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Foreword

I am aware of the author’s work 1n applying theories of physics to finance since
2003, and the present book 1s a logical outcome ot the author’s line of thinking.
The presentation of quantum field theory (QFT) given 1n this book 1s based on four
strategic decisions.

(1) From the very outset it introduces the notion of quantum mathematics. This
immediately attracts the attention of readers, with regard two points. First, they real-
1ze that in order to feel at home in QFT, they must devote enough time and attention
to mastering these techniques. Second, once they have them well in hand, they can
also use them outside of physics because they are just mathematical techniques.

(2) The book avoids giving applications of QFT to physics as this does not in the
least help to understand QFT as a mathematical discipline.

(3) Throughout the book the formalism of the Feynman path integral is used,
which intuitively is indeed the most appealing formalism of QFT.

(4) Last but not least, the book provides applications of QFT to a variety of
economic and financial problems. One must realize that this 1s indeed quite different

from calculations tied to high energy physics. Why? Needless to say, the whole
machinery of QFT was created for applications to high energy physics; thus, one
just follows the track and there 1s no need to raise any questions. On the contrary,
QFT was not created to price options. Thus, instead ot just following the track, at
each step we have to modity and adapt our understanding of the mathematical tools
of QFT.

The book has three distinctive features that are worth highlighting.

(1) There are many books on QFT, but this 1s a ground-breaking book that
connects QFT with concepts in economics and finance.

(2) Almost half the book 1s devoted to studying models of economics and finance.
As the book proceeds with different topics of QFT, chapters on economics and
finance are introduced to show the close mathematical connections between these
domains of knowledge.

X Vil



X V111 Foreword

(3) Many of the applications to economics and finance are based on models that
can be empirically tested. To me, the most remarkable aspect of the book 1s that
empirical tests show that these models are surprisingly accurate.

Going through the applications of QFT is a highly rewarding exercise as it tests
our degree of understanding and expands our view of QFT. When readers grasp the
logic of the applications, it will bolster their self-confidence and make them feel at
home with QFT, and empower them to apply the mathematics of QFT to new fields

of inquiry.

Bertrand M. Roehner

[Laboratoire de Physique Théorique et Hautes Energies (LPTHE)
University of Paris 6

Paris, France



Preface

Quantum field theory 1s undoubtedly one of the most accurate and important scien-
tific theories 1n the history of science. Relativistic quantum fields are the theoretical
backbone of the Standard Model of particles and interactions. Relativistic and non-
relativistic quantum fields are extensively used in myriad branches of theoretical
physics, from superstring theory, high energy physics and solid state physics (o
condensed matter, quantum optics, nuclear physics, astrophysics and so on.

The mathematics that emerges from the formalism of quantum mechanics

and quantum field theory 1s quite distinct from other branches of mathematics
and 1s termed quantum mathematics. Quantum mathematics 1s a synthesis of
linear algebra, calculus of infinitely many independent variables, functional
analysis, operator algebras, infinite-dimensional linear vector spaces, the theory
of probability, Lie groups, geometry, topology, functional integration and so on.
One of the mathematical bedrocks of quantum mechanics and quantum field
theory 1s the Feynman path integral [Baaquie (2014)]. Unlike functional integration
in general, the Feynman path integral 1s a functional integral with another key

feature, which 1s that the path integral 1s constructed out of an underlying (infinite-
dimensional) linear vector space. Operators are defined on this vector space,
including the central operator of theoretical physics, which 1s the Hamiltonian.
The first application ot calculus — made by Newton — was in the study of the
dynamics of particles; calculus subsequently has gone on to become the univer-
sal language of quantitative modeling. Similarly, although quantum mathematics
emerges from the study of quantum phenomena that are intrinsically indeterminate,
the mathematical structure 1s not tied to 1ts origins. Examples discussed below show

that the mathematics of quantum field theory extends far beyond only quantum
systems and can also be applied to a wide variety of subjects that span natural and
soclal sciences. It 1s my view that quantum mathematics will, in time, supersede
calculus and become the universal framework for quantitative modeling and math-
ematical thinking.

X1X
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these 1deas are carried over to economics and finance. About 60% of the material
of the book i1s directly an exposition of quantum field theory, with the remaining
chapters being focused on its various applications to economics and finance.

The manner of presentation of the two pillars of the book — quantum fields on
the one hand and economics and finance on the other— 1s quite different. Quantum
field theory needs no empirical evidence for its utility and validity since the entire
domain of particle physics stands as a testament to its empirical success. Hence the
focus in the chapters on quantum field theory 1s on the various mathematical i1deas
and derivations, and only a fleeting connection 1s made with other subjects. An
integral and pure presentation of quantum field theory 1s necessary to show that 1t
1s free from a bias toward any specific application. In fact, if one skips the Chapters
on economics and finance, which are marked by an asterisk, the book then reads as
an introductory graduate text on quantum field theory.

Unlike mathematics, which has results of great generality, such as theorems
and lemmas, one only needs to flip through the pages of a textbook on quantum
mechanics or quantum field theory to see that there are no theorems in quantum
physics; instead, what one has are leading models and important examples — with
the mathematical analysis flowing naturally in interpreting, explaining and deriving
the “physics” of these models. Quantum field theory is illustrated and elaborated
on by analyzing a number of exemplary models, such as the scalar, vector and
spinor fields. Each of these quantum fields 1s described by a specific Lagrangian
and Hamiltonian — and has distinctive properties on which the book focuses. More
advanced chapters such as the structure of the renormalization group are presented
later, when the reader has a better grasp of the underlying ideas.

The methodology of the chapters on economics and finance is quite different
from the chapters on quantum field theory. In my view, the only justification for
the application of quantum mathematics to empirical disciplines outside quantum

physics — including economics and finance — is that it must be supported by empiri-
cal evidence. In the absence of such evidence — and there are many papers and books
that make conceptual connections between quantum mathematics and classical sys-
tems with little or no empirical evidence [Bagarello (2013)] — the application in my
view 1s still not complete, and stands only as an interesting mathematical metaphor.
For the metaphor to become a concrete mathematical model, empirical evidence 1s
indispensable.

For this reason, topics from economics and finance have been chosen (for inclu-
sion 1n the book) that have empirical support from market data. Furthermore, a
detailed analysis 1s given on how these quantum mathematical models are adapted
to the market — and subsequently calibrated and tested. In chapters on economics
and finance, very specific and concrete theoretical models are analyzed — all based
on path integrals and Hamiltonians. The introductory chapter on nonlinear interest
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rates concentrates on the formalism; the reason 1s that a quantum finance model of
nonlinear interest rates, as realized by the London Interbank Offered Rate (Libor),
has been calibrated and exhaustively tested using market data; hence, only certain
key features of the formalism are discussed. Two chapters use numerical algorithms
and simulations to study nonlinear interest rates; these chapters illustrate a key
feature of nonlinear interest rates, which 1s that in most cases numerical techniques
are necessary for obtaining a solution.

The models that have been proposed in economics and finance — all of which are
based on work done by myselt and collaborators — are quite distinct from those that
appear 1n quantum physics. In particular, all the models in economics and finance
have an “acceleration™ kinetic term — a term forbidden 1n quantum mechanics (due
to the violation of conservation of probability); it 1s this term that gives a flavor

to all the results 1n economics and finance that 1s quite different from what one 1s
familiar with 1n physics.

The derivations 1n this book are not tied down to the application of quantum
fields to physics — as this would require concepts that are not necessary for
understanding the mathematical formalism of quantum fields. Furthermore, topics
that apparently have no connection with finance or economics — but have played
a pivotal role in quantum field theory — have been included in the hope that these
ideas may lay lead to ground-breaking theories and models in economics and
finance.

Nonlinearities of quantum fields arise due to self-interactions or because
of coupling to other fields — and require the procedure of renormalization for
obtaining finite results. The canonical case of a self-interacting nonlinear scalar
field 1s studied in great detail so as to illustrate and analyze the issues that arise
in renormalization. The formalism of quantum field theory culminates in the
concepts of renormalization, renormalizability and the renormalization group — and
which are among the deepest ideas of quantum field theory. It has been shown by
Sornette (2003) that 1ideas from the renormalization group can provide a mathemat-
ical framework for understanding, and even predicting, market meltdowns.

Many topics, such as fermions, spinors, ghost fields, bosonic strings and gauge-
fixing, are discussed that may seem to have no connection with economics and
finance. The reason for including these topics 1s intentional. The broad range of
topics covered gives a flavor to the reader of the great variety and complexity ot
the models that are a part of quantum field theory. A major omission has been
the study of Yang—Mills gauge fields and that of spacetime supersymmetry. These
topics need a background far in advance to what has been assumed, and hence could
not be covered.

[t 1s impossible and unwise to try to second guess what future directions eco-
nomics and finance will turn toward; turthermore, gearing the topics discussed
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toward what 1s known closes off many future applications. For this reason, the
main thrust of this book 1s to make the reader aware of, and familiar with, a wide
array of quantum mathematical models so that a researcher can make leading edge
connections and create new pathways between the domains of quantum fields and
economics and finance.
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4 Synopsis

In Chapter 3 classical field theory 1s studied to understand the Lagrangian formu-
lation of classical fields. The Lagrangian and action functional are one of the pillars
of quantum mathematics, and classical fields are a precursor to quantum fields.

Global and local symmetries of the theory are encoded in the symmetries of the
Lagrangian. To 1llustrate the interplay of symmetry breaking and gauge invariance,
symmetry breaking for a nonlinear complex scalar field coupled to the Maxwell
field 1s analyzed; it 1s shown to lead to both the Landau—Ginzburg formulation of
superconductivity and the Higgs mechanism of particle physics. The Lorentz group
1s analyzed to understand the structure of empty spacetime, and 1t 1s shown how the

Lorentz group classifies the various types ot classical relativistic fields.
Chapter 4 studies the evolution kernel for the quantum mechanical acceleration

action, which 1s a higher derivative action. This chapter gives a derivation of the
evolution kernel using the state space and Hamiltonian and not a path integral
derivation as given by Baaquie (2014). The acceleration action 1s a key to the studies
of asset prices as well as of forward interest rates. The reason 1s that asset prices
are described by the complex branch of the acceleration action, whereas forward
interest rates are described by the real branch. The acceleration action yields a
pseudo-Hermitian Hamiltonian and, due its higher derivative kinetic term, yields
results quite different from quantum mechanics.

Chapter 5 1s on option theory. Central 1deas such as the martingale condition
and option prices free from arbitrage opportunities are discussed in the quantum
mechanical framework. The Black—Scholes equation 1s given a quantum mechani-
cal derivation with no reference to stochastic calculus. The Black—Scholes equation
Is generalized to the Baaquie—Yang equation using results from the acceleration
action. Options for equities and foreign exchange are derived and empirically tested
using market data. It 1s shown that options provide a more accurate gauge of market
instabilities than the volatility of the underlying asset.

[n Chapter 6 the formulation of statistical microeconomics 1s reviewed and a
Lagrangian 1s postulated for modeling asset prices. It 1s shown how the application
of Feynman path integrals arises in the study of asset prices. Empirical evidence
1s discussed to support the applications of quantum mathematics to the study of
asset prices. A Monte Carlo simulation 1s done to study the nonlinear aspect of
the Lagrangian, and confirms the validity of perturbatively studying the nonlinear
regime using Feynman diagrams. Multiple commodity prices are analyzed and 1t 1s
shown that a Lagrangian for multiple commodities provides an accurate description
of the empirical correlation function of commodity prices.

Part Il focuses on linear quantum fields and 1s a necessary preparation for the
study of nonlinear quantum fields. Quantum fields come in many varieties and with
a great range of underlying degrees of freedom. The simplest, but not unimportant,
case of a quantum field 1s a scalar field. The free quantum field 1s studied as a
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precursor to nonlinear quantum fields. The main difference between a linear and
nonlinear quantum field 1s that the free field does not have any interactions.

Linear fields are important in their own right. The free field comes in many
varieties, depending on the nature of the underlying degrees of freedom, with the
most important examples being scalar, photon and Dirac fields. One way of decou-
pling the free field’s degrees of freedom is the method of Fourier transform, which
resolves the free field into decoupled momentum degrees of freedom. The three
most widely used and most useful free quantum fields are the scalar, spinor and
vector quantum fields. These fields have many specific features of great generality
and hence need to studied one by one.

Chapter 7 studies the free scalar quantum field, which has no self-interaction
but nevertheless has many features of a quantum field and 1s an 1deal theoretical
laboratory for starting one’s study of a system with infinitely many degrees of
freedom. Figure 1.1 shows the central position of the free scalar field in developing
the more complex and deeper structures of quantum field theory as well as the
application of quantum field theory to economics and finance. A scalar quantum
field has one degree of freedom for each spacetime point. The scalar field has
all the general features of quantum fields and its Lagrangian and Hamiltonian are
studied in detail. In particular, the formalism of creation and annihilation operators
1s carefully analyzed as these are among the most useful mathematical tools for the
study of quantum fields. The quantum field in two dimensions is the starting point
of this chapter as it is the simplest system quantum field for which the Fock space
of states of a quantum field 1s defined.

