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Preface

We are entering a new era of computation that will catalyze discoveries in
science and technology. Novel computing platforms will probe the fundamen-
tal laws of our universe and aid in solving hard problems that affect all of us.
Machine learning programs powered by specialized chips are already yielding
breakthrough after breakthrough.

In this book we will explore quantum computing — an emerging platform
that is fundamentally different than the way we compute with current digital
platforms. To be sure, we are years away from scaled quantum computers. Yet,
we now know that such systems are possible; with advances in engineering
we are likely to see real impact.

Quantum computing is part of the larger field of quantum information
sciences (QIS). All three branches of QIS — computation, communication and
sensing — are advancing at rapid rates and a discovery in one area can spur
progress in another. Quantum communication leverages the unusual properties
of quantum systems to transmit information in a manner that no eavesdropper
can read. This field is becoming increasingly critical as quantum computing
drives us to a post-quantum cryptography regime. We will cover quantum tele-
portation and superdense coding, which are both quantum-specific protocols,
in chapter 7.

Quantum sensing is a robust field of research which uses quantum devices
to move beyond classical limits in sensing magnetic and other fields. For ex-
ample, there is an emerging class of sensors for detecting position, navigation
and timing (PNT) at the atomic scale. These micro-PNT devices can provide
highly accurate positioning data when GPS is jammed or unavailable.

In this book we will focus on quantum computation. One of the critical
differences between quantum and classical computation is that in quantum
computation we are manipulating quantum states themselves; this gives us
a much larger computing space to work in than in classical computers. In
classical computers, if we wish to model a real-world quantum physical
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system, we can only do so with representations of such a system and we
cannot implement the physics itself.

This key difference leads to exciting possibilities for the future of comput-
ing and science. All this starts with fundamental truths about our world that
were developed during the quantum mechanics revolution in the first half of
the 20" century. We will review a number of these core concepts in the first
chapter.

I had the fortunate circumstance to have studied quantum mechanics before
learning classical physics and therefore relate to quantum physics as the norm
— it is my intellectual home. Until we change our educational system, most
students will learn the classical before the quantum and so the quantum will
seem doubly strange — both from their own human experience as well as from
the inculcation of classical ideas before quantum ideas can be introduced.

What is ironic about this state of affairs is that the primary mathematical
tool in quantum mechanics is linear algebra, a powerful but very accessible
branch of mathematics. Most students, however, only take linear algebra after
two or three semesters of calculus, if they take it at all. Yet, no calculus is
needed to introduce linear algebra! In any case, we will leave the remedying
of mathematics education to another day while we embark here on a journey
into a new form of computing.

In this book we will explore how to build a computer of a very different
kind than humans have ever built before. What is distinct about this book is
that we will go beyond the theoretical into the practical work of how we can
build such computers and how we can write applications for these systems.
There are now several development libraries which we can use to program
cloud-based quantum systems. We will walk through code examples and show
the reader how to build a quantum circuit comprised of a set of operators to
address a particular challenge. We will mainly use Python in this book.

We are currently in the regime of noisy intermediate-scale quantum (NISQ)
computers, a term coined by John Preskill of CalTech [176]. This refers to
systems that do not yet have full error-correction (thus noisy) and have dozens
to thousands of qubits — well short of the 10°+ necessary for scaled fault-
tolerant computing. Despite the limitations of these initial systems, the theory,
algorithms and coding techniques we cover in this book will serve readers as
they transition to larger systems that are to come in the future.
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This work is three books in one: the first part covers the necessary frame-
work that drives the design of quantum computers and circuits. We will also
explore what kinds of problems may be amenable to quantum computation in
our treatment of complexity classes.

The second part of the book is for those readers who wish to delve into
the programming that makes these new machines tick. If you already have
a background in quantum mechanics, quantum information theory and theo-
retical computer science (you know who you are!), you can jump right to the
second part and dig into the code. Please refer to the navigation guide in the
following pages to chart a course through this material.

In the third part we provide a set of critical tools to use in the journey to
master quantum computing (QC). We build up the core concepts of linear
algebra and tie them specifically to their use in QC. The table of operators
and circuit elements in chapter 14 is a handy reference as you design your
own quantum computing protocols.

The book is also a portal to the growing body of literature on the sub-
ject. We recommend that the reader use the bibliography to explore both
foundational and recent papers in the field.

We will provide further online examples and code tutorials on a continual
basis. This a living text that will develop as QC technology matures. We
are all travelers together on this new adventure; join us online at this book’s
GitHub site.! We are excited to see what you will develop with these new
platforms and tools. Contact us via the site — we look forward to hearing
from you.

Jack D. Hidary
June 2019
35,000 ft up

"http://www.github.com/jackhidary/quantumcomput ingbook
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Navigating this Book

Here are our suggestions to make the best use of this book:

1. University instructors: You can build several different courses with
the material in this book. All code from the book is on the book’s
website. The math chapters have exercises embedded throughout; for
other chapters please consult the online site for coding exercises and
other problem sets.

(a) Course in Quantum Computing for STEM majors:

1.

For this course we recommend assigning chapters 1 and 2
as pre-reading for the course and then proceeding chapter
by chapter with the exercises provided on the GitHub site.
Solutions are also available on the site.

ii. If the students do not have sufficient depth in formal linear

algebra and related mathematical tools, Part III forms a strong
basis for a multi-week treatment with exercises.

(b) Course in Quantum Computing for physics graduate students:

I

For this course, we recommend using this book in conjunction

with Mike and Ike (which is the way many of us refer to

Nielsen and Chuang’s excellent textbook [161]) or another

suitable text which covers the theoretical concepts in depth.

