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Preface

A CRITICAL REVIEW OF SCOTT AARONSON'S
QUANTUM COMPUTING SINCE DEMOCRITUS

by Scott Aaronson.

Quantum Computing since Democritus is a candidate for the
weirdest book ever to be published by Cambridge University Press.
The strangeness starts with the title, which conspicuously fails to
explain what this book is about. Is this another textbook on
quantum computing — the fashionable field at the intersection of
physics, math, and computer science that’s been promising the
world a new kind of computer for two decades, but has yet to build
an actual device that can do anything more impressive than factor
21 into 3 x 7 (with high probability)? If so, then what does this book
add to the dozens of others that have already mapped out the
fundamentals of quantum computing theory? Is the book, instead, a
quixotic attempt to connect quantum computing to ancient history?
But what does Democritus, the Greek atomist philosopher, really
have to do with the book’s content, at least half of which would have
been new to scientists of the 1970s, let alone of 300 BC?

Having now read the book, I confess that I've had my mind
blown, my worldview reshaped, by the author’s truly brilliant,
original perspectives on everything from quantum computing (as
promised in the title) to Godel’s and Turing’s theorems to the P
versus NP question to the interpretation of quantum mechanics to
artificial intelligence to Newcomb’s Paradox to the black-hole
information loss problem. So, if anyone were perusing this book at a
bookstore, or with Amazon’s “Look Inside” feature, I would
certainly tell that person to buy a copy immediately. I'd also add
that the author is extremely handsome.
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Yet it’s hard to avoid the suspicion that Quantum Computing
since Democritus is basically a “brain dump”: a collection of
thoughts about theoretical computer science, physics, math, and
philosophy that were on the author’s mind around the fall of 2006,
when he gave a series of lectures at the University of Waterloo that
eventually turned into this book. The material is tied together by
the author’s nerdy humor, his “Socratic” approach to every question,
and his obsession with the theory of computation and how it relates
to the physical world. But if there’s some overarching “thesis” that
I'm supposed to take away, I can’t for the life of me articulate what
it is.

More pointedly, one wonders who the audience for this book
is supposed to be. On the one hand, it has way too much depth for a
popular book. Like Roger Penrose’s The Road to Reality — whose
preface promises an accessible adventure even for readers who
struggled with fractions in elementary school, but whose first few
chapters then delve into holomorphic functions and fiber bundles —
Quantum Computing since Democritus is not for math-phobes. A
curious layperson could certainly learn a lot from this book, but he
or she would have to be willing to skip over some dense passages,
possibly to return to them later. So if you're someone who can
stomach “science writing” only after it’s been carefully cleansed of
the science, look elsewhere.

On the other hand, the book is also too wide-ranging, breezy,
and idiosyncratic to be used much as a textbook or reference work.
Sure, it has theorems, proofs, and exercises, and it covers the basics
of an astonishing number of fields: logic, set theory, computability,
complexity, cryptography, quantum information, and computational
learning theory, among others. It seems likely that students in any of
those fields, from the undergraduate level on up, could gain valuable
insights from this book, or could use it as an entertaining self-study
or refresher course. Besides these basics, the book also has significant
material on quantum complexity theory — for example, on the power

of quantum proofs and advice — that (to this reviewer’s knowledge)
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hasn’t appeared anywhere else in book form. But still, the book
flits from topic to topic too hastily to be a definitive text on
anything.

So, is the book aimed at non-scientists who won't actually
malke it past the first chapter, but want something to put on their
coffee table to impress party guests? The only other possibility I can
think of is that there’s an underserved audience for science books
that are neither “popular” nor “professional”: books that describe a
piece of the intellectual landscape from one researcher’s heavily
biased vantage point, using the same sort of language you might hear
in a hallway conversation with a colleague from a different field.
Maybe, besides those colleagues, this hypothetical “underserved
audience” would include precocious high-school students, or
programmers and engineers who enjoyed their theoretical courses
back in college and want to find out what’s new. Maybe this is the
same audience that frequents these “science blogs” I've heard about:
online venues where anyone in the world can apparently watch real
scientists, people at the forefront of human knowledge, engage in
petty spats, name-calling, and every other juvenile behavior, and can
cven egg the scientists on to embarrass themselves further. (The
book’s author, it should be noted, writes a particularly crass and
infamous such blog.) If such an audience actually exists, then
perhaps the author knew exactly what he was doing in aiming at it.
My sense, though, is that he was having too much fun to be guided
by any such conscious plan.

NOW FOR THE ACTUAL PREFACE

While I appreciate the reviewer’s kind words about my book (and
even my appearance!) in the preceding pages, I also take issue, in the
strongest possible terms, with his ignorant claim that Quantum
Computing since Democritus has no overarching thesis. It does have
a thesis — even though, strangely, I wasn’t the one who figured out
what it was. For identifying the central message of this book, [ need

to thank Love Communications, an advertising agency based in
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Sydney, Australia, which put the message into the mouths of fashion
models for the purpose of selling printers.

Let me explain — the story is worth it.

In 2006, I taught a course entitled “Quantum Computing since
Democritus” at the University of Waterloo. Over the next year, 1
posted rough notes from the course on my blog, Shtetl-Optimized' —
notes that were eventually to become this book. I was heartened by
the enthusiastic response from readers of my blog; indeed, that
response is what convinced me to publish this book in the first
place. But there was one response neither I nor anyone else could
have predicted.

On October 1, 2007, I received an email from one Warren
Smith in Australia, who said he had seen a television commercial for
Ricoh printers. The commercial, he went on, featured two female
fashion models in a makeup room, having the following

conversation:

Model 1: But if quantum mechanics isn’t physics in the usual
sense — if it’s not about matter, or energy, or waves — then what

is it about?

Model 2: Well, from my perspective, it’s about information, proba-

bilities, and observables, and how they relate to each other.
Model 1: That’s interesting!

The commercial then flashed the tagline “A more intelligent
model,” followed by a picture of a Ricoh printer.

Smith said he was curious where the unusual text had come
from, so he googled it. Doing so brought him to Chapter 9 of my
“Quantum Computing since Democritus” notes (p. 110, where he

found the following passage:

But if quantum mechanics isn't physics in the usual sense —if it’s

not about matter, or energy, or waves, or particles — then what is it

! www.scottaaronson.com/blog
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The idea that quantum mechanics is “about” information,
probabilities, and observables, rather than waves and particles,
certainly isn’t an original one. The physicist John Archibald Wheeler
said similar things in the 1970s; and today an entire field, that of
quantum computing and information, is built around the idea.
Indeed, in the discussion on my blog that followed the Australian
models episode, one the commonest (and to me, funniest) arguments
was that I had no right to complain, because the appropriated
passage wasn’t special in any way: it was an obvious thought that
could be found in any physics book!

How I wish it were so. Even in 2013, the view of quantum
mechanics as a theory of information and probabilities remains very
much a minority one. Pick up almost any physics book — whether
popular or technical — and you’ll learn that (a) modern physics says
all sorts of paradoxical-seeming things, like that waves are particles
and particles are waves, (b at a deep level, no one really understands
these things, (¢) even translating them into math requires years of
intensive study, but (d) they make the atomic spectra come out
right, and that’s what matters in the end.