Chapter 8 studies the free spinor quantum field, of which the Dirac field is a
leading example. The Dirac field 1s based on fermionic degrees of freedom obey-
Ing anticommuting fermion statistics. Spinor fields provide a representation of the
Lorentz group and are the result of the structure of spacetime. Due to 1ts spinor

nature, the quantization of the free Dirac field requires a multicomponent spinor
field, having four degrees of freedom at each spacetime point. It 1s shown how, on
the quantization of the Dirac field, two species of particles emerge 1n its spectrum
of states, which are the particle and 1ts antiparticles. In tact, the primary motive
for studying the Dirac field 1s to understand the emergence, and the properties,
of antiparticles. The relation between the particle and antiparticle states 18 ana-
lyzed and 1t shown that the Dirac field 1s invariant under the exchange ot particle—
antiparticle. Since the Dirac field 1s a fermionic field, the properties of fermionic
variables and the path integral tor fermions are briefly reviewed. The Casimir force
1s evaluated for the Dirac field and leads one to study the boundary conditions for
the Dirac field and the associated state space.

Chapter 9 studies the free photon field, which is a vector field with the local
symmetry of gauge invariance. The symmetry of gauge invariance 1s so important
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that the photon field 1s also referred to as an Abelian gauge field. To quantize
the photon field, one has to choose a gauge. Choosing a gauge 1s necessary for
quantizing both Abelian and non-Abelian Yan—Mills gauge fields. The mathematics
required for choosing a gauge 1s studied in great detail, using both the path inte-
oral formalism, which leads to Faddeev—Popov quantization, and the Hamiltonian

formalism, which leads to the Coulomb gauge. The state space that results for
both the path integral and Hamiltonian quantization are discussed. The Becchi—
Rouet—Stora—Tyutin (BRST) symmetry exhibited by the gauge-fixed action in the
Faddeev—Popov scheme 1s utilized to define the state space and 1s shown to be
equivalent to the Gupta—Bleuler quantization for a covariant gauge.

Chapter 10 analyzes interest rates in finance. Interest rates are modeled using
a two-dimensional stochastic field that 1s mathematically identical to a two-
dimensional Euclidean quantum field. The action, Lagrangian and Hamiltonian
for the torward interest rates are modeled using a linear (free) two-dimensional
Euclidean quantum field. The Lagrangian 1s a higher order derivative system, and
empirical evidence 1s briefly reviewed to support the modeling of interest rates by a
quantum field. The state space and field Hamiltonian operator are both shown to be
time dependent. The martingale condition 1s derived for the forward interest rates
using both the path integral and Hamiltonian formulation.

Chapter 11 continues the study of forward interest rates, with the additional
coupling of the risk-free to the risky forward interest rates. It 1s shown how a spread
over the risky rates — the spread being a quantum field 1n 1ts own right — allows one
to extend the formalism. The risky forward interest rates are empirically studied,
with reasonable support for the model from market data.

Chapter 12 studies a coupon bond with index-linked stochastic coupons. An
asset price, represented by a quantum mechanical degree of freedom, determines
the amount of payment of the stochastic coupons. The discounting of future cash

flows is determined by the zero coupon bonds modeled by the risk-free forward
interest rates, which in turn 1s modeled by a two-dimensional quantum field. The
financial instrument 1s a synthesis of a quantum mechanical degree with a two-
dimensional quantum field, and defines a distinct class of financial instruments.

Part 11l discusses nonlinear quantum fields. The nonlinear properties of quantum
fields are, in general, mathematically formidable as well as being fairly intractable —
and for the same reason also yield novel and unexpected results.

In Chapter 13, a general derivation 1s given ot the connection of operators and
state space with the Feynman path integral; in particular, 1t 1s shown that all the
time-ordered vacuum expectation values of Heisenberg quantum field operators are
given by the correlation functions of the quantum field using the Feynman path
integral. The Lehmann—Symanzik—Zimmermann (LSZ) formalism 1s reviewed to
show how the scattering of quantum field states can be reduced to the time-ordered
vacuum expectation values of the quantum fields, which in turn can be evaluated
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using the path integral. These derivations show the centrality of the path integral 1n
the study of quantum fields.

In Chapter 14, the nonlinear scalar quantum field 1s studied using perturbation
theory to understand the divergences of a quantum field. Dimensional regularization
1s used as an effective cutoff for the quantum field; 1t 1s shown that the mass
and coupling constant of the quantum field apparently seem to diverge. Feynman
diagrams are introduced as a useful bookkeeping device for the terms that appear
as one goes to higher and higher order perturbation theory.

Chapter 15 1s a key chapter that introduces the 1dea, as well as a prescription, of
renormalization. Four different methods are employed to renormalize the nonlinear
scalar field, which are given by bare and renormalized perturbation theory, the
background field method and Wilson’s thinning of the degrees of freedom. All four
methods are shown to yield the same result, but from vastly different perspectives.

The deep and global structures of quantum fields are discussed 1in Chapters 16
and 17, which address the issues of renormalization and of the renormalization
ogroup. The divergences that appear in perturbation theory and the procedure of
renormalization are seen to be the natural consequence of the fact that the quantum
field describes a system with infinitely many length scales. In Chapter 17 one
discovers the rather unexpected connection of quantum field theory to the theory
of phase transitions. Recall that quantum field theory was specifically developed
to address high energy phenomenon at short distances, whereas phase transitions
are determined by the behavior of the system for infinitely separated degrees of
freedom.

Another branch of the book leads to the study, in Chapter 18, of effective actions
that describe symmetry breaking for nonlinear scalar fields and for scalar quantum
electrodynamics. The effective action 1s evaluated for both cases and 1t 1s shown that
scalar electrodynamics has spontaneous symmetry breaking that is renormalization

group invariant.

Nonlinear scalar fields lead to nonlinear models of interest rates, which 1s studied
in Chapter 19. This chapter concentrates on certain key aspects of the mathematical
formalism of nonlinear interest rates. The debt market 1s driven by Libor simple
interest rates. It 1s shown, due to a nonlinear drift required for fulfilling the martin-

gale condition, that Libor 1s described by a two- dimensional nonlinear Euclidean
quantum field. Due to the higher derivative terms in the Lagrangian, there 1s no need
for renormalizing this nonlinear field. Nonlinear dritt 1s exactly obtained using both
the Wilson expansion and the Hamiltonian formulation of the martingale condition.
The empirical aspect of nonlinear interest rates has been studied by Baaquie and
Yang (2009), Yang (2012) and Baaquie et al. (2014b), and hence is not discussed in
this book.

Since perturbation theory 1s often not effective in studying nonlinear systems,
nonlinear interest rates are studied numerically in Chapters 20 and 21— with the
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Quantum mechanics

2.1 Introduction

Quantum mechanics 1s based on the quantum principle, which 1s discussed in the
next section. Quantum mechanics 1s the logical starting point of quantum field
theory since 1deas such as operators, state space and path integrals can be introduced
In a simpler context, with the infinite-dimensional generalizations being made later
In the analysis of quantum fields.

In a book addressing applications of quantum field theory to economics and
finance, one may question whether there are, at all, any purely quantum effects.
This question 1s partly correct in the sense that all applications to economics and
finance considered 1n this book are based on the view that stochastic and random
phenomena in economics and finance are described by classical probability theory;,
quantum mathematics 1s employed solely as a powerful computational tool for
addressing these problems.

However, there has been a major development in social sciences, especially
in decision sciences and behavioral finance, where quantum probability has been
directly invoked in explaining various observed social phenomenon. Quantum
probability and quantum superposition, which are some of the unique and enigmatic
results that emerge from quantum mechanics [Baaquie (2013b)], have found
myriad applications 1n the social sciences. Two books, by Busemeyer and Bruza
(2012) and by Haven and Khrennikov (2013), with reterences cited therein,
provide a comprehensive summary of the varied results, both empirical and
theoretical, that have been obtained in applying quantum mechanics to the social
sciences.

As reasoned above, for both mathematical and conceptual reasons, the study of
quantum fields needs to start from 1ts roots, namely from quantum mechanics.

13
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2.2 Quantum principles

One of the starting points of a quantum field 1s the principle of quantum mechanics,
which states that all physical systems are constituted by degrees of freedom that
are fundamentally indeterminate. The indeterminacy 1s realized in two different
manners [Baaquie (2013b)]:

o In the Hamiltonian formulation all physical observables are Hermitian opera-
tors acting on a state space built on the underlying degree of freedom. Physi-
cally observable quantities are the expectation value of the operators obtained by
either using the state space approach of Schrodinger or the operator algebra of
Heisenberg.

« In the path integral formulation, the degrees of freedom are integration vari-
ables and hence have no fixed value and are intrinsically indeterminate. Physical
observables are defined by the matrix elements of operators representing physical
quantities, which in turn can be evaluated using the path integral.

Both the path integral and state space/operator formulations of the quantum
principle are discussed 1n this chapter. The mathematics of quantum mechanics 1s
generalized 1in defining quantum fields. But what remains valid for quantum fields
1s that they are based on degrees of freedom that are quantum mechanical in nature,
being indeterminate. Moreover, the operator algebra and path integral mathematics
of quantum mechanics continues to be the mathematical backbone of these objects.

Dirac’s notation for linear vector space and operators 1s used extensively. For
those not familiar with the bracket notation, the connection of vector notation with
Dirac’s bracket notation is briefly discussed in Section 2.10.

The three fundamental principles of quantum mechanics are the following:

o The degree of freedom; this can be discrete or continuous and can be one or
infinitely many. The degree of freedom 1s denoted by ¢; the collection of all its
values forms the space of the degree of freedom /.

« The state space, which 1in quantum mechanics i1s a Hilbert space. The state space
can be larger than a Hilbert space for systems that do not conserve probability,
as 1s the case for economics and finance. The state space 1s denoted by V and an
element of V 1s [v) € V, where V : / — V. The dual state space V) consists
of all mappings, denoted by (x|, of V to the complex numbers C. The expression
(x| = (Y| x)* € Cis the scalar or inner product.

« Operators O that act on )V and map it to itself O:V — V.The space of operators
1s denoted by Q = V ® Vp. The tensor or outer product of two state vectors is
givenby |V) ® (x| = [¥){x] € V® Vp.

In summary, quantum mechanics consists of the mathematical triple {F, V, O}.
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Hence, the coefficients have the important property that

0<P, <1 ) P=1 (2.3.3)

Eq. 2.3.3 shows that P, have the interpretation of the probability of event labeled
by n.

Note that quantum theory of measurement requires that only one of the detectors,
represented by I1,,, detects the quantum state. This 1s also called the collapse of the
wave function. Define

P, = |c,|” € [0,1] (2.3.4)

The 1nterpretation in quantum mechanics 1s that P, 1s the probability that the
detector — represented by II, — detects the quantum state |[x). Figure 2.1 1s a
representation of the measurement process 1n quantum mechanics.

Egs. 2.3.4 and 2.3.2 show that quantum mechanics 1s a quantum theory of prob-
ability that 1s a synrhesis ot classical theory of probability with the concept of an
underlying linear vector space )V and Hermitian operators acting on it.

Note the fundamental paradox of quantum mechanics, namely that the founda-
tion of the quantum entity, namely the degree of freedom, can never in principle be
observed by any experiment.

Furthermore, two orthogonal projection operators I1,,, I'l,, can never simultane-
ously observe the state function . A measurement results in the state function
collapsing to either the state [\r,) = Il,|¥) or |r,,) = I1,|¥); the state vector
) 18 never simultaneously observed by both the projection operators. If in any
experiment, two orthogonal projection operators simultaneously observe the state

function v/, then that would spell the end of the current (Copenhagen) interpretation
of quantum mechanics.

2.4 Dirac delta function

The Dirac delta function 1s indispensable in the study of continuous spaces (degrees
of freedom), and some of its properties are reviewed. Dirac delta functions are
not ordinary Lebesgue measurable functions since they have support on a mea-
sure zero set; rather, they are generalized tunctions also called distributions. The
Dirac delta function is the continuum generalization of the discrete Kronecker delta
function.

