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CHAPTER 1

Fibonacci Identities

Definition The Fibonacci numbers are defined by Fy = 0, Iy, = 1, and for n > 2,
Fn = Fn—l + Fn—?-

The first few numbers in the sequence of Fibonacci numbers are 0, 1, 1, 2, 3, 5, 8, 13,
21, 34, 55, 89,144, . ...

1.1 Combinatorial Interpretation of Fibonacci Numbers

How many sequences of 1s and 2s sum to n? Let’s call the answer to this counting
question f,,. For example, fi = 5 since 4 can be created in the following 5 ways:

1414141, 14142 14241, 2+1+1, 2+2.

Table 1.1 illustrates the values of f,, for small n. The pattern is unmistakable; f,, begins
like the Fibonacci numbers. In fact, f,, will continue to grow like Fibonacci numbers, that
is for n > 2, f, satisfies f, = fn_1 + fa_2. To see this combinatorially, we consider
the first number in our sequence. If the first number is 1, the rest of the sequence sums
to n — 1, so there are f,_; ways to complete the sequence. If the first number is 2, there
are f,_o ways to complete the sequence. Hence, f, = frn—1 + fn—2.

For our purposes, we prefer a more visual representation of f,. By thinking of the
ls as representing squares and the 2s as representing dominoes, f, counts the number
of ways to tile a board of length n with squares and dominoes. For simplicity, we call a
length n board an n-board. Thus f4 = 5 enumerates the tilings:

EEEEREE BN ER EEl

Figure 1.1. All five square-domino tilings of the 4-board

We let fy = 1 count the empty tiling of the 0-board and define f_; = 0. This leads
to a combinatorial interpretation of the Fibonacci numbers.

Combinatorial Theorem 1 Let f, count the ways to tile a length n board with squares
and dominoes. Then [, is a Fibonacci number. Specifically, for n > —1,

fn = L'n4l-
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1 2 3 4 5 6
1 11 111 1111 11111 | 111111
2 12 112 1112 11112
21 121 1121 11121
211 1211 11211
22 122 1122
2111 12111
212 1212
221 1221
21111
2112
2121
2211
222
fi=1|fo=2|f3=3|fa=5|fi=8|fs=13

Table 1.1. [, and the sequence of 1s and 2s summing to n for n =1,2,...,6.

1.2 Identities

Elementary Identities

Mathematics is the science of patterns. As we shall see, the Fibonacci numbers exhibit
many beautiful and surprising relationships. Although Fibonacci identities can be proved
by a myriad of methods, we find the combinatorial approach ultimately satisfying.

For combinatorial convenience, we shall express most of our identities in terms of f,
instead of F,. Although other combinatorial interpretations of Fibonacci numbers exist
(see exercises 1-9), we shall primarily use the tiling definition given here.

In the proof of our first identity, as with most proofs in this book, one of the answers to
the counting question breaks the problem into disjoint cases depending on some property.
We refer to this as conditioning on that property.

Identity 1 Forn >0, fo+ fi+ fo+-+ fu = fuya — 1.

Question: How many tilings of an (n + 2)-board use at least one domino?

Answer 1: There are f,, 42 tilings of an (n + 2)-board. Excluding the “all square”
tiling gives f,4+2 — 1 tilings with at least one domino.

Answer 2: Condition on the location of the last domino. There are f; tilings where
the last domino covers cells £ + 1 and & + 2. This is because cells 1 through % can
be tiled in f) ways, cells £ + 1 and k + 2 must be covered by a domino, and cells
k + 3 through n + 2 must be covered by squares. Hence the total number of tilings
with at least one domino is fo + f1 + fo + -+ -+ f, (or equivalently >}, fi). See
Figure 1.2.

Identity 2 Forn >0, fo+ fo+ fa+++ fon = fons1-

Question: How many tilings of a (2n + 1)-board exist?

Answer 1: By definition, there are fa2,,1 such tilings.
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Answer 2: Condition on the location of the last square. Since the board has odd
length, there must be at least one square and the last square occupies an odd-numbered
cell. There are fo tilings where the last square occupies cell 2k + 1, as illustrated
in Figure 1.3. Hence the total number of tilings is ") fox.

Many Fibonacci identities depend on the notion of breakability at a given cell. We say
that a tiling of an n-board is breakable at cell k, if the tiling can be decomposed into two
tilings, one covering cells 1 through & and the other covering cells k+ 1 through 7. On the
other hand, we call a tiling unbreakable at cell k if a domino occupies cells & and k + 1.

=~

1 2 3 4 n-2 n-1 n ntl nt2

-
-

j;7.|

1 2 3 4 n2 n-1 n ntl pt2

.
=
13

1 2 3 4 n-2 n-l1 n ntl pt2
H : i
1 2 3 4 n-2 n-1 n ntl nt2
BT ;
1 2 3 4 n2 n-1 n ntl pt2

Figure 1.2. To see that fo + fi + fa+ - + fu = fage — 1, tile an (n + 2)-board with squares
and dominoes and condition on the location of the last domino.