We all owe a huge debt of gratitude to Michael Nielsen,

Isaac Chuang and authors of other textbooks over the last

twenty years. We also recommend referring to John Preskill’s

lecture notes as you build your course for advanced physics
students [174]. Our work is meant to be complementary to

Mike and Ike in several respects:

A. This work is more focused on coding. For obvious rea-
sons, books written prior to the past few years could not
have covered the dev tools and Python-based approaches
to quantum computing that now exist.
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iii.

1v.

B. This book does not go into the depth that Mike and Ike
does on information theoretic concepts.

C. This book’s mathematical tools section has a more de-
tailed ramp-up for those students who may not have taken
a rigorous linear algebra course. The short summaries
of linear algebra and other requisite math tools in other
textbooks on quantum mechanics are often insufficient
in our experience.

We recommend first assigning chapters 1 and 2 as pre-reading.

Next, we suggest covering the chapters on unitary operators,

measurement and quantum circuits with exercises on the

Github site to check knowledge.

We then recommend spending the bulk of the course in Part

II to provide the students with hands-on experience with the

code.

(c¢) Course in Quantum Computing for CS graduate students:

I

iii.

We suggest assigning the first two chapters as pre-reading and
then a review of mathematical tools in Part III. Prior exposure
to only undergraduate linear algebra is typically insufficient
as it was most likely taught without the full formalism.

We then recommend chapters 3 and 4 to build up familiarity
with unitary operators, measurement and complexity classes
in the quantum regime. The instructor can make use of the
review questions and answers on the GitHub site.

The course can then cover the approaches to building a quan-
tum computer followed by all the coding chapters.

Please check the book’s GitHub site to find additional resources
including: code from the book, problem sets, solutions, links to
videos and other pedagogical resources.

2. Physicists: For physicists who specialize in fields outside of quantum

computing and wish to ramp up quickly in this area, we recommend
reading the brief history of QC as we provide more detail than typi-
cal treatments, then the survey of quantum hardware followed by the
applications in the second part of the book.

. Software engineers: We recommend starting with the opening two chap-
ters, then reviewing the toolkits in Part III. We then suggest returning
to the treatment of qubits and unitary operators in Part I and proceeding
from there.
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4. Engineering and business leaders: For readers who will not be doing
hands-on coding, we recommend focusing on chapters 1-4. The more
adventurous may want to work through some of the code examples to
get a tangible feel for the algorithms.

5. Independent study: This book can easily be used as a text for indepen-
dent study. We recommend combining it with online resources. Please
consult the GitHub site for an updated list of resources:

http://www.github.com/jackhidary/
quantumcomputingbook
We recommend first assessing your current fluency on the core tools in
Part III; there are numerous self-tests throughout the section that can be
used for this purpose. The reader can then proceed to Part L.
For those with a strong background in quantum mechanics and/or
information theory we recommend looking up the papers referenced
in chapters 2-4 to gain a deeper understanding of the state of the field
before proceeding to Part II: Hardware and Applications.
Please consult the book’s GitHub site to find a range of resources includ-
ing: code from the book, problem sets, solutions, links to videos and other
pedagogical resources.
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Foundations



CHAPTER

®)

Check for
updates

Superposition, Entanglement and
Reversibility

What is a quantum computer? The answer to this question encompasses
quantum mechanics (QM), quantum information theory (QIT) and computer
science (CS).

For our purposes, we will focus on the core of what makes a quantum
computer distinct from classical computers.

1.1 Quantum Computer Definition

A quantum computer is a device that leverages specific properties de-
scribed by quantum mechanics to perform computation.

Every classical (that is, non-quantum) computer can be described by quantum
mechanics since quantum mechanics is the basis of the physical universe.
However, a classical computer does not take advantage of the specific proper-
ties and states that quantum mechanics affords us in doing its calculations.

To delve into the specific properties we use in quantum computers, let us
first discuss a few key concepts of quantum mechanics:

e How do we represent the superposition of states in a quantum system?

¢ What is entanglement?

e What is the connection between reversibility, computation and physical

systems?

We will be using Dirac notation, linear algebra and other tools extensively
in this text; readers are encouraged to refer to the math chapters later in this
work to review as needed.

According to the principles of quantum mechanics, systems are set to a
definite state only once they are measured. Before a measurement, systems
© Jack D. Hidary under exclusive license to Springer Nature Switzerland AG 2019 3
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4 CHAPTER | Superposition, Entanglement and Reversibility

are in an indeterminate state; after we measure them, they are in a definite

state. If we have a system that can take on one of two discrete states when

measured, we can represent the two states in Dirac notation as |0) and |1). We

can then represent a superposition of states as a linear combination of these
states, such as

1 1

NG 10) + 7 )

1.2 The Superposition Principle

The linear combination of two or more state vectors is another state vector
in the same Hilbert space” and describes another state of the system.

4See Part III for a treatment of Hilbert spaces

As an example, let us consider a property of light that illustrates a super-
position of states. Light has an intrinsic property called polarization which
we can use to illustrate a superposition of states. In almost all of the light
we see in everyday life — from the sun, for example — there is no preferred
direction for the polarization. Polarization states can be selected by means
of a polarizing filter, a thin film with an axis that only allows light with
polarization parallel to that axis to pass through.