Consider a continuous line labeled by coordinate x such that —o0 < x < +4-o¢,

and let f(x) be an infinitely differentiable function. The Dirac delta function,
denoted by § (x — a), 1s defined by
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0, x+#a
o0, X=ud

d(x —a) = {
5(x —a) = 5(a — x): even function

]
d(c(x —a)) = mﬁ(.x —a)

Furthermore
+00
/ dxf(x)é(x —a) = f(a) (2.4.1)
fmai L 50— a) =~ f () 2.42)
X f(x xX—a) = (— X) ey 4.
IO dx" dx” ‘
The Heaviside step function ®(7) 1s defined by
I, t=>0
0, t<0
From its definition
O +6(—1 =1 (2.4.4)

The following 1s a representation of the delta-function:

b
[ dxd(x—a) =0OMb —a); b>a (2.4.5)
il 1
= f dxé(x —a) = O0) = 5 (2.4.6)

where last equation is due to the Dirac delta function being an even function. From
Eq. 2.4.5,

d
E@(b —a) = o(b — a)

A representation of the delta-function based on the Gaussian distribution 1s

] ] .
d(x — — | - — (X — - 2.4.7
(x — a) nl_le N exp { 53 (x —a) } ( )

Moreover

1
o(x —a) = hIim E,u.exp{ — ,£L|X—£I|}

JL— 00

From the definition of Fourier transforms

o dp
S(x—a) = [ Q_pﬁﬂ,;.(_r_[,} (2.4.8)
A T
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A useful 1dentity for option theory is the following. For a stock price given by
S = ¢*, consider a payoff function
l¢' — K| = (¢' — K)O®(e' — K)

Using definition of the Dirac delta function and Eq. 2.4.8 yields
+00 ++00

| o d
[a—m+=] dﬁ@—@W—Khzjﬁ c

—00 —oo 27 J_oo

d& o'PE =) [{E’E — K.
(2.4.9)

To see the relation of the Dirac delta function to the discrete Kronecker delta,
recall for n, m 1ntegers

I, n=m

(Sn—m — { Oj ! # " (2410)

Discretize continuous variable x into a lattice of discrete points x = ne, and let
a = me; then f(x) — f,. Discretizing Eq. 2.4.1 gives

+00 00
f dxf (xX)8(x — a) — € Zj;la(.x; —a) = fo

]
= 8(x —a) = —0,_, (2.4.11)
€
Hence, taking the limit of € — 0 1n the equation above,
SGr—a)—lim=s,_ —1% *7d
c—0 € 00, Xx=ua

Considering x as a degree of freedom yields basis state vector |x) and dual basis
state (x|. A function f(x) in Dirac’s notation 1s given by f(x) = (x|f) and the scalar

product of two functions 1s
g) = <.focfX|X> (xl} 5)

f dx|x) (x| = I (2.4.12)

(flg) = fcilzf““(XJg(X) = ]dx{ﬂx} (x

and yields the completeness equation

The completeness equation given in Eq. 2.4.12 plays a central role in analyzing
continuous degrees of freedom.

2.5 Schrodinger and Heisenberg formalism

The time evolution of a state vector 1s given by Schrodinger equation

ﬁi = H 2.5.1)
— = 1¥) = HIY) (25
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The coordinate eigenstate |¢) and operator 5 are defined by

19) = plo); (@'1p) =8¢’ — ¢) (2.5.2)
and yield the coordinate representation for the Schrodinger equation

_ﬁ<¢|i|¢>—<¢|ﬁ|m —@w(@—ﬁ(@ i)w@ (253)
i\ ot )T T T e T o)

Note the Hamiltonian operator acts on the dual basis state {(¢|, and this 1s the rule
for all differential operators. From Eq. 2.5.1,

W) = e 1 ) (2.5.4)

The expectation value of a time-independent Schrodinger operator O is given by
(h=1)

Ey[0(0)] = (Y|01) = (Y™ Oe™ ™ |y) = (W |00 ¥) = tr(O(t) p)
where

p =)Vl

1s the density operator, also called, for historical reasons, the density matrix.
The time-dependent Heisenberg operator 1s defined by

- e dO(t ~
O(t) = e™MOe ™ = | HE ) = [O(1), H] : Heisenberg operator equation

Heisenberg’s formulation 1s more suitable for measurement theory. A device rep-
resents physical projection operators I1,; the quantum state i1s p. The result of
repeated measurements yields P, = tr(I1,p).

2.6 Feynman path integral

The Dirac—Feynman formulation of path integrals 1s derived from the Hamiltonian
operator. Although every Hamiltonian yields a path integral, 1t 1s not the case that
every path integral can in turn be expressed in terms of a Hamiltonian. This aspect
of path integrals comes to the tore 1n studying path integrals for curved manifolds,
but will be not addressed 1n this book.

Consider the continuation of Minkowski time to Euclidean time given by x;, =
X;, t = —it. See Figure 2.2. Hence

ro m (dx)z V() — om (dx)z .
E7 o\ ar t = 2 \drt *
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A

Figure 2.2 Euclidean continuation of real (Minkowski) time.

The canonical momenta changes sign but give the same Hamiltonian

1 92 B E

B FVx), Hp=— - Vi(x)
).

H —
2m 0x?

The Dirac-Feynman formula i1s given by

e M x) = N (€)'~ €. Minkowski

(' |e"ME | x) = N (€)e -9 Euclidean (2.6.1)

where N'(¢) is a normalization term. The subscript £ will be dropped unless
necessary.
The Euclidean path integral has the following derivation:

7

(€™M x) = (x/[e™ 2 x)e Y (2.6.2)
Note
dp
f Elpﬂpl =1 (2.6.3)
Hence
= d 2 d 2 o,
wle b = [ Ll Eip ol = [ 3P Eer
21 2m
_.m )
YV 2me
and yields

d
L = —%(x,ﬁ —x)—eV(x) = L= —g ( ;.:) — V()
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Path integral quantization 1s more general than starting from the Schrodinger
equation and the Hamiltonian operator for following reasons:

« The Schrodinger approach 1s based on the properties of state space in addition to
the Hamiltonian driving the Schrodinger equation.

o The spacetime symmetries of the quantum system are explicit in the Lagrangian-
based path integral approach, whereas in the Schrodinger approach these are
implicit and need to be extracted using the properties of the Hamiltonian and
state space. In particular, one has to derive the symmetry operators that commute
with the Hamiltonian.

» Path integral quantization yields a transparent formulation of constrained sys-
tems, as for example discussed in Baaquie (2014). In the Schrodinger formu-
lation, one needs both the Hamiltonian and commutation relations, which for a
constrained system are far from obvious and require a fair amount of derivations.

These considerations come to the foretront in the quantization of complicated sys-
tems like non-Abelian gauge fields. The starting point 1s the LLagrangian, and path
integral quantization turns out to be more efficient than the Schrodinger approach.

2.8 Hamiltonian from Lagrangian

Recall in Section 2.6, the Lagrangian was derived from the Hamiltonian using the
Dirac—Feynman formula. In this section, it 1s shown how to derive the Hamiltonian
H 1f the Lagrangian 1s known; one can use the procedure of classical mechanics tor
the derivation, but instead a quantum mechanical deviation 1s given 1n this section.

Option theory, discussed in Chapter 5, is based on classical random processes
that 1s similar to the diffusion equation. Hence, for classical random processes the
time parameter 7 in the path integral appears as “Euclidean time” 7, which for option
theory 1s in fact calendar time. A Lagrangian that is more general than the one
discussed 1in Section 2.6 and that arises 1n the study of spot interest rate model 1n
finance 1s the Black—Karasinski model [Baaquie (2004)].

Let the degree of freedom be the real variable ¢; in the Black—Karasinski model,
the spot interest rate is given by r = rge?. Consider the following Lagrangian and
action

— —

1 ; .
L) =~ me™""" [C;—T + (9, r)} + V()

2

S:f drﬁ(r):—lf dt m€_2”¢!d—¢+a(¢5,r)}-+1’(q§) (2.8.1)
0 2 0 dt

L

For greater generality, a ¢-dependent mass equal to me "¢ and a drift term «(¢p, 1)
have been included in L.
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The path integral 1s given by the following generalization of Eq. 2.6.9:

K(pi, 3 1) = / Dge™""e’ (2.8.2)

t +00
[ pocw =TT [~ dstoess
=0 "

Boundary conditions ¢(7) = ¢5; ¢(f = 0) = ¢;

Note the path integral integration measure [ D¢ has a factor of ¢ " needed to
obtain a well-defined Hamiltonian.

Recall from the discussion of the evolution kernel in Section 2.6, the path integral
1s related to the Hamiltonian H by Eq. 2.6.9, namely

K(¢i, ;T = f Dpe "e® = (¢rle ™| ) (2.8.3)

One needs to extract the Hamiltonian H from the path integral on the left-hand side
of Eq. 2.8.3.

The Hamiltonian propagates the system through infinitesimal time; the time
index 7 1s discretized into a lattice with spacing €, where 1 = ne with N = T /¢
and ¢ (x) — ¢,. The path integral reduces to a finite (N — 1)-fold multiple integral,
analogous to what was obtained in Eq. 2.6.6. Discretizing the time derivative

d‘}t’ R ¢)H’r| —t;if)”
dr ¢
yields the following lattice action and Lagrangian
N-1
(dwle™ M o) = | | f dp,e” " e (2.8.4)
n=1
N—1
Se) =€ ZL(H)
n=I()
o2V

|
L(n) = [Bn1 = bu+ €] = SIV(Gur1) + V()]

As in Section 2.6, the completeness equation given in Eq. 2.4.12 yields

f dpal ) (] = T

and is used N — 1 times to write out the expression for e, The Hamiltonian is
1dentified as follows:

(:qbﬁ—l—] |€ EH|¢~'H } = #JI.\."I’(E)E LJ{J&HEELM

me "¢ s €
. (Pi1 — Pu + €| — S V(i) + V(o]

= N(€)e " exp {—
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Since the Hamiltonian depends on the value of ¢ at two different instants, to
simplify notation let

Dni1 = @, Oy = d)f; Uy = &

[gnoring terms that are of O(€) 1n Eq. 2.8.4, the matrix elements of the Hamiltonian
are given by

me "9
2e

Note that unlike Eq. 2.6.9, for which the Hamiltonian is known and the
Lagrangian was derived from 1t, in Eq. 2.8.5 one needs to derive the Hamiltonian
from the known Lagrangian. This derivation 1s the quantum mechanical analog of
the derivation of H given by Hamiltonian mechanics 1n classical mechanics and
discussed by Baaquie (2014).

The key feature of the Lagrangian that in general allows one to derive its

(ple ") = N(e)e " exp {— (o — ¢ + em]2 — E’V(Qf))} (2.8.5)

Hamiltonian 1s that the Lagrangian contains only first-order time derivatives; hence,
discretization of the Lagrangian involves only ¢,, that are nearest neighbors 1n time,
thus allowing it to be represented as the matrix element of e, as in Eq. 2.8.5.

In contrast, for Lagrangians that contain second-order or higher order time
derivatives, discussed by Baaquie (2014), the derivation of the Hamiltonian from
the Lagrangian and path integral 1s nontrivial since the entire framework of
coordinate and canonical momentum 1s no longer applicable. Instead, one has
to employ the Dirac method required for quantizing constrained systems and,
in particular, evaluate the Dirac brackets for the system in order to obtain the
Hamiltonian and commutation relations.

In Eq. 2.8.5, the time derivative appears in a quadratic form; hence one can use
Gaussian integration to rewrite Eq. 2.8.5 in the following manner’

—eH| 4 —vp —eV(d) " dp € 2 . / —v
(ple"" @) =e Ve expi—=—p +ipl¢g — ¢ +eae
g 2T 2m
T dp ce’V? |
= ¢ VP f v exp | — P+ .ip(n;b — ¢+ €a) (2.8.6)
e 2T 2m

where the prefactor of e~ has been canceled by rescaling the integration variable
p — pe'?.

The Hamiltonian H = H(¢, d/0¢) is a differential operator and acts on the dual
co-ordinate ¢, as 1s required for all differential operators, and mentioned earlier
after Eq. 2.5.3. Hence, for the state function |yr), which 1s an element of the state

' Henceforth N (e) is 1gnored since 1t 1s an irrelevant constant contributing to only the definition of the zero of
energy.
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space, the Hamiltonian acts on the dual basis state {(¢| and yields (¢p|H|y) =
H(¢p,0/0¢)Y¥ (@), similar to the result given in Eq. 2.5.3.
The Hamiltonian is hence given by the following representation”

+0

| o | o dp . ..
(Bl Migl) = e MO i) = e [ B anos) - a57)

e 2T

since {(¢p|¢’) = 6(¢p — ¢'). Ignoring overall constants and using the property of the
exponential tfunction under differentiation, one can rewrite Eq. 2.8.6 as

1 | 82 a +00 i',' |
(ple Mg :exp{—ﬁf'm’ | Ew% —EV(qﬁa)} f L ir@—9) (2.8.8)

2m dp? ~ 27

Comparing Eq. 2.8.8 above with Eq. 2.8.7 yields the Black—Karasinski Hamiltonian
for spot interest rates r given by |Baaquie (2004)]
1 0°

e () 4 V() 1= ree! 289
om’ 962 w(c?ﬁ)i.iqur (@): = roe (2.8.9)

The Hamiltonian 1s quite general since both V(¢) and a(¢) can be functions of the
degree of freedom ¢. Note that the Hamiltonian H in general is non-Hermitian —

H =

and 1s Hermitian only for v = 0 and a pure imaginary «. The path integral has a
nontrivial integration measure exp{—v¢} that arises from the underlying state space
and needs to be specified in addition to the Hamiltonian.