« o s j."?”
1 2 3 4 2n-2 2n-1 2n 2n+l

'l.:n-'.‘

£

2n-4

15~

Figure 1.3. To see that fo + fa + fa + -+ + fan = fany1, tile a (2n + 1)-board with squares
and dominoes and condition on the location of the last square.

b
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1 2 3 4 5 6 7 8 9 10
Figure 1.4. A 10-tiling that is breakable at cells 1,2,3,5,7,8, 10 and unbreakable at cells 4,6, 9.

For example, the tiling of the 10-board in Figure 1.4 is breakable at cells 1,2,3,5,7, 8,10,
and unbreakable at cells 4, 6, 9. Notice that a tiling of an n-board (henceforth abbreviated
an n-tiling) is always breakable at cell n. We apply these ideas to the next identity.

ldentity 3 For m,n 2 0, fm—i—n = fm.fn + fm—l fn—l-

Question: How many tilings of an (m + n)-board exist?
Answer 1: There are f,,+,, (m + n)-tilings.

Answer 2: Condition on breakability at cell m.

An (m+n)-tiling that is breakable at cell m, is created from an m-tiling followed
by an n-tiling. There are f, f,, of these.

An (m + n)-tiling that is unbreakable at cell mn must contain a domino covering
cells m and m + 1. So the tiling is created from an (m — 1)-tiling followed by a
domino followed by an (n — 1)-tiling. There are f,,,—1 fr—1 of these.

Since a tiling is either breakable or unbreakable at cell m, there are f, fn +
fim—1fn—1 tilings altogether. See Figure 1.5.

m + n tilings breakable at m:

1 2 m—1 m mtlm+2 m+n
I fa

m + n tilings unbreakable at m:

1 2 m—1 m m+1m+2 m+n

f;)—l f:i—]

Figure 1.5. To prove fi4n = fmfn + fm—1fn—1 count (m + n)-tilings based on whether or not
they are breakable or unbreakable at .

The next two identities relate Fibonacci numbers to binomial coefficients. We shall
say more about combinatorial proofs with binomial coefficients in Chapter 5. For now,
recall the following combinatorial definition for binomial coefficients.

Definition The binomial coefficient (’:) is the number of ways to select k£ elements from

an n-element set.

Notice that (}) = 0 whenever k > n, so the sum in the identity below is finite.
Identity 4 Forn >0, (j) + (”Il) + (”';2) o=

Question: How many tilings of an n-board exist?

Answer 1: There are f, n-tilings.
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Answer 2: Condition on the number of dominoes. How many n-tilings use exactly
i dominoes? For the answer to be nonzero, we must have 0 < i < n/2. Such tilings
necessarily use n — 2i squares and therefore use a total of n — i tiles. For example,
Figure 1.6 is a 10-tiling that uses exactly three dominoes and four squares. The
dominoes occur as the fourth, fifth, and seventh tiles. The number of ways to select
i of these n — i tiles to be dominoes is (", ). Hence there are 3, (") n-tilings.

1 2 3 4 5 6 7 8 9 10

Figure 1.6. There are () 10-tilings that use exactly three dominoes. Such a 10-tiling uses exactly
seven tiles and is defined by which three of the seven tiles are dominoes. Here the fourth, fifth, and
seventh tiles are dominoes.

Identity 5 For n > 0, ZZ( )( ; j) = fan+1.

i20 320

Question: How many tilings of a (2n + 1)-board exist?
Answer 1: There are fo,41 (2n + 1)-tilings.

Answer 2: Condition on the number of dominoes on each side of the median square.

Any tiling of a (2n + 1)-board must contain an odd number of squares. Thus one
square, which we call the median square, contains an equal number of squares to
the left and right of it. For example, the 13-tiling in Figure 1.7 has five squares. The
median square, the third square, is located in cell 9.

How many tilings contain exactly ¢ dominoes to the left of the median square
and exactly j dominoes to the right of the median square? Such a tiling has (i + j)
dominoes and therefore (2n + 1) — 2(i + j) squares. Hence the median square has
n — i — j squares on each side of it. Since the left side has (n —i — j) +i=n —j
tiles, of which i are dominoes, there are (” ‘ ’) ways to tile to the left of the median
square. Similarly, there are (" ") ways to tile to the right of the median square.
Hence there are (”j_“) ("77) tilings altogether.

As i and j vary, we obtain the total number of (2n + 1)-tilings as

Sy (007

H B

median square

Figure 1.7. The 13-tiling above has three dominoes left of the median square and one domino to
the right of the median square. The number of such tilings is (5) (7).

The next 1dentity 1s ‘prettier’ when stated as £a,, = Zk -0 k)F
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ldentity 6 Forn >0, f2'rafl = z:] (:)fkfl
Question: How many (2n — 1)-tilings exist?
Answer 1: fo,_1.

