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Introduction to the Tenth Anniversary Edition

Quantum mechanics has the curious distinction of being simultaneously the most suc-
cessful and the most mysterious of our scientific theories. It was developed in fits and
starts over a remarkable period from 1900 to the 1920s, maturing into its current form in
the late 1920s. In the decades following the 1920s, physicists had great success applying
quantum mechanics to understand the fundamental particles and forces of nature, cul-
minating in the development of the standard model of particle physics. Over the same
period, physicists had equally great success in applying quantum mechanics to understand
an astonishing range of phenomena in our world, from polymers to semiconductors, from
superfluids to superconductors. But, while these developments profoundly advanced our
understanding of the natural world, they did only a little to improve our understanding
of quantum mechanics.

This began to change in the 1970s and 1980s, when a few pioneers were inspired to
ask whether some of the fundamental questions of computer science and information
theory could be applied to the study of quantum systems. Instead of looking at quantum
systems purely as phenomena to be explained as they are found in nature, they looked at
them as systems that can be designed. This seems a small change in perspective, but the
implications are profound. No longer is the quantum world taken merely as presented,
but instead it can be created. The result was a new perspective that inspired both a
resurgence of interest in the fundamentals of quantum mechanics, and also many new
questions combining physics, computer science, and information theory. These include
questions such as: what are the fundamental physical limitations on the space and time
required to construct a quantum state? How much time and space are required for a given
dynamical operation? What makes quantum systems difficult to understand and simulate
by conventional classical means?

Writing this book in the late 1990s; we were fortunate to be writing at a time when
these and other fundamental questions had just crystallized out. Ten years later it is
clear such questions offer a sustained force encouraging a broad research program at the
foundations of physics and computer science. Quantum information science is here to
stay. Although the theoretical foundations of the field remain similar to what we discussed
10 years ago, detailed knowledge in many areas has greatly progressed. Originally, thisbook
served as a comprehensive overview of the field, bringing readers near to the forefront
of research. Today, the book provides a basic foundation for understanding the field,
appropriate either for someone who desires a broad perspective on quantum information
science, or an entryway for further investigation of the latest research literature. Of course,
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many fundamental challenges remain, and meeting those challenges promises to stimulate
exciting and unexpected links among many disparate parts of physics, computer science,
and information theory. We look forward to the decades ahead!

— Michael A. Nielsen and Isaac L. Chuang, March, 2010,



Afterword to the Tenth Anniversary Edition

An enormous amount has happened in quantum information science in the 10 years since
the first edition of this book, and in this afterword we cannot summarize even a tiny
fraction of that work. But a few especially striking developments merit comment, and may
perhaps whet your appetite for more.

Perhaps the most impressive progress has been in the area of experimental implemen-
tation. While we are still many years from building large-scale quantum computers, much
progress has been made. Superconducting circuits have been used to implement simple
two-qubit quantum algorithms, and three-qubit systems are nearly within reach. Qubits
based on nuclear spins and single photons have been used, respectively, to demonstrate
proof-of-principle for simple forms of quantum error correction and quantum simulation.
But the most impressive progress of all has been made with trapped ion systems, which
have been used to implement many two- and three-qubit algorithms and algorithmic
building blocks, including the quantum search algorithm and the quantum Fourier trans-
form. Trapped ions have also been used to demonstrate basic quantum communication
primitives, including quantum error correction and quantum teleportation.

A second area of progress has been in understanding what physical resources are
required to quantum compute. Perhaps the mostintriguing breakthrough here has been the
discovery that quantum computation can be done via measurement alone. For many vears,
the conventional wisdom was that coherent superposition-preserving unitary dynamics
was an essential part of the power of quantum computers. This conventional wisdom
was blown away by the realization that quantum computation can be done without any
unitary dynamics at all. Instead, in some new models of quantum computation, quantum
measurements alone can be used to do arbitrary quantum computations. The only coherent
resourcein these modelsis quantum memory, i.e., the ability to store quantum information.
An especially interesting example of these models is the one-way quantum computer, or
cluster-state computer. To quantum compute in the cluster-state model requires only
that the experimenter have possession of a fixed universal state known as the cluster state.
With a cluster state in hand, quantum computation can be implemented simply by doing
a sequence of single-qubit measurements, with the particular computation done being
determined by which qubits are measured, when they are measured, and how they are
measured. This 1s remarkable: you're given a fixed quantum state, and then quantum
compute by “looking” at the individual qubits in appropriate ways.

A third area of progress has been in classically simulating quantum systems. Feynman’s
pioneering 1982 paper on quantum computing was motivated in part by the observation
that quantum systems often seem hard to simulate on conventional classical computers.
Of course, at the time there was only a limited understanding of how difficult it 1s
to simulate different quantum systems on ordinary classical computers. But in the 1990s
and, especially, in the 2000s, we have learned much about which quantum systems are easy
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to simulate, and which are hard. Ingenious algorithms have been developed to classically
simulate many quantum systems that were formerly thought to be hard to simulate, in
particular, many quantum systems in one spatial dimension, and certain two-dimensional
quantum systems. These classical algorithms have been made possible by the development
of insightful classical descriptions that capture in a compact way much or all of the essential
physics of the system in question. At the same time, we have learned that some systems
that formerly seemed simple are surprisingly complex. For example, it has long been
known that quantum systems based on a certain type of optical component — what are
called linear optical systems — are easily simulated classically. So it was surprising when it
was discovered that adding two seemingly innocuous components — single-photon sources
and photodetectors — gave linear optics the full power of quantum computation. These
and similar investigations have deepened our understanding of which quantum systems
are casy to simulate, which quantum systems are hard to simulate, and why.

A fourth area of progress has been a greatly deepened understanding of quantum
communication channels. A beautiful and complete theory has been developed of how
entangled quantum states can assist classical communication over quantum channels. A
plethora of different quantum protocols for communication have been organized into
a comprehensive family (headed by “mother” and “father” protocols), unifying much
of our understanding of the different types of communication possible with quantum
information. A sign of the progress is the disproof of one of the key unsolved conjectures
reported in this book (p. 554), namely, that the communication capacity of a quantum
channel with product states 1s equal to the unconstrained capacity (i.e., the capacity with
any entangled state allowed as input). But, despite the progress, much remains beyond
our understanding. Only very recently, for example, it was discovered, to considerable
surprise, that two quantum channels, each with zero quantum capacity, can have a positive
quantum capacity when used together; the analogous result, with classical capacities over
classical channels, is known to be impossible.

One of the main motivations for work in quantum information science is the prospect of
fast quantum algorithms to solve important computational problems. Here, the progress
over the past decade has been mixed. Despite great ingenuity and effort, the chief algo-
rithmic insights stand as they were 10 vears ago. There has been considerable technical
progress, but we do not vet understand what exactly it is that makes quantum comput-
ers powerful, or on what class of problems they can be expected to outperform classical
computers.

What is exciting, though, is that ideas from quantum computation have been used
to prove a variety of theorems about classical computation. These have included, for
example, results about the difficulty of finding certain hidden vectors in a discrete lattice
of points. The striking featureis that these proofs, utilizing ideas of quantum computation,
are sometimes considerably simpler and more elegant than prior, classical proofs. Thus,
an awareness has grown that quantum computation may be a more natural model of
computation than the classical model, and perhaps fundamental results may be more

easily revealed through the ideas of quantum computation.



Preface

This book provides an introduction to the main ideas and techniques of the field of
quantum computation and quantum information. The rapid rate of progress in this field
and its cross-disciplinary nature have made it difficult for newcomers to obtain a broad
overview of the most important techniques and results of the field.

Our purpose in this book is therefore twofold. First, we introduce the background
material in computer science, mathematics and physics necessary to understand quan-
tum computation and quantum information. This is done at a level comprehensible to
readers with a background at least the equal of a beginning graduate student in one or
more of these three disciplines; the most important requirements are a certain level of
mathematical maturity, and the desire to learn about quantum computation and quantum
information. The second purpose of the book is to develop in detail the central results of
quantum computation and quantum information. With thorough study the reader should
develop a working understanding of the fundamental tools and results of this exciting
field, either as part of their general education, or as a prelude to independent research in
quantum computation and quantum information.

Structure of the book

The basic structure of the book is depicted in Figure 1. The book is divided into three
parts. T'he general strategy is to proceed from the concrete to the more abstract whenever
possible, Thus we study quantum computation before quantum information; specific
quantum error-correcting codes before the more general results of quantum information
theory; and throughout the book try to introduce examples before developing general
theory.

Part 1 provides a broad overview of the main ideas and results of the field of quan-
tum computation and quantum information, and develops the background material in
computer science, mathematics and physics necessary to understand quantum compu-
tation and quantum information in depth. Chapter 1 is an introductory chapter which
outlines the historical development and fundamental concepts of the field, highlighting
some important open problems along the way. The material has been structured so as
to be accessible even without a background in computer science or physics. The back-
ground material needed for a more detailed understanding is developed in Chapters 2
and 3, which treat in depth the fundamental notions of quantum mechanics and com-
puter science, respectively. You may elect to concentrate more or less heavily on different
chapters of Part I, depending upon your background, returning later as necessary to fill
any gaps in vour knowledge of the fundamentals of quantum mechanics and computer
science.

Part II describes quantum computation in detail. Chapter 4 describes the fundamen-
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have not given it a treatment for fear of being obsolete before publication of the book.
The implementation of quantum information processing machines has also developed
into a fascinating and rich area, and we limit ourselves to but a single chapter on this
subject. Clearly, much more can be said about physical implementations, but this would
begin to involve many more areas of physics, chemistry, and engineering, which we do
not have room for here.

How to use this book

This book may be used in a wide variety of ways. It can be used as the basis for a variety
of courses, from short lecture courses on a specific topic in quantum computation and
quantum information, through to full-year classes covering the entire field. It can be
used for independent study by people who would like to learn just a little about quantum
computation and quantum information, or by people who would like to be brought up to
the research frontier. It is also intended to act as a reference work for current researchers
in the field. We hope that it will be found especially valuable as an introduction for
researchers new to the field.

Note to the independent reader

The book is designed to be accessible to the independent reader. A large number of exer-
cises are peppered throughout the text, which can be used as self-tests for understanding
of the material in the main text. The Table of Contents and end of chapter summaries
should enable you to quickly determine which chapters vou wish to study in most depth.
The dependency diagram, Figure 1, will help you determine in what order material in
the book may be covered.

Note to the teacher
This book covers a diverse range of topics, and can therefore be used as the basis for a
wide variety of courses.

A one-semester course on quantum computation could be based upon a selection of
material from Chapters 1 through 3, depending on the background of the class, followed
by Chapter 4 on quantum circuits, Chapters 5 and 6 on quantum algorithms, and a
selection from Chapter 7 on physical implementations, and Chapters 8 through 10 to
understand quantum error-correction, with an especial focus on Chapter 10.

A one-semester course on quantum information could be based upon a selection of
material from Chapters 1 through 3, depending on the background of the class. Following
that, Chapters 8 through 10 on quantum error-correction, followed by Chapters 11 and 12
on quantum entropy and quantum information theory, respectively.

A full year class could cover all material in the book, with time for additional readings
selected from the ‘History and further reading’ section of several chapters. Quantum com-
putation and quantum information also lend themselves ideally to independent research
projects for students.

Aside from classes on quantum computation and quantum information, there is another
way we hope the book will be used, which is as the text for an introductory class in quan-
tum mechanics for physics students. Conventional introductions to quantum mechanics
rely heavily on the mathematical machinery of partial differential equations. We believe
this often obscures the fundamental ideas. Quantum computation and quantum informa-
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tion offers an excellent conceptual laboratory for understanding the basic concepts and
unique aspects of quantum mechanics, without the use of heavy mathematical machinery.
Such a class would focus on the introduction to quantum mechanics in Chapter 2, basic
material on quantum circuits in Chapter 4, a selection of material on quantum algorithms
from Chapters 5 and 6, Chapter 7 on physical implementations of quantum computation,
and then almost any selection of material from Part III of the book, depending upon
taste,

Note to the student

We have written the book to be as self-contained as possible. The main exception is that
occasionally we have omitted arguments that one really needs to work through oneself
to believe; these are usually given as exercises. Let us suggest that you should at least
attempt all the exercises as you work through the book. With few exceptions the exercises
can be worked out in a few minutes. If you are having a lot of difficulty with many of
the exercises it may be a sign that you need to go back and pick up one or more key
concepts.

Further reading

As already noted, each chapter concludes with a ‘History and further reading’ section.
There are also a few broad-ranging references that might be of interest to readers.
Preskill’slPr<98b] superb lecture notes approach quantum computation and quantum infor-
mation from a somewhat different point of view than this book. Good overview articles on
specific subjects include (in order of their appearance in this book): Aharonov’s review of
quantum computation[3h99%] Kitev’s review of algorithms and error-correction®it97b],
Mosca’s thesis on quantum algorithms!Mos% Fuchs’ thesistFu<%] on distinguishability
and distance measures in quantum information, Gottesman’s thesis on quantum error-
correction! G071 Preskill’s review of quantum error-correctionP™<?7], Nielsen’s thesis on
quantum information theory!™¢%] and the reviews of quantum information theory by
Bennett and Shor!B5%! and by Bennett and DiVincenzoBP%], Other useful references
include Gruska’s book[G™9]1 and the collection of review articles edited by Lo, Spiller,
and Popescull-5P%8],

Errors

Any lengthy document contains errors and omissions, and this book is surely no exception
to the rule. If you find any errors or have other comments to make about the book,
please email them to: gci@squint.org. As errata are found, we will add them to a list
maintained at the book web site: http://www.squint.org/qci/.
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I Fundamental concepts

1 Introduction and overview

Science offers the boldest metaphysics of the age. It is a thoroughly human
construct, driven by the faith that if we dream, press to discover, explain, and
dream again, thereby plunging repeatedly into new terrain, the world will some-
how come clearer and we will grasp the true strangeness of the universe. And
the strangeness will all prove to be connected, and make sense.

— Edward O. Wilson

Information is physical.
— Rolf Landauer

What are the fundamental concepts of quantum computation and quantum information?
How did these concepts develop? To what uses may they be put? How will they be pre-
sented in this book? The purpose of this introductory chapter is to answer these questions
by developing in broad brushstrokes a picture of the field of quantum computation and
quantum information. The intent is to communicate a basic understanding of the central
concepts of the field, perspective on how they have been developed, and to help you
decide how to approach the rest of the book.

Our story begins in Section 1.1 with an account of the historical context in which
quantum computation and quantum information has developed. Each remaining section
in the chapter gives a brief introduction to one or more fundamental concepts from the
field: quantum bits (Section 1.2), quantum computers, quantum gates and quantum cir-
cuits (Section 1.3), quantum algorithms (Section 1.4), experimental quantum information
processing (Section 1.5), and quantum information and communication (Section 1.6).

Along the way, illustrative and easily accessible developments such as quantum tele-
portation and some simple quantum algorithms are given, using the basic mathematics
taught in this chapter. The presentation is self-contained, and designed to be accessible
even without a background in computer science or physics. As we move along, we give
pointers to more in-depth discussions in later chapters, where references and suggestions
for further reading may also be found.

If as you read you're finding the going rough, skip on to a spot where you feel more
comfortable. At points we haven’t been able to avoid using a little technical lingo which
won’t be completely explained until later in the book. Simply accept it for now, and come
back later when you understand all the terminology in more detail. The emphasis in this
first chapter is on the big picture, with the details to be filled in later.

1.1 Global perspectives

Quantum computation and quantum information is the study of the information process-
ing tasks that can be accomplished using quantum mechanical systems. Sounds pretty
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simple and obvious, doesn’t it? Like many simple but profound ideas it was a long time
before anybody thought of doing information processing using quantum mechanical sys-
tems. To see why this is the case, we must go back in time and look in turn at each
of the fields which have contributed fundamental ideas to quantum computation and
quantum information — quantum mechanics, computer science, information theory, and
cryptography. As we take our short historical tour of these fields, think of yourself first
as a physicist, then as a computer scientist, then as an information theorist, and finally
as a cryptographer, in order to get some feel for the disparate perspectives which have
come together in quantum computation and quantum information.

1.1.1 History of quantum computation and quantum information

Our story begins at the turn of the twentieth century when an unheralded revolution was
underway in science. A series of crises had arisen in physics. The problem was that the
theories of physics at that itme (now dubbed classical physies) were predicting absurdities
such as the existence of an ‘ultraviolet catastrophe’ involving infinite energies, or electrons
spiraling inexorably into the atomic nucleus. At first such problems were resolved with
the addition of ad hoc hypotheses to classical physics, but as a better understanding
of atoms and radiation was gained these attempted explanations became more and more
convoluted. The crisis came to a head in the early 1920s after a quarter century of turmoil,
and resulted in the creation of the modern theory of guantum mechanics. Quantum
mechanics has been an indispensable part of science ever since, and has been applied
with enormous success to everything under and inside the Sun, including the structure
of the atom, nuclear fusion in stars, superconductors, the structure of DNA, and the
elementary particles of Nature,

What is quantum mechanics? Quantum mechanics is a mathematical framework or set
of rules for the construction of physical theories. For example, there is a physical theory
known as quantum electrodynamics which describes with fantastic accuracy the interac-
tion of atoms and light. Quantum electrodynamics is built up within the framework of
quantum mechanics, butit contains specific rules not determined by quantum mechanics.
The relationship of quantum mechanics to specific physical theories like quantum elec-
trodynamics is rather like the relationship of a computer’s operating system to specific
applications software — the operating system sets certain basic parameters and modes of
operation, but leaves open how specific tasks are accomplished by the applications.

The rules of quantum mechanics are simple but even experts find them counter-
intuitive, and the earliest antecedents of quantum computation and quantum information
may be found in the long-standing desire of physicists to better understand quantum
mechanics. The best known critic of quantum mechanics, Albert Einstein, went to his
grave unreconciled with the theory he helped invent. Generations of physicists since have
wrestled with quantum mechanics in an effort to make its predictions more palatable.
One of the goals of quantum computation and quantum information is to develop tools
which sharpen our intuition about quantum mechanics, and make its predictions more
transparent to human minds.

