 <t < n) with the
area of the dark shaded rectangles, and

n—1 n
1

1 1 1
H, — ; = ZI > / Edf- = logn

k=1



Bertrand'’s postulate 11

by comparing with the area of the large rectangles (including the lightly
shaded parts). Taken together, this yields

1
logn+— < H, < logn + 1.
n

In particular, lim H, — oc, and the order of growth of H,, is given by
n—00

Hy

lim Togn = 1. But much better estimates are known (see [2]), such as

n—oo
Here O (;lg) denotes a function f(n)

1 1 1 1 |
H, = logn4+~vy+ — - ——+——+0(—), such that f(n) < c=z holds for some
ogn T+ 2n  12n? " 120n* + (nﬁ) constant c.
where v & 0.5772 is “Euler’s constant.”
Estimating factorials — Stirling’s formula
The same method applied to
n
log(n!) = log2+1logd+...+logn = Z log k
k=2

yields

log((n—1)1) < / logtdt < log(n!),
Ji

where the integral is easily computed:

n n
/ logtdt = [t logt — f] = nlogn—n+1.
1 1

Thus we get a lower estimate on n!
n!' > e" log n—n+1 = ¢ (E) "
(J
and at the same time an upper estimate
ny\n
n! = n(n-1)! < petlogn-ntl = en(—) .
€
Here a more careful analysis is needed to get the asymptotics of n!, as given
by Stirling's formula Here f(n) ~ g(n) means that

T n
n! ~ v2mn (—) . lim f() =1
e

And again there are more precise versions available, such as
n\" 1 1 139 1
y = vam (2) (14 2 -9 o(L)
" ™m\e ( T 12 T 288nz ~ 5140w T Y (?34))

Estimating binomial coefficients

n

Just from the definition of the binomial coefficients () as the number of
k-subsets of an n-set, we know that the sequence (}), (7),..., (") of
binomial coefficients



Bertrand’s postulate

1 5
1 7 21

Pascal’s triangle

5 10 10
1 6 15 20
35 3

(
1
)

{.)
o

21

6

1

-
i

1

1

® sums to i (1) =2"

k=0

e is symmetric: () = (,",).

From the functional equation (}) = “=FL( " ) one easily finds that for
every n the binomial coefficients () form a sequence that is symmetric
and unimodal: it increases towards the middle, so that the middle binomial

coefficients are the largest ones in the sequence:
1= (:‘:) < (T) <. < (Lnf;’z‘J) = ([;J;Z}) Zeee 2 [-uil) > (:) =1

Here x| resp. [x] denotes the number & rounded down resp. rounded up
to the nearest integer.

From the asymptotic formulas for the factorials mentioned above one can
obtain very precise estimates for the sizes of binomial coefficients. How-
ever, we will only need very weak and simple estimates in this book, such
as the following: () < 2" forall k, while for n > 2 we have

(Ln?ZJ) > o

with equality only for n = 2. In particular, forn > 1,

(271) 4n
> .
n - 2n

This holds since (LN;‘JJ)’ a middle binomial coefficient, is the largest en-
try in the sequence () + (1), (1), (5),--- - (," )+ whose sum is 2", and

" n=1

. yn
whose average is thus <-.

On the other hand, we note the upper bound for binomial coefficients

(n) _onn=1)--(n-k+1) < nk n*

k k! S H S

which is a reasonably good estimate for the “small” binomial coefficients
at the tails of the sequence, when n is large (compared to k).
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Binomial coefficients are (almost) never powers 15

So for each i the number of multiples of p' among n, ... ,n—k+1, and
hence among the a;’s, is bounded by [;—]J + 1. This implies that the expo-
nentof p in aga, - - - @j—1 is at most

f—1

i=1

with the reasoning that we used for Legendre’s theorem in Chapter 2. The
only difference is that this time the sum stops at i = ¢ — 1, since the a;’s
contain no f-th powers.

Taking both counts together, we find that the exponent of pin v* is at most

f—1

S (AL -S L] < oot

1=1 izl

f

and we have our desired contradiction, since v is an £-th power.

This suffices already to settle the case £ = 2. Indeed. since & > 4 one of  We see that our analysis so far agrees
the a;’s must be equal to 4, but the a,’s contain no squares. So let us now  with (%) = 1407, as

assume that ¢ > 3. 50 = 257

_ 2
(4) Since k > 4, we must have a;, = 1, a,, = 2,a;, = 4 forsome i, i, 3, 19 =1 '?2
that is, =5

and 5 - 7-4 = 140.

n—i = m‘:, 70—y = 2-3:13., n—ig= 4?11}:,

We claim that (n — i3)? # (n —i;)(n —i3). If not, putb = n — i, and
n—iy=b—x,n—1i3=0b+y, where 0 < |z|,|y| < k. Hence

V¥ =(b-x)b+y) or (y-uz)b=ay,
where & = y is plainly impossible. Now we have by part (1)
eyl = Bly—z| > b > n—k > (k=1 > |zy|,

which is absurd.