Answer 2: Condition on the number of squares that appear among the first n tiles.
Observe that a (2n — 1)-tiling must include at least n tiles, of which at least one is
a square. If the first n tiles consist of k& squares and n — k dominoes, then these tiles
can be arranged (}) ways and cover cells 1 through 2n — k. The remaining board
has length k& — 1 and can be tiled f;, ; ways. See Figure 1.8.

I [ |

1 2n-k 2n-1
2n-k cells: k squares, n-k dominoes

( :,:) tilings

k-1 cells
JL, tilings

Figure 1.8. There are () fx—1 tilings of a (2n — 1)-board where the first n tiles contain k squares
and n — k dominoes.

For the next identity, we use the combinatorial technique of finding a correspondence
between two sets of objects. In particular, we use a 1-to-3 correspondence between the
set of n-tilings and the set of (n — 2)-tilings and (n + 2)-tilings.

Identity 7 Forn > 1, 3f, = fut+2 + fn-2.
Set 1: Tilings of an n-board. By definition, this set has size f,,.
Set 2: Tilings of an (n+2)-board or an (n— 2)-board. This set has size f, 12+ frn_2.

Correspondence: To prove the identity, we establish a /-fo-3 correspondence be-
tween Set 1 and Set 2. That is, for every object in Set 1, we can create three objects
in Set 2 in such a way that every object in Set 2 is created exactly once. Hence Set
2 is three times as large as Set 1.

Specifically, for each n-tiling in Set 1, we create the following three tilings that
have length n + 2 or length n — 2. The first tiling is an (n + 2)-tiling created by
appending a domino to the n-tiling. The second tiling is an (n + 2)-tiling created
by appending two squares to the n-tiling. So far, so good. But what about the third
tiling? This will depend on the last tile of the n-tiling. If the n-tiling ends with a
square, we insert a domino before that last square to create an (n + 2)-tiling. If the
n-tiling ends with a domino, then we remove that domino to create an (n — 2)-tiling.
See Figure 1.9.

To verify that this is a 1-to-3 correspondence, one should check that every tiling
of length n + 2 or length n — 2 is created exactly once from some n-tiling. For a
given (n + 2)-tiling, we can find the n-tiling that creates it by examining its ending
and removing

1) the last domino (if it ends with a domino) or

ii) the last two squares (if it ends with two squares) or

1) the last domino (if it ends with a square preceded by a domino).
For a given (n — 2)-tiling, we simply append a domino for the n-tiling that creates
it.

Since Set 2 is three times the size of Set 1, it follows that f,, 12 + fr,—2 = 3 fn.
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|[e——n-tiling ————>

]
ﬂ Add a domino.

«— p-tiling ————| Qk— n-tling ——| | |

Add 2 squares.
‘ If it ends 1n a square

|=—(n-1)-tling ———>
insert domino before square.

11 1t ends in a domino
[e— (1-2)-tiling ——|
remove domino.

Figure 1.9. A one-to-three correspondence.

Pairs of Tilings

In this subsection, we introduce the technique of tail swapping, which will prove to be
very useful in several settings.

Consider the two 10-tilings offset as in Figure 1.10. The first one tiles cells 1 through
10; the second one tiles cells 2 through 11. We say that there is a fault at cell ¢, for
2 < i < 10, if both tilings are breakable at cell i. We say there is a fault at cell 1 if the
first tiling is breakable at cell 1. Put another way, the pair of tilings has a fault at cell
i, for 1 < ¢ < 10, if neither tiling has a domino covering cells ¢ and ¢ + 1. The pair of
tilings in Figure 1.10 has faults at cells 1, 2, 5, and 7. We define the fails of a tiling pair
to be the tiles that occur after the last fault. Observe that if we swap the tails of Figure
1.10 we obtain the 11-tiling and the 9-tiling in Figure 1.11, and it has the same faults.

Tail swapping is the basis for the identity below, sometimes referred to as Simson’s
Formula or Cassini’s Identity. At first glance, it may appear unsuitable for combinatorial
proof due to the presence of the (—1)™ term. Nonetheless, we will see that this term is
merely the “error term” of an “almost” one-to-one correspondence.

5.6 7 8 9 10 1

2 3 4

«—taills——>

Figure 1.10. Two 10-tilings with their faults (indicated with gray lines) and tails.

5 6 7 8 9 10 11

2 3 4

< tails >

Figure 1.11. After tail swapping, we have an 11-tiling and a 9-tiling with exactly the same faults.



& CHAPTER 1. FIBONACCI IDENTITIES

Identity 8 For n >0, f2> = fui1fu 1+ (—1)"

Set 1: Tilings of two n-boards (a top board and a bottom board.) By definition, this
set has size f2.