One eloquent statement of this “conventional view” was

provided by Carl Sagan, in The Demon-Haunted World:

Imagine you seriously want to understand what quantum mechan-
ics is about. There is a mathematical underpinning that you must
first acquire, mastery of each mathematical subdiscipline lead-
ing you to the threshold of the next. In turn you must learn arith-
metic, Euclidean geometry, high school algebra, differential and
integral calculus, ordinary and partial differential equations, vec-
tor calculus, certain special functions of mathematical physics,
matrix algebra, and group theory ... The job of the popularizer of
science, trying to get across some idea of quantum mechanics to a
general audience that has not gone through these initiation rites,
is daunting. Indeed, there are no successful popularizations of

quantum mechanics in my opinion — partly for this reason. These
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mathematical complexities are compounded by the fact that quan-
tum theory is so resolutely counterintuitive. Common sense is
almost useless in approaching it. It’s no good, Richard Feynman
once said, asking why it is that way. No one knows why it is that

way. That’s just the way it is (p. 249).

It’s understandable why physicists talk this way: because physics is
an experimental science. In physics you're allowed to say, “these are
the rules, not because they make sense, but because we ran the
experiment and got such-and-such a result.” You can even say it
proudly, gleefully — defying the skeptics to put their preconceived
notions up against Nature’s verdict.

Personally, I simply believe the experimentalists, when they
say the world works in a completely different way than I thought it
did. It’s not a matter of convincing me. Nor do I presume to predict
what the experimentalists will discover next. All I want to know is:
What went wrong with my intuition! How should I fix it, to put it
more in line with what the experiments found! How could I have
reasoned, such that the actual behavior of the world wouldn’t have
surprised me so much!?

With several previous scientific revolutions — Newtonian
physics, Darwinian evolution, special relativity — I feel like I
more-or-less know the answers to the above questions. If my
intuition isn’t yet fully adjusted even to those theories, then at least
I know how it needs to be adjusted. And thus, for example, if I were
creating a new universe, I might or might not decide to make it
Lorentz invariant, but I'd certainly consider the option, and I'd
understand why Lorentz-invariance was the inevitable consequence
of a couple of other properties I might want.

But quantum mechanics is different. Here, the physicists
assure us, no one knows how we should adjust our intuition so that
the behavior of subatomic particles would no longer seem so crazy.
Indeed, maybe there is no way; maybe subatomic behavior will

always remain an arbitrary brute fact, with nothing to say about it
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beyond “such-and-such formulas give you the right answer.” My
response is radical: if that’s true, then I don’t much care how
subatomic particles behave. No doubt other people need to know —
the people designing lasers or transistors, for example — so let them
learn. As for me, I'll simply study another subject that makes more
sense to me — like, say, theoretical computer science. Telling me that
my physical intuition was wrong, without giving me any path to
correct that intuition, is like flunking me on an exam without
providing any hint about how I could’ve done better. As soon as I'm
free to do so, I'll simply gravitate to other courses where I get As,
where my intuition does work.

Fortunately, I think that, as the result of decades of work in
quantum computation and quantum foundations, we can do a lot
better today than simply calling quantum mechanics a mysterious

brute fact. To spill the beans, here’s the perspective of this book:

Quantum mechanics is a beautiful generalization of the laws of
probability: a generalization based on the 2-norm rather than the
1-norm, and on complex numbers rather than nonnegative real
numbers. It can be studied completely separately from its appli-
cations to physics (and indeed, doing so provides a good starting
point for learning the physical applications later). This general-
ized probability theory leads naturally to a new model of compu-
tation — the quantum computing model — that challenges ideas
about computation once considered a priori, and that theoretical
computer scientists might have been driven to invent for their
own purposes, even if there were no relation to physics. In short,
while quantum mechanics was invented a century ago to solve
technical problems in physics, today it can be fruitfully explained
from an extremely different perspective: as part of the history of
ideas, in math, logic, computation, and philosophy, about the

Iimits of the knowable.

In this book I try to make good on the above claims, taking a
leisurely and winding route to do so. I start, in Chapter 1, as near to
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the “beginning” as I possibly can: with Democritus, the ancient
Greek philosopher. Democritus’s surviving fragments — which
speculate, among other things, that all natural phenomena arise
from complicated interactions between a few kinds of tiny “atoms,”
whizzing around in mostly empty space — get closer to a modern
scientific worldview than anything else in antiquity (and certainly
closer than any of Plato’s or Aristotle’s ideas). Yet no sooner had
Democritus formulated the atomist hypothesis, than he noticed
uneasily its tendency to “swallow whole” the very
sense-experiences that he was presumably trying to explain in the
first place. How could those be reduced to the motions of atoms?
Democritus expressed the dilemma in the form of a dialogue

between the Intellect and the Senses:

Intellect: By convention there is sweetness, by convention bitter-

ness, by convention color, in reality only atoms and the void.

Senses: Foolish intellect! Do you seek to overthrow us, while it is

from us that you take your evidence?

This two-line dialogue will serve as a sort of touchstone for the
entire book. One of my themes will be how quantum mechanics
seems to give both the Intellect and the Senses unexpected new
weapons in their 2300-year-old argument — while still (I think) not
producing a clear victory for either.

In Chapters 2 and 3, I move on to discuss the deepest
knowledge we have that intentionally doesn’t depend on “brute
facts” about the physical world: namely, mathematics. Even there,
something inside me (and, I suspect, inside many other computer
scientists!| is suspicious of those parts of mathematics that bear the
obvious imprint of physics, such as partial differential equations,
differential geometry, Lie groups, or anything else that’s “too
continuous.” So instead, I start with some of the most
“physics-free” parts of math yet discovered: set theory, logic, and

computability. I discuss the great discoveries of Cantor, Frege,
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Godel, Turing, Church, and Cohen, which helped to map the
contours of mathematical reasoning itself — and which, in the course
of showing why all of mathematics can’t be reduced to a fixed
“mechanical process,” also demonstrated just how much of it could
be, and clarified what we mean by “mechanical process” in the first
place. Since I can’t resist, in Chapter 4 I then wade into the hoary
debate about whether the human mind, too, is governed by “fixed
mechanical processes.” I set out the various positions as fairly as I
can (but no doubt reveal my biases).

Chapter 5 introduces computability theory’s modern cousin,
computational complexity theory, which plays a central role in the
rest of the book. I try to illustrate, in particular, how computational
complexity lets us systematically take “deep philosophical
mysteries” about the limits of knowledge, and convert them into
“merely” insanely difficult unsolved mathematical problems, which
arguably capture most of what we want to know! There’s no better
example of such a conversion than the P versus NP problem, which I
discuss in Chapter 6. Then, as warmups to quantum computing,
Chapter 7 examines the many uses of classical randomness, both in
computational complexity and in other parts of life; and Chapter 8
explains how computational complexity ideas were applied to
revolutionize the theory and practice of cryptography beginning in
the 1970s.

All of that is just to set the stage for the most notorious part of
the book: Chapter 9, which presents my view of quantum mechanics
as a “generalized probability theory.” Then Chapter 10 explains the
basics of my own field, the quantum theory of computation, which
can be briefly defined as the merger of quantum mechanics with
computational complexity theory. As a “reward” for persevering
through all this technical material, Chapter 11 offers a critical
examination of the ideas of Sir Roger Penrose, who famously holds
that the brain is not merely a quantum computer but quantum
gravitational computer, able to solve Turing-uncomputable

problems — and that this, or something like it, can be shown by an
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“super-quantum” correlations; derandomization of randomized algo-
rithms; science, religion, and the nature of rationality; and why com-

puter science is not a branch of physics departments.