For example, in the early 1980s, interest arose in whether it might be possible to use
quantum effects to signal faster than light — a big no-no according to Einstein’s theory of
relativity. The resolution of this problem turns out to hinge on whether it is possible to
clone an unknown quantum state, that is, construct a copy of a quantum state, If cloning
were possible, then it would be possible to signal faster than light using quantum effects.
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However, cloning — so easy to accomplish with classical information (consider the words
in front of you, and where they came from!) — turns out not to be possible in general in
quantum mechanics. This no-cloning theorem, discovered in the early 1980s, is one of
the earliest results of quantum computation and quantum information. Many refinements
of the no-cloning theorem have since been developed, and we now have conceptual tools
which allow us to understand how well a (necessarily imperfect) quantum cloning device
might work. These tools, in turn, have been applied to understand other aspects of
quantum mechanics.

A related historical strand contributing to the development of quantum computation
and quantum information is the interest, dating to the 1970s, of obtaining complete con-
trol over single quantum systems. Applications of quantum mechanics prior to the 1970s
typically involved a gross level of control over a bulk sample containing an enormous
number of quantum mechanical systems, none of them directly accessible. For example,
superconductivity has a superb quantum mechanical explanation. However, because a su-
perconductor involves a huge (compared to the atomic scale) sample of conducting metal,
we can only probe a few aspects of its quantum mechanical nature, with the individual
quantum systems constituting the superconductor remaining inaccessible. Systems such
as particle accelerators do allow limited access to individual quantum systems, but again
provide little control over the constituent systems.

Since the 1970s many techniques for controlling single quantum systems have been
developed. For example, methods have been developed for trapping a single atom in an
‘atom trap’, isolating it from the rest of the world and allowing us to probe many different
aspects of its behavior with incredible precision. The scanning tunneling microscope
has been used to move single atoms around, creating designer arrays of atoms at will.
Electronic devices whose operation involves the transfer of only single electrons have
been demonstrated.

Why all this effort to attain complete control over single quantum systems? Setting
aside the many technological reasons and concentrating on pure science, the principal
answer is that researchers have done this on a hunch. Often the most profound insights
in science come when we develop a method for probing a new regime of Nature. For
example, the invention of radio astronomy in the 1930s and 1940s led to a spectacular
sequence of discoveries, including the galactic core of the Milky Way galaxy, pulsars, and
quasars. Low temperature physics has achieved its amazing successes by finding ways to
lower the temperatures of different systems. In a similar way, by obtaining complete
control over single quantum systems, we are exploring untouched regimes of Nature in
the hope of discovering new and unexpected phenomena. We are just now taking our first
steps along these lines, and already a few interesting surprises have been discovered in
this regime. What else shall we discover as we obtain more complete control over single
quantum systems, and extend it to more complex systems?

Quantum computation and quantum information fit naturally into this program. They
provide a useful series of challenges at varied levels of difficulty for people devising
methods to better manipulate single quantum systems, and stimulate the development of
new experimental techniques and provide guidance as to the most interesting directions
in which to take experiment. Conversely, the ability to control single quantum systems
is essential if we are to harness the power of quantum mechanics for applications to
quantum computation and quantum information.

Despite this intense interest, efforts to build quantum information processing systems
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certainty. By repeating the Solovay—Strassen test a few times it is possible to determine
with near certainty whether a number is prime or composite. The Solovay-Strassen test
was of especial significance at the time it was proposed as no deterministic test for pri-
mality was then known, nor is one known at the time of this writing. Thus, it seemed as
though computers with access to a random number generator would be able to efficiently
perform computational tasks with no efficient solution on a conventional deterministic
Turing machine. This discovery inspired a search for other randomized algorithms which
has paid off handsomely, with the field blossoming into a thriving area of research.

Randomized algorithms pose a challenge to the strong Church-Turing thesis, suggest-
ing that there are efficiently soluble problems which, nevertheless, cannot be efficiently
solved on a deterministic Turing machine. This challenge appears to be easily resolved
by a simple modification of the strong Church-Turing thesis:

Any algorithmic process can be simulated efficiently using a
probabilistic Turing machine.

This ad hoc modification of the strong Church—Turing thesis should leave you feeling
rather queasy. Might it not turn out at some later date that yet another model of computa-
tion allows one to efficiently solve problems that are not efficiently soluble within Turing’s
model of computation? Is there any way we can find a single model of computation which
is guaranteed to be able to efficiently simulate any other model of computation?

Motvated by this question, in 1985 David Deutsch asked whether the laws of physics
could be use to derize an even stronger version of the Church—Turing thesis. Instead of
adopting ad hoc hypotheses, Deutsch looked to physical theory to provide a foundation
for the Church—Turing thesis that would be as secure as the status of that physical theory.
In particular, Deutsch attempted to define a computational device that would be capable
of efficiently simulating an arbitrary physical system. Because the laws of physics are
ultimately quantum mechanical, Deutsch was naturally led to consider computing devices
based upon the principles of quantum mechanics. These devices, quantum analogues of
the machines defined forty-nine years earlier by Turing, led ultimately to the modern
conception of a quantum computer used in this book.

At the tme of writing it is not clear whether Deutsch’s notion of a Universal Quan-
tum Computer is sufficient to efficiently simulate an arbitrary physical system. Proving
or refuting this conjecture is one of the great open problems of the field of quantum
computation and quantum information. It is possible, for example, that some effect of
quantum field theory or an even more esoteric effect based in string theory, quantum
gravity or some other physical theory may take us bevond Deutsch’s Universal Quan-
tum Computer, giving us a still more powerful model for computation. At this stage, we
simply don’t know.

What Deutsch’s model of a quantum computer did enable was a challenge to the strong
form of the Church—Turing thesis. Deutsch asked whether it is possible for a quantum
computer to efficiently solve computational problems which have no efficient solution on
a classical computer, even a probabilistic Turing machine. He then constructed a simple
example suggesting that, indeed, quantum computers might have computational powers
exceeding those of classical computers.

This remarkable first step taken by Deutsch was improved in the subsequent decade
by many people, culminating in Peter Shor’s 1994 demonstration that two enormously
important problems — the problem of finding the prime factors of an integer, and the so-
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called ‘discrete logarithm’ problem — could be solved efficiently on a quantum computer.
This attracted widespread interest because these two problems were and still are widely
believed to have no efficient solution on a classical computer. Shor’s results are a power-
ful indication that quantum computers are more powerful than Turing machines, even
probabilistic Turing machines. Further evidence for the power of quantum computers
came in 1995 when Lov Grover showed that another important problem — the problem of
conducting a search through some unstructured search space — could also be sped up on
a quantum computer. While Grover’s algorithm did not provide as spectacular a speed-
up as Shor’s algorithms, the widespread applicability of search-based methodologies has
excited considerable interest in Grover’s algorithm.

At about the same time as Shor’s and Grover’s algorithms were discovered, many
people were developing an idea Richard Feynman had suggested in 1982, Fevnman had
pointed out that there seemed to be essential difficulties in simulating quantum mechan-
ical systems on classical computers, and suggested that building computers based on
the principles of quantum mechanics would allow us to avoid those difficulties, In the
1990s several teams of researchers began fleshing this idea out, showing that it is indeed
possible to use quantum computers to efficiently simulate systems that have no known
efficient simulation on a classical computer. It is likely that one of the major applications
of quantum computers in the future will be performing simulations of quantum mechan-
ical systems too difficult to simulate on a classical computer, a problem with profound
scientific and technological implications.

What other problems can quantum computers solve more quickly than classical com-
puters? The short answer 1s that we don’t know. Coming up with good quantum algo-
rithms seems to be fiard. A pessimist might think that's because there’s nothing quantum
computers are good for other than the applications already discovered! We take a differ-
ent view. Algorithm design for quantum computers is hard because designers face two
difficult problems not faced in the construction of algorithms for classical computers.
First, our human intuition is rooted in the classical world. If we use that intuition as an
aid to the construction of algorithms, then the algorithmic ideas we come up with will
be classical ideas. To design good quantum algorithms one must ‘turn off’ one’s classical
intuition for at least part of the design process, using truly quantum effects to achieve
the desired algorithmic end. Second, to be truly interesting it is not enough to design an
algorithm that is merely quantum mechanical. The algorithm must be better than any
existing classical algorithm! Thus, it is possible that one may find an algorithm which
makes use of truly quantum aspects of quantum mechanics, that is nevertheless not of
widespread interest because classical algorithms with comparable performance charac-
teristics exist. The combination of these two problems makes the construction of new
quantum algorithms a challenging problem for the future.

Even more broadly, we can ask if there are any generalizations we can make about the
power of quantum computers versus classical computers, What is it that makes quantum
computers more powerful than classical computers — assuming that this is indeed the
case? What class of problems can be solved efficiently on a quantum computer, and how
does that class compare to the class of problems that can be solved efficiently on a classical
computer? One of the most exciting things about quantum computation and quantum
information is how /ittle is known about the answers to these questions! It is a great
challenge for the future to understand these questions better.

Having come up to the frontier of quantum computation, let’s switch to the history
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of another strand of thought contributing to quantum computation and quantum infor-
mation: information theory. At the same time computer science was exploding in the
1940s, another revolution was taking place in our understanding of communication. In
1948 Claude Shannon published a remarkable pair of papers laying the foundations for
the modern theory of information and communication.

Perhaps the key step taken by Shannon was to mathematically define the concept of
information. In many mathematical sciences there is considerable flexibility in the choice
of fundamental definitions. Try thinking naively for a few minutes about the following
question: how would you go about mathematically defining the notion of an information
source? Several different answers to this problem have found widespread use; however,
the definition Shannon came up with seems to be far and away the most fruitful in
terms of increased understanding, leading to a plethora of deep results and a theory
with a rich structure which seems to accurately reflect many (though not all) real-world
communications problems.

Shannon was interested in two key questions related to the communication of in-
formation over a communications channel. First, what resources are required to send
information over a communications channel? For example, telephone companies need
to know how much information they can reliably transmit over a given telephone cable.
Second, can information be transmitted in such a way that it is protected against noise
in the communications channel?

Shannon answered these two questions by proving the two fundamental theorems of
information theory. The first, Shannon’s noiseless channel coding theorem, quantifies
the physical resources required to store the output from an information source. Shan-
non’s second fundamental theorem, the noisy channel coding theovem, quantifies how
much information it is possible to reliably transmit through a noisy communications
channel. To achieve reliable transmission in the presence of noise, Shannon showed that
error-correcting codes could be used to protect the information being sent. Shannon’s
noisy channel coding theorem gives an upper limit on the protection afforded by error-
correcting codes. Unfortunately, Shannon’s theorem does not explicitly give a practically
useful set of error-correcting codes to achieve that limit. From the time of Shannon’s pa-
pers until today, researchers have constructed more and better classes of error-correcting
codes in their attempts to come closer to the limit set by Shannon’s theorem. A sophisti-
cated theory of error-correcting codes now exists offering the user a plethora of choices
in their quest to design a good error-correcting code. Such codes are used in a multitude
of places including, for example, compact disc players, computer modems, and satellite
communications systems.

Quantum information theory has followed with similar developments. In 1995, Ben
Schumacher provided an analogue to Shannon’s noiseless coding theorem, and in the
process defined the ‘quantum bit’ or ‘qubit’ as a tangible physical resource. However,
no analogue to Shannon’s noisy channel coding theorem is yet known for quantum in-
formation. Nevertheless, in analogy to their classical counterparts, a theory of quantum
error-correction has been developed which, as already mentioned, allows quantum com-
puters to compute effectively in the presence of noise, and also allows communication
over noisy quantum channels to take place reliably.

Indeed, classical ideas of error-correction have proved to be enormously important
in developing and understanding quantum error-correcting codes. In 1996, two groups
working independently, Robert Calderbank and Peter Shor, and Andrew Steane, discov-
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ered an important class of quantum codes now known as CSS codes after their initials.
This work has since been subsumed by the stabilizer codes, independently discovered by
Robert Calderbank, Eric Rains, Peter Shor and Neil Sloane, and by Daniel Gottesman.
By building upon the basic ideas of classical linear coding theory, these discoveries greatly
facilitated a rapid understanding of quantum error-correcting codes and their application
to quantum computation and quantum information.

The theory of quantum error-correcting codes was developed to protect quantum states
against noise. What about transmitting ordinary classical information using a quantum
channel? How efficiently can this be done? A few surprises have been discovered in this
arena. In 1992 Charles Bennett and Stephen Wiesner explained how to transmit tewo
classical bits of information, while only transmitting one quantum bit from sender to
receiver, a result dubbed superdense coding,

Even more interesting are the results in distributed quantum computation. Imagine
vou have two computers networked, trying to solve a particular problem. How much
communication is required to solve the problem? Recently it has been shown that quan-
tum computers can require exponentially less communication to solve certain problems
than would be required if the networked computers were classicall Unfortunately, as yet
these problems are not especially important in a practical setting, and suffer from some
undesirable technical restrictions. A major challenge for the future of quantum compu-
tation and quantum information is to find problems of real-world importance for which
distributed quantum computation offers a substantial advantage over distributed classical
computation.

Let’s return to information theory proper. The study of information theory begins with
the properties of a single communications channel. In applications we often do not deal
with a single communications channel, but rather with networks of many channels. The
subject of networked information theory deals with the information carrying properties
of such networks of communications channels, and has been developed into a rich and
intricate subject.

By contrast, the study of networked quantum information theory is very much in its
infancy. Even for very basic questions we know little about the information carrying abil-
ities of networks of quantum channels. Several rather striking preliminary results have
been found in the past few vears; however, no unifying theory of networked information
theory exists for quantum channels. One example of networked quantum information
theory should suffice to convince you of the value such a general theory would have.
Imagine that we are attempting to send quantum information from Alice to Bob through
a noisy quantum channel. If that channel has zero capacity for quantum information,
then it is impossible to reliably send any information from Alice to Bob. Imagine instead
that we consider two copies of the channel, operating in synchrony. Intuitively it is clear
(and can be rigorously justified) that such a channel also has zero capacity to send quan-
tum information. However, if we instead reverse the direction of one of the channels, as
illustrated in Figure 1.1, it turns out that sometimes we can obtain a non-zero capacity
for the transmission of information from Alice to Bob! Counter-intuitive properties like
this illustrate the strange nature of quantum information. Better understanding the in-
formation carrving properties of networks of quantum channels is a major open problem
of quantum computation and quantum information.

Let’s switch fields one last time, moving to the venerable old art and science of cryvp-
tography. Broadly speaking, cryptography is the problem of doing communication or
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Figure 1.1. Classically, if we have two very noisy channels of zero capacity running side by side, then the combined
channel has zero capacity to send information. Not surprisingly, if we reverse the direction of one of the channels,
we still have zero capacity to send information, Quantum mechanically, reversing one of the zero capacity channels
can actually allow us to send information!

computation involving two or more parties who may not trust one another. The best
known cryptographic problem is the transmission of secret messages. Suppose two parties
wish to communicate in secret. For example, you may wish to give your credit card num-
ber to a merchant in exchange for goods, hopefully without any malevolent third party
intercepting your credit card number. The way this is done is to use a eryptographic
protocol. We'll describe in detail how cryptographic protocols work later in the book, but
for now it will suffice to make a few simple distinctions. The most important distinction
is between private key cryptosystems and public key cryptosystems.

The way a private key cryptosystem works is that two parties, ‘Alice’ and ‘Bob’, wish
to communicate by sharing a private key, which only they know. The exact form of the
key doesn’t matter at this point — think of a string of zeroes and ones. The point is that
this key is used by Alice to encrypt the information she wishes to send to Bob. After
Alice encrypts she sends the encrypted information to Bob, who must now recover the
original information. Exactly how Alice encrypts the message depends upon the private
key, so that to recover the original message Bob needs to know the private key, in order
to undo the transformation Alice applied.

Unfortunately, private key cryptosystems have some severe problems in many contexts.
The most basic problem is how to distribute the keys? In many ways, the key distribution
problem is just as difficult as the original problem of communicating in private — a
malevolent third party may be eavesdropping on the key distribution, and then use the
intercepted key to decrypt some of the message transmission.

One of the earliest discoveries in quantum computation and quantum information was
that quantum mechanics can be used to do key distribution in such a way that Alice and
Bob’s security can not be compromised. This procedure is known as quantum cryptog-
raphy or quantum key distribution. The basic idea is to exploit the quantum mechanical
principle that observation in general disturbs the system being observed. Thus, if there is
an eavesdropper listening in as Alice and Bob attempt to transmit their key, the presence
of the eavesdropper will be visible as a disturbance of the communications channel Alice
and Bob are using to establish the key. Alice and Bob can then throw out the key bits
established while the eavesdropper was listening in, and start over. The first quantum
cryptographic ideas were proposed by Stephen Wiesner in the late 1960s, but unfortu-
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1.2 Quantum bits

The b:t is the fundamental concept of classical computation and classical information.
Quantum computation and quantum information are built upon an analogous concept,
the quantum bit, or qubit for short. In this section we introduce the properties of single
and multiple qubits, comparing and contrasting their properties to those of classical bits.

What is a qubit? We're going to describe qubits as mathematical objects with certain
specific properties. ‘But hang on’, vou say, ‘I thought qubits were physical objects.’ It's
true that qubits, like bits, are realized as actual physical systems, and in Section 1.5 and
Chapter 7 we describe in detail how this connection between the abstract mathematical
point of view and real systems is made. However, for the most part we treat qubits as
abstract mathematical objects. The beauty of treating qubits as abstract entities is that it
gives us the freedom to construct a general theory of quantum computation and quantum
information which does not depend upon a specific svstem for its realization,

What then is a qubit? Just as a classical bit has a state — either 0 or 1 — a qubit also
has a state. T'wo possible states for a qubit are the states |0) and |1), which as you might
guess correspond to the states 0 and 1 for a classical bit. Notation like ‘| )" is called the
Dirac notation, and we'll be seeing it often, as it’s the standard notation for states in
quantum mechanics. The difference between bits and qubits is that a qubit can be in a
state other than |0) or |1). It is also possible to form linear combinations of states, often
called superpositions:

[¥) = a]0) + F1). (1.1)

The numbers « and 3 are complex numbers, although for many purposes not much is
lost by thinking of them as real numbers. Put another way, the state of a qubit is a vector
in a two-dimensional complex vector space. The special states |[0) and |1} are known as
computational basis states, and form an orthonormal basis for this vector space.