With a single polarizing filter, we can select one polarization of light,
for example vertical polarization, which we can denote as |1). Horizontal
polarization, which we can denote as |—), is an orthogonal state to vertical
polarization'. Together, these states form a basis for any polarization of light.
That is, any polarization state [y} can be written as linear combination of
these states. We use the Greek letter i to denote the state of the system

W) =alT) +B[=)

The coefficients & and f are complex numbers known as amplitudes. The
coefficient « is associated with vertical polarization and the coefficient S is
associated with horizontal polarization. These have an important interpretation
in quantum mechanics which we will see shortly.

After selecting vertical polarization with a polarizing filter, we can then
introduce a second polarizing filter after the first. Imagine we oriented the

I'We could have equally used |0) and |1) to denote the two polarization states; the labels
used in Kets are arbitrary.
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axis of the second filter perpendicular to the axis of the first. Would we see
any light get through the second filter?

If you answered no to this question, you would be correct. The horizon-
tal state |—) is orthogonal to the first, so there is no amount of horizontal
polarization after the first vertical filter.

Suppose now we oriented the axis of the second polarizing filter at 45°
(i.e., along the diagonal " between vertical 1 and horizontal —) to the first
instead of horizontally. Now we ask the same question — would we see any
light get through the second filter?

If you answered no to this question, you may be surprised to find the answer
is yes. We would, in fact, see some amount of light get through the second
filter. How could this be if all light after the first filter has vertical polarization?
The reason is that we can express vertical polarization as a superposition of
diagonal components. That is, letting | /') denote 45° polarization and |~ )
denote —45° polarization, we may write

1 1

As you may expect from geometric intuition, the vertical state consists of
equal parts | /') and |\ ).

It is for this reason that we see some amount of light get past the second
filter. Namely, the vertical polarization can be written as a superposition of
states, one of which is precisely the 45° diagonal state | /') we are allowing
through the second filter. Since the | /) state is only one term in the superposi-
tion, not all of the light gets through the filter, but some does. The amount that
gets transmitted is precisely 1/2 in this case. (More formally, the intensity of
the transmitted light is 1/2 that of the incident light.) This value is determined
from the amplitudes of the superposition state by a law known as Born’s rule,
which we now discuss,

Max Born demonstrated in his 1926 paper that the modulus squared
of the amplitude of a state is the probability of that state resulting after
measurement [38]. In this case, since the amplitude is % the probability of

1) = )

2
obtaining that state is ‘%‘ = % so the probability of measuring the light in

either the vertical or horizontal polarization state is 50%. Note that we chose
an amplitude of iz in order to normalize the states so that the sum of the

modulus squared of the amplitudes will equal one; this enables us to connect
the amplitudes to probabilities of measurement with the Born rule.
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1.3 The Born rule

In a superposition of states, the modulus squared of the amplitude of a state
is the probability of that state resulting after measurement. Furthermore,
the sum of the squares of the amplitudes of all possible states in the
superposition is equal to 1. So, for the state [/) = «|0) + B]1), we have

@f? + 181 = 1.

While in the polarization example above we have a 50/50 split in proba-
bility for each of two states, if we examined some other physical system it
may have a 75/25 split or some other probability distribution. One critical
difference between classical and quantum mechanics is that amplitudes (not
probabilities) can be complex numbers.

In other words, the coefficients @ and 8 which appear in the statement of
the Born rule can be complex numbers, such asi := ~/—1 or (1 +i)/+/2. It
is only after we take the square of the modulus of these amplitudes that we
get real numbers, hence actual probabilities. Refer to chapter 11 to review
complex numbers and how to determine the square of the modulus of a
complex number.

As if quantum superposition were not odd enough, QM describes a specific
kind of superposition which stretches our imagination even further: entangle-
ment. In 1935, when Einstein worked with Podolsky and Rosen to publish
their paper on quantum entanglement [75], their aim was to attack the edifice
of QM (this paper is now known as EPR). Even though Einstein earned the
Nobel Prize for his 1905 work on the quantum nature of the photoelectric
effect, he nevertheless railed against the implications of QM until his later
years.

Einstein wrote in 1952 that quantum mechanics appears to him to be
“a system of delusion of an exceedingly intelligent paranoiac concocted of
incoherent elements of thought” [74]. He hoped that the EPR paper would
demonstrate what he perceived to be the deficiencies of QM.

EPR showed that if you take two particles that are entangled with each other
then and then measure one of them, this automatically triggers a correlated
state of the second — even if the two are at a great distance from each other;
this was the seemingly illogical result that EPR hoped to use to show that
QM itself must have a flaw. Ironically, we now consider entanglement to be a
cornerstone of QM. Entanglement occurs when we have a superposition of
states that is not separable. We will put this into a more formal context later
on in this text.
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This "spooky action at a distance" seems at odds with our intuition and
with previous physics. Podolsky, the youngest of the co-authors, reportedly
leaked the paper to the New York Times to highlight this assault on the tower
of QM to the public. The Times ran the story on the front page of the May
4th, 1935 edition with the headline “Einstein Attacks Quantum Theory."

Not only is entanglement accepted as part of standard quantum mechanics,
we shall see later in this work that we can leverage entanglement to perform
novel types of computation and communication. From an information theo-
retic point of view, entanglement is a different way of encoding information.
If we have two particles that are entangled, the information about them is not
encoded locally in each particle, but rather in the correlation of the two.

John Preskill likes to give the analogy of two kinds of books: non-
entangled and entangled [176]. In the regular, non-entangled book we can
read the information on each page as we normally do. In the entangled book,
however, each page contains what appears to be gibberish. The information is
encoded in the correlation of the pages, not in each page alone. This captures
what Schrodinger expressed when he coined the term entanglement:

Another way of expressing the peculiar situation is: the
best possible knowledge of a whole does not necessarily
include the best possible knowledge of all its parts. [196]

Schrodinger further noted that in his opinion entanglement was not just
one of the phenomena described by quantum mechanics, ‘but rather the char-
acteristic trait of quantum mechanics, the one that enforces its entire departure
from classical lines of thought™ [196].