2.9 Summary

The principles of quantum mechanics are realized by indeterminate degrees of
freedom. An entity in quantum mechanics is described by degrees of freedom
that, due to quantum indeterminacy, simultaneously take all possible values. This 1s
realized by the operator formalism and by the Feynman path integral.

Both the operator formalism and the Dirac—Feynman path integral formalism
were briefly reviewed as these form the basis for the generalizations that are
required for the description of quantum fields. The path integral was derived
starting from the Hamiltonian and in turn the Hamiltonian was obtained starting
from path integral quantization.

The interplay of the path integral with the underlying state space and Hamilto-
nian 1s one of the foundations and a unique feature of quantum mathematics that
distinguishes the Feynman path integral from tunctional integration in general.

2 As in Eq. 2.5.3, the convention for scalar product 1s {p|¢, } = exp(—ip¢, ), and the sign of the exponential in
Eq. 2.8.7 reflects this choice. The defimtion of H requires 1t to act on the dual state vector {¢/|; 1f one chooses
to write the Hamiltonian as acting on the state vector |¢), H* would then have obtained instead. Since H is not
Hermitian, this would lead to an incorrect result.
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2.10 Appendix: Dirac bracket and vector notation

Linear algebra is based on the idea of the N-dimensional Euclidean space Ey —
which 1s a finite-dimensional linear vector space. Vectors are elements of Ey and
matrices are linear transtformations from Ey to Ey;. The synthesis of linear algebra
with calculus, which 1s the basis of functional analysis, 1s most easily carried out
by expressing vectors and matrices in Dirac’s notation. The discussion is confined
to square matrices, which are linear transformations from Ey to Ey, although the
notation can also be applied to the general case.
The basic ingredient of the Dirac bracket notation 1s the following

ket : |..) = vector; bra: (..| = dual vector
Taken together they form the complete bracket
bracket : (..|..) = scalar product = complex number

Consider, for generality, a complex valued vector v, which 1s represented by the
ket-vector

v=1[v); vi=[v)

There 1s no need to make the symbol v boldtace inside the ket since the notation
makes this clear. The dual bra-vector 1s given by

Linear superposition 1s written as expected

u=av-+bw = |u) =alv)+ blw)
with the dual expression given by

u' = a'v + bW = (| = a" | + b (w

The expansion of a vector 1nto its components 1S
v=">) vie = [v) =) v(ili)
i i

In Dirac’s notation, the scalar product is given by

view = (VD (W) = (vliw) = (vw)
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functional integration, a few of its key properties, the Gaussian, or the normal
random variable, 1s reviewed.
The basic Gaussian integral is given by

00 12 e 27 12
/ dxe 2 T = e’ (2.11.1)

00 A

N-dimensional Gaussian integration

The moment-generating function for the N-dimensional Gaussian random variable
1S given by

+00
Zj) = f dx; - - - dx,e’
— 00

N

| 1
with § =~ Y xiAgx + Zm (2.11.2)

ij=1
Let Aj; be a symmetric and positive definite matrix that has only positive
eigenvalues. A;; can be diagonalized by an orthogonal matrix M
A
A=M" M: MM =1
AN
Define new variables

- — Y-t . — ‘IF';
zi = Myxj; xi = Mz

N N N
l_[dﬂ;' = detMl_[cirg — l_[alef- = Dx
i=1 i=1 i=1

Hence

N N T

201 =] [ due P00 <]
!

=1

27 2 UMM,

In matrix notation
1 -
D MM = A" | ]

Aj

! i=1

Hence

'Ill —_
Z[j] = g1/ (2.11.3)

All the moments of the coupled Gaussian random variables can be determined
by the generating function given in Eq. 2.11.2, namely
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o
Elxix.xy| = ZL S| =
v = oy oy, A =0
Letr = ne,n = 0,x1,£2,...,4£ N. The limit yields a continuum number of

Integration variables x(7), with —oc0 < r < 4o0. All summations over n yield
integrations and with the “action” given by

+oC

+0C
S:-%f didt’ x(1)A 1(:,1’)x(:")+[ dtJ (D)x(1) (2.11.4)

oo —

From Eq. 2.11.3, one obtains the generating functional’

I P e |
Zlj] = > f D50 dOx0 — exp {E / drdt' j, A~ (1, r’)_,i(r’)} (2.11.5)

o0

The normalization AV is now a divergent quantity, which ensures the usual nor-
malization Z(0) = 1. In discussions on quantum field theory, Eq. 2.11.5 plays a
central role.

The fundamental reason why Gaussian integration generalizes to infinite dimen-
sions 1S because the measure 1s mvariant under translations, that 1s, under x(¢) —
x(t) +&(7); one can easily verify that this symmetry of the measure yields the result
obtained in Eq. 2.11.5.

2.11.1 Quadratic action

Consider the action of the “harmonic oscillator” given by

p— —

g— " f " al (EO 2+ 2.2(1) m f " a (t) & + o) x(0)
- —— WX = —— X ——5 TwW |X
2 ) dt 2 J_ o dr?

B —

— ] N _ﬁ 2 Y
= A (t,1) = m +w ot —1)

di?

where an integration by parts was done, discarding boundary terms at oo, to

obtain the second expression for S above. The propagator A(z,t) is given by

+00 ip(t—t") 1
E- )
—_ jf‘_
f df? = —¢ w||t—r]

2rm J_ PP+ 2mlw)

At =

The result above can be verified by using Eq. 2.4.8.
Consider the acceleration action functional given by [Baaquie (2014)]

N | [+ PxO\° . (dxO\>
] = —— dr | L I - 2,2 211,
S| 2f_1, r ( — ) + ( P ) +y2 (0| (2.116)

— —

° The term-generating functional is used instead as generating function as in Eq. 2.11.3 to indicate that one is
considering a system with infinitely many variables.
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Define the Fourier transform of x(z), j(z) by x(k), j(k) given by

e dk ikt ~ . e dk kty
x(1) = 2H€ x(k);, j(t) = ZJIE J(k)

Eq. 2.11.6 yields

~ | [T dk . ., =+, " | .
Slx]| = —5 Z—[Lk + Lk~ + ]/']x(—k_)x(k) (2.11.7)
Cao 2T

In terms of the Fourier-transtormed variables, the generating functional given in
Eq. 2.11.5 yields, for action given in Eq. 2.11.7, the tollowing [Baaquie (2014)]:

1
E[x(0)x(f)] = > f Dxexp {S[x] + ] dsj(s)x(s) }x(r)x(f)

0 gk dk ] dk -
_ [ Siki+ik' ~ fDEexp {S[EJ + fg.f(—k)f(k)!i(k)ﬂkf)

~ 27 2m

400 dk eik{f—f )

= Elx()x(1)] = ]

oo 27 LKA+ LK + 32 (=8

The correlation function given in Eq. 2.11.8 plays a central role in the study of
commodities and interest rates.

2.11.2 Gaussian white noise

The properties of white noise are analyzed as this constitutes the simplest form of
Gaussian functional integration; it also shows how the Dirac delta-functions for the
correlation functions emerge from functional integration.

The fundamental properties of Gaussian white noise are that

E[R()] =0: E[R(ORE)] =8(t —1) (2.11.9)

Figure 2.4 shows that there 1s an independent (Gaussian) random variable R(r) for
each instant of time 7.

R(/)

Figure 2.4 One random variable R(7) for each instant of time.
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Discretize time, namely t = ne, withn = 1,2,...,N, and with R(f) — R,,.
The probability distribution function of white noise is given by

€ £ o2
P(R,) = /Ee—i”n (2.11.10)

Hence, R, is a Gaussian random variable with zero mean and 1/./e variance, and
1s denoted by N(0, 1/,/€). The following result is essential in deriving the rules of
[to calculus:

1
R: = — + random terms of 0(1) (2.11.11)
€

To write the probability measure for R(7), with t; < t < 1, discretize t — ne.
White noise R(7) has the probability distribution given in Eq. 2.11.10. The proba-
bility measure for the white noise random variables in the interval 1y <t < 1, 1s the
given by

N N ﬁ N L oo
PIRI = [ [ P(R) =] [e 2" fa’R:n.Jif dR, (2.11.12)

n=| n=I n=1

Taking the continuum Iimit of € — 0 yields, fort; <t < 1,

i)

, 1 [
PIR,t1,12] — €°; Sy = ——f dtR* (1) (2.11.13)

2 J;.
zszRe-”“; de% fme

The action functional Sy 1s ultra-local with all the variables being decoupled.
Gaussian integration, given in Eq. 2.11.3, yields

1

Zlj.t1, 0] = % f DRe/i’ HORD Sol — o3 Jif d*0) (2.11.14)

The correlation functions are given by

E[R()] =0
E[R(HR(1)] = ! / DR R(HR(t)e* = > Zljl| =68—-1)
Tz O T Siwmsian T = T
and yield the result given in Eq. 2.11.9. Functional differentiation 1s discussed in
Noteworthy 7.2.
The results given in Egs. 2.11.13 and 2.11.14 show that white noise 1s repre-

sented by a path integral with an ultra-local action Sj.
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Classical field theory

3.1 Introduction

The concept of the classical field 1s introduced 1n this chapter. The forms that Nature
takes 1n physics are a variety of fields, including the Standard Model of high energy
physics as well as the geometrical theory of gravitation. The key feature of a field
— 1n fact, its most important and defining property — is that the field carries both
energy and momentum at every point of space (and time). This 1s the reason that
a held 1s considered to be a physical entity — as physical as a classical particle —
with the difference that the field’s energy and momentum can flow from one part to
another, unlike a particle for which its energy and momentum are at the point that 1t
occupies (of course, this point can move). Just as 1s the case for particles, the time
evolution of a field exactly conserves the field’s total energy and momentum.

As the field evolves 1n time, the energy and momentum of the field can be redis-
tributed from one point of space to another by the variation in the field’s strength.
The term “a propagating field” 1s shorthand for describing the redistribution of the
field’s energy and momentum at the different points of space; this redistribution can
take place in many ways, with the most commonly studied case being the wave-
like oscillations of the field’s strength at different points of space. A propagating
electromagnetic field can, in principle, propagate out to infinite distances. And,
conversely, a propagating electromagnetic field impinging on a charged particle
can transter energy to it and cause the particle to accelerate.

The total energy and momentum of the field coupled to charged particles, taken
together, 1s exactly conserved at every point of spacetime.

In general, a classical field 1s a determinate entity, which i1s completely specified
by assigning a numerical value to the field (with appropriate dimensions) at every
point in spacetime. The values specifying the field at every point can change as the
field evolves in time. A particle of classical physics occupies a single point, whereas
a (scalar or a vector) field 1s spread over space. The numerical value of a field can be
a single number, as in the case of a scalar field, or it can consist of several numbers,

35
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oL d oL
d¢q, dt 0q;

= 0 : Euler-Lagrange equation (3.2.8)

The boundary term must be zero:

" d L |
/—-Mﬁ—mzo (3.2.9)
dt xﬁq,-

Note L is defined only up to a term d A /dt since

d A\
L =L+ —
dt

gives the same Euler—Lagrange equation up to a boundary term.

Noteworthy 3.1 Relativistic notation

The metric n,, for Minkowski space 1s given by

I
v —1 jil o .1 .2 3
Nuw =N = | Xt = (x,x L, x%,x7) (3.2.10)
— 1
This yields, using the convention that repeated indices are summed over
Xy = ?}',qu” = (ct, —x, =y, —2) = (X0, X1, X2,X3)
A Lorentz-invariant scalar product 1s defined by using metric 7,,, and yields

A"B, =n""A, B, = n,,A"B"

Furthermore

o 1 9% -
); a“aﬁ — ?}'“ba,u dy = ——5 — V2

0 (IE‘JHHH

0, = _
I - P P P
JxH ¢ dt dx dy 0z

c? ot?