A final remark. One thing you won't find in this book is much
discussion of the “practicalities” of quantum computing: either
physical implementation, or error correction, or the details of Shor’s,
Grover’s, or other basic quantum algorithms. One reason for this
neglect is incidental: the book is based on lectures I gave at the
University of Waterloo’s Institute for Qquantum Computing, and the
students were already learning all about those aspects in their other
classes. A second reason is that those aspects are covered in dozens
of other books’ and online lecture notes (including some of my
own|, and I saw no need to reinvent the wheel. But a third reason is,
frankly, that the technological prospect of building a new kind of
computer, exciting as it is, is not why I went into quantum
computing in the first place. (Shhh, please don’t tell any funding
agency directors I said that.)

To be clear, I think it’s entirely possible that I'll see practical
quantum computers in my lifetime (and also possible, of course, that
I won't see them]. And if we do get scalable, universal quantum
computers, then they’ll almost certainly find real applications (not
even counting codebreaking|: mostly, I think, for specialized tasks
like quantum simulation, but to a lesser extent for solving
combinatorial optimization problems. If that ever happens, I expect
I'll be as excited about it as anyone on earth — and, of course, tickled
if any of the work I've done finds applications in that new world. On
the other hand, if someone gave me a practical quantum computer
tomorrow, then I confess that I can’t think of anything that I,
personally, would want to use it for: only things that other people

could use it for!

7 The “standard reference” for the field remains Quantum Computation and Quantum
Information, by Michael Nielsen and Isaac Chuang,
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Partly for that reason, if scalable quantum computing were
proved to be impossible, that would excite me a thousand times
more than if it were proved to be possible. For such a failure would
imply something wrong or incomplete with our understanding of
quantum mechanics itself: a revolution in physics! As a congenital
pessimist, though, my guess is that Nature won’t be so kind to us,
and that scalable quantum computing will turn out to be possible
after all.

In summary, you could say that I'm in this field less because of
what you could do with a quantum computer, than because of what
the possibility of quantum computers already does to our
conception of the world. Either practical quantum computers can be
built, and the limits of the knowable are not what we thought they
are; or they can’t be built, and the principles of quantum mechanics
themselves need revision; or there’s a yet-undreamt method to
simulate quantum mechanics efficiently using a conventional
computer. All three of these possibilities sound like crackpot
speculations, but at least onc of them is right! So whichever the
outcome, what can one say but — to reverse-plagiarize a certain TV

commercial — “that’s interesting?”

WHAT’'S NEW
In revising this manuscript for publication, the biggest surprise for
me was how much happened in the fields discussed by the book
between when I originally gave the lectures (2006) and “now” (2013).
This book is supposed to be about deep questions that are as old as
science and philosophy, or at the least, as old as the birth of
quantum mechanics and of computer science almost a century ago.
And at least on a day-to-day basis, it can feel like nothing ever
changes in the discussion of these questions. And thus, having to
update my lectures extensively, after the passage of a mere six years,
was an indescribably pleasant burden for me.

Just to show you how things are evolving, let me give a partial

list of the developments that are covered in this book, but that
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couldn’t have been covered in my original 2006 lectures, for the
simple reason that they hadn’t happened yet. IBM’s Watson
computer defeated the Jeopardy! world champion Ken Jennings,
forcing me to update my discussion of Al with a new example (see
p. 37), very different in character from previous examples like ELIZA
and Deep Blue. Virginia Vassilevska Williams, building on work of
Andrew Stothers, discovered how to multiply two n x n matrices
using only O(n*37) steps, slightly beating Coppersmith and
Winograd’s previous record of O(n?>*7¢), which had held for so long
that #2.376" had come to feel like a constant of nature (see p. 49).

There were major advances in the area of lattice-based
cryptography, which provides the leading candidates for public-key
encryption systems secure even against quantum computers (see
pp. 105-107). Most notably, solving a 30-year-old open problem,
Craig Gentry used lattices to propose the first fully homomorphic
cryptosystems. These systems let a client delegate an arbitrary
computation to an untrusted server — feeding the server encrypted
inputs and getting back an encrypted output — in such a way that
only the client can decrypt (and verify) the output; the server never
has any clue what computation it was hired to perform.

In the foundations of quantum mechanics, Chiribella et al.
(see p. 131) gave a novel argument for “why” quantum mechanics
should involve the specific rules it does. Namely, they proved that
those rules are the only ones compatible with certain general axioms
of probability theory, together with the slightly mysterious axiom
that “all mixed states can be purified”: that is, whenever you don'’t
know everything there is to know about a physical system A, your
ignorance must be fully explainable by positing correlations between
A and some faraway system B, such that you would know
everything there is to know about the combined system AB.

In quantum computing theory, Bernstein and Vazirani’s
“Recursive Fourier Sampling” (RFS) problem — on which I spent a
fair bit of time in my 2006 lectures — has been superseded by my

“Fourier Checking” problem (see p. 145]. RFS retains its place in
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history, as the first black-box problem ever proposed that a quantum
computer can provably solve superpolynomially faster than a
classical probabilistic computer — and, as such, an important
forerunner to Simon’s and Shor’s breakthroughs. Today, though, if
we want a candidate for a problem in BQP\PH — in other words,
something that a quantum computer can easily do, but which is not
even in the classical “polynomial-time hierarchy” — then Fourier
Checking seems superior to RFS in every way.

Happily, several things discussed as “open problems” in my
2006 lectures have since lost that status. For example, Andrew
Drucker and I showed that BQP/qpoly is contained in QMA/poly
(and, moreover, the proof relativizes), falsifying my conjecture that
there should be an oracle separation between those classes [see
p- 214). Also, in a justly celebrated breakthrough in quantum
computing theory, Jain et al. proved that QIP = PSPACE (see p. 263,
meaning that quantum interactive proof systems are no more
powerful than classical ones. In that case, at least, I conjectured the
right answer! (There was actually another breakthrough in the study
of quantum interactive proof systems, which I don’t discuss in the
book. My postdoc Thomas Vidick, together with Tsuyoshi Ito,®
recently showed that NEXP € MIP*, which means that any
multiple-prover interactive proof system can be “immunized”
against the possibility that the provers secretly coordinate their
responses using quantum entanglement.)

Chapter 20 of this book discusses David Deutsch’s model for
quantum mechanics in the presence of closed timelike curves, as
well as my (then-jnew result, with John Watrous, that Deutsch’s
model provides exactly the computational power of PSPACE. (So
that, in particular, quantum time-travel computers would be no

more powerful than classical time-travel computers, in case you

8 T. Ito and T. Vidick, A Multi-prover Interactive Proof for NEXP Sound against Entan-
gled Provers. In Proceedings of IEEE Symposium on Foundations of Computer Science
(2012}, pp. 243-252.
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were wondering.) Since 2006, however, there have been important
papers questioning the assumptions behind Deutsch’s model, and
proposing alternative models, which generally lead to computational
power less than PSPACE. For example, one model, proposed by
Lloyd et al., would “merely” let the time traveler solve all problems
in PP! I discuss these developments on pp. 319-322.