1.4 Entanglement

Two systems are in a special case of quantum mechanical superposition
called entanglement if the measurement of one system is correlated with
the state of the other system in a way that is stronger than correlations
in the classical world. In other words, the states of the two systems are
not separable. We will explore the precise mathematical definitions of
separability and entanglement later in this book.

Now that we have covered two core ideas of quantum mechanics — super-
position and entanglement — let us turn to another fundamental concept that is
not treated as often — the physicality of information. Rolf Landauer opened a
new line of inquiry when he asked the following question:
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The search for faster and more compact computing
circuits leads directly to the question: What are the
ultimate physical limitations on the progress in this
direction? ...we can show, or at the very least strongly
suggest, that information processing is inevitably
accompanied by a certain minimum amount of heat
generation. [128]

In other words, is there a lower bound to the energy dissipated in the
process of a basic unit of computation? Due to Landauer and others we
now believe that there is such a limit; this is called Landauer’s bound (LB).
More specifically, the energy cost of erasure of n bits is nk T In 2 where k
is the Boltzmann constant, 7 is the temperature in Kelvin of the heat sink
surrounding the computing device and In 2 is, of course, the natural log of 2
(~ 0.69315). This limit is the minimum amount of energy dissipated for an
irreversible computation.

Landauer acknowledged that this minimum is not necessarily the constrain-
ing factor on the energy draw of the system:

It is, of course, apparent that both the thermal noise and
the requirements for energy dissipation are on a scale
which is entirely negligible in present-day computer
components. The dissipation as calculated, however, is
an absolute minimum. [128]

Landauer defined logical irreversibility as a condition in which “the out-
put of a device does not uniquely define the inputs.” He then claimed that
“logical irreversibility...in turn implies physical irreversibility, and the latter
is accompanied by dissipative effects.” This follows from the second law
of thermodynamics which states that the total entropy of a system cannot
decrease and, more specifically, must increase with an irreversible process.
For further background on reversibility, thermodynamics and computation see
Feynman’s Lectures on Computation [84].

In classical computing we make use of irreversible computations. For
example, the Boolean inclusive OR (denoted V) gate has the following truth
table, where 0 denotes “false” and 1 denotes “true”:

X|Y|[XVvY
0o/o] o
01 1
Lo 1
11 ] 1
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Note that an output of value 1 cannot be traced uniquely to a set of inputs.
We can arrive at that output through combinations of inputs; the state of the
inputs is lost once we move to the output. This does not violate the conser-
vation of information because the information was converted into dissipative
heat.

The exclusive OR is also irreversible as is the NAND gate, which is univer-
sal for classical computing. NAND stands for “NOT AND” and is the inverse
of the Boolean AND operator. Verify for yourself that NAND is irreversible
by examining its truth table:

X|Y|[X1tY
00 1
01| 1
1o 1
1|1 0

In quantum computing, we limit ourselves to reversible logical opera-
tions [161, p. 29]. Later in this book we will consider which combinations of
quantum operators are universal. For now, let’s focus on the requirement in
quantum computation that we limit our set of operators to reversible gates.

This requirement derives from the nature of irreversible operations: if we
perform an irreversible operation, we have lost information and therefore
a measurement. Our computation cycle then will be done and we can no
longer continue with our program. Instead, by limiting all gates to reversible
operators, we may continue to apply operators to our set of qubits as long
as we can maintain coherence in the system. When we say reversible, we
are assuming a theoretical noiseless quantum computer. In a noisy QC that
decoheres, we cannot, of course, reverse the operation.

1.5 Reversibility of Quantum Computation

All operators used in quantum computation other than for measurement
must be reversible.

In this chapter, we have examined four essential principles of quantum
mechanical systems: superposition, the Born rule, entanglement and reversible
computation. All four are essential to understanding the difference between
classical and quantum computing as we shall see further in the book. We
provide references on this book’s website to a number of resources for those
who wish to deepen their understanding of quantum mechanics.
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Our generous universe comes equipped
with the ability to compute.
—Dave Bacon [19]
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A Brief History of Quantum
Computing

The possibility that we can leverage quantum mechanics to do computation
in new and interesting ways has been hiding in plain sight since the field’s
early days; the principles of superposition and entanglement can form the
basis of a very powerful form of computation. The trick is to build such a
system that we can easily manipulate and measure.

While Richard Feynman is often credited with the conception of quantum
computers, there were several researchers who anticipated this idea. In 1979,
Paul Benioff, a young physicist at Argonne National Labs, submitted a pa-
per entitled “The computer as a physical system: A microscopic quantum
mechanical Hamiltonian model of computers as represented by Turing ma-
chines” [23]." In this paper, Benioff demonstrated the theoretical basis for
quantum computing and then suggested that such a computer could be built:

That is, the whole computation process is described
by a pure state evolving under the action of a given
Hamiltonian. Thus all the component parts of the
Turing machine are described by states which have a
definite phase relation to one another as the calculation
progresses...The existence of such models at least
suggests that the possibility of actually constructing such
coherent machines should be examined.

Yuri Manin also laid out the core idea of quantum computing in his 1980
book Computable and Non-Computable [140]. The book was written in
Russian, however, and only translated years later.

!Note: Benioff completed and submitted the paper in 1979. It was published in the
following year, 1980.