We can examine a bit to determine whether it is in the state 0 or 1. For example,
computers do this all the time when they retrieve the contents of their memory. Rather
remarkably, we cannot examine a qubit to determine its quantum state, that is, the
values of @ and (3. Instead, quantum mechanics tells us that we can only acquire much
more restricted information about the quantum state. When we measure a qubit we get
either the result 0, with probability ||?, or the result 1, with probability |3|%. Naturally,
|o|* +|3|* = 1, since the probabilities must sum to one. Geometrically, we can interpret
this as the condition that the qubit’s state be normalized to length 1. Thus, in general a
qubit’s state is a unit vector in a two-dimensional complex vector space.

This dichotomy between the unobservable state of a qubit and the observations we

can make lies at the heart of quantum computation and quantum information. In most
of our abstract models of the world, there is a direct correspondence between elements
of the abstraction and the real world, just as an architect’s plans for a building are in
correspondence with the final building. The lack of this direct correspondence in quantum
mechanics makes it difficult to intuit the behavior of quantum systems; however, there
is an indirect correspondence, for qubit states can be manipulated and transformed in
ways which lead to measurement outcomes which depend distinctly on the different
properties of the state. Thus, these quantum states have real, experimentally verifiable
consequences, which we shall see are essential to the power of quantum computation and
quantum information.
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The ability of a qubit to be in a superposition state runs counter to our ‘common sense’
understanding of the physical world around us. A classical bit is like a coin: either heads
or tails up. For imperfect coins, there may be intermediate states like having it balanced
on an edge, but those can be disregarded in the ideal case. By contrast, a qubit can exist
in a econtinuum of states between |0) and |1) — undl it is observed. Let us emphasize
again that when a qubit is measured, it only ever gives ‘0’ or ‘1’ as the measurement
result — probabilistically. For example, a qubit can be in the state

1 1
ﬁIUH ﬁll),- (1.2)
which, when measured, gives the result 0 fifty percent (|1/v/2]?) of the time, and the
result 1 fifty percent of the time. We will return often to this state, which is sometimes
denoted |+).

Despite this strangeness, qubits are decidedly real, their existence and behavior ex-
tensively validated by experiments (discussed in Section 1.5 and Chapter 7), and many
different physical systems can be used to realize qubits. To get a concrete feel for how a
qubit can be realized it may be helpful to list some of the ways this realization may occur;
as the two different polarizations of a photon; as the alignment of a nuclear spin in a
uniform magnetic field; as two states of an electron orbiting a single atom such as shown
in Figure 1.2. In the atom model, the electron can exist in either the so-called ‘ground’
or ‘excited’ states, which we’ll call |0) and |1), respectively. By shining light on the atom,
with appropriate energy and for an appropriate length of time, it is possible to move
the electron from the |0) state to the |1) state and vice versa. But more interestingly, by
reducing the time we shine the light, an electron initially in the state |0) can be moved
‘halfway’ between |0) and |1), into the |+) state.

0% o( 1)

Figure 1.2. Qubit represented by two electronic levels in an atom.

Naturally, a great deal of attention has been given to the ‘meaning’ or ‘interpretation’
that might be attached to superposition states, and of the inherently probabilistic nature of
observations on quantum systems. However, by and large, we shall not concern ourselves
with such discussions in this book. Instead, our intent will be to develop mathematical
and conceptual pictures which are predictive.

One picture useful in thinking about qubits is the following geometric representation.
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Because |a|* +|3/* = 1, we may rewrite Equation (1.1) as

I6]

P) = e (cosg()} +(:"‘f°sin§1)), (1.3)

where 0, ¢ and 7 are real numbers. In Chapter 2 we will see that we can 7gnore the factor
of "7 out the front, because it has no observable effects, and for that reason we can
effectively write

a - 0
) = cos EIO} + e'¥ sin §|1) (1.4)

The numbers # and ¢ define a point on the unit three-dimensional sphere, as shown in
Figure 1.3. This sphere is often called the Bloch sphere; it provides a useful means of
visualizing the state of a single qubit, and often serves as an excellent testbed for ideas
about quantum computation and quantum information. Many of the operations on single
qubits which we describe later in this chapter are neatly described within the Bloch sphere
picture. However, it must be kept in mind that this intuition is limited because there is
no simple generalization of the Bloch sphere known for multiple qubits.

0

Figure 1.3. Bloch sphere representation of a qubit.

How much information is represented by a qubit? Paradoxically, there are an infinite
number of points on the unit sphere, so that in principle one could store an entire text
of Shakespeare in the infinite binary expansion of #. However, this conclusion turns
out to be misleading, because of the behavior of a qubit when observed. Recall that
measurement of a qubit will give on/y either 0 or 1. Furthermore, measurement changes
the state of a qubit, collapsing it from its superposition of |0) and |1) to the specific state
consistent with the measurement result. For example, if measurement of |+) gives 0,
then the post-measurement state of the qubit will be |0). Why does this type of collapse
occur? Nobody knows. As discussed in Chapter 2, this behavior is simply one of the
Sfundamental postulates of quantum mechanics. What is relevant for our purposes is that
from a single measurement one obtains only a single bit of information about the state of
the qubit, thus resolving the apparent paradox. It turns out that only if infinitely many
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identically prepared qubits were measured would one be able to determine «v and /3 for
a qubit in the state given in Equation (1.1).

But an even more interesting question to ask might be: how much information is
represented by a qubit if we do not measwre it? This is a trick question, because how
can one quantify information if it cannot be measured? Nevertheless, there is something
conceptually important here, because when Nature evolves a closed quantum system of
qubits, not performing any ‘measurements’, she apparently does keep track of all the
continuous variables describing the state, like & and 3. In a sense, in the state of a qubit,
Nature conceals a great deal of ‘hidden information’. And even more interestingly, we will
see shortly that the potential amount of this extra ‘information’ grows exponentially with
the number of qubits. Understanding this hidden guantum information is a question
that we grapple with for much of this book, and which lies at the heart of what makes
quantum mechanics a powerful tool for information processing.

1.2.1 Multiple qubits

Hilbert space is a big place.
— Carlton Caves

Suppose we have two qubits. If these were two classical bits, then there would be four
possible states, 00, 01, 10, and 11. Correspondingly, a two qubit system has four com-
putational basis states denoted [00),|01),]10),[11). A pair of qubits can also exist in
superpositions of these four states, so the quantum state of two qubits involves associating
a complex coefficient — sometimes called an amplitude — with each computational basis
state, such that the state vector describing the two qubits is

[¥) = aw|00) + ag [01) + a[10) + ayy|11). (1.5)

Similar to the case for a single qubit, the measurement result 2 (= 00,01, 10 or 11) occurs
with probability |a, |, with the state of the qubits after the measurement being |z). The
condition that probabilities sum to one is therefore expressed by the normalization
condition that 35, ¢ 1y || = 1, where the notation ‘{0, 1} means ‘the set of strings
of length two with each letter being either zero or one’. For a two qubit system, we could
measure just a subset of the qubits, say the first qubit, and yvou can probably guess how
this works: measuring the first qubit alone gives 0 with probability |ag|? + | |?, leaving
the post-measurement state

0500|0'0> + Qo]lO])

= .
Vaw|* + [an|?
Note how the post-measurement state is re-normalized by the factor /|cg|? + [cvg]?
so that it still satisfies the normalization condition, just as we expect for a legitimate

quantum state,
An important two qubit state is the Bell state or EPR pair,

[00) + [11)
Vo

This innocuous-looking state is responsible for many surprises in quantum computation

) = (1.6)

(1.7)
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and quantum information. It is the key ingredient in quantum teleportation and super-
dense coding, which we'll come to in Section 1.3.7 and Section 2.3, respectively, and
the prototype for many other interesting quantum states. The Bell state has the property
that upon measuring the first qubit, one obtains two possible results: 0 with probability
1/2, leaving the post-measurement state |©') = [00), and 1 with probability 1/2, leaving
|©") = |11). As a result, a measurement of the second qubit always gives the same result
as the measurement of the first qubit. That is, the measurement outcomes are correlated.
Indeed, it turns out that other types of measurements can be performed on the Bell
state, by first applying some operations to the first or second qubit, and that interesting
correlations still exist between the result of a measurement on the first and second qubit.
These correlations have been the subject of intense interest ever since a famous paper
by Einstein, Podolsky and Rosen, in which they first pointed out the strange properties
of states like the Bell state. EPR’s insights were taken up and greatly improved by John
Bell, who proved an amazing result: the measurement correlations in the Bell state are
stronger than could ever exist between classical systems. These results, described in de-
tail in Section 2.6, were the first intimation that quantum mechanics allows information
processing beyond what is possible in the classical world.

More generally, we may consider a system of 2 qubits. The computational basis states
of this system are of the form |zx;...2,), and so a quantum state of such a system
is specified by 2" amplitudes. For n = 500 this number is larger than the estimated
number of atoms in the Universe! Trying to store all these complex numbers would not
be possible on any conceivable classical computer. Hilbert space is indeed a big place.
In principle, however, Nature manipulates such enormous quantities of data, even for
systems containing only a few hundred atoms. It is as if Nature were keeping 2°™ hidden
pieces of scratch paper on the side, on which she performs her calculations as the system
evolves. This enormous potential computational power is something we would very much
like to take advantage of. But how can we think of quantum mechanics as computation?

1.3 Quantum computation

Changes occurring to a quantum state can be described using the language of quantum
computation. Analogous to the way a classical computer is built from an electrical circuit
containing wires and logic gates, a quantum computer is built from a quantum circuit
containing wires and elementary quantum gates to carry around and manipulate the
quantum information. In this section we describe some simple quantum gates, and present
several example circuits illustrating their application, including a circuit which teleports
qubits!

1.3.1 Single qubit gates

Classical computer circuits consist of wires and logic gates. The wires are used to carry
information around the circuit, while the logic gates perform manipulations of the infor-
mation, converting it from one form to another. Consider, for example, classical single bit
logic gates. The only non-trivial member of this class is the NOT gate, whose operation
is defined by its fruth table, in which 0 — 1 and 1 — 0, that is, the 0 and 1 states are
interchanged.

Can an analogous quantum NOT gate for qubits be defined? Imagine that we had
some process which took the state |0) to the state |1), and vice versa. Such a process
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qubit gates. However, it turns out that the properties of the complete set can be under-
stood from the properties of a much smaller set. For example, as explained in Box 1.1,
an arbitrary single qubit unitary gate can be decomposed as a product of rotations

cos 1 —sind -
- - s 1.15
{ sin 3 cos :’3- ] ' (1.15)
and a gate which we'll later understand as being a rotation about the % axis,
e i3/2 0
{ 0 ciB/2 | (1.16)

icx

together with a (global ) phase shift —a constant multiplier of the form e**. These gates
can be broken down further — we don’t need to be able to do these gates for arbitrary
«, 3 and -, but can build arbitrarily good approximations to such gates using only certain
special fixed values of «, 3 and ~. In this way it is possible to build up an arbitrary single
qubit gate using a finite set of quantum gates. More generally, an arbitrary quantum
computation on any number of qubits can be generated by a finite set of gates that is said
to be universal for quantum computation. To obtain such a universal set we first need
to introduce some quantum gates involving multiple qubits.

Box 1.1: Decomposing single qubit operations
In Section 4.2 starting on page 174 we prove that an arbitrary 2x 2 unitary matrix
may be decomposed as

in/
e~ B2 0 } [ cos

U=e { 0 e sin

ta 2 o2

—sin T e /2 -
cos 1 } ’[ 0 e } > (L17)
where @, 3, 7, and § are real-valued. Notice that the second matrix is just an
ordinary rotation. It turns out that the first and last matrices can also be understood
as rotations in a different plane. This decomposition can be used to give an exact
prescription for performing an arbitrary single qubit quantum logic gate.

1.3.2 Multiple qubit gates

Now let us generalize from one to multiple qubits. Figure 1.6 shows five notable multiple
bit classical gates, the AND, OR, XOR (exclusive-OR), NAND and NOR gates. An important
theoretical result is that any function on bits can be computed from the composition of
NANT gates alone, which is thus known as a unmiversal gate. By contrast, the XOR alone or
even together with NOT is not universal. One way of seeing this is to note that applying
an XOR gate does not change the total parity of the bits. As a result, any circuit involving
only NOT and XOR gates will, if two inputs & and y have the same parity, give outputs
with the same parity, restricting the class of functions which may be computed, and thus
precluding universality.

The prototypical multi-qubit quantum logic gate is the controlled-NOT or CNOT gate.
This gate has two input qubits, known as the control qubit and the target qubit, respec-
tively. The circuit representation for the ¢NOT is shown in the top right of Figure 1.6;
the top line represents the control qubit, while the bottom line represents the target
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Figure 1.6. On the left are some standard single and multiple bit gates, while on the right is the prototypical
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multiple qubit gate, the controlled-NOT. The matrix representation of the controlled-NoT, Ug v, is written with
respect to the amplitudes for [00), [01), |10}, and |11}, in that order.

qubit. The action of the gate may be described as follows. If the control qubit is set to
0, then the target qubit is left alone. If the control qubit is set to 1, then the target qubit
is flipped. In equations:

100) — [00); [01) — [01); [10) — [11); [11) — [10). (1.18)

Another way of describing the ¢NOT is as a generalization of the classical XOR gate, since
the action of the gate may be summarized as |A, B) — |A, B& A), where & is addition
modulo two, which is exactly what the XOR gate does. That is, the control qubit and the
target qubit are XORed and stored in the target qubit.

Yet another way of describing the action of the ¢NOT is to give a matrix represen-
tation, as shown in the bottom right of Figure 1.6. You can easily verify that the first
column of Ugpy describes the transformation that occurs to [00), and similarly for the
other computational basis states, |[01), |10}, and [11). As for the single qubit case, the
requirement that probability be conserved is expressed in the fact that Uy is a unitary
matrix, that is, U(TjNUCN =1

We noticed that the CNOT can be regarded as a type of generalized-XOR gate. Can
other classical gates such as the NAND or the regular XOR gate be understood as unitary
gates in a sense similar to the way the quantum NOT gate represents the classical NOT
gate? It turns out that this is not possible. The reason is because the XOR and NAND gates
are essentially irreversible or non-invertible. For example, given the output A& B from
an XOR gate, it is not possible to determine what the inputs A and B were; there is an
irretrievable loss of information associated with the irreversible action of the XOR gate.
On the other hand, unitary quantum gates are alzways invertible, since the inverse of a
unitary matrix is also a unitary matrix, and thus a quantum gate can always be inverted
by another quantum gate. Understanding how to do classical logic in this reversible or
inwvertible sense will be a crucial step in understanding how to harness the power of
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quantum mechanics for computation. We'll explain the basic idea of how to do reversible
computation in Section 1.4.1.

Of course, there are many interesting quantum gates other than the controlled-NOT.
However, in a sense the controlled-NoT and single qubit gates are the prototypes for all
other gates because of the following remarkable universality result: Any multiple qubit
logic gate may be composed from CNOT and single qubit gates. The proof is given in
Section 4.5, and is the quantum parallel of the universality of the NAND gate.

1.3.3 Measurements in bases other than the computational basis
We've described quantum measurements of a single qubit in the state «|0) + 3|1) as
vielding the result 0 or 1 and leaving the qubit in the corresponding state |0) or |1),
with respective probabilities |«|? and | 3| In fact, quantum mechanics allows somewhat
more versatility in the class of measurements that may be performed, although certainly
nowhere near enough to recover o and 3 from a single measurement!

Note that the states |0) and |1) represent just one of many possible choices of basis
states for a qubit. Another possible choice is the set |+) = (|0) + [1))/v2 and |-) =
(|0} — [1))/v2. An arbitrary state [¢)) = |0} + 3|1) can be re-expressed in terms of the
states |+) and |—):

0 = alo) + 51) = ol L gPI DL 00 By 02 )
V2 V2 V2 V2

It turns out that it is possible to treat the |+) and |—) states as though they were the com-

putational basis states, and measure with respect to this new basis. Naturally, measuring

with respect to the |[+), |—) basis results in the result ‘+” with probability |o+ 3|*/2 and

the result ‘" with probability | — 3|?/2, with corresponding post-measurement states

[+) and |—), respectively.

More generally, given any basis states |a) and |b) for a qubit, itis possible to express an
arbitrary state as a linear combination a|a) + 3|b) of those states. Furthermore, provided
the states are orthonormal, it is possible to perform a measurement with respect to
the |a), |b) basis, giving the result a with probability |a|* and b with probability |3,
The orthonormality constraint is necessary in order that |a|® + [3]* = 1 as we expect for
probabilities. In an analogous way it is possible in principle to measure a quantum system
of many qubits with respect to an arbitrary orthonormal basis. However, just because it
is possible in principle does not mean that such a measurement can be done easily, and
we return later to the question of how efficiently a measurement in an arbitrary basis can
be performed.

There are many reasons for using this extended formalism for quantum measure-
ments, but ultimately the best one is this: the formalism allows us to describe observed
experimental results, as we will see in our discussion of the Stern—Gerlach experiment
in Section 1.5.1. An even more sophisticated and convenient (but essentially equivalent)
formalism for describing quantum measurements is described in the next chapter, in
Section 2.2.3.

1.3.4 Quantum circuits
We've already met a few simple quantum circuits. Let’s look in a little more detail at
the elements of a quantum circuit. A simple quantum circuit containing three quantum
gates is shown in Figure 1.7. The circuit is to be read from left-to-right. Each line
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in the circuit represents a zire in the quantum circuit. This wire does not necessarily
correspond to a physical wire; it may correspond instead to the passage of time, or perhaps
to a physical particle such as a photon — a particle of light — moving from one location
to another through space. It is conventional to assume that the state input to the circuit
is a computational basis state, usually the state consisting of all |0)s. This rule is broken
frequently in the literature on quantum computation and quantum information, but it is
considered polite to inform the reader when this is the case.