What about circuit lower bounds — which is theoretical
computer scientists’ codeword for “trying to prove P # NP,” in
much the same way that “closed timelike curves” is the physicists’
codeword for “time travel?” I'm pleased to report that there have
been interesting developments since 2006, certainly more than I
would have expected back then. As one example, Rahul Santhanam
used interactive proof techniques to prove the non-relativizing result
that the class PromiseMA doesn’t have circuits of any fixed
polynomial size (see p. 257). Santhanam’s result was part of what
spurred Avi Wigderson and myself, in 2007, to formulate the
algebrization barrier (see p. 258), a generalization of Baker,

Gill, and Solovay’s relativization barrier from the 1970s (see

pp- 245-246). Algebrization explained why the interactive proof
techniques can take us only so far and no further in our quest to
prove P # NP: as one example, why those techniques led to
superlinear circuit lower bounds for PromiseMA, but not for the
class NP just “slightly below it.” The challenge we raised was to find
new circuit lower bound techniques that convincingly evade the
algebrization barrier. That challenge was met in 2010, by Ryan
Williams’ breakthrough proof that NEXP ¢ ACC® (discussed on

pp. 260-261).

Of course, even Williams’ result, exciting as it was, is a
helluva long way from a proof of P # NP. But the past six years have
also witnessed a flowering of interest in, and development of, Ketan
Mulmuley’s Geometric Complexity Theory (GCT) program (see
pp. 261-262), which is to proving P # NP almost exactly as string
theory is to the goal of a unified theory of physics. That is, in terms
of concrete results, the GCT program hasn’t yet come anywhere

close to fulfilling its initial hopes, and even the program’s most
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1 Atoms and the void

I would rather discover a single cause than become king of the
Persians.

— Democritus

So why Democritus? First of all, who was Democritus? He was this
Ancient Greek dude. He was born around 450 BC in this podunk
Greek town called Abdera, where people from Athens said that even
the air causes stupidity. He was a disciple of Leucippus, according
to my source, which is Wikipedia. He’s called a “pre-Socratic,” even
though actually he was a contemporary of Socrates. That gives you
a sense of how important he’s considered: “Yeah, the pre-Socratics —
maybe stick ‘'em in somewhere in the first week of class.” Incidentally,
there’s a story that Democritus journeyed to Athens to meet Socrates,
but then was too shy to introduce himself.

Almost none of Democritus’s writings survive. Some survived
into the Middle Ages, but they’re lost now. What we know about him
is mostly due to other philosophers, like Aristotle, bringing him up
in order to criticize him.

So, what did they criticize? Democritus thought the whole uni-
verse is composed of atoms in a void, constantly moving around
according to determinate, understandable laws. These atoms can hit
each other and bounce off, or they can stick together to make bigger
things. They can have different sizes, weights, and shapes — maybe
some are spheres, some are cylinders, whatever. On the other hand,
Democritus says that properties like color and taste are not intrinsic

to atoms, but instead emerge out of the interactions of many atoms.
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You might wonder how such a crazy theory could be useful
to physicists, even at the crassest level. How could it even make
predictions, if it essentially says that everything that could happen
does? Well, the thing I didn’t tell you is that there’s a separate rule for
what happens when you make a measurement: a rule that’s “tacked
on” (so to speak), external to the equations themselves. That rule
says, essentially, that the act of looking at a particle forces it to make
up its mind about where it wants to be, and that the particle makes
its choice probabilistically. And the rule tells you exactly how to
calculate the probabilities. And of course it’s been spectacularly well
confirmed.

But here’s the problem: as the universe is chugging along, doing
its thing, how are we supposed to know when to apply this measure-
ment rule, and when not to? What counts as a “measurement,” any-
way? The laws of physics aren’t supposed to say things like “such-and-
such happens until someone looks, and then a completely different
thing happens!” Physical laws are supposed to be universal. They're
supposed to describe human beings the same way they describe super-
novas and quasars: all just examples of vast, complicated clumps of
particles interacting according to simple rules.

So from a physics perspective, things would be so much cleaner
if we could dispense with this “measurement” business entirely!
Then we could say, in a more sophisticated update of Democritus:
there’s nothing but atoms and the void, evolving in quantum super-
position.

But wait: if we’re not here making nosy measurements, wreck-
ing the pristine beauty of quantum mechanics, then how did “we”
(whatever that means) ever get the evidence in the first place that
quantum mechanics is true? How did we ever come to believe in
this theory that seems so uncomfortable with the fact of our own
existence?

So, that’s the modern version of the Democritus dilemma, and
physicists and philosophers have been arguing about it for almost a

hundred years, and in this book we’re not going to solve it.
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The other thing I'm not going to do in this book is try to sell you
on some favorite “interpretation” of quantum mechanics. You're free
to believe whatever interpretation your conscience dictates. (What’s
my own view? Well, I agree with every interpretation to the extent it
says there’s a problem, and disagree with every interpretation to the
extent it claims to have solved the problem!|

See, just like we can classify religions as monotheistic and
polytheistic, we can classify interpretations of quantum mechan-
ics by where they come down on the “putting-yourself-in-coherent-
superposition” issue. On the one side, we've got the interpretations
that enthusiastically sweep the issue under the rug: Copenhagen and
its Bayesian and epistemic grandchildren. In these interpretations,
you've got your quantum system, you’ve got your measuring device,
and there’s a line between them. Sure, the line can shift from one
experiment to the next, but for any given experiment, it’s gotta be
somewhere. In principle, you can even imagine putting other people
on the quantum side, but you yourself are always on the classical
side. Why? Because a quantum state is just a representation of your
knowledge — and you, by definition, are a classical being.

But what if you want to apply quantum mechanics to the whole
universe, including yourself? The answer, in the epistemic-type inter-
pretations, is simply that you don’t ask that sort of question! Inciden-
tally, that was Bohr’s all-time favorite philosophical move, his WWF
piledriver: “You're not allowed to ask such a question!”

On the other side, we’ve got the interpretations that do try in
different ways to make sense of putting yourself in superposition:
many-worlds, Bohmian mechanics, etc.

Now, to hardheaded problem-solvers like ourselves, this might
seem like a big dispute over words — why bother? [ actually agree with
that: if it were just a dispute over words, then we shouldn’t bother!
But as David Deutsch pointed out in the late 1970s, we can conceive
of experiments that would differentiate the first type of interpreta-
tion from the second type. The simplest experiment would just be to

put yourself in coherent superposition and see what happens! Or if
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that’s too dangerous, put someone else in coherent superposition. The
point being that, if human beings were regularly put into superposi-
tion, then the whole business of drawing a line between “classical
observers” and the rest of the universe would become untenable.
But alright — human brains are wet, goopy, sloppy things, and
maybe we won’t be able to maintain them in coherent superposition
for 500 million years. So what’s the next best thing? Well, we could
try to put a computer in superposition. The more sophisticated the
computer was — the more it resembled something like a brain, like
ourselves — the further up we would have pushed the “line” between
quantum and classical. You can see how it’s only a minuscule step

from here to the idea of quantum computing.