© Jack D. Hidary under exclusive license to Springer Nature Switzerland AG 2019 11
J. D. Hidary, Quantum Computing: An Applied Approach,
https://doi.org/10.1007/978-3-030-23922-0_2
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In 1981, Feynman gave a lecture entitled “Simulating Physics with Com-
puters” [83].% In this talk, he argued that a classical system could not ade-
quately represent a quantum mechanical system:

...nature isn’t classical, dammit, and if you want to make

a simulation of nature, you’d better make it quantum
mechanical, and by golly it's a wonderful problem,
because it doesn’t look so easy...

He then set out the features that a quantum computer should have to be
useful. At the time of this lecture, however, it was unclear to Feynman and
the physics community how one could build such a machine.

Once Benioff, Manin and Feynman opened the doors, researchers began
to investigate the nature of the algorithms that could be run on QCs. David
Deutsch, a physicist at Oxford, suggested a more comprehensive framework
for quantum computing in his 1985 paper [65]. In this work, he describes in
detail what a quantum algorithm would look like and anticipates that “one
day it will become technologically possible to build quantum computers.”

Deutsch then went on to develop an example of an algorithm that would
run faster on a quantum computer. He then further generalized this algorithm
in collaboration with Richard Jozsa [67]. We will cover these and the other
algorithms in more detail with code examples later on in this text.

In computer science and quantum computing, it is often important to
evaluate how efficient an algorithm is — that is, how many steps would it take
to run such an algorithm. We use big-O notation to represent the upper bound
of the worst case of running an algorithm. The O in big-O notation comes
from the “order” of the algorithm. We use big-2 (Omega) notation to indicate
the lower bound of the worst-case scenario. So, while Deutsch’s problem
takes at worst O(n) steps to solve on a classical computer, Deutsch-Jozsa’s
algorithm solves the problem in one step on a quantum computer. Big-O
notation will be helpful throughout this book in illuminating the difference
between the classical and quantum algorithms.

Umesh Vazirani and his student Ethan Bernstein picked up where Deutsch
and Jozsa left off. In 1993, Bernstein and Vazirani (BV) published a paper
which described an algorithm that showed clear quantum-classical separation
even when small errors are allowed [29]. Why is this significant? While
Deutsch-Jozsa demonstrated a deterministic quantum advantage, if small
errors are allowed in the computation, both classical and quantum versions

“Note: Feynman gave his lecture in 1981 and submitted the lecture for publication in May
of 1981. The lecture was published by IJTP in 1982.
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can be run at worst in O(1) steps, showing no separation. By contrast, the
Bernstein-Vazirani (BV) algorithm demonstrates separation even when small
errors are allowed, thus showing non-deterministic quantum advantage. The
problem posed in BV can be solved in O(n) time on a classical computer and
in O(1) using the BV circuit on a quantum computer.

BV made a further contribution in their 1993 paper. They described a
quantum version of the Fourier transform. This quantum Fourier transform
(QFT) would serve as a critical component for Peter Shor when he developed
his algorithm to factor large numbers.

The work of BV was quickly followed by Daniel Simon, then a postdoc at
the University of Montreal, in 1994. Simon outlined a problem that a quantum
computer would clearly solve exponentially faster than a classical one [203].
To be more specific, Simon’s algorithm has an upper bound of O(n) on a
quantum computer, but a higher 2(2"/2) on a classical computer. Since
the lower bound on the classical computer is of higher order than the upper
bound on the quantum computer, there is a clear demonstration of quantum
advantage.

Just prior to Daniel Simon’s work on algorithms, Seth Lloyd, working
at Los Alamos, published a paper in Science which described a method of
building a working quantum computer [136]. He proposed that a system
sending pulses into a unit can represent a quantum state:

Arrays of pulsed, weakly coupled quantum systems
provide a potentially realizable basis for quantum
computation. The basic unit in the array could be a
quantum dot, a nuclear spin, a localized electronic state
in a polymer, or any multistate quantum system that
interacts locally with its neighbors and can be compelled
to switch between states with resonant pulses of light.

Lloyd realized that:

The proposed device is capable of purely quantum-
mechanical information-processing capacities above
and beyond the conventional digital capacities already
presented. One of the most important of these capacities
is that bits can be placed in superpositions of 0 and 1 by
the simple application of pulses at the proper resonant
frequencies but at a length different from that required to
fully switch the bit. Such bits have a number of uses,
including the generation of random numbers.
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parts of the quantum computer is good; entanglement between the
quantum computer and its environment is bad, since it corresponds to
decoherence” [69, p. 4].

5. The system is capable of making “strong” measurements of each qubit.
By strong measurement, DiVincenzo means that the measurement says
“which orthogonal eigenstate of some particular Hermitian operator
the quantum state belongs to, while at the same time projecting the
wavefunction of the system irreversibly into the corresponding eigen-
function.” This means that the measuring technique in the system
actually does measure the state of the qubit for the property being mea-
sured and leaves the qubit in that state. DiVincenzo wants to prevent
systems that have weak measurement, in other words, measuring tech-
niques that do not couple with the qubit sufficiently to render it in that
newly measured state. At the time he wrote the paper, many systems
did not have sufficient coupling to guarantee projection into the new
state.

In upcoming chapters, we will explore in further detail the various methods
to physically construct a quantum computer and how to program them once
built. Let’s now turn our attention to qubits and the operators we use in
quantum computation.
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Qubits, Operators and
Measurement

In this chapter we will cover qubits and the core set of operators we use to
manipulate the state of qubits.