The circuit in Figure 1,7 accomplishes a simple but useful task — it swaps the states
of the two qubits. To see that this circuit accomplishes the swap operation, note that the
sequence of gates has the following sequence of effects on a computational basis state
|a3 b))

|a7b> - |aaa€7‘b)
— la® (ad b),as b) = [basb)
— |b,(a @ by @ b) = |b,a), (1.20)

where all additons are done modulo 2. The effect of the circuit, therefore, is to inter-
change the state of the two qubits.

FdnY

VA

IV WL/

Figure 1.7. Circuit swapping two qubits, and an equivalent schematic symbol notation for this common and useful
circuit,

There are a few features allowed in classical circuits that are not usually present in
quantum circuits. First of all; we don’t allow ‘loops’, that is, feedback from one part of the
quantum circuit to another; we say the circuit is acyvelie. Second, classical circuits allow
wires to be ‘joined’ together, an operation known as FANIN, with the resulting single wire
containing the bitwise OR of the inputs. Obviously this operation is not reversible and
therefore not unitary, so we don’t allow FANIN in our quantum circuits, Third, the inverse
operation, FANOUT, whereby several copies of a bit are produced is also not allowed in
quantum circuits. In fact, it turns out that quantum mechanics forbids the copying of a
qubit, making the FANOUT operation impossible! We’ll see an example of this in the next
section when we attempt to design a circuit to copy a qubit.

As we proceed we'll introduce new quantum gates as needed. It's convenient to in-
troduce another convention about quantum circuits at this point. This convention is
illustrated in Figure 1.8. Suppose U is any unitary matrix acting on some number 7 of
qubits, so U can be regarded as a quantum gate on those qubits. Then we can define a
controlled-U gate which is a natural extension of the controlled-NOT gate. Such a gate
has a single control qubit, indicated by the line with the black dot, and n target qubits,
indicated by the boxed U. If the control qubit is set to 0 then nothing happens to the
target qubits, If the control qubit is set to 1 then the gate U/ is applied to the target qubits.
The prototypical example of the controlled-U gate is the controlled-NOT gate, which is
a controlled-U/ gate with U/ = X as illustrated in Figure 1.9.

Another important operation is measurement, which we represent by a ‘meter’ symbol,
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U

Figure 1.8. Controlled-U gate.

— X__

Figure 1.9. Two different representations for the controlled-NOT.

as shown in Figure 1.10. As previously described, this operation converts a single qubit
state 1) = «|0) + 3|1) into a probabilistic classical bit M (distinguished from a qubit by
drawing it as a double-line wire), which is 0 with probability |a|?, or 1 with probability

1A
) — - RR=

Figure 1.10. Quantum circuit symbol for measurement.

We shall find quantum circuits useful as models of all quantum processes, including
but not limited to computation, communication, and even quantum noise. Several simple
examples illustrate this below.

1.3.5 Qubit copying circuit?

The cNOT gate is useful for demonstrating one particularly fundamental property of
quantum information. Consider the task of copving a classical bit. This may be done
using a classical CNOT gate, which takes in the bit to copy (in some unknown state )
and a ‘scratchpad’ bit initialized to zero, as illustrated in Figure 1.11. The output is two
bits, both of which are in the same state x.

Suppose we try to copy a qubit in the unknown state |1/) = @ |0) + b|1) in the same
manner by using a CNOT gate. The input state of the two qubits may be written as

[a.m) +b|1)] 10) = a[00) + b]10), (1.21)

The function of CNOT is to negate the second qubit when the first qubit is 1, and thus
the output is simply a |[00) + b |11}). Have we successfully copied |¢)? That is, have we
created the state [10)[1))? In the case where |1/) = |0) or [t0) = |1) that is indeed what this
circuit does; it is possible to use quantum circuits to copy classical information encoded
as a |0) or a |1). However, for a general state |¢') we see that

1)) = a?[00) + abl01) + ab|10) + b*|11). (1.22)
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Figure 1.13. Quantum circuit for teleporting a qubit. The two top lines represent Alice’s system, while the bottom
line is Bob’s system. The meters represent measurement, and the double lines coming out of them carry classical
bits (recall that single lines denote qubits).

- % [al0)(00) + [11)) + B/1)(J00) +[11))] (1.29)

where we use the convention that the first two qubits (on the left) belong to Alice, and
the third qubit to Bob. As we explained previously, Alice’s second qubit and Bob’s qubit
start out in an EPR state. Alice sends her qubits through a ¢NOT gate, obtaining

f _ 1 fa
[03) = — [al0)(00) +[11))+ F1)(110) +01))] (1.30)

She then sends the first qubit through a Hadamard gate, obtaining
, 1
) = 3 [a((0) + [1))(]00) + 1)) + 3(0) = [1))(10) + [01))] -
(1.31)

This state may be re-written in the following way, simply by regrouping terms:
‘ 1
[z} = 5 [100) (al0) + B1)) +[01) (al1) + 5]0))
+110) (o) — BI1) + 1) (alt) - BJ0))] - (1.32)

This expression naturally breaks down into four terms. The first term has Alice’s qubits
in the state |00), and Bob’s qubit in the state «|0) + 3|1) — which is the original state
[40). If Alice performs a measurement and obtains the result 00 then Bob’s system will
be in the state [t)). Similarly, from the previous expression we can read off Bob’s post-
measurement state, given the result of Alice’s measurement:

00 — [1:5(00)) = [al0) + 3|1)] (1.33)
01— [1h5(01)) = [ )+ 6)0) } (1.34)
10— [¢5(10)) = [al0) = 8]1) (1.35)
11— [1(11)) = [a|1 5\0} (1.36)

Depending on Alice’s measurement outcome, Bob’s qubit will end up in one of these
four possible states. Of course, to know which state it is in, Bob must be told the result of
Alice’s measurement — we will show later that it is this fact which prevents teleportation
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from being used to transmit information faster than light. Once Bob has learned the mea-
surement outcome, Bob can ‘fix up’ his state, recovering 1), by applving the appropriate
quantum gate. For example, in the case where the measurement yields 00, Bob doesn’t
need to do anything. If the measurement is 01 then Bob can fix up his state by applying
the X gate. If the measurement is 10 then Bob can fix up his state by applying the Z
gate. If the measurement is 11 then Bob can fix up his state by applying first an X and
then a Z gate. Summing up, Bob needs to apply the transformation ZM XM (note how
time goes from left to right in circuit diagrams, but in matrix products terms on the right
happen first) to his qubit, and he will recover the state |)).

There are many interesting features of teleportation, some of which we shall return
to later in the book. For now we content ourselves with commenting on a couple of
aspects. First, doesn’t teleportation allow one to transmit quantum states faster than
light? This would be rather peculiar, because the theory of relativity implies that faster
than light information transfer could be used to send information backwards in time,
Fortunately, quantum teleportation does not enable faster than light communication,
because to complete the teleportation Alice must transmit her measurement result to
Bob over a classical communications channel. We will show in Section 2.4.3 that without
this classical communication, teleportation does not convey any information at all. The
classical channel is limited by the speed of light, so it follows that quantum teleportation
cannot be accomplished faster than the speed of light, resolving the apparent paradox.

A second puzzle about teleportation is that it appears to create a copy of the quan-
tum state being teleported, in apparent violation of the no-cloning theorem discussed in
Section 1.3.5. This violation is only illusory since after the teleportation process only the
target qubit is left in the state |¢0), and the original data qubit ends up in one of the
computational basis states |0) or |1), depending upon the measurement result on the first
qubit.

What can we learn from quantum teleportation? Quite a lot! It's much more than
just a neat trick one can do with quantum states. Quantum teleportation emphasizes the
interchangeability of different resources in quantum mechanics, showing that one shared
EPR pair together with two classical bits of communication is a resource at least the
equal of one qubit of communication. Quantum computation and quantum information
has revealed a plethora of methods for interchanging resources, many built upon quantum
teleportation. In particular, in Chapter 10 we explain how teleportation can be used to
build quantum gates which are resistant to the effects of noise, and in Chapter 12 we show
that teleportation is intimately connected with the properties of quantum error-correcting
codes. Despite these connections with other subjects, it is fair to say that we are only
beginning to understand zvhy it is that quantum teleportation is possible in quantum
mechanics; in later chapters we endeavor to explain some of the insights that make such
an understanding possible.

1.4 Quantum algorithms

What class of computations can be performed using quantum circuits? How does that class
compare with the computations which can be performed using classical logical circuits?
Can we find a task which a quantum computer may perform better than a classical
computer? In this section we investigate these questions, explaining how to perform
classical computations on quantum computers, giving some examples of problems for
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which quantum computers offer an advantage over classical computers, and summarizing
the known quantum algorithms,

1.4.1 Classical computations on a quantum computer

Can we simulate a classical logic circuit using a quantum circuit? Not surprisingly, the
answer to this question turns out to be ves. It would be very surprising if this were not
the case, as physicists believe that all aspects of the world around us, including classical
logic circuits, can ultimately be explained using quantum mechanics. As pointed out
earlier, the reason quantum circuits cannot be used to directly simulate classical circuits
is because unitary quantum logic gates are inherently rezersible, whereas many classical
logic gates such as the NAND gate are inherently irreversible.

Any classical circuit can be replaced by an equivalent circuit containing only reversible
elements, by making use of a reversible gate known as the Toffoli gate. The Toffoli gate
has three input bits and three output bits, as illustrated in Figure 1.14. T'wo of the bits are
control bits that are unaffected by the action of the Toffoli gate. The third bitis a target
bit that is flipped if both control bits are set to 1, and otherwise is left alone. Note that
applying the Toffoli gate twice to a set of bits has the effect (a,b,c) — (a,b,c & ab) —
(a. b, c), and thus the Toffoli gate is a reversible gate, since it has an inverse — itself.

Inputs Outputs
a b cla ¥ a L d a
0O 0 010 0 0
0O 0 170 0 1
0O 1 0|0 1 0 b O b
0O 1 170 1 1
I 0 01 0 0
1 0 1|1 0 1 A
11 0|1 1 1 ¢ c @ ab
1 1 1]1 1 0

Figure 1.14. Truth table for the Toffoli gate, and its circuit representation.

The Toffoli gate can be used to simulate NAND gates, as shown in Figure 1.15, and
can also be used to do FANOUT, as shown in Figure 1.16. With these two operations it
becomes possible to simulate all other elements in a classical circuit, and thus an arbitrary
classical circuit can be simulated by an equivalent reversible circuit.

The Toffoli gate has been described as a classical gate, but it can also be implemented
as a quantum logic gate. By definition, the quantum logic implementation of the Toffoli
gate simply permutes computational basis states in the same way as the classical Toffoli
gate. For example, the quantum Toffoli gate acting on the state [110) flips the third qubit
because the first two are set, resulting in the state [111). It is tedious but not difficult
to write this transformation out as an 8 by 8 matrix, I/, and verify explicitly that [V is
a unitary matrix, and thus the Toffoli gate is a legitimate quantum gate. The quantum
Toffoli gate can be used to simulate irreversible classical logic gates, just as the classical
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a L4 a

1 S¥ 1 & ab = —(ab)

Figure 1.15. Classical circuit implementing a NAND gate using a Toffoli gate, The top two bits represent the input
to the NAND, while the third bit is prepared in the standard state 1, sometimes known as an ancilla state. The
output from the NAND is on the third bit.

0 ¥, Gl

Figure 1.16. FANOUT with the Toffoli gate, with the second bit being the input to the FANOUT (and the other two
bits standard ancilla states), and the output from FANOUT appearing on the second and third bits.

Toffoli gate was, and ensures that quantum computers are capable of performing any
computation which a classical (deterministic) computer may do.

What if the classical computer is non-deterministic, that is, has the ability to generate
random bits to be used in the computation? Not surprisingly, it is easy for a quantum
computer to simulate this, To perform such a simulation it turns out to be sufficient to
produce random fair coin tosses, which can be done by preparing a qubit in the state
|0), sending it through a Hadamard gate to produce (|0) +[1))/v/2, and then measuring
the state. The result will be [0) or [1) with 50/50 probability. This provides a quantum
computer with the ability to efficiently simulate a non-deterministic classical computer.

Of course, if the ability to simulate classical computers were the only feature of quan-
tum computers there would be little pointin going to all the trouble of exploiting quantum
effects! The advantage of quantum computing is that much more powerful functions may
be computed using qubits and quantum gates. In the next few sections we explain how
to do this, culminating in the Deutsch—Jozsa algorithm, our first example of a quantum
algorithm able to solve a problem faster than any classical algorithm.

1.42 Quantum parallelism
Quantum parallelism is a fundamental feature of many quantum algorithms. Heuristi-
cally, and at the risk of over-simplifying, quantum parallelism allows quantum computers
to evaluate a function f(x) for many different values of & simultaneously. In this section
we explain how quantum parallelism works, and some of its limitations.
Suppose f(x) : {0,1} — {0,1} is a function with a one-bit domain and range. A
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convenient way of computing this function on a quantum computer is to consider a two
qubit quantum computer which starts in the state |z, y). With an appropriate sequence
of logic gates it is possible to transform this state into |z, y ¢ f(2)), where ¢ indicates
addition modulo 2; the first register is called the ‘data’ register, and the second register the
‘target’ register. We give the transformation defined by the map |z,y) — |z, y & f(z)) a
name, Uy, and note that it is easily shown to be unitary. If y = 0, then the final state of the
second qubit is just the value f(z). (In Section 3.2.5 we show that given a classical circuit
for computing f there is a quantum circuit of comparable efficiency which computes the

transformation U on a quantum computer. For our purposes it can be considered to be
a black box.)

Uy 1)
0) —v  yof(aH—

Figure 1.17. Quantum circuit for evaluating f(0) and f(1) simultaneously. Uy is the quantum circuit which takes
inputs like |z, y) to |z, y & f(z)).

Consider the circuit shown in Figure 1.17, which applies U/; to an input not in the
computational basis. Instead, the data register is prepared in the superposition (|0) +
|1})/\/§, which can be created with a Hadamard gate acting on |0). Then we apply Uy,
resulting in the state:

10, fO)) + 1, F(1))
V2 '

This is a remarkable state! The different terms contain information about both f(0) and
f(1); itis almost as if we have evaluated f(2) for two values of & simultaneously, a feature
known as ‘quantum parallelism’. Unlike classical parallelism, where multiple circuits each
built to compute f(x)are executed simultaneously, here a single f(x) circuitis emploved
to evaluate the function for multiple values of x simultaneously, by exploiting the ability
of a quantum computer to be in superpositions of different states.

(1.37)

This procedure can easily be generalized to functions on an arbitrary number of bits, by
using a general operation known as the Hadamard transform, or sometimes the Walsh—
Hadamard transform. This operation is just n Hadamard gates acting in parallel on n
qubits. IFor example, shown in 'igure 1.18 is the case n = 2 with qubits initially prepared
as |0), which gives

(IO) +|1>) (IU) +|1)) _ [00) +01) + [10) + |11)
V2 V2 2

as output. We write H®? to denote the parallel action of two Hadamard gates, and read
‘@’ as ‘tensor’. More generally, the result of performing the Hadamard transform on n

(1.38)
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possible for the two alternatives to 7nterfere with one another to yield some global property
of the function f, by using something like the Hadamard gate to recombine the different
alternatives, as was done in Deutsch’s algorithm. The essence of the design of many
quantum algorithms is that a clever choice of function and final transformation allows
efficient determination of useful global information about the function — information
which cannot be attained quickly on a classical computer.

1.44 The Deutsch—Jozsa algorithm

Deutsch’s algorithm is a simple case of a more general quantum algorithm, which we shall
refer to as the Deutsch—Jozsa algorithm. The application, known as Deutsch’s problem,
may be described as the following game. Alice, in Amsterdam, selects a number = from
0 to 2" — 1, and mails it in a letter to Bob, in Boston. Bob calculates some function
f(x) and replies with the result, which is either 0 or 1. Now, Bob has promised to use
a function f which is of one of two kinds; either f(a) is constant for all values of x,
or else f(x) is balanced, that is, equal to 1 for exactly half of all the possible 2, and 0
for the other half. Alice’s goal is to determine with certainty whether Bob has chosen a
constant or a balanced function, corresponding with him as little as possible. How fast
can she succeed?

In the classical case, Alice may only send Bob one value of 2 in each letter. At worst,
Alice will need to query Bob at least 2" /2 + 1 times, since she may receive 2" /2 (s before
finally getting a 1, telling her that Bob’s function is balanced. The best deterministic
classical algorithm she can use therefore requires 2"/2 + 1 queries. Note that in each
letter, Alice sends Bob n bits of information. Furthermore, in this example, physical
distance is being used to artificially elevate the cost of calculating f(z), but this is not
needed in the general problem, where f(x) may be inherently difficult to calculate.

If Bob and Alice were able to exchange qubits, instead of just classical bits, and if Bob
agreed to calculate f(x) using a unitary transform Uy, then Alice could achieve her goal
in just one correspondence with Bob, using the following algorithm.

Analogously to Deutsch’s algorithm, Alice has an n qubit register to store her query
in, and a single qubit register which she will give to Bob, to store the answer in. She
begins by preparing both her query and answer registers in a superposition state. Bob
will evaluate f(x) using quantum parallelism and leave the result in the answer register,
Alice then interferes states in the superposition using a Hadamard transform on the query
register, and finishes by performing a suitable measurement to determine whether f was
constant or balanced.