Set 2: Tilings of an (n+1)-board and an (n— 1)-board. This set has size f, 11fn 1-

Correspondence: First, suppose n is odd. Then the top and bottom board must each
have at least one square. Notice that a square in cell ¢ of either board ensures that
a fault must occur at cell 7 or cell 7 — 1. Swapping the tails of the two n-tilings
produces an (n + 1)-tiling and an (n — 1)-tiling with the same faults. This produces
a 1-to-1 correspondence between all pairs of n tilings and all tiling pairs of sizes
n+1 and n—1 that have faults. Is it possible for a tiling pair of sizes n+1 and n—1
to be “fault-free”? Yes, precisely when all dominoes are in “staggered formation™ as
in Figure 1.12. Thus, when n is odd, f7 = fui1fn-1— 1.

Similarly, when n is even, tail swapping creates a 1-to-1 correspondence between
faulty tiling pairs. The only fault-free tiling pair is the all domino tiling of Figure
1.13. Hence when n is even, f> = f,1fn_1 + 1. Considering the odd and even
case together produces our identity.

1 2 3 4 5 6 7 8 9 10

Figure 1.12. When n is odd, there is only one fault-free tiling pair.

1 2 3 4 5 6 7 8 9 10 11

Figure 1.13. When n is even, there is only one fault-free tiling pair.

Identity 9 Forn >0, 3} o ff = fafns1-

Question: How many tilings of an n-board and (n + 1)-board exist?
Answer 1: There are f, f,,+1 such tilings.

Answer 2: Place the (n + 1)-board directly above the n board as in Figure 1.14,
and condition on the location of the last fault. Since both boards begin at cell 1, we

Figure 1.14. There are f, fn+1 ways to tile these two boards.
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1 2 n ntl

(L] [T T |

Figure 1.15. There are f7 tilings with last fault at cell k.

shall consider any tiling pair to have a fault at “cell 0”. How many tiling pairs have
their last fault at cell k, where 0 < k < n? There are ff ways to tile both boards
through cell k. To avoid future faults, there is exactly one way to finish the tiling,
as in Figure 1.15. (Specifically, all tiles after cell £ will be dominoes except for a
single square placed on cell £ + 1 in the row whose tail length is odd.) Summing
over all possible values of k, gives us >, f7 tilings.

Advanced Fibonacci Identities

In this subsection we present identities that in our opinion require extra ingenuity. For the
first identity, we utilize a method of encoding tilings as binary sequences.

Specifically, for any m-tiling, create the length m binary sequence by converting each
square into a “1” and converting each domino into a “01”. Equivalently, the ith term
of the binary sequence i1s 1 it and only if the tiling is breakable at cell i. The resulting
binary sequence will have no consecutive Os and will always end with 1. For example,
the 9-tiling in Figure 1.16 has binary representation 011101011.

0 1 1 1 0 1 0 1 1

Figure 1.16. The 9-tiling above has binary representation 011101011.

Conversely, a length n binary sequence with no consecutive Os that ends with 1
represents a unique n-tiling. If such a sequence ends with 0, then it represents an (n —1)-
tiling (since the last 0 is ignored).

We may now interpret the following identity.

Identity 10 For n > 0, fo + fa—1 + S p_g fr2" 27k =27,

Question: How many binary sequences of length n exist?
Answer 1: There are 2" length n binary sequences.

Answer 2: For each binary sequence, we identify a tiling. If a sequence has no
consecutive zeros, we identify it with a unique tiling of length n or n» — 1 depending
on whether it ended with 1 or 0, respectively. Otherwise, the sequence contains a (00
whose first occurrence appears in cells £+ 1 and k+2 forsome k£, 0 < k£ < n—2. For
such a sequence we associate the k-tiling defined by the first & terms of the binary
sequence (note that if £ > 0, then the kth digit must be 1.) For example, the length
11 binary sequence 01101001001 is identified with the 5-tiling “domino-square-
domino”, as would any binary sequence of the form 0110100abcd where a, b, ¢, d
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01101000000
01101000001
01101000010
01101000011
01101000100
01101000101
01101000110

01101000111
0 1 1 0o 1 01101001001
01101001010
01101001011
01101001100
01101001101
01101001110
01101001111

Figure 1.17. The 5-tiling shown is generated by 16 different binary sequences of length 11, all
beginning with 0110100.

can each be 0 or 1. See Figure 1.17. In general, for 0 < k < n — 2, each k-tiling
will be listed 2" ~2~* times. In particular, the empty tiling will be listed 2" ~2 times.

The next identity is based on the fact that for any ¢ > 0 a tiling can be broken into
segments so that all but the last segment have length ¢ or ¢ + 1.

Wdentity 11 For m.p,t > 0, frusqesny = Srg (V) fLF2 Frtie

Question: How many (m + (t + 1)p)-tilings exist?