3.3 Classical field equation

The field ¢ 1s defined on spacetime x, 7 and can be density, pressure, temperature
fields or electromagnetic and gravitation fields. All fields ¢(7, x) carry energy and
momentum at each spacetime point. The kinetic energy of the field 1s defined for

finite volume R° by
. 0p(1,%) \°
r=im & (220N (3.3.1)
2 R3 df
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and its potential energy is

RTINS
V = dx|-m|—=] + V(p) (3.3.2)
e 2 d

The Lagrangian density L(z, x) is given by

1 /0y o Jd@ :
L=—ml—L) —=m| L) =V 3.3.3
2”"’(3:) zm(af’) %) (3.3.3)
and the action i1s
1y '
S :] dff d°xL(t, x) E/ L(@,0,¢) (3.3.4)
I R v

where V = R’ 1y, 1;].
A transtormation for the scalar field, keeping the spacetime manifold fixed, has
the form

@ (x) = ¢'(x) = p(x)
and leads to the variation
b = ¢ (x) — @(x)

with the constraint that the variation at the initial and final surface 1s zero; that is,

0, = 0 = dp

1=t =1y

The variation of the action 1s given by

oL 0L
f'iS:f , dp(t,x) + — 53;.;@?]
v | 0e(t, x) 00, ¢

f_ oL {-}—Mj}ﬁ(r )+/[3 (8 _HE )j| (3.3.5)
— . o @\, X 1 @ J.D.
v detx)  "ad,e v 00,9

= Sy + Sy

The constraint that the variation on the boundary be zero yields'
dSyy =0

The field equation 1s then given by the following:

d.L a.L
0SS = 0SSy =0 = — 0
o T e (9,0

= (: Classical field equation  (3.3.6)

! Unlike the case for a particle, the boundary conditions on the field at infinitely distant points of space are
required to be separately imposed.
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Note the label 7 in g;(f) of the canonical coordinate has become a continuous label
x. In this sense, at every point x, the field has an independent canonical coordinate
@z(1). Writing Eq. 3.3.6 explicitly yields

3 .
oL 90 0L — 0 [ dL
dp 192 axi \ 5

i=1 dx!

3.4 Free scalar field

The free scalar field @(z,x) 1s a real valued function of 7,x and 1s an infinite-
dimensional generalization of the simple harmonic oscillator; its Lagrangian is
given by

| m> 5
L= Ed""mpdﬂgﬂ -5

In terms of the space and time coordinates,

) 2 ‘ 2
p L) L e\
2\ 01 2\ ox 2

The Lagrangian yields

0L , 0L dp 0L Jdo
g0 TV e T 90 3% T T ok
oy at ax i
In relativistic notation
oL
— = 0"
d(d,¢)

and the Euler-Lagrange equation 1s
—m*p — 3,09 =0 = (3,0" +m*)p =0
Or equivalently

32 -}’2
['— — — + mz] ¢ = 0: Klein—Gordon equation

The Hamiltonian density 1s

T o 2

I 3 H = 3 1)
H=T+V=—_¢"+—(Vp)’ + —¢°
+ 59+ (Vo) + 59
Hence the Klein—Gordon equation 1s
ia m*c? ‘ _ _
0" d,, % ¢ = 0: Klein—Gordon equation

In all the subsequent discussions, the units are chosen so thatc = h = 1.
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3.5 Symmetries

The symmetries of a system are those transformations of the field ¢ and of the
coordinates x = (7, x) that leave the field equations of the theory unchanged. The
symmetry 1s realized by the transformation leaving invariant the Lagrangian (up to
a divergence) and hence the action §.

A symmetry transformation by definition leaves the action functional invariant.
By considering an infinitesimal symmetry transformation, the invariance of the
action yields a volume term that 1s zero due to the field equations as well as a
boundary term that 1s also zero. The boundary term contains the generators of the
symmetry transtformations that yield a conserved current. Noether’s theorem shows
how to extract the conserved currents that result from the symmetry of the action.

Consider a general symmetry transtformation that has the form
x— x=x(x); ¢x) — ¢(x) (3.5.1)

The transformation leaves the Lagrangian invariant (up to a divergence), and hence,
for any arbitrary volume V, we have

S = f d*TLGE), 0¢((F), %) = f d*xL(p, 0, x)
The coordinate transtformation yields
XM= x" 4 8xt; d'x = Jd"
where the Jacobian J 1s given by
oxt dx"

— ="+ 0,(0x") = J=det|— | =1403,(x")
axh dxV

Expanding the action to lowest order 1n the coordinate yields

S = fd4,%£(¢'5(.f), IP(X)) = f{f.}f]{ﬁ(gﬁ(ﬁ),&@(ﬂ) + 9, Lox"}
Using the expression for the Jacobian J yields

S = f d x{L(@(x), 0@ (x)) + 3, LSx" + L3, (5x"))

— fdd.I{ﬁ(@(.I), dp(x)) + 9, (Lox")} (3.5.2)
Define the variation of the field at the same spacetime point x by

dp(x) = @(x) — @(x) (3.5.3)

Since the transtformation 1s a symmetry, it leaves the action invariant and yields

55 = 0 = f dﬁlx[ﬁ(rﬁ(x),, 05 (x)) + 8, (LX) — L), Hﬁqﬂ(,l:))] (3.5.4)
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Note the fact that 4§ = 0 in Eq. 3.5.4 is a consequence of the symmetry of the
Lagrangian under the symmetry transformation in question. This 1s quite different
from the derivation in Section 3.3 of the field equations, where one imposes the
condition of 65 = 0, with this condition constraining the classical field to obey
the classical field equation. It 18 no coincidence that the symmetry transformation
and field equation both end up with 6§ = 0, since 1t can be shown that the field
equations in fact already contain the symmetries of the Lagrangian [Peskin and
Schroeder (1995)]. For an infinitesimal transformation, using Eqgs. 3.3.5 and 3.5.4,

[ 0L dL
68 = f —590 | . 38;:.@ T 8;;.(£3xﬂ)
vV L d(ﬂ d(}‘u(ﬂ

f_aﬁ Ll P )+/ 3 (505 ) 45 (£8x)
— - L. .,.1: A P A X
L0~ 89,07 L\ Y906 !

— {‘)SV + 5831; =0

Hence, 1n general,
0=0885 =465y + S,y

The equation of motion makes Sy = 0, and the symmetry transformation must
respect

0L
5531;‘ — [ |:BH (5(;? - ) | 3;.;(1553:‘”")} = 0: S}f’lTlITlﬂU’}" (355)
Jv ad;x(ﬁ

Using Gauss’s theorem, the boundary term can be rewritten.” For X/ being the
vector of the surface element

oL J.L
0 =88y = ] d*xd), (590; | ﬁw) _ f s, ( : 5$—|—£3x”)
v d(0u.@) vV (@)
J.L oL
_ [ as, (25150 + 0,0)8x") —[ : HU@—SL"ﬁ] a,f’) (3.5.6)
]H‘V ! (a(dﬂtp) a(d,u(ﬂ)

Note that

0@ + (dvp)ox” = @(X) — @(x) = Ag

and yields the final result

oL oL U
0= 55;;1_; — dEH —— ﬁgﬂ — | — d,;l’,ﬂ — 3513 OX (357)
aV d(d,u(ﬁ) d(dn(ﬂ)

2 ’ . . . . . . .
< U nder a Hymm{:tl‘y [rﬂnﬁfﬂl'lﬂﬂllﬂlh the L':(ILI-EI[I“I'IH of motion are left invariant as I{'}I'I_g s
2] ! » ; e ;
L_} J{: :L_FEJHJH = fl.lL:fjJuJH

The current 7" given above does not change the equations of motion because, using Gauss’s theorem, it
integrates to zero in the action. It, however, does contribute to the boundary term 6S85y. We will ignore the
extra current 7' as it is not required for subsequent discussions.
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Note that the stress tensor in Eq. 3.7.2 1s only defined up to a total divergence. An
equivalent and modified stress tensor that 1s conserved can be defined as follows:

’j':'j'ila' — T,HL' _+_ a}h(K}LHU); K}..H.'l-‘ — __.K,Hlla' :>’ BH ('j;lﬂ.U) — 0 (3'74)

In some cases, such as electrodynamics, the stress tensor has to be modified to make
it symmetric, as required by angular momentum conservation.

3.7.1 Klein—-Gordon field

The Lagrangian for the massive scalar held 1s given by

] |
L= -3"pd,p — —m g’
) Yo,g 5 @
and yields the field equation
L
— 8“@
00,¢
The stress tensor 1S
TJLHJ — 8£ a'l;'@_n,ui.'ﬁ: a,ﬂi@av@_n;_ﬂlﬁ.
d0,¢

3.7.2 Electromagnetic field
The Maxwell Lagrangian is given by

|
L = —‘:I’FHLFJ.H'

Note that
0(0,Ap)

Hence, from Eq. 3.7.2, the stress tensor 1s given by

L
TH = 2 §.A, —§"L
J d(d;;A}t)

and hence
: | .
T'HU L Fju AE}UA}I“ | 1511:& Faﬁ Fﬂ_rfj .-:r TU;J{

The stress tensor needs to be symmetric for the conservation of angular momentum.
Using the result from Eq. 3.7.4, the new stress tensor 1s defined by

LY L ALV
" =7T" +0,K
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with
R'P-,,{w — F}LUAU — _Klu}.v

The sought-for symmetric stress tensor 1s given by

LY A TV ] V il
T = FF + 29 HFPFp = T

3.8 Spontaneous symmetry breaking

The Goldstone model consists of a complex scalar field ¢(t,x) with a nonlinear
Lagrangian given by

Lo= 0,0 0"p — n’9 90 — Ao p]*; A >0 (3.8.1)

The parameter p” in the Lagrangian yields a well-defined and convergent quan-
tum field theory for both positive and negative values.
Representing the complex scalar field by the following two real scalar fields

(1 (x) — i@2(x)]

-

p(x) = %[@1 (X) +ip(0)]: @™ (x) =

yields the following:

.-‘,

i

Lo = %E?wlﬂ“cﬁl + %Hﬁwzﬂ“wz — %ﬁz(qﬂ? +¢;) — ;—rilfﬂ? + 9]
Consider the global U(1) symmetry transformation
P(x) = ¢'(0) = ¢ “p); ¢ (x) = ¢ (x) = “¢* (1)
The phase « 1s constant and hence the transformation is a global one.
The Lagrangian is invariant and hence

L(x) — L(x) = L(x)

The complex field can be represented using polar coordinate as follows:
|

gﬁ] p—
V2

5 ] ]
e = @) = —=rcos(f), ¢ = —rsin(0)

V2 V2

This yields
. ) 1 , 1
V() = we'p + e"el” = Su'r + 2
and hence
Vv s, OV >
— = 71U F A7), — = u +3Ar

ar dr?



3.8 Spontaneous symmetry breaking 47

A

0y,

@1

. . . 2 . . s
Figure 3.1 Potential for = > 0 has a unique minimum.

Consider a system undergoing a second-order phase transition at temperature 7;
in the Landau—Ginzbure—Wilson phenomenological approach, > has the following
dependence on temperature 7

.-U“E X I — Ta::

Hence

Noncondensed phase: u?> >0: T > T,

. 3.8.2
Condensed phase: > <0: T < T. ( )

The noncondensed disordered phase has * > 0 and yields

1% 3%V , .
— = 0 — ro =0, — = (L= = 0 —> Minimum
ar dr-

The potential for the noncondensed phase 1s shown in Figure 3.1.

For the condensed phase > < 0 and yields

aV w?
— =0 =15;=0,——
r 0 2\
Hence
HEV 2 .
5,2 lnp=0 = n- <0 = Maximum
2 Iro=
and
0°V 2 ..
3—2‘@ 2 ==—2p" >0 = Mimmum
r )~ A

In other words, for £? > 0, the minimum of the potential is at |¢| = 0. The potential
V for u° < 0, that is, less than zero, is shown in Figure 3.2; for u° < 0, the minima
of the field lie on the circle defined by
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V(D)

-

s

Figure 3.2 There are multiple minima for = < 0, all of which break global gauge
symmetry.