The specific steps of the algorithm are depicted in Figure 1.20. Let us follow the states
through this circuit. The input state

|40) = 10)7]1) (1.46)

is similar to that of Equation (1.41), but here the query register describes the state of n
qubits all prepared in the |0) state. After the Hadamard transform on the query register
and the Hadamard gate on the answer register we have

we 3, (e

ze{0,1}"

The query register is now a superposition of all values, and the answer register is in an
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Figure 1.20. Quantum circuit implementing the general Deutsch—Jozsa algorithm. The wire with a */” through it
represents a set of n qubits, similar to the common engineering notation.

evenly weighted superposition of 0 and 1. Next, the function f is evaluated (by Bob)
using Uy - |2,3) — |,y & f(2)), giving

Y@)|2) [10) —

Alice now has a set of qubits in which the result of Bob's function evaluation is stored
in the amplitude of the qubit superposition state. She now interferes terms in the super-
position using a Hadamard transform on the query register. To determine the result of
the Hadamard transform it helps to first calculate the effect of the Hadamard transtorm
on a state |z). By checking the cases 2 = () and = = 1 separately we see that for a single

qubit H|z) =3 _(=1)"%|z)/V2. Thus
D (DT L 2)

H®"xy, ... ) = = (1.49)
"This can be summarized more succinctly in the very useful equation
)"z
HE" ) = M? (1.50)

2 T

where x - 2 is the bitwise inner product of x and 2, modulo 2. Using this equation
and (1.48) we can now evaluate |13),

o2+ f(z) _
" —ZZ( IO [0 w51,

yen is

Alice now observes the query register. Note that the amplitude for the state |0
S (=1)/@ /2" Let's look at the two possible cases — f constant and f balanced — to
discern what happens. In the case where f is constant the amplitude for |[0)®" is +1 or
—1, depending on the constant value f(x) takes. Because |3} is of unit length it follows
that all the other amplitudes must be zero, and an observation will yield Os for all qubits
in the query register. If f is balanced then the positive and negative contributions to the
amplitude for [0)®™ cancel, leaving an amplitude of zero, and a measurement must yield
a result other than 0 on at least one qubit in the query register. Summarizing, if Alice
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measures all Os then the function is constant; otherwise the function is balanced. The
Deutsch—Jozsa algorithm is summarized below.

Algorithm: Deutsch—Jozsa

Inputs: (1) A black box Uy which performs the transformation

lz)|y) — |x)|y & f(z)), for 2 € {0,...,2" — 1} and f(2z) € {0,1}. Itis
promised that f(z) is either constant for all values of x, or else f(z) is balanced,
that is, equal to 1 for exactly half of all the possible x, and 0 for the other half.

Outputs: 0 if and only if f is constant.

Runtime: One evaluation of Uy. Always succeeds.

Procedure:
1. |0) en | 1) initialize state

1 — |0> _ |1> create su iti i

perposition using
2. - \/F Z |T> [ \/E :| Hadamard gates
=0
fay o [ 10 —11) o
3. — Z 1) | \/ calculate function f using Uy
1)z =@ -
4, — ( ) | ) | ) _| ) perform Hadamard transform
ry -

5. — Z measure to obtain final output 2

We've shown that a quantum computer can solve Deutsch’s problem with one evalu-
ation of the function f compared to the classical requirement for 2" /2 + 1 evaluations.
This appears impressive, but there are several important caveats. First, Deutsch’s prob-
lem is not an especially important problem; it has no known applications. Second, the
comparison between classical and quantum algorithms is in some ways an apples and
oranges comparison, as the method for evaluating the function is quite different in the
two cases. Third, if Alice is allowed to use a probabilistic classical computer, then by
asking Bob to evaluate f(z) for a few randomly chosen x she can very quickly determine
with high probability whether f is constant or balanced. This probabilistic scenario is
perhaps more realistic than the deterministic scenario we have been considering. Despite
these caveats, the Deutsch—Jozsa algorithm contains the seeds for more impressive quan-
tum algorithms, and it is enlightening to attempt to understand the principles behind its
operation.

Exercise 1.1: (Probabilistic classical algorithm) Suppose that the problem is not
to distinguish between the constant and balanced functions with certainty, but
rather, with some probability of error ¢ < 1/2. What is the performance of the
best classical algorithm for this problem?

1.4.5 Quantum algorithms summarized
The Deutsch—Jozsa algorithm suggests that quantum computers may be capable of solving
some computational problems much more efficiently than classical computers. Unfortu-
nately, the problem it solves is of little practical interest. Are there more interesting
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problems whose solution may be obtained more efficiently using quantum algorithms?
What are the principles underlying such algorithms? What are the ultimate limits of a
quantum computer’s computational power?

Broadly speaking, there are three classes of quantum algorithms which provide an
advantage over known classical algorithms. First, there is the class of algorithms based
upon quantum versions of the Fourier transform, a tool which is also widely used in
classical algorithms. The Deutsch—Jozsa algorithm is an example of this tvpe of algo-
rithm, as are Shor’s algorithms for factoring and discrete logarithm. The second class
of algorithms is quantum search algorithms. The third class of algorithms is quantum
simulation, whereby a quantum computer is used to simulate a quantum system. We now
briefly describe each of these classes of algorithms, and then summarize what is known
or suspected about the computational power of quantum computers.

Quantum algorithms based upon the Fourier transform

The discrete Fourier transform is usually described as transforming a set g, ..., zn_
of N complex numbers into a set of complex numbers 1. ..., yn—_ defined by
Yp = Z eZ?n_]k/N . (152)
\/N 7=0

Of course, this transformation has an enormous number of applications in many branches
of science; the Fourier transformed version of a problem is often easier than the original
problem, enabling a solution.

The Fourier transform has proved so useful that a beautiful generalized theory of
Fourier transforms has been developed which goes beyond the definition (1.52). This
general theory involves some technical ideas from the character theory of finite groups,
and we will not attempt to describe it here. What is important is that the Hadamard
transform used in the Deutsch—Jozsa algorithm is an example of this generalized class
of Fourier transforms. Moreover, many of the other important quantum algorithms also
involve some type of Fourier transform.

The most important quantum algorithms known, Shor’s fast algorithms for factoring
and discrete logarithm, are two examples of algorithms based upon the Fourier trans-
form defined in Equation (1.52). The Equation (1.52) does not appear terribly quantum
mechanical in the form we have written it. Imagine, however, that we define a linear
transformation U on n qubits by its action on computational basis states |j), where
0 S j S 2" — 17

2" —1

1) — \/2_n Z XTI ey (1.53)

It can be checked that this transformation is unitary, and in fact can be realized as a
quantum circuit. Moreover, if we write out its action on superpositions,

m my |2 m

> i) — \/2,, SO e k) = Y k) (1.54)
k=0

§=0 k=0 | j=0

we see that it corresponds to a vector notation for the Fourier transform (1.52) for the
case N = 2",
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How quickly can we perform the Fourier transform? Classically, the fast Fourier trans-
form takes roughly N log(N) = n2" steps to Fourier transform N = 2" numbers. On a
quantum computer, the Fourier transform can be accomplished using about log’(N) = n?
steps, an exponential saving! The quantum circuit to do this is explained in Chapter 3.

This result seems to indicate that quantum computers can be used to very quickly
compute the Fourier transform of a vector of 2" complex numbers, which would be
fantastically useful in a wide range of applications. However, that is not exactly the case;
the Fourier transform is being performed on the information ‘hidden’ in the amplitudes
of the quantum state. This information is not directly accessible to measurement. The
catch, of course, is that if the output state is measured, it will collapse each qubit into
the state |0) or |1), preventing us from learning the transform result y;, directly. This
example speaks to the heart of the conundrum of devising a quantum algorithm. On the
one hand, we can perform certain calculations on the 2™ amplitudes associated with n
qubits far more efficiently than would be possible on a classical computer. But on the
other hand, the results of such a calculation are not available to us if we go about it in
a straightforward manner. More cleverness is required in order to harness the power of
quantum computation,

Fortunately, it does turn out to be possible to utilize the quantum Fourier transform
to efficiently solve several problems that are believed to have no efficient solution on a
classical computer. These problems include Deutsch’s problem, and Shor’s algorithms for
discrete logarithm and factoring. This line of thought culminated in Kitaev’s discovery
of a method to solve the Abelian stabilizer problem, and the generalization to the hidden
subgroup problem,

Let f be a function from a finitely generated group G to a finite set X such that
[ is constant on the cosets of a subgroup K, and distinct on each coset. Given a
quantum black box for performing the unitary transform U|g) |h) = |g)|h & f(9)),
for g € G, h € X, and & an appropriately chosen binary operation on X, find a
generating set for K.

The Deutsch—Jozsa algorithm, Shor’s algorithms, and related ‘exponentially fast’ quan-
tum algorithms can all be viewed as special cases of this algorithm. The quantum Fourier
transform and its applications are described in Chapter 5.

Quantum search algorithms

A completely different class of algorithms is represented by the quantum search algorithm,
whose basic principles were discovered by Grover. The quantum search algorithm solves
the following problem: Given a search space of size IV, and no prior knowledge about the
structure of the information in it, we want to find an element of that search space satsfying
a known property. How long does it take to find an element satisfying that property?
Classically, this problem requires approximately N operations, but the quantum search
algorithm allows it to be solved using approximately /N operations.

The quantum search algorithm offers only a quadratic speedup, as opposed to the more
impressive exponential speedup offered by algorithms based on the quantum Fourier
transform. However, the quantum search algorithm is still of great interest, since search-
ing heuristics have a wider range of application than the problems solved using the quan-
tum Fourier transform, and adaptations of the quantum search algorithm may have utility
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of especial importance for two reasons. First, there are thousands of problems, many
highly important, that are known to be NP-complete. Second, any given NP-complete
problem is in some sense ‘at least as hard’ as all other problems in NP. More precisely,
an algorithm to solve a specific NP-complete problem can be adapted to solve any other
problem in NP, with a small overhead. In particular, if P ## NP, then it will follow that
no NP-complete problem can be efficiently solved on a classical computer.

It is not known whether quantum computers can be used to quickly solve all the
problems in NP, despite the fact that they can be used to solve some problems — like
factoring — which are believed by many people to be in NP but not in P. (Note that
factoring is not known to be NP-complete, otherwise we would already know how to
efficiently solve all problems in NP using quantum computers.) It would certainly be
very exciting if it were possible to solve all the problems in NP efficiently on a quantum
computer. There is a very interesting negative result known in this direction which
rules out using a simple variant of quantum parallelism to solve all the problems in
NP. Specifically, one approach to the problem of solving problems in NP on a quantum
computer is to try to use some form of quantum parallelism to search in parallel through
all the possible solutions to the problem. In Section 6.6 we will show that no approach
based upon such a search-based methodology can yield an efficient solution to all the
problems in NP. While it is disappointing that this approach fails, it does not rule out
that some deeper structure exists in the problems in NP that will allow them all to be
solved quickly using a quantum computer.

P and NP are just two of a plethora of complexity classes that have been defined.
Another important complexity class is PSPACE. Roughly speaking, PSPACE consists
of those problems which can be solved using resources which are few in spatial size (that
1s, the computer is ‘small’), but not necessarily in time (‘long’ computations are fine).
PSPACE is believed to be strictly larger than both P and NP although, again, this has
never been proved. Finally, the complexity class BPP is the class of problems that can be
solved using randomized algorithms in polynomial time, if a bounded probability of error
(sav 1/4) is allowed in the solution to the problem. BPP is widely regarded as being, even
more so than P, the class of problems which should be considered efficiently soluble on
a classical computer. We have elected to concentrate here on P rather than BPP because
P has been studied in more depth, however many similar ideas and conclusions arise in
connection with BPP.

What of quantum complexity classes? We can define BQP to be the class of all com-
putational problems which can be solved efficiently on a quantum computer, where a
bounded probability of error is allowed. (Strictly speaking this makes BQP more analo-
gous to the classical complexity class BPP than to P, however we will ignore this subtlety
for the purposes of the present discussion, and treat it as the analogue of P.) Exactly
where BQP fits with respect to P, NP and PSPACE is as yet unknown. What is known
is that quantum computers can solve all the problems in P efficiently, but that there
are no problems outside of PSPACE which they can solve efficiently. Therefore, BQP
lies somewhere between P and PSPACE, as illustrated in Figure 1.21. An important
implication is that if it is proved that quantum computers are strictly more powerful than
classical computers, then it will follow that P is not equal to PSPACE. Proving this latter
result has been attempted without success by many computer scientists, suggesting that
it may be non-trivial to prove that quantum computers are more powerful than classical
computers, despite much evidence in favor of this proposition.
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PSPACE

Figure 1.21. The relationship between classical and quantum complexity classes. Quantum computers can quickly
solve any problem in P, and it is known that they can’t solve problems outside of PSPACE quickly. Where
quantum computers fit between P and PSPACE is not known, in part because we don’t even know whether
PSPACE is bigger than P!

We won’t speculate further on the ultimate power of quantum computation now,
preferring to wait until after we have better understood the principles on which fast
quantum algorithms are based, a topic which occupies us for most of Part II of this
book. What is already clear is that the theory of quantum computation poses interesting
and significant challenges to the traditional notions of computation. What makes this an
important challenge is that the theoretical model of quantum computation is believed
to be experimentally realizable, because — to the best of our knowledge — this theory is
consistent with the way Nature works. If this were not so then quantum computation
would be just another mathematical curiosity.

1.5 Experimental quantum information processing

Quantum computation and quantum information is a wonderful theoretical discovery,
but its central concepts, such as superpositions and entanglement, run counter to the
intuition we garner from the everyday world around us. What evidence do we have that
these ideas truly describe how Nature operates? Will the realization of large-scale quantum
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computers be experimentally feasible? Or might there be some principle of physics which
fundamentally prohibits their eventual scaling? In the next two sections we address these
questions. We begin with a review of the famous ‘Stern—Gerlach’ experiment, which
provides evidence for the existence of qubits in Nature. We then widen our scope,
addressing the broader problem of how to build practical quantum information processing
systems.

1.5.1 The Stern—Gerlach experiment
The qubitis a fundamental element for quantum computation and quantum information,
How do we know that systems with the properties of qubits exist in Nature? At the time
of writing there is an enormous amount of evidence that this is so, but in the early days
of quantum mechanics the qubit structure was not at all obvious, and people struggled
with phenomena that we may now understand in terms of qubits, that is, in terms of two
level quantum systems.

A decisive (and very famous) early experiment indicating the qubit structure was
conceived by Stern in 1921 and performed with Gerlach in 1922 in Frankfurt. In the
original Stern—Gerlach experiment, hot atoms were ‘beamed’ from an oven through a
magnetic field which caused the atoms to be deflected, and then the position of each atom
was recorded, as illustrated in Figure 1.22. The original experiment was done with silver
atoms, which have a complicated structure that obscures the effects we are discussing.
What we describe below actually follows a 1927 experiment done using hydrogen atoms.
The same basic effect is observed, but with hydrogen atoms the discussion is easier
to follow. Keep in mind, though, that this privilege wasn’t available to people in the
early 1920s, and they had to be very ingenious to think up explanations for the more
complicated effects they observed.

Hydrogen atoms contain a proton and an orbiting electron. You can think of this elec-
tron as a little ‘electric current’ around the proton. This electric current causes the atom
to have a magnetic field; each atom has what physicists call a ‘magnetic dipole moment’.
As a result each atom behaves like a little bar magnet with an axis corresponding to the
axis the electron is spinning around. T'hrowing little bar magnets through a magnetic field
causes the magnets to be deflected by the field, and we expect to see a similar deflection
of atoms in the Stern—Gerlach experiment.

How the atom is deflected depends upon both the atom’s magnetic dipole moment —
the axis the electron is spinning around — and the magnetic field generated by the Stern—
Gerlach device. We won’t go through the details, but suffice to say that by constructing
the Stern—Gerlach device appropriately, we can cause the atom to be deflected by an
amount that depends upon the Z component of the atom’s magnetic dipole moment,
where Z is some fixed external axis.

Two major surprises emerge when this experiment is performed. First, since the
hot atoms exiting the oven would naturally be expected to have their dipoles oriented
randomly in every direction, it would follow that there would be a continuous distribution
of atoms seen at all angles exiting from the Stern-Gerlach device. Instead, what is seen
is atoms emerging from a discrete set of angles. Physicists were able to explain this by
assuming that the magnetic dipole moment of the atoms is quantized, that is, comes in
discrete multiples of some fundamental amount.

This observation of quantization in the Stern—Gerlach experiment was surprising to
physicists of the 1920s, but not completely astonishing because evidence for quantization
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effects in other systems was becoming widespread at that time. What was truly surpris-
ing was the number of peaks seen in the experiment. The hvdrogen atoms being used
were such that they should have had zero magnetic dipole moment. Classically, this is
surprising in itself] since it corresponds to no orbital motion of the electron, but based
on what was known of quantum mechanics at that time this was an acceptable notion.
Since the hydrogen atoms would therefore have zero magnetic moment, it was expected
that only one beam of atoms would be seen, and this beam would not be deflected by
the magnetic field. Instead, two beams were seen, one deflected up by the magnetic field,
and the other deflected down!

This puzzling doubling was explained after considerable effort by positing that the
electron in the hydrogen atom has associated with it a quantity called spin. This spin
is not in any way associated to the usual rotational motion of the electron around the
proton; it is an entirely new quantity to be associated with an electron. The great physicist
Heisenberg labeled the idea ‘brave’ at the time it was suggested, and itis a brave idea, since
it introduces an essentially new physical quantity into Nature. The spin of the electron
is posited to make an extra contribution to the magnetic dipole moment of a hydrogen
atom, in addition to the contribution due to the rotational motion of the electron.

— |+2)

oven > A

— 1-2)

Figure 1.22. Abstract schematic of the Stern—Gerlach experiment. Hot hydrogen atoms are beamed from an oven
through a magnetic field, causing a deflection either up (| + Z)) or down (| — Z)).

What is the proper description of the spin of the electron? As a first guess, we might
hypothesize that the spin is specified by a single bit, telling the hydrogen atom to go up or
down. Additional experimental results provide further useful information to determine if
this guess needs refinement or replacement. Let’s represent the original Stern—Gerlach
apparatus as shown in Figure 1.22. Its outputs are two beams of atoms, which we shall
call |[+Z) and | — Z). (We're using suggestive notation which looks quantum mechanical,
but of course you’re free to use whatever notation vou prefer.) Now suppose we cascade
two Stern—Gerlach apparatus together, as shown in Figure 1.23, We arrange it so that the
second apparatus is tipped sideways, so the magnetic field deflects atoms along the I axis.
In our thought-experiment we’ll block off the | — Z) output from the first Stern—Gerlach
apparatus, while the | + Z) output is sent through a second apparatus oriented along the
& axis. A detector is placed at the final output to measure the distribution of atoms along
the & axis.

A classical magnetic dipole pointed in the +Z direction has no net magnetic moment
in the & direction, so we might expect that the final output would have one central peak.
However, experimentally it is observed that there are two peaks of equal intensity! So
perhaps these atoms are peculiar, and have definite magnetic moments along each axis,
independently, That is, maybe each atom passing through the second apparatus can be
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Figure 1.23. Cascaded Stern—Gerlach measurements.

described as being in a state we might write as |+ Z)| + X) or |+ Z)| — X)), to indicate
the two values for spin that might be observed.