Answer 1: f, 4 (1+1)p-

Answer 2: For any tiling of length m + (¢ + 1)p, we break it into p + 1 segments of
length ji, j2, ..., jpt+1. For 1 <@ < p, 5 = t unless that would result in breaking
a domino in half—in which case we let j; = ¢ + 1. Segment p + 1 consists of the
remaining tiles. Count the number of tilings for which i of the first p segments have
length ¢ and the other p — ¢ segments have length £ + 1. These p segments have total
length it + (p —¢)(¢ + 1) = (t + 1)p — 7. Hence j,+1 = m + i. Since segments of
length ¢ can be covered f; ways and segments of length £+1 must end with a domino
and can be covered f,_; ways, there are exactly (¥) f{ '} f,n4: such tilings. See
Figure 1.18.

[ I [ [ [ [ N N [T

J1=3 j,=4 J3=3 remaining tiles

Figure 1.18. When ¢t = 4 and p = 3, the tiling above is broken into segments of length j = 5,
j2=4, 73 =>5, and j, = 6.

The next identity reads better when stated in terms of the traditional definition of
Fibonacci numbers (where Fyy = 0 and £} = 1 and thus f,,—, = F, for all n > 0).

Theorem 1 For m > 1,n > 0, if m|n, then F,|F,,.
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Our combinatorial approach allows us to prove more.

Theorem 2 For m > 1,n > 0, if m divides n, then [y_1 divides f,_1. In fact, if
n=qm, then fr_1 = fm_1 Z;’zl 2 faim-

Question: When n = gm, how many (n — 1)-tilings exist?
Answer 1: f, .

Answer 2: Condition on the smallest j for which the tiling is breakable at cell
jm — 1. Such a j exists and has value at most g since the tiling is breakable at cell
n—1 = gm—1. Given j, there are j—1 dominoes ending at cells m, 2m, ..., (j—1)m.
The cells preceding these dominoes can be tiled in ffn__lg ways. Cells (7 — 1)m +
L,(j—1m+2,...,(jm — 1) can be tiled f,,_, ways. The rest of the board can
then be tiled f,_;,» ways. See Figure 1.19.

m-1 2m-1 (j-1m-1 jm-1 gm-1

| DO M " "
—_— —_— —_— :
e -fm-l Jﬂ;-;m

S Iz 2

Figure 1.19. There are f2 ", f,u—1 fn—jm ways to tile an (n — 1)-board when j is the smallest
integer for which the tiling 1s breakable at jm — 1.

1.3 A Fun Application

Although the application in this section is not proved entirely by combinatorial means, it
utilizes some of the identities from this chapter. Since we have done most of the work to
prove it already, it would be a shame to omit it.

For integers a and b, the greatest common divisor, denoted by ged(a, b), is the largest
positive number dividing both a and b. It is easy to see that for any integer x,

ged(a, b) = ged(b, a — bx), (L.1)

since any number that divides both @ and b must also divide b and @ — bz, and vice versa.
Two special cases are frequently invoked:

ged(a, b) = ged(b,a — b) (1.2)
and
Theorem 3 (Euclidean Algorithm) Ifn = gm + r, then ged(n, m) = ged(m, ).

In the Euclidean algorithm we typically choose ¢ = |=], so that 0 < » < m. For
example, when we apply the Euclidean algorithm to find ged (255, 68), we get

ged(255, 68) = ged(68,51) = ged(51, 17) = ged(17,0) = 17.

It immediately follows that consecutive Fibonacci numbers are relatively prime, that
1S

Lemma 4 Forn > 1, ged(F,, Fl,—1) = 1.
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Proof. This is the world’s fastest proof by induction. When n = 1, ged(Fy, Fy) =
ged(1,0) = 1. Assuming the lemma holds for the number n, then using (1.2), we get

ged(Fpi1, Fy) = ged(Fy, Fyp1 — Fy) = ged(Fy, Froq) = 1. <
Next we exploit Identity 3 to obtain
Lemma § For m,n > 0, F‘rn,+11 = 1—n,+1Fn + FFh_.

PI’UOf F771+77 = fm+(-n.—1) = fmfn—l + fm—lfn—iz = Fr71+lFrz + Fan—l- <

Finally, we recall that Theorem 1 states if m divides n, then F},, divides F,,. We are
now ready to state and prove one of the most beautiful properties of Fibonacci numbers.

Theorem 6 For m > 1,n >0, ged(Fy, Fn) = Faca(n.m)-

Proof. Suppose n = gm + r, where 0 < r < m. By Lemma 5, F, = Fynir =
Fr;'m.+l Fr + EIHI,FI'fl- ThUS

ng(Fns Fm) = ng(Fnu qu+lFr + quFrfl)

but by (1.1), we can subtract multiples of F,, from the second term and not change the
greatest common divisor. Since by Theorem 1, F;,,, is a multiple of F.,, it follows that

ng(Fns Firn,) = ng(Fm: E;m.+lFr) = ng(Fm« Fr')‘ (13)

where the last equality follows since I, (a divisor of Fj,,) is relatively prime to F,, 1
by Lemma 4.