I'd like to draw a more general lesson here. What’s the point of talking
about philosophical questions? Because we’re going to be doing a fair
bit of it here — I mean, of philosophical bullshitting. Well, there’s a
standard answer, and it’s that philosophy is an intellectual clean-up
job — the janitors who come in after the scientists have made a mess,
to try and pick up the pieces. So in this view, philosophers sit in their
armchairs waiting for something surprising to happen in science - like
quantum mechanics, like the Bell inequality, like Goédel’s Theorem —
and then (to switch metaphors) swoop in like vultures and say, ah,
this is what it really meant.

Well, on its face, that seems sort of boring. But as you get more
accustomed to this sort of work, I think what you’ll find is. . .it’s still
boring!

Personally, I'm interested in results — in finding solutions to
nontrivial, well-defined open problems. So, what’s the role of philos-
ophy in that? I want to suggest a more exalted role than intellectual
janitor: philosophy can be a scout. It can be an explorer — mapping
out intellectual terrain for science to later move in on, and build con-
dominiums on or whatever. Not every branch of science was scouted
out ahead of time by philosophy, but some were. And in recent his-

tory, I think quantum computing is really the poster child here. It's
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fine to tell people to “Shut up and calculate,” but the question is,
what should they calculate? At least in quantum computing, which
is my field, the sorts of things that we like to calculate — capacities
of quantum channels, error probabilities of quantum algorithms —
are things people would never have thought to calculate if not for

philosophy.



2 Sets

Here, we're gonna talk about sets. What will these sets contain? Other
sets! Like a bunch of cardboard boxes that you open only to find more
cardboard boxes, and so on all the way down.

You might ask “how is this relevant to a book on quantum
computing?”

Well, hopefully we’ll see a few answers later. For now, suffice
it to say that math is the foundation of all human thought, and set
theory — countable, uncountable, etc. — that’s the foundation of math.
So regardless of what a book is about, it seems like a fine place to
start.

I probably should tell you explicitly that I'm compressing a
whole math course into this chapter. On the one hand, that means 1
don’t really expect you to understand everything. On the other hand,
to the extent you do understand — hey! You got a whole math course
in one chapter! You're welcome.

So let’s start with the empty set and see how far we get.

THE EMPTY SET.

Any questions so far?

Actually, before we talk about sets, we need a language for talk-
ing about sets. The language that Frege, Russell, and others developed
is called first-order logic. It includes Boolean connectives (and, or,
not), the equals sign, parentheses, variables, predicates, quantifiers
(“there exists” and “for all”) — and that’s about it. I'm told that the
physicists have trouble with these. Hey, I'm just ribbin’ ya. If you
haven’t seen this way of thinking before, then you haven’t seen it.
But maybe, for the benefit of the physicists, let’s go over the basic

rules of logic.
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AXIOMS OF SET THEORY

The axioms all involve a universe of objects called “sets,” and a rela-
tionship between sets that’s called “membership” or “containment”
and written using the symbol €. Every operation on sets will ulti-

mately be defined in terms of the containment relationship.

« Empty set: There exists an empty set: that is, a set x for which there is
no y such that y € x.

« Extensionality: If two sets contain the same members, then the sets
are equal. That is, for all x and y, if [z € x if and only if z € y for all z),
thenx=1y.

« Pairing: For all sets x and y, there exists a set z = {x, y}: that is, aset z
such that, for allw, we zif and only if (w=x0or w=y).

« Union: For all sets x, there exists a set equal to the union of all sets
in x.

« Existence of infinite sets: There exists a set x that contains the
empty set and that contains {y| for every y € x. ([Why must this x
have infinitely many elements?)

+ Power set: For all sets x, there exists a set consisting of the subsets of x.

+ Replacement (actually an infinity of axioms, one for every function A
mapping sets to sets): For all sets x, there exists aset z = [A(y) | y € x],
which results from applying A to all the elements of x. (Technically,
one also has to define what one means by a “function mapping sets to
sets,” something that can be done although I won’t do it here.)

¢ Foundation: All nonempty sets x have a member y such that for all z,
either z ¢ x or z ¢ y. (This is a technical axiom, whose point is to rule
out sets like {{{{. .. }}}}.)

These axioms — called the Zermelo-Fraenkel axioms — are the foun-
dation for basically all of math. So I thought you should see them at

least once in your life.

Alright, one of the most basic questions we can ask about a set is:
how big is it? What’s its size, its cardinality? Meaning, how many

elements does it have? You might say, just count the elements. But

II
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what if there are infinitely many? Are there more integers than odd
integers? This brings us to Georg Cantor (1845-1918), and the first
of his several enormous contributions to human knowledge. He says
two sets have the same cardinality if and only if their elements can be
put in one-to-one correspondence. Period. And if, no matter how you
try to pair off the elements, one set always has elements left over, the
set with the elements left over is the bigger set.

What possible cardinalities are there? Of course, there are finite
ones, one for each natural number. Then there’s the first infinite
cardinality, the cardinality of the integers, which Cantor called Ry
(“aleph-zero”). The rational numbers have the same cardinality R,
a fact that’s also expressed by saying that the rational numbers are
countable, meaning that they can be placed in one-to-one correspon-
dence with the integers. In other words, we can make an infinite list
of them so that each rational number appears eventually in the list.

What’s the proof that the rational numbers are countable? You
haven’t seen it before? Oh, alright. First, list 0 and then all the rational
numbers where the sum of absolute values of the numerator and
denominator is 2. Then, list all the rational numbers where the sum
of absolute values of the numerator and denominator is 3. And so on.
It’s clear that every rational number will eventually appear in this
list. Hence, there’s only a countable infinity of them. QED.

But Cantor’s biggest contribution was to show that not every
infinity is countable — so, for example, the infinity of real numbers is
greater than the infinity of integers. More generally, just as there are
infinitely many numbers, there are also infinitely many infinities.

You haven’t seen the proof of that either? Alright, alright. Let’s
say you have an infinite set A. We’ll show how to produce another
infinite set, B, which is even bigger than A. This B will simply be the
set of all subsets of A, which is guaranteed to exist by the power set
axiom. How do we know B is bigger than A? Well, suppose we could
pair off every element a € A with an element f{a) € B, in such a way
that no elements of B were left over. Then, we could define a new
subset S C A, consisting of every a that’s not contained in f(a). Then

S is also an element of B. But notice that S can’t have been paired
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off with any a € A - since otherwise, @ would be contained in fla) if
and only if it wasn’t contained in f{a), contradiction. Therefore, B is
larger than A, and we’ve ended up with a bigger infinity than the one
we started with.

This is certainly one of the four or five greatest proofs in all of

math — again, good to see at least once in your life.

Besides cardinal numbers, it’s also useful to discuss ordinal numbers.
Rather than defining these, it’s easier to just illustrate them. We start

with the natural numbers:
0,1,2,3,...

Then, we say, let’s define something that’s greater than every natural

number:
w
What comes after w?
w+l,0+2, ...
Now, what comes after all of these?
2w
Alright, we get the idea:
3w, 4w, ...