A qubit is a quantum bit. A qubit is similar to a classical bit in that it can
take on O or 1 as states, but it differs from a bit in that it can also take on a
continuous range of values representing a superposition of states. In this text
we will use qubit to refer to quantum bits and the word bit to refer to classical
bits.

While in general we use two-level qubit systems to build quantum comput-
ers we can also choose other types of computing architectures. For example,
we could build a QC with gutrits which are three-level systems. We can think
of these as having states of 0, 1 or 2 or a superposition of these states.

The more general term for such a unit is qudit; qubits and qutrits are
specific instances of qudits which can be computing units of any number of
states. The Siddiqi Lab at UC Berkeley, for example, has designed a qutrit-
based QC [34]. In a qutrit system we can represent more states than a qubit
system with the same number of computational units.

A qubit system of say 100 qubits can handle 21°? states (1.26765E+30),
while a qutrit system can handle 3190 states (5.15378E+47), a number which
is 17 orders of magnitude larger. Put another way, to represent the same
number space as a 100 qubit system, we only need ~ 63 qutrits (logz(21°?)).
Since it is more difficult to build qutrit systems, the mainstream QCs are
currently based on qubits. Whether we choose qubits, qutrits or some other

© Jack D. Hidary under exclusive license to Springer Nature Switzerland AG 2019 17
J. D. Hidary, Quantum Computing: An Applied Approach,
https://doi.org/10.1007/978-3-030-23922-0_3
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qudit number, each of these systems can run any algorithm that the others can,
i.e., they can simulate each other.!

In QM we represent states as vectors, operators as matrices and we use
Dirac notation instead of traditional linear algebra symbols to represent vectors
and other abstractions. Chapter 11 contains a review of linear algebra, Dirac
notation and other mathematical tools that are crucial for our inquiry in this
book. In this chapter we will assume knowledge of these mathematical tools;
we encourage the reader to use the math chapters to review these concepts in
the context of quantum computing.

Let us begin with the definition of a qubit:

3.1 What is a Qubit?

A physical qubit is a two-level quantum mechanical system. As we will
see in the chapter on building quantum computers, there are many ways to
construct a physical qubit. We can represent a qubit as a two-dimensional
complex Hilbert space, C2. The state of the qubit at any given time can
be represented by a vector in this complex Hilbert space.

The Hilbert space is equipped with the inner product which allows us to
determine the relative position of two vectors representing qubit states. We
denote the inner product of vectors |u), |v) as (u|v) ; this will equal 0 if |u)
and |v) are orthogonal and 1 if |u) = |v}. To represent two or more qubits we
can tensor product Hilbert spaces together to represent the combined states of
the qubits. As we shall see, we have methods to represent separable states,
where the qubits are independent of one another, and entangled states such as
a Bell state, where we cannot separate the two qubit states.

We can represent the states |0) and |1) with vectors as shown below. We
call these two the computational basis of a two-level system. We can then
apply operators in the form of matrices to the vectors in the state space.

0= () 0-()

INote that we could consider the same question in classical systems, i.e., we could have
used a 3-state “trit” instead of the bit, but we choose to use bits as there are distinct advantages
to the binary system.
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3.2 Quantum Operators

In gate-based quantum computers, the operators which we use to evolve
the state of the qubits are unitary and therefore reversible. Some of the
operators are unitary, reversible and involutive (i.e., they are their own
inverses); others are not involutive. A measurable quantity, or observable,
is a Hermitian operator; thus the measurement in a quantum computer
outputs real values from the system. We use the terms operators and gates
interchangeably.

In addition to an inner product of two vectors, linear algebra gives us the
outer product. This is when we take two vectors and form a matrix (whereas
an inner product gives us a scalar). If we take the outer product |0}0|, for
example, we produce the following operator

oor= ()" "= (5 )

Similarly, we can take the outer product of the other three combinations to
produce these matrices

oxit = (o) V= (5 o)
() 9= 3

= (3) V= (5

)

We can take the sum of two of these matrices to form a unitary matrix, like
SO

oil+ o= () (33
This, in fact, is the X or NOT operator which we will encounter shortly in
this chapter.

We have established that a qubit can be in one of the computational basis
states of 0 or 1 or in a superposition of these two states. How can we represent
the superposition of multiple states? We can do so as a linear combination of
the computational bases of the state space.
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3.4 Representing Superposition of States

We represent a superposition of states as the linear combination of com-
putational bases of the state space. Each term in the superposition has a
complex coefficient or amplitude.

Using the two computational basis vectors in the case of a single qubit,
two examples of superpositions of states are

1
4) 1= = (0) + 1)
and
=) = — (o) — 1))
=

These two states differ by a minus sign on the |1) state. More formally, we
call this difference a relative phase. The term phase has numerous meanings
in physics — in this context, it refers to an angle. The minus sign is related to
the angle 7 (180°) by Euler’s identity”

eln’ — _1

Relative phases are of fundamental importance for quantum algorithms in
that they allow for constructive interference and destructive interference. For
example, if we evaluate the sum of the above states, we obtain

1 1 1
E(H) +1=) =50} +[1) + 2(0) — 1)) = |0)

T2

Here, we say that the amplitudes of the |1) state interfere destructively — the
differing relative phases cause them to sum to zero. On the other hand, the
amplitudes of the |0} state interfere constructively — they have the same sign
(relative phase), so they do not sum to zero, and thus we are left with the state
|0} as the result.

We can also consider subtracting the two superposition states. We leave it
to the reader to verify that

R
V2

2For more on Euler’s identity, refer to chapter 13.