But what do we have here? Equation (1.3) is the same as the Euclidean Algorithm,
but with F's on top. Thus, for example,

ged(Fass, Fog) = ged(Fos, F51) = ged(F5, Fir) = ged(Fir, Fo) = Fir,

since F = 0. The theorem immediately follows. o

For the reader interested in seeing even more advanced Fibonacci identities, we rec-
ommend reading Chapters 2 and 9. One of the treats in store is a proof of Binet’s Formula,
an exact formula for the nth Fibonacci number. Specifically

n n
1+ 5 1-5
NG 2 2 '
An eager reader actually has all the tools necessary to tackle the combinatorial proof and
can jump straight to Identity 240.

Fn,:

1.4 Notes

Fibonacci numbers have a long and rich history. They have served as mathematical inspi-
ration and amusement since Leonardo Pisano (filius de Bonacci) first posed his original
rabbit reproduction question at the beginning of the 13th century. Fibonacei numbers have
touched the lives of mathematicians, artists, naturalists, musicians and more. For a peek
at their history, we recommend Ron Knott’s impressive web site, Fibonacci Numbers and
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the Golden Section [32]. Extensive collections of Fibonacci identities are available in
Vajda’s Fibonacci & Lucas Numbers, and the Golden Section: Theory and Applications
[58] and Koshy’s Fibonacci and Lucas Numbers with Applications [33].

The Fibonacci Society is a professional organization focusing on Fibonacci numbers
and related mathematics, emphasizing new results, research proposals, challenging prob-
lems, and new proofs of old ideas. They publish a professional journal, The Fibonacci
Quarterly, and organize a biennial international conference.

Combinatorial interpretations of Fibonacci numbers have existed for a long time and
can be surveyed in Basin and Hoggatt’s article [1] in the inaugural issue of the Fibonacci
Quarterly or Stanley’s Enumerative Combinatorics Vol. 1 Chapter 1 exercise 14 [51].
We’ve chosen the tiling interpretation and notation presented in Brigham et. al. [15] and
further developed in [8].

Finally, a bijective proof of Cassini’s formula similar to the one given for Identity 8
without tilings was given by Werman and Zeilberger [60].

1.5 Exercises

Prove each of the identities below by a direct combinatorial argument.
Identity 12 Forn > 1, fi+ fa + -+ fon—1 = fon — 1.

Identity 13 Forn >0, fZ+ 2., = fonia-

Identity 14 Forn > 1, f2 — f2_, = fap—1.

Identity 15 For n > 0, fanto = fusifote — fa—1fn-

Identity 16 Forn > 2, 2f, = fni1 + fn_o2.

Identity 17 Forn = 2, 3f, = fui2 + fa—2.

Identity 18 Forn > 2, 4f, = fuis + fn + fr_o.

Identity 19 demonstrates how any four consecutive Fibonacei numbers generate a Pythagorean
Triple.

Identity 19 Forn > 1,

(fn—lfn+2)2 + (anfn-l—l)z = (fn+lfn+2 - fn,—lfn)2 = (f2n+2)2-

Identity 20 For n > p, foip =0, (f) Fri.

Identity 21 Forn >0, Y7 _(-1)Ff =1+ (=1)" fr_1.

mn _1 k+l_
Identity 22 Forn >0, [[ (1 ) ) _fann
k=1 fi-' f-n

Identity 23 Forn >0, fo+ fs+ fo+ -+ + fan = & fans2.

ldentity 24 Forn > 1 fl + f4 + f'v’ +- fSn.—Z - %(f&n - l)
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Identity 25 Forn > 1, fa+ fs + fs+ -+ fsa-1= 3(f3a11 — 1).
Identity 26 Forn >0, fo+ fa+ fs+ -+ fan = fonfont1.
Identity 27 Forn > 1, fi+ fs + fo+ -+ fan_3= f2,_,.
Identity 28 Forn > 1, fo+ fe + fio +-+ + fan—2 = fon—1fon.
Identity 29 Forn > 1, fs+ fr+ fii +- -+ fin—1 = fon—1fon+1.
Identity 30 Forn >0, f2,,+ f2=2f2 +2f2,,.

Identity 31 Forn > 1, f2 = fuiofni1fa1fo2+ L

There are many combinatorial interpretations for Fibonacci numbers. Show that the
interpretations below are equivalent to tiling a board with squares and dominoes by
creating a one-to-one correspondence.

1. For n = 0, f,+1 counts binary n-tuples with no consecutive 0s.

2. For n > 0, f,,+1 counts subsets S of {1,2,...,n} such that S contains no two
consecutive integers.

3. Forn > 2, f,—2 counts tilings of an n-board where all tiles have length 2 or greater.
4. Forn > 1, f,—1 counts tilings of an n-board where all tiles have odd length.

5. Forn > 1, f,, counts the ways to arrange the numbers 1 through n so that for each
1<i<mn,theithnumberisi —1oriori—+ 1.