+2) [+X) _ |+Z)
oven . A X A
=2 X
— -2

Figure 1.24. Three stage cascaded Stern—Gerlach measurements.

Another experiment, shown in Figure 1.24, can test this hypothesis by sending one
beam of the previous output through a second Z oriented Stern—Gerlach apparatus. 1f
the atoms had retained their | + Z) orientation, then the output would be expected to
have only one peak, at the | + Z) output. However, again two beams are observed at
the final output, of equal intensity. Thus, the conclusion would seem to be that contrary
to classical expectations, a | + Z) state consists of equal portions of | + X) and | — X))
states, and a | + X) state consists of equal portions of | + Z) and | — Z) states. Similar
conclusions can be reached if the Stern—Gerlach apparatus is aligned along some other
axis, like the ¢ axis.

The qubit model provides a simple explanation of this experimentally observed be-
havior. Let |0) and |1) be the states of a qubit, and make the assignments

|+ Z) — 10) (1.56)
| = Z) < |1) (1.57)
|+ X) — (j0) + [1))/V2. (1.58)
| = X) « ([0) — 1))/v2 (1.59)

Then the results of the cascaded Stern—Gerlach experiment can be explained by assuming
that the Z Stern—Gerlach apparatus measures the spin (that is, the qubit) in the computa-
tional basis [0}, [1}, and the & Stern—Gerlach apparatus measures the spin with respect to
the basis (|0) +[1))/v/2,(|0) — [1))/v/2. For example, in the cascaded 3--% experiment,
if we assume that the spins are in the state |+ Z) = [0) = (| + X) + | — X))/V/2 after
exiting the first Stern—Gerlach experiment, then the probability for obtaining | + X)
out of the second apparatus is 1/2, and the probability for | — X) is 1 /2. Similarly, the
probability for obtaining | + Z) out of the third apparatus is 1/2. A qubit model thus
properly predicts results from this type of cascaded Stern—Gerlach experiment.
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material that needs to be highly secure. The uses of quantum teleportation are perhaps
more open to question. We will see in Chapter 12 that teleportation may be an extremely
useful primitive for transmitting quantum states between distant nodes in a network, in
the presence of noise. The idea is to focus one’s efforts on distributing EPR pairs between
the nodes that wish to communicate. The EPR pairs may be corrupted during commu-
nication, but special ‘entanglement distillation’ protocols can then be used to ‘clean up’
the EPR pairs, enabling them to be used to teleport quantum states from one location
to another. In fact, procotols based upon entanglement distillation and teleportation of-
fer performance superior to more conventional quantum error-correction techniques in
enabling noise free communication of qubits.

What of the medium-scale? A promising medium-scale application of quantum in-
formation processing is to the simulation of quantum systems. To simulate a quantum
system containing even a few dozen ‘qubits’ (or the equivalent in terms of some other
basic system) strains the resources of even the largest supercomputers. A simple calcu-
lation is instructive. Suppose we have a system containing 50 qubits. To describe the
state of such a system requires 2°° 2z 10" complex amplitudes. If the amplitudes are
stored to 128 bits of precision, then it requires 256 bits or 32 bytes in order to store each
amplitude, for a total of 32 x 10" bytes of information, or about 32 thousand terabytes
of information, well beyond the capacity of existing computers, and corresponding to
about the storage capacity that might be expected to appear in supercomputers during
the second decade of the twenty-first century, presuming that Moore’s law continues on
schedule. 90 qubits at the same level of precision requires 32 x 10%” bytes, which, even
if implemented using single atoms to represent bits, would require kilograms (or more)
of matter,

How useful will quantum simulations be? It seems likely that conventional methods will
still be used to determine elementary properties of materials, such as bond strengths and
basic spectroscopic properties. However, once the basic properties are well understood,
it seems likely that quantum simulation will be of great utility as a laboratory for the
design and testing of properties of novel molecules. In a conventional laboratory setup,
many different types of ‘hardware’ — chemicals, detectors, and so on — may be required
to test a wide variety of possible designs for a molecule. On a quantum computer, these
different types of hardware can all be simulated in software, which is likely to be much
less expensive and much faster. Of course, final design and testing must be performed
with real physical systems; however, quantum computers may enable a much larger range
of potential designs to be explored and evaluated en route to a better final design. It is
interesting to note that such ab initio calculations to aid in the design of new molecules
have been attempted on classical computers; however, they have met with limited success
due to the enormous computational resources needed to simulate quantum mechanics on a
classical computer. Quantum computers should be able to do much better in the relatively
near future.

What of large-scale applications? Aside from scaling up applications like quantum
simulation and quantum cryptography, relatively few large-scale applications are known:
the factoring of large numbers, taking discrete logarithms, and quantum searching. In-
terest in the first two of these derives mainly from the negative effect they would have
of limiting the viability of existing public key cryptographic systems. (They might also
be of substantial practical interest to mathematicians interested in these problems sim-
ply for their own sake.) So it does not seem likely that factoring and discrete logarithm
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will be all that important as applications for the long run. Quantum searching may be
of tremendous use because of the wide utility of the search heuristic, and we discuss
some possible applications in Chapter 6. What would really be superb are many more
large-scale applications of quantum information processing. This is a great goal for the
future!

Given a path of potential applications for quantum information processing, how can it
be achieved in real physical systems? At the small scale of a few qubits there are already
several working proposals for quantum information processing devices. Perhaps the easiest
to realize are based upon optical techniques, that is, electromagnetic radiation. Simple
devices like mirrors and beamsplitters can be used to do elementary manipulations of
photons. Interestingly, a major difficulty has been producing single photons on demand;
experimentalists have instead opted to use schemes which produce single photons ‘every
now and then’; at random, and wait for such an event to occur. Quantum cryptography,
superdense coding, and quantum teleportation have all been realized using such optical
techniques. A major advantage of the optical techniques is that photons tend to be highly
stable carriers of quantum mechanical information. A major disadvantage is that photons
don’t directly interact with one another. Instead, the interaction has to be mediated by
something else, like an atom, which introduces additional noise and complications into
the experiment. An effective interaction between two photons is set up, which essentially
works in two steps: photon number one interacts with the atom, which in turn interacts
with the second photon, causing an overall interaction between the two photons.

An alternative scheme is based upon methods for trapping different types of atom: there
is the zon trap, in which a small number of charged atoms are trapped in a confined space;
and neutral atom traps, for trapping uncharged atoms in a confined space. Quantum
information processing schemes based upon atom traps use the atoms to store qubits.
Electromagnetic radiation also shows up in these schemes, but in a rather different way
than in what we referred to as the ‘optical’ approach to quantum information processing.
In these schemes, photons are used to manipulate the information stored in the atoms
themselves, rather than as the place the information is stored. Single qubit quantum
gates can be performed by applying appropriate pulses of electromagnetic radiation to
individual atoms., Neighboring atoms can interact with one another via (for example)
dipole forces that enable quantum gates to be accomplished. Moreover, the exact nature of
the interaction between neighboring atoms can be modified by applying appropriate pulses
of electromagnetic radiation to the atoms, giving the experimentalist control over what
gates are performed in the system. Finally, quantum measurement can be accomplished in
these systems using the long established quantum jumps technique, which implements
with superb accuracy the measurements in the computational basis used for quantum
computation.

Another class of quantum information processing schemes is based upon Nuclear
Magnetic Resonance, often known by its initials, NMR. These schemes store quantum
information in the nuclear spin of atoms in a molecule, and manipulate that information
using electromagnetic radiation. Such schemes pose special difficulties, because in NMR
it is not possible to directly access individual nuclei. Instead, a huge number (typically
around 10") of essentially identical molecules are stored in solution. Electromagnetic
pulses are applied to the sample, causing each molecule to respond in roughly the same
way. You should think of each molecule as being an independent computer, and the
sample as containing a huge number of computers all running in parallel (classically).
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NMR quantum information processing faces three special difficulties that make it rather
different from other quantum information processing schemes. First, the molecules are
typically prepared by letting them equilibrate at room temperature, which is so much
higher than typical spin flip energies that the spins become nearly completely randomly
oriented. This fact makes the initial state rather more ‘noisy’ than is desirable for quantum
information processing. How this noise may be overcome is an interesting story that we
tell in Chapter 7. A second problem is that the class of measurements that may be
performed in NMR falls well short of the most general measurements we would like to
perform in quantum information processing. Nevertheless, for many instances of quantum
information processing the class of measurements allowed in NMR is sufficient. Third,
because molecules cannot be individually addressed in NMR you might ask how itis that
individual qubits can be manipulated in an appropriate way. Fortunately, different nuclet
in the molecule can have different properties that allow them to be individually addressed
— or at least addressed at a sufficiently fine-grained scale to allow the operations essential
for quantum computation,

Many of the elements required to perform large-scale quantum information processing
can be found in existing proposals: superb state preparation and quantum measurements
can be performed on a small number of qubits in the ion trap; superb dynamics can be
performed in small molecules using NMR; fabrication technology in solid state systems
allows designs to be scaled up tremendously. A single system having all these elements
would be a long way down the road to a dream quantum computer. Unfortunately, all
these systems are very different, and we are many, many vears from having large-scale
quantum computers. However, we believe that the existence of all these properties in
existing (albeit different) systems does bode well for the long-term existence of large-
scale quantum information processors. Furthermore, it suggests that there is a great deal
of merit to pursuing iybrid designs which attempt to marry the best features of two or
more existing technologies. For example, there is much work being done on trapping
atoms inside electromagnetic cavities. This enables flexible manipulation of the atom
inside the cavity via optical techniques, and makes possible real-time feedback control of
single atoms in ways unavailable in conventional atom traps.

To conclude, note that it is important not to assess quantum information processing
as though it were just another technology for information processing. For example, it
is tempting to dismiss quantum computation as yet another technological fad in the
evolution of the computer that will pass in time, much as other fads have passed — for
example, the ‘bubble memories’ widely touted as the next big thing in memory during the
carly 1980s. This is a mistake, since quantum computation is an abstract paradigm for
information processing that may have many different implementations in technology. One
can compare two different proposals for quantum computing as regards their technological
merits — it makes sense to compare a ‘good’ proposal to a ‘bad’ proposal — however even
a very poor proposal for a quantum computer is of a different qualitative nature from a
superb design for a classical computer.

1.6 Quantum information

The term ‘quantum information’ is used in two distinct ways in the field of quantum
computation and quantum information. The first usage is as a broad catch-all for all
manner of operations that might be interpreted as related to information processing
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using quantum mechanics. This use encompasses subjects such as quantum computation,
quantum teleportation, the no-cloning theorem, and virtually all other topics in this book.

The second use of ‘quantum information’ is much more specialized: it refers to the
study of elementary quantum information processing tasks. It does not typically include,
for example, quantum algorithm design, since the details of specific quantum algorithms
are beyond the scope of ‘elementary’. To avoid confusion we will use the term ‘quantum
information theory’ to refer to this more specialized field, in parallel with the widely
used term ‘(classical) information theory’ to describe the corresponding classical field.
Of course, the term ‘quantum information theory’ has a drawback of its own — it might
be seen as implying that theoretical considerations are all that matter! Of course, this
is not the case, and experimental demonstration of the elementary processes studied by
quantum information theory is of great interest,

The purpose of this section is to introduce the basic ideas of quantum information
theory. Even with the restriction to elementary quantum information processing tasks,
quantum information theory may look like a disordered zoo to the beginner, with many
apparently unrelated subjects falling under the ‘quantum information theory” rubric. In
part, that’s because the subject is still under development, and it’s not vet clear how all
the pieces fit together. However, we can identify a few fundamental goals uniting work
on quantum information theory:

(1) Identify elementary classes of static resources in quantum mechanics. An
example is the qubit. Another example is the bit; classical physics arises as a special
case of quantum physics, so it should not be surprising that elementary static
resources appearing in classical information theory should also be of great relevance
in quantum information theory. Yet another example of an elementary class of
static resources is a Bell state shared between two distant parties,

(2) Identify elementary classes of dynamical processes in quantum mechanics.
A simple example is memory, the ability to store a quantum state over some period
of time. Less trivial processes are quantum information transmission between two
parties, Alice and Bob; copying (or trying to copy) a quantum state, and the process
of protecting quantum information processing against the effects of noise.

(3) Quantify resource tradeoffs incurred performing elementary dynamical
processes. For example, what are the minimal resources required to reliably
transfer quantum information between two parties using a noisy communications
channel?

Similar goals define classical information theory; however, quantum information theory
is broader in scope than classical information theory, for quantum information theory
includes all the static and dynamic elements of classical information theory, as well as
additional static and dynamic elements.

The remainder of this section describes some examples of questions studied by quan-
tum information theory, in each case emphasizing the fundamental static and dynamic
elements under consideration, and the resource tradeoffs being considered. We begin with
an example that will appear quite familiar to classical information theorists: the problem
of sending classical information through a quantum channel. We then begin to branch out
and explore some of the new static and dynamic processes present in quantum mechan-
ics, such as quantum error-correction, the problem of distinguishing quantum states, and
entanglement transformation. The chapter concludes with some reflections on how the
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tools of quantum information theory can be applied elsewhere in quantum computation
and quantum information.

1.6.1 Quantum information theory: example problems
Classical information through quantum channels
The fundamental results of classical information theory are Shannon’s noiseless channel
coding theorem and Shannon’s noisy channel coding theovem. The noiseless channel
coding theorem quantifies how many bits are required to store information being emitted
by a source of information, while the noisy channel coding theorem quantifies how much
information can be reliably transmitted through a noisy communications channel.

What do we mean by an information source? Defining this notion is a fundamental
problem of classical and quantum information theory, one we’ll re-examine several times.
For now, let’s go with a provisional definition: a classical information source is described
by a set of probabilities p;, 7 = 1,2,...,d. Each use of the source results in the ‘letter’
J being emitted, chosen at random with probability p;, independently for each use of
the source. For instance, if the source were of English text, then the numbers j might
correspond to letters of the alphabet and punctuation, with the probabilities p; giving
the relative frequencies with which the different letters appear in regular English text.
Although it is not true that the letters in English appear in an independent fashion, for
our purposes it will be a good enough approximation.

Regular English text includes a considerable amount of redundancy, and it is possible to
exploit that redundancy to compress the text. For example, the letter ‘e’ occurs much more
frequently in regular English text than does the letter ‘z’. A good scheme for compressing
English text will therefore represent the letter ‘e’ using fewer bits of information than
it uses to represent ‘z’. Shannon’s noiseless channel coding theorem quantifies exactly
how well such a compression scheme can be made to work. More precisely, the noiseless
channel coding theorem tells us that a classical source described by probabilities p; can be
compressed so that on average each use of the source can be represented using H(p;) bits
of information, where H(p;) = — Z;, p;log(p;) is a function of the source probability
distribution known as the Shannon entropy. Moreover, the noiseless channel coding
theorem tells us that to attempt to represent the source using fewer bits than this will
result in a high probability of error when the information is decompressed. (Shannon’s
noiseless channel coding theorem is discussed in much greater detail in Chapter 12.)

Shannon’s noiseless coding theorem provides a good example where the goals of infor-
mation theory listed earlier are all met. T'wo static resources are identified (goal number 1):
the bit and the information source. A two-stage dynamic process is identified (goal 2),
compressing an information source, and then decompressing to recover the information
source. Finally a quantitative criterion for determining the resources consumed (goal 3)
by an optimal data compression scheme is found.

Shannon’s second major result, the noisy channel coding theorem, quantifies the
amount of information that can be reliably transmitted through a noisy channel. In par-
ticular, suppose we wish to transter the information being produced by some information
source to another location through a noisy channel. That location may be at another point
in space, or at another point in time — the latter is the problem of storing information
in the presence of noise. The idea in both instances is to encode the information being
produced using error-correcting codes, so that any noise introduced by the channel can
be corrected at the other end of the channel. The way error-correcting codes achieve this



Quantum information 55

and (|0) + [1))/v2 with probability 1 — p can be reliably compressed using fewer than
H(p,1 — p) qubits per use of the source!

The basic intuition for this decrease in resources required can be understood quite
casily. Suppose the source emitting states |0) with probability p and (|0) + [1))/v/2 with
probability 1 — p is used a large number 7 times. Then by the law of large numbers,
with high probability the source emits about np copies of |[0) and n(l — p) copies of
(j0) + |1))/\/§ That is, it has the form

- |O> + |1>)®’n(|—1”) 160
e (B2 (1.60)

up to re-ordering of the systems involved. Suppose we expand the product of |0) + [1)
terms on the right hand side. Since n(l — p) is large, we can again use the law of large
numbers to deduce that the terms in the product will be roughly one-half |0)s and one-
half [1)s. That is, the |0) + |1) product can be well approximated by a superposition of
states of the form

‘0)@)“{1,@)/2'1>®n(l—p)/2' (161)

Thus the state emitted by the source can be approximated as a superposition of terms of
the form

‘0>®n(1+p}/2|1)@”(1*}7)/‘2_ (1.62)

How many states of this form are there? Roughly n choose n(1 + p)/2, which by Stir-
ling’s approximation is equal to N = 2"HI050/20-)/21 A simple compression method
then is to label all states of the form (1.62) |¢;) through |cy). It is possible to per-
form a unitary transform on the n qubits emitted from the source that takes |c;) to
7|0y En—nHIA+n/20-/2] since jis an nH[(1 + p)/2, (1 — p)/2] bit number. The com-
pression operation is to perform this unitary transformation, and then drop the final
n—nH[(1+p)/2,(1 —p)/2] qubits, leaving a compressed state of nH[(1+p)/2, (1 —p)/2]
qubits. To decompress we append the state |0) @7 HI#2)/2.0-9)/21 o the compressed
state, and perform the inverse unitary transformation.