2
» M
ro = ———

A

Let v > 0 be a constant; in the condensed phase with broken symmetry, to
leading order, the value of the field 1s

I
| = |po| = EU (3.8.3)

To study the theory around the nonzero minima given by |gg|, consider the change
of variables

p(x) = %[U +o(x)+in(x)]; ¢ (x) = x%[u + o) —im(x)]

In terms of the new field variables the potential 1s given by

'1 1 ;

V = E,u.z[(u +0)* + %]+ -ﬁ_LM(U + ut:r)2 + %)
1 ) 7 l 2

= EMZ[HZ + 77+ 2vo + v+ Z}“[(Uz + %)

+ 2o + vt + 2uo” + 2uon?) + 4vie’ +4uvio + U4]

1, | 1 )
- E ‘[n'z — :n:2 + 2uo + UEJ —+ E}LI:UE{TE + tf,:ﬁr2 + 21}“52 -} '21;35]

1 , .
-+ .1_1}”[(52 -+ :r.r“)2 +4vo’ +4dvon’ + U4]

and which yields the final result that

2 2 lz l 2 2\ 2 122
V= (u" + Av°) Uf:r—i—?:fr —I-z(,u- + 3 U)o —|—2ptu

il

| . ,
+ Hk[(ﬁz + 3'1'2)2 + 4vo’ + dvo? + U4]
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Choosing v to be at the minimum of the potential yields

2

e
2
U —f"ﬂ—

A

Since the field 1s being expanded about the minimum of the potential, the choice
for v* eliminates the first term in the potential — which has both the linear term in
o and the quadratic 7% term. The mass of the 7 field is zero because the 77 * term is
zero and this 1s due to the excitations of the field along the valley of the potential,
which are massless; the massive field o results from excitations away from the
valley.

The field 7 1s massless and 1s called the “Goldstone boson™ field. It 1s a result of
the phase transition having long-range correlation functions.

Replacing t* by —Av? in the Lagrangian, we obtain

1 5
L= 0,000 — —(2Av?)o? : massive scalar
2 2
-} EBHJT d"m : massless scalar

A _ .
— AVO (f:rE + 77) — E[Uz + 72)? : interaction

L. 4 l 2.2, vh o
+ —Av" 4+ —v " : constant (3.8.4)
4 2
Expanding the field about the nonzero minimum breaks the global symmetry of
¢ — ¢, which exists in the original Lagrangian, and the vacuum state of the
corresponding quantum field theory is said to have spontaneously broken the global
U(l) symmetry.
The reason the symmetry 1s broken 1s because the held variables are now o, 7.

The transformation o &+ imr — e“(o % i) no longer leaves the potential term V
invariant. This is because v* > 0 is a physically observable quantity and it cannot
depend on the gauge and hence cannot be changed by a gauge transtormation.
Hence, for v* > 0, the Lagrangian £ is no longer U(1) invariant. The sponta-
neous symmetry breaking has given rise to the massless Goldstone boson field .

3.9 Landau-Ginzburg Lagrangian

Scalar electrodynamics consists of a complex scalar field coupled to an Abelian
gauge field. The Landau—Ginzburg Lagrangian provides a phenomenological
description of the superconducting phase of ordinary conductors using scalar
quantum electrodynamics. The complex scalar field ¢ 1s an order parameter that
describes the phase transition. The development of the microscopic Bardeen—
Cooper—Schrieffer (BCS) theory showed that, in the condensed superconducting



50 Classical field theory

phase, the complex field’s “mass term” — given by ¢* ¢ — represents the density of
superconducting Cooper pairs of electrons.

A local (gauge) transformation is one for which the parameter « = «(x) depends
on the spacetime point x. Consider the U(1) local gauge transformation given by

—iee(x)

p(x) > ¢'(x) = e " Pp); 9" (1) = ¢ (x) ="V (x)

which yields
0,9 (x) = 3,0 (x) = e 9,0 — i(d, )¢
Under a U(1) local gauge symmetry, from Eq. 3.8.1 we have
Lo— L= L;+ 0,00"ap*p +id,a¢™d"¢
—WpTe — id,a(3" 9 g — g # Lo

Hence the Goldstone Lagrangian L does not have local gauge symmetry.
A gauge field is introduced to obtain exact local gauge symmetry. Consider the
Landau—Ginzburg Lagrangian

: 4 " 4z 2 ] V
L= (D,p)'D"¢ — 1’0" 0 — A(p*p)* — i F”

where the gauge covariant derivative and gauge field tensor are given by
D, =0,0x)+ieA,(x)¢x); F,, =d,A, —d,A,

Note that

2

Du@l” ~ [8,0° + 9*Ad, 0 + (Ap)*
Local gauge transformations are defined by

P(x) > ¢'(x) = e Vg(x)

P (x) = ¢ (x) = V" ()
A,u (x) — A;; (x) = A;.r, (x) + a;if("f)

Hence
D — 3+ ie(Ay + 0,)1(e7o)
= ¢ 8,0+ ieA e " —ied, fe ' g +ied, fe ' ¢
= e_"f'-’rDHq{?
which yields

(D, )" D" — (D) D'
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Note that the last equation above states that

Hl.F““" :j-,u
Since F"" 1s antisymmetric, one has the identity 9,9, F"" = 0, and hence consis-
tency requires that

A" =0 (3.9.4)
In other words, the gauge field A, can only be coupled to a conserved current,
reflecting the conservation of electric charge. Eq. 3.9.4 shows that the Noether

conserved current, as mentioned earlier, is in fact already contained in the field
equations.

3.9.1 Meissner effect

The Meissner effect reters to the phenomenon where a superconductor expels mag-
netic fields, up to a critical value of the field.

A superconductor 1s 1n thermodynamic equilibrium with no time dependence;
hence all the time derivatives in Landau—Ginzburg Lagrangian are set to zero.

The conserved current, from Eq. 3.9.1, is given by

Ju = U@0u@” — 9 0,9) + 2e@ A,
For the symmetry-breaking superconductor phase, since the Landau—Ginzburg

has the same potential as the Goldstone Lagrangian, the leading order of the field
1s given from Eq. 3.8.3 by

[@o| = —=v

V2

and we obtain

o1
@ @ = |@ol >

Since the fluctuation of the field 1s small over space, we have that ¢d,¢™ — ¢™0,,¢
1s negligible. Hence, for a symmetry-breaking superconductor phase we obtain, to
leading order, the value for the current, which 1s given by

Ju = EUEAH : London equation
The field equation Eq. 3.9.3 now yields
0,F . = 0,(0,A, —0,A,) = ev’A, (3.9.5)
Note that
0, 00F,, =0 = d,A, =0

This 1s a gauge condition on A ,.
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AB 0f # v ] v
g

~ -

Superconductor

& A=0

Figure 3.3 The magnetic field penetrates only up to a length of g inside a
superconductor. The condensed phase is perturbed up to a skin depth of &.

Hence, from Eq. 3.9.5
0,0"A, + ev°A, = 0 : Massive Klein Gordon equation

The gauge hield has become massive since the phase transition of the scalar field
leads to the breaking ot gauge symmetry. We will see in Section 3.10 that this is the
same as the Higgs mechanism.

Consider a superconductor mc:upymg the half plane, with its surface at x = 0.
The magnclm field 1s given by B =V xA. Imposing a constant magnetic field
of strength By in the z-direction, the London equation yields the magnetic field as
given by

(—Ef- + euz)é -0 = B= e_'““"ég; g = 1/(_&'1}2) . Meissner effect

As shown in Figure 3.3, the magnetic field penetrates into the superconductor only
to a depth of g, called the penetration depth; for a low temperature superconductor,
g~10""m

The scalar field ¢ 1s the analog of the o field. For the condensed phase, the mass
of the scalar field, similar to the o field as given in Eq. 3.8.4, has a mass of 2Av?;
hence the field equation for the field ¢ in the condensed phase — the analog of
Eq. 3.9.2 — yields

(+07 — 2207 |g| + O(pA,) =0

Using the boundary condition that for ¢ in the condensed phase, we have

Iim |¢| = —v

X—0C \/5
the field equation yields

o (x)| = %U(l —e %), & =1/2Aa07%)



54 Classical field theory

Hence, the condensed phase 1s broken near the boundary of the superconductor, and
the length is given by & = 1/(2Av?). The behavior of the gauge and scalar field for
the condensed phase 1s shown in Figure 3.3.

In particle physics, for spontaneously broken gauge theories, the mass of the
gauge held A, 1s equal to the inverse of the penetration depth g and the mass of the
Higgs boson 1s equal to the inverse of the correlation length &.

3.10 Higgs mechanism

The interplay between local gauge invariance and spontaneous breaking of symme-
try is the basis of the Higgs mechanism. A direct way of seeing this interplay 1s
to choose the so-called unitary gauge. Consider polar coordinates for the complex
scalar field given by
| 1
¢(0) = —=r(e

Choose a specific unitary gauge that is determined by the 6 field and given by’

i91{x)

A, —> A, — 0,0

The gauge-covariant derivative term then yields

| e
D, — ﬁ|aﬁ+fe(A,,t(x)—a,iﬁ(x))]{r(x)e”””}

— \% { 9, 7(x) + ieA,, (x)r(x) ]

In other words, the gauge transformation completely removes one degree of
freedom and makes the complex field ¢(x) into a real field r(x). The choice of
gauge produces no change in F,,,, and hence we obtain

1 1 l l
L(r,A,) = =|0,r(x) + ieA,, (J.:).'*"(;f)]2 — —Ju,zrz(x) — —art(x) — —F F™
2 2 4 4
For the spontaneously broken phase, u* = —Av?, with v # 0. Let

r(x) = v+ o(x)

3 The unitary gauge is a singular limit of the so-called Rz gauge; 1t can be shown [Peskin and Schroeder (1995),
Eq. 21.29] that in the unitary gauge, the gauge field A, 1s massless for the case of ;12 > 0. The Rg gauge is
defined by the gauge-fixing term

| [0A,, D
— Eevrsin(d)

VE | dxy

The unitary gauge is given by the limit of & — oc.
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The scalar field o 1s the Higgs boson and yields

1 S I, .
L(rAp) = 510,00 + SeA, ()W + 0 ()" = S (v + 0 (1)’

] , 1 |
—EMU+Mﬁf—EﬂJW“

This yields the following Lagrangian, using the result obtained earlier for the
Goldstone potential:

I - I W2 2 l Ly I 2.2 1 3
Ly = Eaﬂga#g - 5(2,&1} Yoo — -i_lF’r’wP + EE v°AA" — Avo

— ;Lm*" + %EEAHAH (Quo + o”)
The massless Goldstone field 77 in Eq. 3.8.4 has been removed using the gauge sym-
metry of the Lagrangian. Instead of the Goldstone field, one now has the gauge field
acquiring a mass equal to e*v~; the extra degree of freedom for the massive gauge
field mass arises by the gauge field absorbing the Goldstone degree of freedom.
On quantizing the fields, symmetry breaking 1s the result of the properties of the
quantum vacuum |£2) of the system. The broken phase 1s characterized by

(214, [€2) = 0; (R p|R2) = v
In the path integral formalism, this condition yields

where E[O] 1s the expectation value of the field variables O.
The symmetry breaking by the Higgs scalar field ¢y (x) is given by

v = Elon(x)] = (Qdn(x)|Q) = 246 GeV/c?

The nonzero value of v 1s the basis for all the fundamental particles in nature having
a nonzero mass |Baaquie and Willeboordse (2015)].

In summary, the Higgs transition and mechanism describe the following
phenomenon.

« Betore the phase transition, the system has local gauge invariance and consists
of a complex scalar plus massless gauge boson. The number of the degrees of
freedom before the phase transition 1s 4 = 2 + 2.

« After the system undergoes a phase transition, the condensed phase breaks local
gauge 1nvariance and consists of a real scalar and a massive gauge boson. After
the phase transition, the number of degrees of freedom 1s also 4 = 1 + 3.
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The process of a massless gauge field acquiring a mass through a phase transition
1s called the Higgs mechanism. The magic of gauge invariance and symmetry
breaking combine to give a new result. In the absence of the gauge field, a phase
transition leads to the appearance of the massless Goldstone boson, but when cou-
pled to the gauge field, the Goldstone boson 1s completely removed trom the theory,
and, instead, the gauge field becomes massive and the complex massive charged
scalar field becomes a massive real scalar field with zero charge.

3.11 Lorentz group

In the previous sections, both scalar and vector fields have been discussed, and in
Section 3.7 on the Noether current, the stress tensor was analyzed. Scalar, vector
and tensor fields are classified according to their transtormation under the Lorentz
group, which 1s a non-compact Lie group that encodes the symmetries of relativistic
spacetime. Another field of fundamental importance 1s the spinor field, of which the
Dirac field 1s the leading exemplar.

The scalar, vector and spinor fields form the backbone of the study of quantum
fields. Since all these fields are characterized by their properties under Lorentz
transformations, the main features of the Lorentz group are summarized. It 1s further
shown how the various fields are classitied using the Lorentz group.

Consider a spacetime point 7, x; the relativistic invariant distance of this point
from the origin using the metric given in Noteworthy 3.1 and setting ¢ = 1, 1s given
by

2 =) [T TR Y
m—x = Ay =0 Ay

The Lorentz group in four spacetime dimensions is given by all the transformations
L,,, (Iin matrix notation) that preserve the invariant distance.