6. For n > 0, fony1 counts length n sequences of Os, 1s, and 2s where 0 is never
followed immediately by 2.

7. Forn > 1, fan—1 = > aias---a,, where r > 1 and ay,...,a, are positive
integers that sum to n. For example, fs =3+2-1+1-2+1-1-1= 8. (Hint
ayaz - - -a,. counts n-tilings with tiles of any length, where a; is the length of the
jth tile, and one cell covered by each tile is highlighted.)

8. For n > 1, fon counts S 2number of a; that equal 1 g6 over the same set
as before. For example, whenn = 3 =2+ 1 =142 =14+1+1, f5 =
20421+ 21 423 =13,

9. For n > 1, f,41 counts binary sequences (b1, by, ..., by), where by < by > by <
by > bs---.
Uncounted Identities

The identities listed below are in need of combinatorial proof.

fanta + (71)’16f?171 +5
10 ’

2. Forn>0, i+2fa+---+nfn=n+1)fore — foya + 3.

1. Fornzl,fﬁg'-l-ff’-i-"""fg:
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3. There are identities for mf,, analogous to Identities 16—18 for every integer m.

(a) Forn >4, 5f, = fass + fac1 + fa-a.

(b) Forn >4, 6fy, = fniz + fay1 + fr-a.

(c) Forn=>4,7f, = fn+4 + fr_a.

(d) Forn > 45 an = fn+4 + fn + f'n,—4-

(e) Forn >4, 9f, = fuya+ fot1 + fo2+ fn-a

(H) Forn>4,10f,, = fusa + faso + fa—2 + fa-a.

(g) For n 2 4, llfn = fn+4 + fn+2 + fn + fn—2 + fn—él‘

(h) Forn >6,12f,, = foss + fuo1+ fa—3 + [n—s-
These identities are examples of Zeckendorf’s Theorem which states that every
integer can be uniquely written as the sum of nonconsecutive Fibonacci numbers.
The coefficients in the above formulas are the same as in the unique expansion of
positive integers in nonconsecutive integer powers of ¢ = (1 +\/3)/ 2. For example
5=¢>+ ¢+ o7 and 6 = ¢ + ¢! + ¢ Is there a unifying combinatorial
approach for all of these identities?

4. Forn > 4, f5 4+ 3f3 .+ f3_, = 3f2, +6f3_,. Jay Cordes has shown us
a combinatorial proof that requires breaking the tiling triples into over a dozen
different cases. Does something simpler exist?

5. Find a combinatorial interpretation for the Fibonomial coefficient

(n) _ (n e
m) e (mD)p((n—m))p’
where (0!)p =1, and for k > 1, (kl)p = FyFjp—1--- Fy.
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CHAPTER 2

Gibonacci and Lucas Identities

Definition The Gibonacci numbers G ,, are defined by nonnegative integers Gy, (; and
forn>2 G, =G,_1+ Gn_o.

Definition The Lucas numbers L, are defined by Lo = 2, Ly = 1 and for n > 2,
Ln. = Ln—l + L‘n—Zv

The first few numbers in the sequence of Lucas numbers are 2, 1, 3, 4, 7, 11, 18, 29,
47, 76, 123, 199, .. ..

In this chapter, we pursue identities involving Gibonacci numbers, which is shorthand
for generalized Fibonacci numbers. There are many ways to generalize the Fibonacci
numbers, and we shall pursue many of these generalizations in the next chapter, but for
our purposes, we say a sequence of nonnegative integers Gy, GG1, G'a, ... 1s a Gibonacci
sequence if for all n > 2,

Gn=Gn_1+ Gn_2.

Of all the Gibonacci sequences, the initial conditions that lead to the most beautiful
identities correspond to the Fibonacci and Lucas numbers.

2.1 Combinatorial Interpretation of Lucas Numbers

As we shall see Lucas numbers operate like Fibonacci numbers running in circles. Define
¢, to be the number of ways to tile a circular board composed of 7 labeled cells with
curved squares and dominoes. For example ¢, = 7 as illustrated in Figure 2.1. Clearly
there are more ways to tile a circular n-board than a straight n-board since it is now
possible for a single domino to cover cells n and 1. We define an n-bracelet to be a tiling
of a circular n-board. A bracelet is out-of-phase when a single domino covers cells n and
1 and in-phase otherwise. In Figure 2.1, we see that there are five in-phase 4-bracelets
and two out-of-phase 4-bracelets. Figure 2.2 illustrates that £, = 1, fo = 3, and {3 = 4.
Notice that there are two ways to create a 2-bracelet with a single domino—either in-phase
or out-of-phase.

From our initial data, the number of n-bracelets looks like the Lucas sequence. To
prove that they continue to grow like the Lucas sequence, we must argue that for n > 3,

gn = g-n—l + gn—2-

17
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A
@’

00

Figure 2.1. A circular 4-board and its seven bracelets. The first five bracelets are in-phase and
the last two are out-of-phase.