Alright, we get the idea:

Alright, we get the idea:

o, o, ...
We could go on for quite a while! Basically, for any set of ordinal
numbers (finite or infinite), we stipulate that there’s a first ordinal
number that comes after everything in that set.
The set of ordinal numbers has the important property of being
well ordered, which means that every subset has a minimum element.
This is unlike the integers or the positive real numbers, where any

element has another that comes before it.
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Now, here’s something interesting. All of the ordinal numbers
I've listed have a special property, which is that they have at most
countably many predecessors [i.e., at most 8y of them). What if we
consider the set of all ordinals with at most countably many prede-
cessors? Well, that set also has a successor, call it «. But does «o itself
have ¥, predecessors? Certainly not, since otherwise @ wouldn’t be
the successor to the set; it would be in the set! The set of predecessors
of o has the next possible cardinality, which is called ®;.

What this sort of argument proves is that the set of cardinalities
is itself well ordered. After the infinity of the integers, there’s a “next
bigger infinity,” and a “necxt bigger infinity after that,” and so on. You
never see an infinite decreasing sequence of infinities, as you do with

the real numbers.

So, starting from ¥y (the cardinality of the integers), we’ve seen two
different ways to produce “bigger infinities than infinity.” One of
these ways vields the cardinality of sets of integers |or, equivalently,
the cardinality of real numbers|, which we denote 2*. The other way
yields 8. Is 2% equal to ¥,7 Or to put it another way: is there any
infinity of intermediate size between the infinity of the integers and
the infinity of the reals?

Well, this question was David Hilbert’s first problem in his
famous 1900 address. It stood as one of the great math problems
for over half a century, until it was finally “solved” (in a somewhat
disappointing way, as you'll see).

Cantor himself believed there were no intermediate infinities,
and called this conjecture the Continuum Hypothesis. Cantor was
extremely frustrated with himself for not being able to prove it.

Besides the Continuum Hypothesis, there’s another statement
about these infinite sets that no one could prove or disprove from the
Zermelo-Fraenkel axioms. This statement is the infamous Axiom
of Choice. It says that, if you have a (possibly infinite| set of sets,
then it’s possible to form a new set by choosing one item from

each set. Sound reasonable? Well, if you accept it, you also have
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to accept that there’s a way to cut a solid sphere into a finite
number of pieces, and then rearrange those pieces into another solid
sphere a thousand times its size. (That’s the “Banach-Tarski para-
dox.” Admittedly, the “pieces” are a bit hard to cut out with a
knife. ..

Why does the Axiom of Choice have such dramatic conse-
quences? Basically, because it asserts that certain sets exist, but with-
out giving any rule for forming those sets. As Bertrand Russell put
it: “To choose one sock from each of infinitely many pairs of socks
requires the Axiom of Choice, but for shoes the Axiom is not needed.”
(What’s the difference?|

The Axiom of Choice turns out to be equivalent to the state-
ment that every set can be well ordered: in other words, the elements
of any set can be paired off with the ordinals 0, 1,2,..., 0, 0+ 1,...,
2w, 3w, ... up to some ordinal. If you think, for example, about the set
of real numbers, this seems far from obvious.

It’s easy to see that well-ordering implies the Axiom of Choice:
just well-order the whole infinity of socks, then choose the sock from
cach pair that comes first in the ordering.

Do you want to see the other direction? Why the Axiom of
Choice implies that every set can be well ordered? Yes?

OK!We have a set A that we want to well-order. For every proper
subset B C A, we’ll use the Axiom of Choice to pick an element f(B) €
A — B (where A — Bmeans the set of all elements of A that aren’t also
elements of B). Now we can start well-ordering A, as follows: first let
so = fl{}), then let s; = f{{so}), s2 = fl{so, s1}), and so on.

Can this process go on forever? No, it can’t. For if it did, then by
a process of “transfinite induction,” we could stuff arbitrarily large
infinite cardinalities into A. And while admittedly A is infinite, it has
at most a fixed infinite size! So the process has to stop somewhere.
But where? At a proper subset B of A? No, it can’t do that either —
since if it did, then we’d just continue the process by adding f(B).
So the only place it can stop is A itself. Therefore, A can be well
ordered.



3 Godel, Turing, and friends

In the last chapter, we talked about the rules for first-order logic.
There’s an amazing result called Godel’s Completeness Theorem that
says that these rules are all you ever need. In other words: if, starting
from some set of axioms, you can’t derive a contradiction using these
rules, then the axioms must have a model (i.e., they must be consis-
tent). Conversely, if the axioms are inconsistent, then the inconsis-
tency can be proved using these rules alone.

Think about what that means. It means that Fermat’s Last The-
orem, the Poincaré Conjecture, or any other mathematical achieve-
ment you care to name can be proved by starting from the axioms for
set theory, and then applying these piddling little rules over and over
again. Probably 300 million times, but still. ..

How does Godel prove the Completeness Theorem? The proof
has been described as “extracting semantics from syntax.” We simply
cook up objects to order as the axioms request them! And if we ever
run into an inconsistency, that can only be because there was an
inconsistency in the original axioms.

One immediate consequence of the Completeness Theorem is
the Léwenheim-Skolem Theorem: every consistent sct of axioms has
a model of at most countable cardinality. (Note: One of the best pre-
dictors of success in mathematical logic is having an umlaut in your
name.) Why? Because the process of cooking up objects to order as the
axioms request them can only go on for a countably infinite number

of steps!

It’s a shame that, after proving his Completeness Theorem, Godel
never really did anything else of note. (Pause for comic effect.] Well,

alright, I guess a year later he proved the Incompleteness Theorem.
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The Incompleteness Theorem says that, given any consistent,
computable set of axioms, there’s a true statement about the inte-
gers that can never be proved from those axioms. Here, consis-
tent means that you can’t derive a contradiction, while computable
means that either there are finitely many axioms, or else if there
are infinitely many, at least there’s an algorithm to generate all the
axioms.

(If we didn’t have the computability requirement, then we could
simply take our “axioms” to consist of all true statements about the
integers! In practice, that isn’t a very useful set of axioms.)

But wait! Doesn’t the Incompleteness Theorem contradict
the Completeness Theorem, which says that any statement that’s
entailed by the axioms can be proved from the axioms? Hold that
question; we're gonna clear it up later.

First, though, let’s see how the Incompleteness Theorem is
proved. People always say “the proof of the Incompleteness Theo-
rem was a technical tour de force, it took 30 pages, it requires an
elaborate construction involving prime numbers,” etc. Unbelievably,
80 years after Godel, that’s still how the proof is presented in math
classes!

Alright, should I let you in on a secret? The proof of the Incom-
pleteness Theorem is about two Iines. It’s almost a triviality. The
caveat is that, to give the two-line proof, you first need the concept of
a computer.

When I was in junior high school, I had a friend who was really
good at math, but maybe not so good at programming. He wanted to
write a program using arrays, but he didn’t know what an array was.
So what did he do? He associated each element of the array with a
unique prime number, then he multiplied them all together; then,
whenever he wanted to read something out of the array, he factored
the product. (If he was programming a quantum computer, maybe
that wouldn’t be quite so bad!) Anyway, what my friend did, that’s
basically what Godel did. He made up an elaborate hack in order to

program without programming.
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TURING MACHINES
OK, time to bring Mr. T. on the scene.

In 1936, the word “computer” meant a person (usually a woman)|
whose job was to compute with pencil and paper. Turing wanted to
show that, in principle, such a “computer” could be simulated by a
machine. What would the machine look like? Well, it would have
to able to write down its calculations somewhere. Since we don't
really care about handwriting, font size, etc., it’s easiest to imagine
that the calculations are written on a sheet of paper divided into
squares, with one symbol per square, and a finite number of possible
symbols. Traditionally, paper has two dimensions, but without loss of
generality we can imagine a long, one-dimensional paper tape. How
long? For the time being, we’ll assume as long as we need.