X, =L,wn"x, = x=1Lnx
Using n = n’ and n* = I yields the condition that determines L,,,:
X =xn(L'nLynx = xnx = L'nL =1 (3.11.1)

L. 1s a real four-dimensional matrix; Lorentz transformations consist of rotations
in three-dimensional space, which require three (compact) parameters, and boosts
in three space directions, which require another three (noncompact) parameters.
The parameter space of the Lorentz group 1s a six-dimensional space; the parameter
space 1s not compact, since the boosts take values over an infinite range. Hence, the
Lorentz group 1s a noncompact group |'Tung (2003)].

The six parameters of the Lorentz group can be organized into a three-
dimensional complex vector — consisting of three complex parameters as its
components — and 1s given by
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Figure 3.4 Lorentz transformations for scalar and vector fields.
functions are relativistically invariant. Under a Lorentz transformation, a scalar
[Lagrangian density yields
LX) = L(x); d*X =detL d*x = d*x
Hence the action 1s relativistically invariant since
S = f d*Y' L' (x') = det L f d*xL(x) = S: invariant
For a vector field,

0/(@)

| =

I
5,0

-

=

—

Hence from Eq. 3.12.1, a vector field A, (x) has the following transformation:
AL (x') = L;A.J (x)

The transtformation of a vector field 1s shown in Figure 3.4. The transtformed vector
field at the transformed point 1s rotated 1n relation to the original field at the original
field at the original point. Note the additional feature tor the vector field. Since 1t
transforms as the tensor product of two representations of the Lorentz group, it 18
reducible. In particular, using the properties of su(2) Lie algebra, we have

1 l |
(50) . (?0) _ (5 8 5,0) ~ (1,0) @ (0,0)

)(&) = Mo (x) ® 1 (3.12.2)

and hence

10

The vector representation of the Lorentz group 1s equivalent to the direct sum of a
spin-one representation (1, 0) and spin-zero representation of the rotation group in
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three space dimensions. The result given in Eq. 3.12.2 shows that a four-component
Lorentz vector field carries a spin-one and spin-zero representation of the Lorentz
group. Under rotations in three space dimensions, the time component of the vector
field Ay does not change, and hence we 1dentify it as being the spin-zero component
of the Lorentz four vector.

The only vector fields that are renormalizable are gauge fields. For these fields,
the scalar particle 1s removed by choosing the temporal gauge of Ay = 0. The spin-
one gauge particle has only two components of the three possible states of spin-one
representation due to the gauge invariance of the state space. From the point of
view of the Lorentz group, one can now see these features 1n the derivation of the
Hamiltoninan and gauge-invariant state space in Sections 9.2 and 9.3.

3.12.2 Spinor fields®

Parity, realized by operator P, 1s defined by the inversion of only the space dimen-
sions, with the time direction being left unchanged, and is given by

P(t,X) — (1, —X)

The Dirac field, studied in detail in Chapter 8, 1s a four-component spinor field.
It can be shown [Das (2008)] that the parity operator P that realizes the effect of
space nversion for the Dirac field 1s given by

v(t,—x) =PyYt,x) =nyt.x); nl=1 = P =y

where y 1s a Dirac gamma matrix defined in Eq. 3.12.5. Under the parity transtor-
mation, the representations ji,j» are interchanged and one has

PM j j»(@)P = yo M jn) (@) o = M, ()

Hence, for obtaining a system that 1s invariant under the parity transformation, one
has to use the representation given by M, () and with the spinors having the
dimension (2j+1)*. The Dirac field, which is invariant under parity transformations,
transforms under the M1 1, () representation of the Lorentz group.

The chiral representations of the Lorentz group are given by M (), with
the chiral field being (27 4+ 1)-dimensional. Spacetime spinor fields that violate
the symmetry of parity, such as the massless neutrino, are two-dimensional and
transform under the M1 () representation of the Lorentz group.

The tfour-dimensional representation of the Lorentz group 1s given by

S:JM
(

]
o] et

1
;

)(5}) = explic - 0} ® expfia™ - o'}

> This section should be read after Chapter 8.
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S yields a reducible representation, since each component of the tensor product acts
independently on the underlying vector space. Hence, in block diagonal represen-
tation using the 2 x 2 block notation, & 1s given by
. expfia - o} 0
S = — =
0 exp{ia™ - o}

The Dirac spinor field, in 2 x 2 block notation, 1s given by

Under a Lorentz transformation — ignoring the transformation of the spacetime
points as these do not enter the discussion — the Dirac spinor transforms, as per

Eq. 3.12.1, as follows:

/ exp{l& | 5_} 0 wu
= SV = Ve 3.12.3
v=ov [ 0 explia*-3) } { Vi } 5129
and Hermitian conjugation yields
e ogtet ot g exp{—ia* - o} 0

In the representation that has been chosen for the Lorentz transformation, it can be
shown that y is given by [Tung (2003)]°

0O 1 .
]Vﬂ:[ﬂ U] = S"wS=w (3.12.5)

where the last result follows from Eqgs. 3.12.3 and 3.12.4.
The Dirac Lagrangian given in Eq. 8.3.1 1s relativistically invariant, and a sketch
of the proof 1s the following. Consider the mass term given by

_ P 0O 1 W
T i r i
Hence, from Eq. 3.12.5, Lorentz transformation of the mass term yields

U — U = 'S Sy = ¥ : invariant

Using an explicit representation of the gamma matrices y,, that follows from the
representation of the Lorentz group that we are using, it can be shown that [Tung
(2003)]

S% Y S = L; Vv

® There are infinitely many equivalent representations of the Dirac matrices and the one chosen here for 4 18 not
the same as that given in Eq. 8.2.3, which is more convenient for analyzing the Hamiltonian of the Dirac field.
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from which 1t follows that

Vv = LUy

Hence, ¥y, ¢ transforms as the L(a) vector representation of the Lorentz group —
and hence 1s a Lorentz four vector; this 1s sufficient to show that the Dirac
LLagrangian is a scalar and the Dirac action is Lorentz invariant.

[t can be shown that the massless Dirac equation splits into two separate equa-
tions, one for i, and the other for 4; the two-component chiral spinors are called
Weyl spinors and transform under the M , (@) representation of the Lorentz
group [Tung (2003)]. The massless equation obeyed by the Weyl spinors can be
shown to be Lorentz invariant. The massless neutrino in particle physics 1s taken to
be a Weyl spinor and provides the mechanism for parity violation in nature.

Tensor products of the representations of the Lorentz group M ;; jo) () give rise
to tensor fields and spinor fields with higher spins.

The quantum fields that appear in phase transitions and mathematical finance are
not relativistic quantum fields. In particular, the Landau—Ginzburg—Wilson action,
which describes phase transitions and 1s discussed 1n Section 17.7, 1s defined
iIn d = 3 space dimensions and has no well-defined properties under Lorentz
transformations.

3.13 Summary

The notion of classical field sets the stage for the concept of the quantum field. Both
quantum and stochastic fields are rooted in the formalism of classical fields, with
the 1dea ot Lagrangian, action and Hamiltonian running through all the derivations.
Conservation laws and symmetries are features of all quantum fields, and these
are 1nitially introduced in the context of classical field theory. Classical concepts of
symmetry carry over to quantum fields. Conserved currents and charges are key fea-
tures of quantum fields, especially in defining the state space of the quantum field.

Important 1deas such as symmetry breaking occur in classical physics, and
the Meisner effect and Higgs mechanism were discussed to introduce nonlinear
Lagrangians that later will be seen to be the starting point of the analysis of various
quantum fields.

A brief and condensed discussion of the Lorentz group was given to let readers
have a glimpse of the vast application of Lie groups to quantum fields. The Lorentz
group provides a classification of spacetime quantum fields determined by how
they transform under Lorentz transformations. The scalar, spinor and vector fields
are defined by their transformation properties. The more general topic of applying
Lie groups to determine the dynamics of quantum fields was not discussed, but is
something that the readers should be aware of.
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Acceleration action

4.1 Action and Hamiltonian

The acceleration Hamiltonian has wide application in many subjects [Baaquie
(2014) and references cited therein| and in particular will play an important role in
later discussions on option theory, commodities and interest rates. In fact, in all the
applications of models based on quantum mathematics to economics and finance,
the acceleration Hamiltonian and Lagrangian always seem to be required.

Fundamentally, it 1s the acceleration term 1n the action — absent in physics — that
seems to be essential in describing the dynamics of phenomena in economics and
finance, and this also makes behavior of the models of the social phenomena of
economics and finance vastly different from natural phenomena that are studied in
physics.

The acceleration Hamiltonian depends on both position x and velocity
v = —dx/dt, and 1s given by [Baaquie (2014)]

H=— 1 ¥ — vi + bx* + l{.-f (4.1.1)
2a 0v? 0x 2
The Hamiltonian H has a state space spanned by the completeness equation
given by!
dx
I = fd.rdex, vi{x, vl v = - (4.1.2)

The Hamiltonian given in Eq. 4.1.1 yields the following “acceleration” Lagrangian,
derived in Baaquie (2014) and given by

|
L = —E(a}fz + 2bx* + (?):2) (4.1.3)
t d*x dx
S = dtL: x= —: x =
fg dr? dt

! The minus sign in defining v 1s due to the Hamiltonian defined for Euclidean time [Baaquie (2014)].
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The pricing kernels for the oscillators are given by

(e,f’e’”fs)—/ . exp{ yojo: [(s’2+s)wah(m)2s$]}

27 sinh(w> 1) 2 sinh(w> 1)

w w ,
(??"Iff_f”"ln)=\/ v )EKD{— Ra l(??“ruz)mﬂh(wlr)—21?"HJ}

27 sinh(w 2sih(w; 1)
(4.2.8)
Summarizing the results yields
K =N f d&'dn'dédn exp{G(xpvy + &) — H(xrn' + &'vy))
x exp{—G(x;v; + &n) + H(xin + Evy))
ywé 12
X exp [(£” + &) cosh(w,T) — 2& &1 |
2 51nh(mgr)
" E
X eXp § — _V | (0 + nz) cosh(wt) — 2n'n|}
2 sinh(w; 1)
NGl = fd_’q"'dr}’d%‘dn exp {—%XTMX +J'X (4.2.9)
where the normalization constant 1s given by
l . ywlw )40,
N = — YW \/UJIZ — &J% . ) 172 - I (4210)
27 2 sinh(w>t)\ 27 sinh(w 1)
The symmetric matrix 1s given by
cujmg cosh(en1) 2 mzwg
] sinh(w- 1) W - sinh](mgt} 0
2 w1 coshlw) ) ¢
M — — W ;inh{mlrlﬁ 0 o sinhf;ul*r} (4 21 1)
m?m;r_ 0 LU%EUT‘Q cosh(w-1) o) T
~ sinh(wa1) sinh(eH 1) ‘-'3'-';]( |
(1) 2 (e COshlen T
0 o ﬂinh{rﬁl-;qr} W :;inh{mlr]}

and (T stands tor transpose)

' = yorJo! — odux -y, —x); X' =EnE ) @2.12)

Performing the Gaussian integrations in Eq. 4.2.9 using the result given in
Eq. 2.11.3 yields

/ ! 4 T T 4E2 l Tag—1
dEdE dndy’ exp (—EX MX +J X) = e O TR,
]/ c
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The transition amplitude 1s hence given by
i 4N . l
IC = CXp G(If‘l{f — Xﬂ*’f) + —J M J (42]3)
JytdetM 2y

To simplity the notation let

§1 = sinh(w;, 1), 50 = sinh(w»1); ¢; = cosh(w,1), ¢» = cosh(w-T).

Then, from Eq. 4.2.11

o g
W= C? o) w7 wH
ls.-'z —w] = ;2 0
Y. Wiy __ Wy
0F . 0 .
M = : : (4.2.14)
- ml k] 0 {f.Jl (T {1}2
52 57 |
) 2 (]
0 w; ——

5
and yields the following det M:

6
W

detM = — ((m% + m%) $150 — 2wywH (1 — 1))
5182

The normalization, using Eq. 4.2.10, 1s given by
4*N I (0] — w3)

A/ W1

,s"'br(l') — 1 _ 2
\/}/ det M T \/(w% + m%) 5182 — 2wian(cicr — 1)

(4.2.15)

The inverse matrix M~!, from Eq. 4.2.14, yields the final expression for the transi-
tion amplitude:

K = N (1) exp{S.} (4.2.16)
where 1t 1s shown 1n Eq. 4.4.9 that S, 1s the classical action. Using the notation
Xi = X1, Xf = X3, Vi = X2, Vf = X4

one can write the classical action as
l 4
S = -5 Z; M ;x;x; (4.2.17)
1=

Note that S < 0 since the determinant det M is negative for all three branches. The
coefficients, using the symmetry of the coefficients, are given by Kleinert (1986):
My = F[ﬂulwg (mlz — m%) (w185102 — mgﬁ;gcl)]
‘) °) - .
M3y = F[Qm,wz ((w] + @3) (c1c2 — 1) = 2w 1w,5152) ]; My = —M3y

M4

—21 [m,mz (m% — m%) (1 — cg)]; Mrz = —M 4
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M _ l_'l 2 2 . . . g
7y = W] — w5 ) (W1C152 — WrC281)

M3 = =2TI [m]mg (m? o m%) (w151 — iﬂz*’z)]

[d [

M-y = —ZF[ (m% — W ) (w1857 — {Ugﬁ‘])]

|

(mf + m%) 51852 — 2wimr(cicr — 1)

[' =

The final result is given by

1 | 1 ,,
Se == M (xF +x7) — M2 (v + ;)

— Mia(xivy — xpvi) — M (v — Xpvp) — Muisxixp — Mogvivy (4.2.18)

The expression for the classical action given in Eq. 4.2.18 1s real valued for all three
branches, and as mentioned earlier, S. < 0 for all three branches.