® Q00
0000

Figure 2.2. There is one 1-bracelet and there are three 2-bracelets and four 3-bracelets.

To see this we simply condition on the /last tile of the bracelet. We define the first tile to
be the tile that covers cell 1, which could either be a square, a domino covering cells 1
and 2, or a domino covering cells n and 1. The second tile is the next tile in the clockwise
direction, and so on. The last tile is the one that precedes the first tile. Since it is the first
tile, not the last, that determines the phase of the tiling, there are ¢,,_; n-bracelets that
end with a square and £,,_» n-bracelets that end with a domino. By removing the last tile
and closing up the resulting gap, we produce smaller bracelets.

To make the recurrence valid for n = 2, we define ¢y = 2, and interpret this to mean
that there are two empty tilings of the circular O-board, an in-phase 0-bracelet and an
out-of-phase 0-bracelet. This leads to a combinatorial interpretation of Lucas numbers.

Combinatorial Theorem 2 For n > 0, let {,, count the ways to tile a circular n-board
with squares and dominoes. Then ., is the nth Lucas number, that is

l = L.

As one might expect, there are many identities with Lucas numbers that resemble
Fibonacci identities. In addition, there are many beautiful identities where Lucas and
Fibonacci numbers interact.

2.2 Lucas Identities
Identity 32 Forn > 1, L, = fr + frn—o2.

Question: How many tilings of a circular n-board exist?
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In phase Out of phase

O

i ——

-}:1 fn-z
Figure 2.3. Every circular n-bracelet can be reduced to an n-tiling or an (n — 2)-tiling, depending

on its phase.

Answer 1: By Combinatorial Theorem 2, there are L,, n-bracelets.

Answer 2: Condition on whether the tiling is in-phase or out-of-phase. Since an
in-phase tiling can be straightened into an n-tiling, there are f,, in-phase bracelets.
Likewise, an out-of-phase n-bracelet must have a single domino covering cells 7 and
1. Cells 2 through n — 1 can then be covered as a straight (n — 2)-tiling in f,,_o
ways. Hence the total number of n-bracelets is f,, + f,—2. See Figure 2.3.

The next identity associates an odd-length board tiling with a board and bracelet pair.
Identity 33 Forn >0, fon_1 = Ly fu_1.

Set 1: Tilings of a (2n — 1)-board. This set has size fon—1.

Set 2: Bracelet-tiling pairs (B, 7") where the bracelet has length n and the tiling has
length n — 1. This set has size L, f,,—1.

Correspondence: Given a (2n — 1)-board T, there are two cases to consider, as
illustrated in Figure 2.4.

Case I: breakable at n Case II: not breakable at n
RS 7n|| [ — T — 2n-1

Figure 2.4. A (2n — 1)-tiling can be converted to an n-bracelet and (n — 1)-tiling. In our
correspondence, the n-bracelet is in-phase if and only if the (2n — 1)-tiling is breakable at cell n.
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Case 1. If T is breakable at cell n, then glue the right side of cell n to the left side
of cell 1 to create an in-phase n-bracelet B, and cells n+ 1 through 2n — 1 form an
(n — 1)-tiling T'.
Case 2. If T™ is unbreakable at cell n, then cells n and n + 1 are covered by a
domino which we denote by d. Cells 1 through n — 1 become an (n — 1)-tiling T’
and cells n through 2n — 1 are used to create an out-of-phase n-bracelet with d as
its first tile.

This correspondence is easily reversed since the phase of the n-bracelet indicates
whether Case | or Case 2 1s invoked.

Identity 34 Forn >0, 5f, = L, + Ly4o.

Set 1: Tilings of an n-board. This set has size f,,.
Set 2: Tilings of a circular n-board or a circular (n + 2)-board. This set has size
Ln + L-n+2-
Correspondence: To prove the identity, we establish a 1-to-5 correspondence be-
tween Set 1 and Set 2. That is, for every tiling in Set 1, we can create five bracelets
in Set 2 in such a way that every bracelet in Set 2 is created exactly once. Hence
Set 2 is five times as large as Set 1.

Given an n-tiling, four of the five bracelets arise naturally. See Figure 2.5. We
can create

1. an in-phase n-bracelet by gluing cell n to cell 1, or

2. an in-phase (n + 2)-bracelet ending with two inserted squares, or
3. an in-phase (n + 2)-bracelet ending with an inserted domino, or
4. an out-of-phase (n + 2)-bracelet ending with an inserted domino.

At this point we pause to investigate which bracelets have not yet been created. We
are missing out-of-phase n-bracelets and (n + 2)-bracelets that end with a square

00

2
5a. Ends in a domino 5b. Ends in a sauare

4.
insert domino
n

Figure 2.5. Every n-tiling generates five bracelets of size n or n + 2.

n-tiling
1