So we have m:‘zz # mmgz, where we assume m:‘zz > mymg (the other case
being analogous), and proceed to our last chains of inequalities. We obtain
20k—=1)n > n*—=m-k+1)7 > (n—i2)?—(n—-1i)(n—is)

4[m3 — (mymy)] > 4{(mims + 1)lﬁ - (ln]'fi’!.:g)r]

> 4("m.f"'.ru:; !

Since £ > 3and n > k' > k% > 6k, this yields
2k — Dnmyms > 4miml = fn—i))(n—is)

> (n—-k+1)7 > 3(11.—%)2 > 22



Representing numbers Chapter 4
as sums of two squares

1 = 12+0?
I Which numbers can be written as sums of two squares? 9 — 12 I 12
3= 177
This question is as old as number theory, and its solution is a classic in the ‘_1 - 21 - ”i
field. The “hard” part of the solution is to see that every prime number of i 2_;"" ¥
the form 4m + 1 is a sum of two squares. G. H. Hardy writes that this 9 -
two square theorem of Fermat “is ranked, very justly, as one of the finest é
in arithmetic.” Nevertheless, our Book Proof below is recent and dates
from 1990. ks

Let’s start with some “warm-ups.” First, we need to distinguish between 11 =
the prime p = 2, the primes of the form p = 4m + 1, and the primes of
the form p = 4m + 3. Every prime number belongs to exactly one of these
three classes. At this point we may note (using a method *a la Euclid”™) that
there are infinitely many primes of the form 4m + 3. In fact, if there were
only finitely many, then we could take p; to be the largest prime of this
form. Setting
Ne = 22.3:5--pp—1

(where p; = 2, p» = 3, p3 = 5, ... denotes the sequence of all primes),
we find that V. is congruent to 3 (mod4), so it must have a prime factor of
the form 4m + 3, and this prime factor is larger than py — contradiction.
At the end of this chapter we will also derive that there are infinitely many
primes of the other kind, p = 4m + 1.

Pierre de Fermat

Our first lemma is a special case of the famous “law of reciprocity™: it
characterizes the primes for which —1 is a square in the field Z , (which is
reviewed in the box on the next page).

Lemma 1. The equation z° = —1 (mod p) has a solution for p = 2 and
Jor the primes of the form p = 4m + 1, but not for the primes p = 4m + 3.

B Proof. For p = 2 take x = 1. For odd p, we construct the equivalence
relationon {1,2,... ,p— 1} that is generated by identifying every element
with its additive inverse and with its multiplicative inverse in Z,. Thus the
“general” equivalence classes will contain four elements

{;’["'.' —I,T, —:I'_}

since such a 4-element set contains both inverses for all its elements. How-
ever, there are smaller equivalence classes if some of the four numbers are
not distinct:
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adjacency matrix 180

adjacent vertices 48

antichain 135

arithmetic mean 101

art gallery theorem 166
average degree 58

average number of divisors 126

Bertrand’s postulate 7

bijection 91

binomial coefficient 13

bipartite graph 49, 155

Borsuk’s conjecture 83
Brouwer’s fixed point theorem 131

cardinal number 91
cardinality 91,98

Cauchy’s arm lemma 64
Cauchy’s rigidity theorem 63
Cauchy-Schwarzinequality 101
Cayley’s formula 141
center 23

centralizer 23

centrally symmetric 43
chain of sets 135

channel 173

Chebyshev polynomials 116
Chebyshev’s theorem 110
chromatic number 153, 189
clique 49, 169, 174

clique number 171
2-colorable set system 187
combinatorially equivalent 43
complete bipartite graph 48
complete graph 48

complex polynomial 109
confusion graph 173
congruent 43

connected 49

2-connected 49

continuum 93
continuum hypothesis 95
convex polytope 42
convex vertex 166
cosine polynomial 113
countable 91

critical family 138
crossing lemma 193
crossing number 192
cube 42

cut vertex 49

cycle 49
Cy-condition 183

decimal expansion 92
degree of a vertex 58, 127, 154
Dehn invariant 39
Dehn-Hadwiger theorem 39
dense 96

dihedral angle 39
dimension 94

dimension of a graph 124
Dinitz problem 153
directed graph 155
division ring 23

double counting 126

dual graph 57, 161

edge of a graph 48

edge of a polyhedron 42
elementary polygon 61

equal size 91

equicomplementable polyhedra 37
equidecomposable polyhedra 37
Erd6s-Ko-Rado theorem 136
Euler’s constant 11

Euler’s polyhedron formula 57
expectation 82