(=) =1+) =-I1)
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x|
As we have seen, we can represent the X operator in ket notation as
X = |OX1] + [1X0]
and the application of the X operator like so:
Xljy=lien

where j € {0, 1}. Here the & operation denotes addition modulo-2, and j & 1
is equivalent to the NOT operation. So if we start with the qubit in state |0)
and apply NOT then we have

|0) D 1)

Next we have the Y operator, also denoted oy, which rotates the state
vector about the y axis?.
0 —i
()
So that if we apply it to the |1) state we have
0 —i\ /0 0—1i —i ,
(9 (0)=(50) = (5) =0

The circuit diagram for the Y operator is

52
1Y

And the Z operator, also denoted o, which rotates the state vector about
the z axis (also called the phase flip operator since it flips it by & radians or

180 degrees)
I 0
()
If we apply Z to the computational basis state we have
Z1j) =D 1))

or to show this in matrix form for the special case j = 0

3The x, v and z axes in this section refer to representation of the qubit’s state on a Bloch
sphere, which we will cover later in this chapter.
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(o6 2) ()= (o50)=(5) =t =10

For the case where j = | we have

(6 2) () =G5 =(5)=com=-m

Note that we can multiply the bit-flip operator X by the phase-flip operator
Z to yield the ¥ operator with a global phase shift of i. Thatis, ¥ = iXZ.

The circuit diagram for the Z operator is

52
1]

Next we turn to the more general phase shift operator. When we apply this
operator we leave the state |0) as is and we take the state |1) and rotate it by
the angle (or phase) denoted by ¢, as specified in the matrix

1 0

So the Pauli Z operator is just a special case of R, where ¢ = 7. Let’s
recall that e'™ = —1 by Euler’s identity (see chapter 13) so we can replace
e'™ with —1 in the Z matrix. The circuit diagram for the R operator is

R,

Let’s discuss two additional phase shift operators that are special cases of
the Ry, matrix. First, the S operator, where ¢ = /2

(1)

The S operator thus rotates the state about the z-axis by 90°. The circuit
diagram for the S operator is

]
1S

Next let’s turn to the T operator which rotates the state about the z-axis by
45°, If we give ¢ the value of /4 then*

“Note that the T gate is also known as the 77/8 gate, since if we factor out e 7/8  the
diagonal components each have |¢| = 7 /8, but this is of course the same operator.
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1 0
T:= (0 ein/4)

Note that S = T2. In other words, if we apply the T matrix to the vector
representing the state and then apply 7' again to the resulting vector from
the first operation we have accomplished the same result as applying S once
(45° + 45° = 90°). The circuit diagram for the T operator is

7]
7]

Now let’s turn to the Hadamard operator. This operator is crucial
in quantum computing since it enables us to take a qubit from a def-
inite computational basis state into a superposition of two states. The

Hadamard matrix is |
1 1
=52

It was actually the mathematician John Sylvester who developed this matrix,
but we name it after Jacques Hadamard (see Stigler’s law of eponymy which,
of course, was probably conceived by Merton and others). The circuit diagram
for the H operator is

7]
Ecl

If we apply the Hadamard to state |0) we obtain

L) b0 - b0

And to state |1) we have

EC)0- 6005

So we can see that the H operator takes a computational basis state and
projects it into a superposition of states (|0) + [1))/+/2 or (|0) — |1))/~/2,
depending on the initial state.

What is the +/2 doing in this state? Let us recall the Born rule that the
square of the modulus of the amplitudes of a quantum state is the probability
of that state. Furthermore, for all amplitudes o, 3, etc. of a state

>+ |B)? =1

That is, the probabilities must sum to one since one of the states will emerge
from the measurement.
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Before moving on to the binary operators, let us define the identity operator
and then determine which operators can be expressed as sequences of other
operators. The identity operator is simply the matrix which maintains the
current state of the qubit. So for one qubit we can use

()

Having covered the set of unary operators, we can show the following identi-
ties:

HXH =Z
HZH = X
HYH =—Y
H'=H
H? =1

Please see chapter 14 for a list of additional identities.

Binary Operators

Let us now consider two qubit, or binary, operators. In a two-qubit system,
by convention, we use the following computational basis states:

1 0 0 0
0 | 0 0
0 0 0 1

Let us first discuss the SWAP operator. The SWAP takes the state |01)
to |10) and, of course, |10) to |01). We can represent this operator with the
following matrix

SWAP =

=i
- O
i =)
-0 o O

00 0
And apply it to a 4-d vector representing the state |01) as follows

0 0 0\ /0 0+04+0+0 0
04+0+0+4+0

0
04+1+0+4+0 1
04+0+0+0 0

= [10)

oo o~

0 0
1 0
0 1

S O =
S O -
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Satisfy yourself that this operator applied to one of the two-qubit computa-
tional basis vectors will have the desired result. For the circuit diagram of the
SWAP operator we use

Now we come to a critical operator for quantum computing — controlled-
NOT (CNOT). In this binary operator, we identify the first qubit as the control
qubit and the second as the farget qubit. If the control qubit is in state |0) then
we do nothing to the target qubit. If, however, the control qubit is in state |1)
then we apply the NOT operator (X)) to the target qubit. We use the CNOT
gate to entangle two qubits in the QC. We can represent CNOT with the
following matrix

1000
lo1 00
CNOT:= | o o |
0010

So, for example, we compute the action of CNOT on the state |10} as follows
0 0\ /0 04+04+0+40 0
O OJfo}y _0+04+040] (O
O 1] (o+04+0+0] |O
1 0/ \0 0+0+1+0 1

And for the circuit diagram, we depict the CNOT in this way

Fan)
L

Here is an identity connecting the SWAP and CNOT operators:
SWAP;; = CNOT;;CNOT j; CNOT;;

Now let’s turn to another control operator: CZ. Here we have a control
qubit and a target qubit just as with CNOT; however, in this operation if the
control qubit is in state |1) then we will apply the Z operator to the target
qubit. We can represent the CZ operator in a circuit diagram as

2

=
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!