This procedure for quantum data compression and decompression results in a storage
requirement of H[(1 + p)/2,(1 — p)/2] qubits per use of the source, which whenever
p = 1/3 is an improvement over the H(p, 1 — p) qubits we might naively have expected
from Shannon’s noiseless channel coding theorem. In fact, Schumacher’s noiseless chan-
nel coding theorem allows us to do somewhat better even than this, as we will see in
Chapter 12; however, the essential reason in that construction is the same as the reason
we were able to compress here: we exploited the fact that |0) and (|0) + \1))/\/5 are not
orthogonal. Intuitively, the states contain some redundancy since both have a component
in the |0) direction, which results in more physical similarity than would be obtained
from orthogonal states. It is this redundancy that we have exploited in the coding scheme
just described, and which is used in the full proof of Schumacher’s noiseless channel
coding theorem. Note that the restriction p > 1/3 arises because when p < 1/3 this
particular scheme doesn’t exploit the redundancy in the states: we end up effectively
increasing the redundancy present in the problem! Of course, this is an artifact of the
particular scheme we have chosen, and the general solution exploits the redundancy in a
much more sensible way to achieve data compression.

Schumacher’s noiseless channel coding theorem is an analogue of Shannon’s noiseless
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channel coding theorem for the compression and decompression of quantum states. Can
we find an analogue of Shannon’s noisy channel coding theorem? Considerable progress
on this important question has been made, using the theory of quantum error-correcting
codes; however, a fully satisfactory analogue has not yet been found. We review some of
what is known about the quantum channel capacity in Chapter 12.

Quantum distinguishability

Thus far all the dynamical processes we have considered — compression, decompression,
noise, encoding and decoding error-correcting codes — arise in both classical and quantum
information theory. However, the introduction of new types of information, such as
quantum states, enlarges the class of dynamical processes beyond those considered in
classical information theory., A good example is the problem of distinguishing quantum
states. Classically, we are used to being able to distinguish different items of information,
at least in principle. In practice, of course, a smudged letter ‘2’ written on a page may be
very difficult to distinguish from a letter ‘o’, but in principle it is possible to distinguish
between the two possibilities with perfect certainty.

On the other hand, quantum mechanically it is not always possible to distinguish
between arbitrary states. For example, there is no process allowed by quantum mechanics
that will reliably distinguish between the states [0) and (|0) + |1))/v/2Z. Proving this
rigorously requires tools we don’t presently have available (it is done in Chapter 2),
but by considering examples it’s pretty easy to convince oneself that it is not possible.
Suppose, for example, that we try to distinguish the two states by measuring in the
computational basis. Then, if we have been given the state |0), the measurement will
vield 0 with probability 1. However, when we measure (|0) + [1))/v/2 the measurement
vields 0 with probability 1/2 and 1 with probability 1/2. Thus, while a measurement
result of 1 implies that state must have been (|0) + |1))/v/2, since it couldn’t have been
|0), we can’t infer anything about the identity of the quantum state from a measurement
result of 0.

This indistinguishability of non-orthogonal quantum states is at the heart of quantum
computation and quantum information. It is the essence of our assertion that a quan-

tum state contains hidden information that is not accessible to measurement, and thus
plays a key role in quantum algorithms and quantum cryptography. One of the central
problems of quantum information theory is to develop measures quantifying how well
non-orthogonal quantum states may be distinguished, and much of Chapters 9 and 12 is
concerned with this goal. In this introduction we’ll limit ourselves to pointing out two
interesting aspects of indistinguishability — a connection with the possibility of faster-
than-light communication, and an application to ‘quantum money.’

Imagine for a moment that we could distinguish between arbitrary quantum states.
We'll show that this implies the ability to communicate faster than light, using entan-
glement. Suppose Alice and Bob share an entangled pair of qubits in the state (|00) +
11))/ V2. Then, if Alice measures in the computational basis, the post-measurement
states will be [00) with probability 1/2, and |11) with probability 1/2. Thus Bob’s sys-
tem is either in the state |0}, with probability 1/2, or in the state |1}, with probability
1/2. Suppose, however, that Alice had instead measured in the |+), |—) basis. Recall that
0) = (|+) +|-))/VZand [1) = (|+) — [=))/V2. A little algebra shows that the initial
state of Alice and Bob’s system may be rewritten as (| + +) + | — —))/v/2. Therefore,
if Alice measures in the |+),|—) basis, the state of Bob’s system after the measurement
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will be |+) or |—) with probability 1/2 each. So far, this is all basic quantum mechanics.
But if Bob had access to a device that could distinguish the four states |0),[1),[+),]—)
from one another, then he could tell whether Alice had measured in the computational
basis, or in the |+),|—) basis. Moreover, he could get that information instantaneously,

as soon as Alice had made the measurement, providing a means by which Alice and Bob
could achieve faster-than-light communication! Of course, we know that it is not possible
to distinguish non-orthogonal quantum states; this example shows that this restriction is
also intimately tied to other physical properties which we expect the world to obey.

The indistinguishability of non-orthogonal quantum states need not always be a hand-
icap. Sometimes it can be a boon. Imagine that a bank produces banknotes imprinted
with a (classical) serial number, and a sequence of qubits each in either the state |0)
or (|0) + [1))/v/2. Nobody but the bank knows what sequence of these two states is
embedded in the note, and the bank maintains a list matching serial numbers to em-
bedded states. The note is impossible to counterfeit exactly, because it is impossible
for a would-be counterfeiter to determine with certainty the state of the qubits in the
original note, without destroying them. When presented with the banknote a merchant
(of certifiable repute) can verify that it is not a counterfeit by calling the bank, telling
them the serial number, and then asking what sequence of states were embedded in
the note. They can then check that the note is genuine by measuring the qubits in the
0). [1) or (|0) + [1))/v/2,(|0) —|1))/V/2 basis, as directed by the bank. With probability
which increases exponentially to one with the number of qubits checked, any would-be
counterfeiter will be detected at this stage! This idea is the basis for numerous other
quantum cryptographic protocols, and demonstrates the utility of the indistinguishability
of non-orthogonal quantum states,

Exercise 1.2: Explain how a device which, upon input of one of two non-orthogonal
quantum states |¢) or |@) correctly identified the state, could be used to build a
device which cloned the states
theorem. Conversely, explain how a device for cloning could be used to
distinguish non-orthogonal quantum states.

¥) and |¢), in violation of the no-cloning

Creation and transformation of entanglement
Entanglement is another elementary static resource of quantum mechanics. Its properties
are amazingly different from those of the resources most familiar from classical informa-
tion theory, and they are not yet well understood; we have at best an incomplete collage
of results related to entanglement. We don’t yet have all the language needed to under-
stand the solutions, but let’s at least look at two information-theoretic problems related
to entanglement.

Creating entanglement is a simple dynamical process of interest in quantum informa-
tion theory. How many qubits must two parties exchange if they are to create a particular
entangled state shared between them, given that they share no prior entanglement? A
second dynamical process of interest is transforming entanglement from one form into
another. Suppose, for example, that Alice and Bob share between them a Bell state, and
wish to transform it into some other type of entangled state. What resources do they
need to accomplish this task? Can theyv do it without communicating? With classical
communication only? If quantum communication is required then how much quantum
communication is required?
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Answering these and more complex questions about the creation and transformation of
entanglement forms a fascinating area of study in its own right, and also promises to give
insight into tasks such as quantum computation. For example, a distributed quantum
computation may be viewed as simply a method for generating entanglement between
two or more parties; lower bounds on the amount of communication that must be done
to perform such a distributed quantum computation then follow from lower bounds on
the amount of communication that must be performed to create appropriate entangled
states,

1.6.2 Quantum information in a wider context
We have given but the barest glimpse of quantum information theory. Part 111 of this
book discusses quantum information theory in much greater detail, especially Chapter 11,
which deals with fundamental properties of entropy in quantum and classical information
theory, and Chapter 12, which focuses on pure quantum information theory.

Quantum information theory is the most abstract part of quantum computation and
quantum information, vet in some sense it is also the most fundamental. The question
driving quantum information theory, and ultimately all of quantum computation and
quantum information, is what makes quantum information processing tick? What is
it that separates the quantum and the classical world? What resources, unavailable in a
classical world, are being utilized in a quantum computation? Existing answers to these
questions are foggy and incomplete; it is our hope that the fog may vet lift in the vears
to come, and we will obtain a clear appreciation for the possibilities and limitations of
quantum information processing.

Problem 1.1: (Feynman-Gates conversation) Construct a friendly imaginary
discussion of about 2000 words between Bill Gates and Richard Feynman, set in
the present, on the future of computation. (Comment: You might like to trv
waiting until vou’ve read the rest of the book before attempting this question.
See the ‘History and further reading’ below for pointers to one possible answer
for this question.)

Problem 1.2: What is the most significant discovery yet made in quantum
computation and quantum information? Write an essay of about 2000 words for
an educated lay audience about the discovery. (Comment: As for the previous
problem, you might like to try waiting until you've read the rest of the book
before attempting this question.)

History and further reading

Most of the material in this chapter is revisited in more depth in later chapters. Therefore
the historical references and further reading below are limited to material which does not
recur in later chapters.

Piecing together the historical context in which quantum computation and quantum
information have developed requires a broad overview of the history of many fields. We
have tried to tie this history together in this chapter, but inevitably much background
material was omitted due to limited space and expertise. The following recommendations
attempt to redress this omission.
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The history of quantum mechanics has been told in many places. We recommend es-
pecially the outstanding works of Pais[Pi82, Pai86, Pai9l] 'Of these three, [Pai86] is most di-
rectly concerned with the development of quantum mechanics; however, Pais’ biographies
of EinsteinP82] and of BohrlP491] 3150 contain much material of interest, at a less intense
level. The rise of technologies based upon quantum mechanics has been described by Mil-
burntMil?7, Mil9%8] Tyring’s marvelous paper on the foundations of computer sciencel Tur30]
is well worth reading. It can be found in the valuable historical collection of DavisPav63],
Hofstadter!Hot79] and PenroselP<?8] contain entertaining and informative discussions of
the foundations of computer science. Shasha and Lazere’s biography of fifteen leading
computer scientists!SL98] gives considerable insight into many different facets of the his-
tory of computer science. Finally, Knuth's awesome series of books!Knu97, Knu98a, Knu98b]
contain an amazing amount of historical information. Shannon’s brilliant papers founding
information theory make excellent reading!Sh##8] (also reprinted in [SW49]). MacWilliams
and SloaneS77] is not only an excellent text on error-correcting codes, but also contains
an enormous amount of useful historical information. Similarly, Cover and Thomasl¢191]
is an excellent text on information theory, with extensive historical information, Shan-
non’s collected works, together with many useful historical items have been collected in
a large volumelSW?3) edited by Sloane and Wyner. Slepian has also collected a useful set
of reprints on information theory!Si74], Cryptography is an ancient art with an intricate
and often interesting history. Kahn!Kah%! ig a huge history of cryptography contain-
ing a wealth of information. For more recent developments we recommend the books
by Menezes, van Oorschot, and VanstonelMYOV91 " SchneierS¢h%al and by Diffie and
LandaulPL98],

Quantum teleportation was discovered by Bennett, Brassard, Crépeau, Jozsa, Peres,
and Wootters!BBC™9] and later experimentally realized in various different forms by
Boschi, Branca, De Martini, Hardy and PopesculBBM 9] ysing optical techniques, by
Bouwmeester, Pan, Mattle, Eibl, Weinfurter, and Zcilingcrmpl\'ﬁg?] using photon polar-
1ization, by Furusawa, Serensen, Braunstein, Fuchs, Kimble, and Polzik using ‘squeezed’
states of lightFSB™8] and by Nielsen, Knill, and Laflamme using NMRINKL8],

Deutsch’s problem was posed by DeutschlPeu831 and a one-bit solution was given in the
same paper. The extension to the general n-bit case was given by Deutsch and JozsalP192],
The algorithms in these early papers have been substantially improved subsequently
by Cleve, Ekert, Macchiavello, and MoscalCEMM98] " 3nd independently in unpublished
work by Tapp. In this chapter we have given the improved version of the algorithm,
which fits very nicely into the hidden subgroup problem framework that will later be
discussed in Chapter 5. The original algorithm of Deutsch only worked probabilistically;
Deutsch and Jozsa improved this to obtain a deterministic algorithm, but their method
required two function evaluations, in contrast to the improved algorithms presented in
this chapter. Nevertheless, it is still conventional to refer to these algorithms as Deutsch’s
algorithm and the Deutsch—Jozsa algorithm in honor of two huge leaps forward: the
concrete demonstration by Deutsch that a quantum computer could do something faster
than a classical computer; and the extension by Deutsch and Jozsa which demonstrated
for the first time a similar gap for the scaling of the time required to solve a problem.

Excellent discussions of the Stern—Gerlach experiment can be found in standard quan-
tum mechanics textbooks such as the texts by Sakurail5%93] Volume I1T of Feynman,
Leighton and SandsIF1-5652] and Cohen-Tannoudji, Diu and LaloglGTDPL77a, CTDL77b],

Problem 1.1 was suggested by the lovely article of Rahim[Rah%],
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where z is a scalar, that is; a complex number, and the multiplications on the right
are ordinary multiplication of complex numbers. Physicists sometimes refer to complex
numbers as c—mtmbers.

Quantum mechanics is our main motivation for studying linear algebra, so we will use
the standard notation of quantum mechanics for linear algebraic concepts. The standard
quantum mechanical notation for a vector in a vector space is the following:

[¥). 2.4)

1 is a label for the vector (any label is valid, although we prefer to use simple labels like
¢ and ¢). The |-) notation is used to indicate that the object is a vector. The entire object
[1)) is sometimes called a ket, although we won’t use that terminology often.

A vector space also contains a special zero vector, which we denote by 0. It satisfies
the property that for any other vector |v),|v) + 0 = |v). Note that we do not use the
ket notation for the zero vector — it is the only exception we shall make. The reason
for making the exception is because it is conventional to use the ‘obvious’ notation for
the zero vector, |0}, to mean something else entirely. The scalar multiplication operation
is such that z0 = 0 for any complex number z. For convenience, we use the notation
(z1,...,2,) to denote a column matrix with entries zy, ..., z,. In C" the zero element
is (0,0, ...,0). A zector subspace of a vector space V is a subset IV of V such that W is
also a vector space, that is, W must be closed under scalar multiplication and addition.

Notation | Description

~

z Complex conjugate of the complex number 2.

A+i)=1-i
[1) Vector. Also known as a ket.
(¢ Vector dual to [¢0). Also known as a bra.

(@|yh) | Inner product between the vectors [p) and |¢)).

|@) @ |¢) | Tensor product of |¢) and |1).
lo) ) Abbreviated notation for tensor product of |¢) and |¢).

A* Complex conjugate of the A matrix.
AT Transpose of the A matrix,
AT Hermitian conjugate or adjoint of the A matrix, AT = (AT)*.

a b ! |l at
el =l ]
¥) | Inner product between |¢) and A|v)).
Equivalently, inner product between Af|¢) and 1),

(plA

Figure 2.1. Summary of some standard quantum mechanical notation for notions from linear algebra. This style of
notation is known as the Dirae notation.

2.1.1 Bases and linear independence
A spanning set for a vector space is a set of vectors |vy),...,|v,) such that any vector
|v) in the vector space can be written as a linear combination |v) = >, a;|v;) of vectors
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in that set. For example, a spanning set for the vector space C* is the set

=]y s =] 1], 2.5)

since any vector

ay
v) = 2.6
=] @0)
in C* can be written as a linear combination |v) = a,|v;) + a;|v;) of the vectors |v;) and
|v2). We say that the vectors |v,) and |v;) span the vector space C?.

Generally, a vector space may have many different spanning sets. A second spanning
set for the vector space C? is the set

=5 ] =] ) 9

since an arbitrary vector |v) = (@1, @) can be written as a linear combination of |v;) and
|vl>a

ata a; —a
o) = ——=—|vy) + ——=—|v3). (2.8)
V2 V2
A set of non-zero vectors |vy), ..., |v,) are linearly dependent if there exists a set of
complex numbers ay, ..., a, with a; # 0 for at least one value of %, such that
ar|vy) + azlvy) + -+ aylv,) = 0. (2.9)

A set of vectors is linearly independent if it is not linearly dependent. It can be shown
that any two sets of linearly independent vectors which span a vector space V' contain the
same number of elements. We call such a set a basis for V. Furthermore, such a basis
set always exists. The number of elements in the basis is defined to be the dimension of
V. In this book we will only be interested in finite dimensional vector spaces. There are
many interesting and often difficult questions associated with infinite dimensional vector
spaces. We won’t need to worry about these questions,

Exercise 2.1: (Linear dependence: example) Show that (1,—1),(1,2) and (2,1)
are linearly dependent.

2.1.2 Linear operators and matrices
A linear operator between vector spaces V' and W is defined to be any function A4 :
V' — W which is linear in its inputs,

A D ailv) | =3 aid (jv) (2.10)

Usually we just write A|v) to denote A(|v)). When we say that a linear operator A is
defined on a vector space, V', we mean that A is a linear operator from V to V. An
important linear operator on any vector space V is the identity operator, Iy, defined by
the equation Iy |v) = |v) for all vectors |v). Where no chance of confusion arises we drop
the subscript V" and just write [ to denote the identity operator. Another important linear
operator is the zero operator, which we denote 0. The zero operator maps all vectors to
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the zero vector, 0|v) = 0. It is clear from (2.10) that once the action of a linear operator
A on a basis is specified, the action of A is completely determined on all inputs.

Suppose V, W, and X are vector spaces, and A : V. — W and B : W — X are
linear operators. Then we use the notation BA to denote the composition of B with A,
defined by (BA)(|v)) = B(A(|v))). Once again, we write BA|v) as an abbreviation for
(BAX(v)).

The most convenient way to understand linear operators is in terms of their matrix
representations. In fact, the linear operator and matrix viewpoints turn out to be com-
pletely equivalent. The matrix viewpoint may be more familiar to you, however. To see
the connection, it helps to first understand that an m by n complex matrix A with entries
A;j is in fact a linear operator sending vectors in the vector space C” to the vector space
C™, under matrix multiplication of the matrix A by a vector in C". More precisely, the
claim that the matrix A is a linear operator just means that

A Zaﬂ‘vi) =ZaiA|’Ui) (2.11)

T

is true as an equation where the operation is matrix multiplication of A by column vectors.
Clearly, this is true!