What can the machine do? Well, clearly it has to be able to
read symbols off the tape and modify them based on what it reads.
We'll assume for simplicity that the machine reads only one symbol
at a time. But in that case, it had better be able to move back and
forth on the tape. It would also be nice if, once it’s computed an
answer, the machine can halt! But at any time, how does the machine
decide which things to do? According to Turing, this decision should
depend only on two pieces of information: (1) the symbol currently
being read, and (2] the machine’s current “internal configuration”
or “state.” Based on its internal state and the symbol currently being
read, the machine should (1) write a new symbol in the current square,
overwriting whatever symbol is there, (2] move backward or forward
one square, and (3] switch to a new state or halt.

Finally, since we want this machine to be physically realizable,
the number of possible internal states should be finite. These are the
only requirements.

Turing’s first result is the existence of a “universal” machine:
a machine whose job is to simulate any other machine described
via symbols on the tape. In other words, universal programmable

computers can exist. You don’t have to build one machine for email,
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another for playing DVDs, another for Tomb Raider, and so on: you
can build a single machine that simulates any of the other machines,
by running different programs stored in memory. But this result isnot
even the main result of the paper.

So what’s the main result? It’s that there’s a basic problem,
called the halting problem, that no program can ever solve. The halt-
ing problem is this: we’'re given a program, and we want to decide if it
ever halts. Of course, we can run the program for a while, but what if
the program hasn’t halted after a million years? At what point should
we give up?

One piece of evidence that this problem might be hard is that,
if we could solve it, then we could also solve many famous unsolved
math problems. For example, Goldbach’s Conjecture says that every
even number 4 or greater can be written as a sum of two primes. Now,
we can easily write a program that tests 4, 6, 8, and so on, halting only
if it finds a number that can’t be written as a sum of two primes. Then
deciding whether that program ever halts is equivalent to deciding the
truth of Goldbach’s Conjecture.

But can we prove there’s no program to solve the halting prob-
lem? This is what Turing does. His key idea is not even to try to ana-
lyze the internal dynamics of such a program, supposing it existed.
Instead, he simply says, suppose by way of contradiction that such a
program P exists. Then, we can modify P to produce a new program

P’ that does the following. Given another program Q as input, P’

(1) runs forever if Q halts given its own code as input, or

(2) halts if Q runs forever given its own code as input.

Now, we just feed P’ its own code as input. By the conditions above,
P’ will run forever if it halts, or halt if it runs forever. Therefore, P’ —

and by implication P — can’t have existed in the first place.

As I said, once you have Turing’s results, Godel’s results fall out for
free as a bonus. Why? Well, suppose the Incompleteness Theorem was

false — that is, there existed a consistent, computable proof system F
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from which any statement about integers could be either proved or
disproved. Then given a computer program, we could simply search
through every possible proof in F, until we found either a proof that the
program halts or a proof that it doesn’t halt. This is possible because
the statement that a particular computer program halts is ultimately
just a statement about integers. But this would give us an algorithm
to solve the halting problem, which we already know is impossible.
Therefore, F can’t exist.

By thinking more carefully, we can actually squeeze out a
stronger result. Let P be a program that, given as input another pro-
gram Q, tries to decide whether Q halts by the strategy above (i.c.,
scarching through every possible proof and disproof that Q halts in
some formal system F). Then, as in Turing’s proof, suppose we modify

P to produce a new program P’ that

(1) runs forever if Q given its own code as input is proved to halt, or

(2) halts if Q given its own code as input is proved to run forever.

Now suppose we feed P’ its own code as input. Then we know that
P’ will run forever, without ever discovering a proof or disproof that
it halts. For if P’ finds a proof that it halts, then it will run forever,
and if it finds a proof that it runs forever, then it will halt, which is a
contradiction.

But there’s an obvious paradox: why isn’t the above argument,
itself, a proof that P’ will run forever given its own code as input? And
why won't P’ discover this proof that it runs forever — and therefore
halt, and therefore run forever, and therefore halt, ete.?

The answer is that, in “proving” that P’ runs forever, we made
a hidden assumption: namely, that the proof system F is consistent.
If F were inconsistent, then there could perfectly well be a proof that
P’ halts, even if the reality were that P’ ran forever.

But this means that, if F could prove that F was consistent,
then F could also prove that P’ ran forever — thereby bringing back

the above contradiction. The only possible conclusion is that if F
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“Greater.” (The axioms aren’t stupid: they know that if they
said “smaller,” then you could simply try every smaller number and

verify that none of them encode a proof of PA’s inconsistency.)

“Alright then, what's X + 1?7
" Y- "

And so on. The axioms will keep cooking up fictitious numbers to
satisfy your requests, and assuming that PA itself is consistent, you’ll
never be able to trap them in an inconsistency. The point of the Com-
pleteness Theorem is that the whole infinite set of fictitious numbers
the axioms cook up will constitute a model for PA —just not the usual
model (i.e., the ordinary positive integers)! If we insist on talking about
the usual model, then we switch from the domain of the Complete-

ness Theorem to the domain of the Incompleteness Theorem.

Do you remember the puzzle from Chapter 2? The puzzle was whether
there’s any theorem that can only be proved by assuming as an axiom
that it can be proved. In other words, does “just believing in yourself”
make any formal difference in mathematics? We’re now in a position
to answer that question.

Let’s suppose, for concreteness, that the theorem we want to
prove is the Riemann Hypothesis (RH), and the formal system we
want to prove it in is Zermelo-Fraenkel set theory (ZF|. Suppose
we can prove in ZF that, if ZF proves RH, then RH is true. Then
taking the contrapositive, we can also prove in ZF that if RH is false,
then ZF does not prove RH. In other words, we can prove in ZF +
not(RH] that not{RH) is perfectly consistent with ZF. But this means
that the theory ZF + not(RH]) proves its own consistency — and this,
by Godel, means that ZF + not(RH) is inconsistent. But saying that
ZF + not(RH) is inconsistent is equivalent to saying that RH is a
theorem of ZF. Therefore, we’ve proved RH. In general, we find that, if
a statement can be proved by assuming as an axiom that it’s provable,

then it can also be proved without assuming that axiom. This result is
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known as Lob’s Theorem (again with the umlauts), though personally
Ithink that a better name would be the “You-Had-the-Mojo-All-Along
Theorem.”

Oh, you remember earlier we talked about the Axiom of Choice and
the Continuum Hypothesis? These are natural statements about the
continuum that, since the continuum is such a well-defined mathe-
matical entity, must certainly be either true or false. So, how did those
things ever get decided? Well, Godel proved in 1939 that assuming the
Axiom of Choice [AC) or the Continuum Hypothesis (CH) can never
lead to an inconsistency. In other words, if the theories ZF + AC or
ZF + CH were inconsistent, that could only be because ZF itself was
inconsistent.

This raised an obvious question: can we also consistently
assume that AC and CH are false? Godel worked on this problem
but wasn’t able to answer it. Finally, Paul Cohen gave an affirma-
tive answer in 1963, by inventing a new technique called “forcing.”
(For that, he won the only Ficlds Medal that’s ever been given for sct
theory and the foundations of math.)