3.2 | Comparison with Classical Gates

In classical computing we have a set of commonly used gates: AND, NOT,
OR, NAND, XOR, FANOUT, etc. We can use combinations of these gates
to perform any computation in classical computing. A classical computer
that can run these gates is Turing-complete or universal. In fact, we can
prove that the NAND gate alone is sufficient to construct all other classical
operators [198]. We can construct classical circuits with these basic building
blocks such as a circuit for the half-adder

A
B 7.

C

Figure 3.1: Half-adder in classical computing  Source: Wikimedia

We can then build a full-adder from those elements:

0>
[+]

N
wn

Ci+1

C-Ch =—A-C,

Figure 3.2: Full-adder in classical computing  Source: Wikimedia

Neither AND, OR, XOR, NAND or FANOUT can be used in quantum
computing. The AND, OR, XOR and NAND gates are not reversible. The
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FANOUT gate would not be allowed in quantum computing since it involves
the duplication, or cloning, of a state; this would violate the no-cloning
theorem. Of the primary classical gates, only the NOT operator can be used in
the quantum computing regime as it is reversible and does not involve cloning.

3.3 | Universality of Quantum Operators

If NAND is universal for classical computing, is there such a gate or set of
gates that are universal for quantum computing? In fact, there are several
combinations of unary and binary operators that lead to universality. No set
of unary gates on their own can achieve universal QC. Two of the gate sets
that yield universality are:

1. The Toffoli gate is universal for QC when paired with a basis-changing
unary operator with real coefficients (such as H) [199].

2. Another set of gates which is universal is {CNOT, T, H} [44, 161].

3.4 | Gottesman-Knill and Solovay-Kitaev

The Gottesman-Knill theorem states that circuits built with only Clifford gates
can be simulated efficiently on classical computers assuming the following
conditions:

e state preparation in the computational basis

e measurements in the standard basis

e any classical control conditioned on the measurement outcomes

The Clifford group of operators is generated by the set C = {CNOT, S, H}
[96] [168].

A further theorem that is worth considering at this junction is that of
Solovay-Kitaev. This theorem states that if a set of single-qubit quantum
gates generates a dense subset of S U(2), which is the special unitary group
of unitary matrices which are 2 x 2, then that set is guaranteed to fill SU(2)
quickly, i.e., it is possible to obtain good approximations to any desired
gate using surprisingly short sequences of gates from the given generating
set [62]. The theorem generalizes to multi-qubit gates and for operators from
Su(d) [62].

A simplified version of this statement is that all finite universal gate sets
can simulate a given gate set to a degree  of precision. More precisely, if L is
the size of the circuit (i.e., the number of gates) then the approximation L of
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L has a bounded number of gates; this can be specified in big- O notation by

)

If D denotes the depth of the circuit, i.e., the number of computational
steps, then the approximation D’ of D has a bounded depth specified in big-O

notation by
D
D' =0 (L log* (?))

So, these expressions demonstrate that the simulation is quite efficient and
better than polynomial time.

3.5 | The Bloch Sphere

There are several ways to represent the state of a qubit:

1. We can write out the state in Dirac notation. For example, if we have a
qubit that is prepared in state |0) and then apply the X operator, we will then
find the qubit in state |1) (assuming no outside noise)

X [0) = [1)

2. We can use the Bloch sphere to represent the state of a single qubit. Any
state in a quantum computation can be represented as a vector that begins at
the origin and terminates on the surface of the unit Bloch sphere. By applying
unitary operators to the state vectors, we can move the state around the sphere.
We take as convention that the two antipodes of the sphere are |0) on the top
of the sphere and |1) on the bottom.

As we can see in Figure 3.3, one of the advantages of visualization with
the Bloch sphere is that we can represent superposition states such as

10) + [1)
2

as we see at the X axis. We can also differentiate between states that contain
different phases as is shown in the states along the X and Y axes.

Let us return to computational universality which we treated above. Now
that we have introduced the Bloch sphere, another way to think about a set of
gates that satisfies universal computation is one which enables us to reach any
point on the Bloch sphere.
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10)
2w j0+in
y V2

1)
Figure 3.3: The Bloch sphere  Source: [93]

For interactive visualizations of qubits on the Bloch sphere, see the book’s
online website. Now that we have covered the main unitary operators which
we use in QC, let’s turn to the measurement of the QC'’s state.

3.6 | The Measurement Postulate

Measurement in classical physics is a seemingly straightforward process. The
act of measurement is assumed to have no effect on the item that we are
measuring. Furthermore, we have the ability to measure one property of a
system, get a reading, then measure another property and be confident that
the first property measured still retains its observed value. Not so in quantum
mechanics; in this regime, the act of measurement has a profound effect on
the observation.

Building on the principles of quantum mechanics, we can state the mea-
surement postulate as:

3.5 Measurement Postulate

Every measurable physical quantity, o, is described by a corresponding
Hermitian operator, O, acting on the state W.

According to this postulate, there exists a Hermitian operator, which
we call an observable, associated with each property. So, for example, the
observable X is associated with the position of a particle.

We recall that a Hermitian operator is equal to its adjoint (which is its
complex conjugate transpose). If O is Hermitian then we can state that
0=o0f (see chapter 12 for more discussion on Hermitians).