We've seen that matrices can be regarded as linear operators. Can linear operators
be given a matrix representation? In fact they can, as we now explain. This equivalence
between the two viewpoints justifies our interchanging terms from matrix theory and
operator theory throughout the book. Suppose A : V' — W is a linear operator between

vector spaces V' and W. Suppose |v1), ..., |v,) is a basis for V and |ws), ..., |w,) isa
basis for W. Then for each j in the range 1,...,m, there exist complex numbers A,;
through A,,; such that

AI‘UJ') = ZAI'”LU;,). (2.12)

The matrix whose entries are the values A;; is said to form a matrix representation of the
operator A. This matrix representation of A is completely equivalent to the operator A,
and we will use the matrix representation and abstract operator viewpoints interchange-
ably. Note that to make the connection between matrices and linear operators we must
specify a set of input and output basis states for the input and output vector spaces of
the linear operator.

Exercise 2.2: (Matrix representations: example) Suppose V' is a vector space
with basis vectors |0) and |1), and A is a linear operator from V' to V such that
Al0) = |1) and A|1) = |0). Give a matrix representation for A, with respect to
the input basis |0), [1), and the output basis |0), [1). Find input and output bases
which give rise to a different matrix representation of A,

Exercise 2.3: (Matrix representation for operator products) Suppose A is a
linear operator from vector space V' to vector space W, and B is a linear
operator from vector space W to vector space X. Let |v;), |w;), and |2}) be
bases for the vector spaces V, W, and X, respectively. Show that the matrix
representation for the linear transformation B A is the matrix product of the
matrix representations for B and A, with respect to the appropriate bases.
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Exercise 2.4: (Matrix representation for identity) Show that the identity operator
on a vector space V' has a matrix representation which is one along the diagonal
and zero everywhere else, if the matrix representation is taken with respect to the
same input and output bases. This matrix is known as the identity matrix.

2.1.3 The Pauli matrices
Four extremely useful matrices which we shall often have occasion to use are the Pawult
matrices. These are 2 by 2 matrices, which go by a variety of notations. The matrices,
and their corresponding notations, are depicted in Figure 2.2. The Pauli matrices are so
useful in the study of quantum computation and quantum information that we encourage
you to memorize them by working through in detail the many examples and exercises
based upon them in subsequent sections.
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Figure 2.2. The Pauli matrices. Sometimes [ i1s omitted from the list with just X, Y and Z known as the Pauli

matrices.

2.1.4 Inner products

An inner product is a function which takes as input two vectors |v) and |w) from a vector
space and produces a complex number as output. For the time being, it will be convenient
to write the inner product of |v) and [w) as (|v), [w)). This is not the standard quantum
mechanical notation; for pedagogical clarity the (-, ) notation will be useful occasionally in
this chapter. The standard quantum mechanical notation for the inner product (|v), [w))
is (v|w), where |v) and |w) are vectors in the inner product space, and the notation (v|
is used for the dual vector to the vector |v); the dual is a linear operator from the inner
product space V' to the complex numbers C, defined by (v|(|w)) = (vjw) = (|v), |w)).
We will see shortly that the matrix representation of dual vectors is just a row vector,

A function (-,+) from V x V to C is an inner product if it satisfies the requirements
that:

(1) (-,+) is linear in the second argument,

00, > Ailwi) | =D A ([0 ws)) (2.13)
@) (10), [w)) = (), [v))".
(3) (|v),|v)) = 0 with equality if and only if |v) = 0.
For example, C" has an inner product defined by
21
(@5 Yy iy 2 ) = iz = lyrwi] |2 |- (2.14)

Zn
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We call a vector space equipped with an inner product an inner product space.

Exercise 2.5: Verify that (-, ) just defined is an inner product on C".

Exercise 2.6: Show that any inner product (-, ) is conjugate-linear in the first
argument,

D Xilwi), o) ) = 3 i, v)). (2.15)

Discussions of quantum mechanics often refer to Hilbert space. In the finite dimen-
sional complex vector spaces that come up in quantum computation and quantum infor-
mation, a Hilbert space is exactly the same thing as an inner product space. From now
on we use the two terms interchangeably, preferring the term Hilbert space. In infinite
dimensions Hilbert spaces satisfy additional technical restrictions above and bevond inner
product spaces, which we will not need to worry about.

Vectors |w) and |v) are orthogonal if their inner product is zero. For example, |w) =
(1,0) and |v) = (0, 1) are orthogonal with respect to the inner product defined by (2.14).
We define the norm of a vector [v) by

ol = 4/ {vlv) - (2.16)

A unit vector is a vector |v) such that ||[v)|| = 1. We also say that |v) is normalized if
||v}|| = 1. It is convenient to talk of normalizing a vector by dividing by its norm; thus
[v)/|||v) ]| is the normalized form of |v), for any non-zero vector |v). A set |i) of vectors
with index 7 is orthonormal if each vector is a unit vector, and distinct vectors in the set
are orthogonal, that is, (i|j) = d;;, where 7 and j are both chosen from the index set.

Exercise 2.7: Verify that |w) = (1,1) and |v) = (1, —1) are orthogonal. What are the
normalized forms of these vectors?

Suppose |wy), ..., |wg) is a basis set for some vector space V' with an inner product.
There is a useful method, the Gram—Schmidt procedure, which can be used to produce an
orthonormal basis set |v;), ..., |vg) for the vector space V. Define |v)) = |wy)} /|| [wi) ||,
and for 1 < k < d — 1 define |vp44) inductively by

k) — i (vslwir) [vi)
k .
Ik} =3 5= (vilwren) [vs) |
It is not difficult to verify that the vectors |v1), ..., |v) form an orthonormal set which

is also a basis for V. Thus, any finite dimensional vector space of dimension d has an
orthonormal basis, |v), ..., |va4).

(2.17)

|vps1) =

Exercise 2.8: Prove that the Gram—Schmidt procedure produces an orthonormal basis
for V.

From now on, when we speak of a matrix representation for a linear operator, we mean
a matrix representation with respect to orthonormal input and output bases. We also use
the convention that if the input and output spaces for a linear operator are the same, then
the input and output bases are the same, unless noted otherwise.
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where det is the determinant function for matrices; it can be shown that the characteristic
function depends only upon the operator A, and not on the specific matrix representation
used for A. The solutions of the characteristic equation ¢(A) = 0 are the eigenvalues
of the operator A. By the fundamental theorem of algebra, every polvnomial has at least
one complex root, so every operator A has at least one eigenvalue, and a corresponding
eigenvector. The eigenspace corresponding to an eigenvalue v is the set of vectors which
have eigenvalue v. It is a vector subspace of the vector space on which A acts.

A diagonal representation for an operator A on a vector space V' is a representation
A =37, Ailé) (i, where the vectors |7) form an orthonormal set of eigenvectors for A,
with corresponding eigenvalues \;. An operator is said to be diagonalizable if it has a
diagonal representation. In the next section we will find a simple set of necessary and
sufficient conditions for an operator on a Hilbert space to be diagonalizable. As an example
of a diagonal representation, note that the Pauli Z matrix may be written

2=y 1| =mo-ma (2.29)
where the matrix representation is with respect to orthonormal vectors |0) and |1), re-
spectively. Diagonal representations are sometimes also known as orthonermal decom-
positions,

When an eigenspace is more than one dimensional we say that it is degenerate. For
example, the matrix A defined by

2.0 0
A=10 2 0 (2.30)
00 0

has a two-dimensional eigenspace corresponding to the eigenvalue 2. The eigenvectors
(1,0,0) and (0,1,0) are said to be degenerate because they are linearly independent
cigenvectors of A with the same eigenvalue.

Exercise 2.11: (Eigendecomposition of the Pauli matrices) Find the
eigenvectors, eigenvalues, and diagonal representations of the Pauli matrices
X,Y, and Z.

Exercise 2.12: Prove that the matrix
1 0
{ 11 ] (2.31)

is not diagonalizable.

2.1.6 Adjoints and Hermitian operators
Suppose A is any linear operator on a Hilbert space, V. It turns out that there exists a
unique linear operator AT on V' such that for all vectors [v),|w) € V,

(|v), Alw)) = (AT[v), [w)). (2.32)
This linear operator is known as the adjoint or Hermitian conjugate of the operator
A. From the definition it is easy to see that (AB)" = BTA%. By convention, if |v) is

a vector, then we define |v)! = (v|. With this definition it is not difficult to see that
(Alv)t = (v|AL.
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Exercise 2.13: If |w) and |v) are any two vectors, show that (|w) (v|)l = |v){w].

Exercise 2.14: (Anti-linearity of the adjoint) Show that the adjoint operation is
anti-linear,

i
> aAi) => ajAl (2.33)

Exercise 2.15: Show that (AT)T = A,

In a matrix representation of an operator A, the action of the Hermitian conjugation
operation is to take the matrix of A to the conjugate-transpose matrix, AT = (A*)7,
where the * indicates complex conjugation, and T indicates the transpose operation. For
example, we have

. . | . .
1+3i 2¢ | 1=3 1—1i
1+i 1—45} _[ —2i 1+4'é}' (2.34)

An operator A whose adjoint is A is known as a Hermitian or self-adjoint op-
erator. An important class of Hermitian operators is the projectors. Suppose W is a
k-dimensional vector subspace of the d-dimensional vector space V. Using the Gram—
Schmidt procedure it is possible to construct an orthonormal basis |1)....,|d) for V
such that [1),...,|k) is an orthonormal basis for W. By definition,

k
P=> i)l (2.35)
i=1

is the projector onto the subspace W. It is easy to check that this definition is independent
of the orthonormal basis |1}, ..., |k) used for W. From the definition it can be shown that
|v) {v] is Hermitian for any vector |v), so P is Hermitian, P = P, We will often refer
to the ‘vector space’ P, as shorthand for the vector space onto which P is a projector.
The orthogonal complement of P is the operator () = I — P. It is easy to see that () is
a projector onto the vector space spanned by |k +1),...,|d), which we also refer to as
the orthogonal complement of P, and may denote by Q).

Exercise 2.16: Show that any projector P satisfies the equation P* = P.

An operator A is said to be normal if AA" = ATA. Clearly, an operator which
is Hermitian is also normal. There is a remarkable representation theorem for normal
operators known as the spectral decomposition, which states that an operator is a normal
operator if and only if it is diagonalizable. This result is proved in Box 2.2 on page 72,
which you should read closely.

Exercise 2.17: Show that a normal matrix is Hermitian if and only if it has real
eigenvalues.

A matrix U/ is said to be unitary if UTU = I. Similarly an operator U is unitary if
UTU = I. It is easily checked that an operator is unitary if and only if each of its matrix
representations is unitary. A unitary operator also satisfies UUT = I, and therefore U is
normal and has a spectral decomposition. Geometrically, unitary operators are important
because they preserve inner products between vectors. To see this, let [v) and |w) be any
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two vectors. Then the inner product of U|v) and U|w) is the same as the inner product
of |v) and |w),

(U0, Ulw)) = (u[UTU ) = (o]|w) = (v]w). (2.36)

This result suggests the following elegant outer product representation of any unitary U.
Let |v;) be any orthonormal basis set. Define |w;) = U|v;), so |w;) is also an orthonormal
basis set, since unitary operators preserve inner products. Note that U = )7, |w;) (vi].
Conversely, if [v;) and |w;) are any two orthonormal bases, then it is easily checked that
the operator U defined by U/ = >~ |w;) (v;| is a unitary operator.

Exercise 2.18: Show that all eigenvalues of a unitary matrix have modulus 1, that is,
can be written in the form ¢’ for some real 6.

Exercise 2.19: (Pauli matrices: Hermitian and unitary) Show that the Pauli
matrices are Hermitian and unitary.

Exercise 2.20: (Basis changes) Suppose A’ and A” are matrix representations of an
operator A on a vector space V' with respect to two different orthonormal bases,
|v;) and |w;). Then the elements of A’ and A” are A}; = (v;|A|v;) and
Al = (w;|AJw;). Characterize the relationship between A’ and A",

A special subclass of Hermitian operators is extremely important. This is the positive
operators. A positive operator A is defined to be an operator such that for any vector |v),
(Jv), A|v)) is a real, non-negative number. If (|v), A|v)) is sirictly greater than zero for
all |v) £ 0 then we say that A is positive definite. In Exercise 2.24 on this page you will
show that any positive operator is automatically Hermitian, and therefore by the spectral
decomposition has diagonal representation » ; A;|) (i|, with non-negative eigenvalues A;.

Exercise 2.21: Repeat the proof of the spectral decomposition in Box 2.2 for the case
when M is Hermitian, simplifving the proof wherever possible.

Exercise 2.22: Prove that two eigenvectors of a Hermitian operator with different
eigenvalues are necessarily orthogonal.

Exercise 2.23: Show that the eigenvalues of a projector P are all either 0 or 1.

Exercise 2.24: (Hermiticity of positive operators) Show that a positive operator
is necessarily Hermitian. (Hint: Show that an arbitrary operator A can be
written A = B + iC' where B and (' are Hermitian.)

Exercise 2.25: Show that for any operator A, ATA is positive.

2.1.7 Tensor products

The tensor product is a way of putting vector spaces together to form larger vector spaces.
This construction is crucial to understanding the quantum mechanics of multiparticle
systems. The following discussion is a little abstract, and may be difficult to follow if
you're not already familiar with the tensor product, so feel free to skip ahead now and
revisit later when you come to the discussion of tensor products in quantum mechanics.

Suppose V and W are vector spaces of dimension m and n respectively. For conve-
nience we also suppose that V' and 1 are Hilbert spaces. Then V @ W (read ‘V tensor
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Box 2.2: The spectral decomposition — important!
The spectral decomposition 1s an extremely useful representation theorem for nor-
mal operators.

Theorem 2.1 (Spectral decomposition) Any normal operator M on a vector
space V' is diagonal with respect to some orthonormal basis for V.
Conversely, any diagonalizable operator is normal.

Proof

The converse is a simple exercise, so we prove merely the forward implication,
by induction on the dimension d of V. The case d = 1 is trivial. Let A be an
eigenvalue of M, P the projector onto the A eigenspace, and () the projector onto
the orthogonal complement. Then M = (P + Q)M(P + Q)= PMP+ QMP +
PMQ + QMCQ. Obviously PM P = AP. Furthermore, QM P = 0, as M takes
the subspace P into itself. We claim that PAM Q) = 0 also. To see this, let |v)
be an element of the subspace P. Then MMT|v) = MTM|v) = AMT|v). Thus,
MT|v) has eigenvalue A and therefore is an element of the subspace P. It follows
that QMTP = 0. Taking the adjoint of this equation gives PM@Q = 0. Thus
M = PMP+QMQ. Next, we prove that QM () is normal. To see this, note that
QM = QM(P+ Q)= QMQ, and QMT = QMT(P + Q) = QMTQ. Therefore,
by the normality of M, and the observation that Q* = @,

QMQQOQM™Q=QMQM'Q (2.37)
=QMM'Q (2.38)
=QMTMQ (2.39)
=QM'QMQ (2.40)
=QMQQMQ. (2.41)

so QM) is normal. By induction, QM () is diagonal with respect to some or-
thonormal basis for the subspace (), and PM P is already diagonal with respect
to some orthonormal basis for P. It follows that M = PM P + QM () is diagonal
with respect to some orthonormal basis for the total vector space. O

In terms of the outer product representation, this means that M can be written as
M =737, Ni|i) (7], where A; are the eigenvalues of M |é) is an orthonormal basis
for V', and each |7) an eigenvector of M with eigenvalue \;. In terms of projectors,
M = 3. AiP;, where ); are again the eigenvalues of M, and P; is the projector
onto the A; eigenspace of M. These projectors satisfy the completeness relation
>, P; = I, and the orthonormality relation P, P; = 0;,; F;.

ij

W?) is an mn dimensional vector space. The elements of V' @ W are linear combinations
of ‘tensor products’ [v) @ |w) of elements |v) of V and |w) of W. In particular, if |¢) and
|7) are orthonormal bases for the spaces V and W then |) © ) is a basis for V & W. We
often use the abbreviated notations |v)|w), |v,w) or even |vw) for the tensor product
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|v) @ |w). For example, if V' is a two-dimensional vector space with basis vectors |0) and
[1) then [0} @ [0) + |1) @ [1} is an element of V & V.

By definition the tensor product satisfies the following basic properties:

(1) For an arbitrary scalar = and elements |v) of V' and
2 (o) @ [w)) = (z[v)) @ [w) = |v) @ (z[w)). 242)

(2) For arbitrary |vy) and [v;) in V and |w) in W

w) of W,

(o) + [v2)) @ Jw) = [01) @ |w) +[v2) @ [w). (2.43)
(3) For arbitrary |v) in V and |w;) and |w;) in W,

|[0) ® (Jwn) + [wn)) = v) @ |wy) + |v) @

w,). (2.44)

What sorts of linear operators act on the space V' @ W? Suppose |v) and |w) are
vectors in V and W, and A and B are linear operators on V" and W, respectively. Then
we can define a linear operator A ® B on V @ W by the equation

(A® BY(|v) ® [w)) = Alv) ® Blw). (2.45)

The definition of A & B is then extended to all elements of V' @ W in the natural way
to ensure linearity of A @ B, that is,

(A® B) (Z a;|v;) ® |wi>) = aAlv) ® Blw;). (2.46)
Tt can be shown that A ® B defined in this way is a well-defined linear operator on
V' @ W. This notion of the tensor product of two operators extends in the obvious way
to the case where A : V — V' and B : W — W' map between different vector spaces.
Indeed, an arbitrary linear operator €' mapping V @ W to V' @ W’ can be represented
as a linear combination of tensor products of operators mapping V' to V' and W to W',

C=> cAe B, (2.47)
where by definition

(Z cid; ® B,) |v) ® |w) = ZCiAil’U) @ Bi|w). (2.48)

The inner products on the spaces V' and W can be used to define a natural inner
product on V' ® W, Define

Z a;|v;) ® |w;), Z bj|v;) ® |wj) = Z a}‘bj('vihf;)(wdw;). (2.49)
. r

i J

It can be shown that the function so defined is a well-defined inner product. From this
inner product, the inner product space V' @ W inherits the other structure we are familiar
with, such as notions of an adjoint, unitarity, normality, and Hermiticity.

All this discussion is rather abstract. It can be made much more concrete by moving