So, we now know that the usual axioms of mathematics don'’t
decide the Axiom of Choice and the Continuum Hypothesis one way
or another. You're free to believe both, neither, or one and not the
other without fear of contradiction. And sure enough, opinion among
mathematicians about AC and CH remains divided to this day, with
many interesting arguments for and against (which we unfortunately
don’t have time to explore the details of].

Let me end with a possibly surprising observation: the indepen-
dence of AC and CH from ZF set theory is itself a theorem of Peano
Arithmetic. For, ultimately, Gédel and Cohen’s consistency theorems
boil down to combinatorial assertions about manipulations of first-
order sentences — which can in principle be proved directly, without
ever thinking about the transfinite sets that those sentences purport
to describe. (In practice, translating these results into combinatorics

would be horrendously complicated, and Cohen has said that trying
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to think about these problems in finite combinatorial terms led him
nowhere. But we know that in theory it could be done.) This provides
a nice illustration of what, to me, is the central philosophical ques-
tion underlying this whole business: do we ever really talk about the
continuum, or do we only ever talk about finite sequences of symbols

that talk about the continuum?

BONUS ADDENDUM

What does any of this have to do with quantum mechanics? I will
now attempt the heroic task of making a connection. What I've tried
to impress on you is that there are profound difficulties if we want
to assume the world is continuous. Take a pen, for example: how
many different positions can I put it in on the surface of a table? &7
More than &2 Less than ®;? We don’t want the answers to “physics”
questions to depend on the axioms of set theory!

Ah, but you say my question is physically meaningless, since
the pen’s position could never actually be measured to infinite preci-
sion? Sure — but the point is, you need a physical theory to tell you
that!

Of course, quantum mechanics gets its very name from the
fact that a lot of the observables in the theory, like energy levels,
are discrete — “quantized.” This seems paradoxical, since one of the
criticisms that computer scientists level against quantum computing
is that, as they sce it, it’s a continuous model of computation!

My own view is that quantum mechanics, like classical proba-
bility theory, should be seen as somehow “intermediate” between a
continuous and discrete theory. (Here, I'm assuming that the Hilbert

space! or probability space is finite dimensional.) What I mean is that,

! Please don’t be alarmed by the term “Hilbert space,” which I'll use occasionally in
this book. All it means is “the space of all possible quantum states of some system.”
With infinite-dimensional systems, the definition of Hilbert space is a bit subtle — but
in this book, we’ll only care about finite-dimensional systems. And as we’'ll see in
Chapter 9, the Hilbert space of a finite-dimensional system is nothing other than C":
an N-dimensional complex vector space.
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while there are continuous parameters (the probabilities or ampli-
tudes, respectively), those parameters are not directly observable, and
that has the effect of “shielding” us from the bizarro universe of the
Axiom of Choice and the Continuum Hypothesis. We don’t need a
detailed physical theory to tell us that whether amplitudes are ratio-
nal or irrational, whether there are more or less than ®; possible
amplitudes, etc., are physically meaningless questions. This follows
directly from the fact that, if we wanted to learn an amplitude exactly,
then (even assuming no error!) we would need to measure the appro-

priate state infinitely many times.

EXERCISE

Let BB(n), or the “nth Busy Beaver number,” be the maximum number
of steps that an n-state Turing machine can make on an initially blank
tape before halting. (Here, the maximum is over all n-state Turing

machines that eventually halt.)

1. Prove that BB(n| grows faster than any computable function.

2. Let S = 1/BB(1) + 1/BB(2) + 1/BB(3] + -- -
Is S a computable real number? In other words, is there an algorithm
that, given as input a positive integer k, outputs a rational number §’
such that |S — §'| < 1/k?

FURTHER READING

An excellent resource for the material in this chapter is Gédel’s The-
orem: An Incomplete Guide to its Use and Abuse, by Torkel Franzén
(A. K. Peters Ltd, 2005).



4 Minds and machines

Now we're going to launch into something I know you’ve all been
waiting for: a philosophical food fight about minds, machines, and

intelligence!

First, though, let’s finish talking about computability. One concept
we’ll need again and again in this chapter is that of an oracle. The
idea is a pretty obvious one: we assume we have a “black box,” or
“oracle,” that immediately solves some hard computational problem,
and then see what the consequences are! (When I was a freshman, I
once started talking to my professor about the consequences of a
hypothetical “NP-completeness fairy”: a being that would instantly
tell you whether a given Boolean formula was satisfiable or not. The
professor had to correct me: they’re not called “fairies”; they’re called
“oracles.” Much more professional!)

Oracles were apparently first studied by Turing, in his 1938 PhD
thesis. Obviously, anyone who could write a whole thesis about these
fictitious entities would have to be an extremely pure theorist, some-
one who wouldn’t be caught dead doing anything relevant. This was
certainly true in Turing’s case — indeed, he spent the years after his
PhD, from 1939 to 1943, studying certain abstruse symmetry trans-
formations on a 26-letter alphabet.

Anyway, we say that problem A is Turing reducible to problem
B, if A is solvable by a Turing machine given an oracle for B. In other
words, “A isnoharder than B”: if we had a hypothetical device to solve
B, then we could also solve A. Two problems are Turing equivalent if
cach is Turing reducible to the other. So, for example, the problem of
whether a statement can be proved from the axioms of set theory is
Turing equivalent to the halting problem: if you can solve one, you

can solve the other.
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could do the first step of a computation in one second, the next step
in a half second, the next step in a quarter second, the next step in an
eighth second, and so on. Then in two seconds you’ll have done an
infinite amount of computation! Well, as stated it sounds a bit silly,
so maybe sex it up by throwing in a black hole or something. How
could the hidebound Turing reactionaries possibly object? (It reminds
me of the joke about the supercomputer that was so fast, it could do
an infinite loop in 2.5 seconds.)

We should immediately be skeptical that, if Nature was going
to give us these vast computational powers, she would do so in a
way that’s so mundane, so uninteresting. Without making us sweat
or anything. But admittedly, to really sce why the hypercomputing
proposals fail, you need the entropy bounds of Bekenstein, Bousso,
and others — which are among the few things the physicists think
they know about quantum gravity, and which we’ll say something
about later in the book. So the Church-Turing Thesis — even its origi-
nal, nonextended version — really is connected to some of the deepest
questions in physics. But in my opinion, neither quantum comput-
ing, nor analog computing, nor anything else, has mounted a serious
challenge to that thesis in the 75 years since it was formulated.

A closely-related objection to this computation by geometric
series is that we do sort of understand why this model isn’t physical:
we believe that the very notion of time starts breaking down when you
get down to around 10~* seconds (the Planck scale). We don’t know
exactly what happens there. Nevertheless, the situation seems not the
slightest bit analogous to quantum computing (for example). In quan-
tum computing, as we’ll see, no one has any quantitative idea of where
the theory could break down and the computer could stop working —
which leads to the conjecture that maybe it won’t stop working.

Once you get to the Planck scale, you might say we're getting
into a really sophisticated argument. Why not just say you're always
limited in practice by noise and imperfection?

The question is why are you limited? Why can’t you store a real
number in a register? I think that if you try to make the argument

precise, ultimately, you’re going to be talking about the Planck scale.