Although the Hamiltonian derivation of the transition amplitude 1s only valid for
the real branch, one can analytically continue the results given for M;; to the critical

and complex branch as well. The path integral derivation, given in Section 4.4, 1s
valid for all three branches and validates the result found by analytic continuation
of the real branch.

4.2.1 Limiting case: w; = w = w»: real

The critical branch has w; = w»; it has been shown in Bender and Mannheim
(2008) and Baaquie (2014) that the critical Hamiltonian 1s given by a direct sum of
Jordan blocks. The Lagrangian, tfrom Eq. 4.1.6, 1s given by
1 ). ,
L= (f + 2023 + m4.172) (4.2.19)

Consider
) =w—+€; @ =w—¢€ and s = sinh(wt); ¢ = cosh(wT)

The critical branch 1s given by the limit of ¢ — 0 and yields, from Eq. 4.2.18, the
following classical action [Kleinert (1986)]:

m 2 2 " .

— o (57 + @’77) (7 — vixy) + 205y — viy)

+ w’(s¢ + wt) (}cf 4 xf) —2w’(s + cmr)ufx{-] (4.2.20)
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and the transition amplitude is given by

;
(1) .
K=— e
V2 — w?r?
It 1s an intractable problem to obtain the result given in Eq. 4.2.20 from the
Jordan block-diagonal Hamiltonian. In contrast, the path integral derivation yields

Eq. 4.2.17 for all three branches; hence Eq. 4.2.20 provides the transition amplitude

for the critical branch by a straightforward limit of the real (or complex) branch —
showing the power of the path integral.

4.2.2 Limiting case: w =0

One can further take the limit of @ — 0. From Eq. 4.2.19, the Lagrangian is
given by

I,
L=—zi (4.2.21)

From Eq. 4.2.20 the transition amplitude 1s given by

VLS ] , 6 T 2
e Se= =y =) = (.x,;f- —xi = oy uf-)) (4.2.22)

K =

Recall from Eq. 4.1.5 that t stands for 8 = a~'/?1; hence, the classical action in
terms of remaining time 7 1s given by

1/3 6 2
S, = —Z—T(L?' — 1:1-)? _ T_f (-Ij' — X; — %fl{f + V;‘))

The result above 1s the generalization of the Black—Scholes pricing kernel given in
Eq. 3.7.6.

4.3 Limiting case: T = ()

The transition amplitude 1s given by
K = (xp,vele™ ™ |x;, vi)
In the limit of T — 0, it must yield the following Dirac delta-function inner product:

lirrg}](f = (xp, Vrlxi, vi) = 0(x; — xp)d (v — vp) (4.3.1)
T—>

The prooft of the normalization given in Eq. 4.3.1 1s not straightforward because the
X;, v; (and xr, vy) variables have cross-terms and hence the limit of T — 0 for the

two variables has to be taken simultaneously.
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The proof of the normalization given in Eq. 4.3.1 can be shown indirectly in the
following manner. Note that in general, for f(¢) being the Fourier transform of f(z),

f2) = f dxS (x — 2)f (x) = f dt [ f -caau—s)af-“‘f}f(o

_ f de Ef:'gji(é) (4.3.2)
Let a representation of the delta function be given by @ (x, z) such that

Im ®(x,z) =5(x — 2)
T—>()
Then from Eq. 4.3.2 1t 1s sufficient to show that

f dx lim @ (x, z)e™* = ¢
T—()

and the general result follows from the properties ot the Fourier transform. For the

transition amplitude, 1t can be shown by a long and tedious calculation that

T—=()

lim | dxrdvi kK (xp, visx;, vi 7)™ T = fitiw 4.3.3
revy 1oV

which in turn yields the required limit given in Eq. 4.3.1.

The general result given in Eq. 4.3.3 1s obtained for the case of w = 0 given in
Eq. 4.2.22:

dxpdvy e
7 T2 TT

/3

2

iz Hiwve

. . . _l ¥ — .'-"—i": y = 1 o LA
{{F:(Jrl—%lf:) f d-x_f'dl’}'ﬁ' sy (Vp—vi) 3 Ef;.(%r_,r—l—,xj)—l—my,r

Performing the Gaussian integrations yields the expected

\/_ . ,f2:r.r1*
lim dlfdlf ¢ {E’! XpHiwve [T EE Xitiwvg .{:': XiHIwy;
TT?

T—1) jTI"

Hence, for the special case of @ = 0, Eq. 4.3.1 is given by

3
lim C = lim \/_

7— () rﬁ{]ﬂ"fz

e = o(x; — xp)o(vi — vr)

4.4 Transition amplitude: Path integral derivation

The path integral formulation 1s reviewed and some equations are repeated for ease
of reading. The transition amplitude can be equal to the pricing kernel, as in the
case of Black—Scholes given in Eq. 5.4.3. Or the transition amplitude can be used
for obtaining the pricing kernel as given in Eq. 5.9.3, which 1s the case of the
acceleration Hamiltonian.
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05l ()] 0
0x(1)

From the Euler—Lagrangian equation given by Eq. 4.4.11, the classical solution

(4.4.11)

x.(1) satisfies the equation
a X (1) — 2bx.(t) + cx.(t) =0 (4.4.12)

According to the market data, the solution for the index is in the complex branch of
Eq. 4.4.12; hence

b> —ac < 0 (4.4.13)
Define y as the four conjugate roots of the equation
ay' —2by* +¢ =0 (4.4.14)
The four complex solutions are as

y=2r+£ig (4.4.15)

where

b+ ivac — b2 b+ ivac — b’
r = Re / +ivac . ¢ =1Im \/ +ivac (4.4.16)

a ad

Then the relationship from (a, b, ¢) to (r, ) 1s as
b=+a(r" —¢%); c=a(* +¢*)* (4.4.17)
Using the notation of r and ¢, the general solution of x.(7) 1s given by
x.(t) =€ (arsin¢t+arcost) +e "(azsinlt+ascost)  (4.4.18)

where ay, ..., a4 are constants fixed by the boundary conditions and hence depend
onx,v,x,Vv.

The action § yields
5 = Slx. + €]

——l/Tdr(aﬁ + &) 4 2b(% + € +))° + c(xe + €)°

— - A C J') + L(.Jt.{_. + E) )

2 Jo

= Slx.] + Sle] + R (4.4.19)

where S, 1s the classical action

L [T
Slx] = — / dr (a2 +2b(%, + ) + ox?) (4.4.20)
0

| ,,,
Sle] = —5/ d1 (aef + 2bé” + ce” + 45:{,56)
0
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The residual term R 1s
R = — f dt (ax.€ + 2bx.€ + cx.€)
0
= (—ax.€ — 2bx.€ + ',f{_.E:)”‘; — [ dt e(a x — 2bx, + cx,) (4.4.21)
0

From Eqgs. 4.4.12 and 4.4.6,
R=0 (4.4.22)

Integrating by parts the classical action §. in Eq. 4.4.20 and applying the
equations of motion, the action can be expressed in terms of only the boundary
conditions:

| . : . .
S, = — > [ dt {L‘l(—{i X o Xe + ax X, + 2bx.x. + 4bjx. + bj”)
0

_I_ x{(ﬂ_’{‘{ — Zb}:ﬂi _|_ C*}:t_”)l

— — 5( — adX  Xq -+ UXe X -+ bef'xc‘ + 4bj1f T bjz)

T

0

4
1
- Y " xiMyyx; — 2bjx; + 2bjxs — bj’t (4.4.23)
[.J=I

where x, v, X', V' are rewritten as

f

X =xV=x, x=x3:v=2x4

To find out coetticient M;;, assume j = 0 and obtain

4
l
S.: — —5 IJZ_I XIM;_;I_; (4424)

From Eq. 4.4.23, the derivatives of S, yield M;; given by
3%S

H.x; EJ"X_,:

M = (4.4.25)

A symmetry of the pricing kernel, for j = 0, 1s the following [Baaquie (2014)]:
Kix,vix'V) = K&, —v:x, —v)
and hence

My, = My3; My = Myy; Mo = —Miy, My = —Mos (4.4.20)
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The transition amplitude, from Eq. 4.4.9 is, consequently, given by

K, vi XV, 1) = N (7)eSe@vayin) (4.4.27)

e v __l 12 2 _l (2 2y !
See,vix v, 1) = 2M11(,x + x°) zMgg(v + v7) — M3x'x

—Moav'v +Mipa(xv — X'V + Mia(xv' — x'v) — ijf + 2bjx — bjzr

The results for M;; are given below 1n terms of the parametrization chosen 1n
Eq. 4.4.17 — as 1t 1s more suitable for the classical solution:

M, = A{Zmrg‘ (rz Z,‘Z) ((—1 54”)_2,' 2{»:2’Tr5in[2r§]) ]

M, = —AI —2a (14" )P+ b (¢ + eV " — 277 (r¥ + 7))

+26¥7 % (b + 2ag*) cos[2t¢] |
Mis = —Aldae™rc (7 + ¢ ?) (=1 +¢¥7) ¢ coslre] + (1 +¢*7) rsinfc]) |
M= A (1467 ¢ (4 5 it

M-:-,z _ —A*-QEH'@' (C’ — E:irrg -+ 26’2”?51“[23;]) ]

Moy = —Aldae™ (<1 + ) rg (7 + ) sinfze ]|

S
||

A{élue”rg (—(—1+ e”’") ¢ cos[t¢] + (1+ fz”) rsin[t¢]) I

|

A =
2+ e*tg? — 2027 (r? 4 ¢2) + 2e27r? cos[21¢ ]

Recall from Eq. 4.1.7, the w,, w, parameters are given by

2 b 2

2 . 2 2

— — ca'l’
all-

To write out the normalization N (1), recall from Eq. 4.1 that the Lagrangian has
the following three branches. The complex branch is given by b < /ac and yields

@

W] = ¢’ W, W) = e Pw: ' = cﬂm; cos(p) =

b
Jac
For B = a~'/?t, the normalization is given by Eq. 4.2.15:

N — Jm,cug(w%—wg)
ZH\/(mf — m%) sinh(Bw;) sinh(Bw,) — Zcu,fug(cush(ﬁml} cosh(Bw,) — l)
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4.5 Summary

The acceleration Lagrangian is an important exemplar in its own right and has a
vast range of applications. In fact, in Baaquie (2014) three chapters are devoted
to studying the intricacies and complexities of this seemingly simple model. The
crux of all the new properties of the model comes from the acceleration term; for
example, this term leads to a non-Hermitian Hamiltonian and hence is ruled out as
an allowed quantum mechanical system.

The importance of the Lagrangian, and of the path integral formulation, 1s that 1t
1s valid for all three branches, whereas the Hamiltonian works well only for the real
branch. For the critical and complex branches, the Hamiltonian has to be carefully
continued and requires a number of new i1deas; in particular, for the critical branch,
the Hamiltonian maps into the direct sum of infinitely many Jordan blocks [Baaquie
(2014)].

The acceleration action 1s a key model tor all applications of quantum mathe-
matics to economics and finance. There are no 1ssues with the Hamiltonian being
non-Hermitian since the interpretation 1s not based on probability theory. The
results given in this chapter are valid for all three branches of the theory and this
plays a crucial role in applying the acceleration action to asset pricing, option
pricing and interest rate models.

[t is worth noting that the kinetic term in physics, given by m(dx/dt)? for a degree
of freedom x, does not change from model to model; what changes 1s the nature of
the degree of freedom as well as the potential term. The kinetic term for all the
applications of quantum mathematics that are discussed in this book 1s given by
L(dx*/dt*)* + E(dx,/dr)z. This kinetic term makes the applications in economics
and finance distinct from quantum physics, and yields results that are refreshingly
different from what one obtains in quantum physics.
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Option theory*

5.1 Introduction

It 1s shown how quantum mechanics provides a natural framework for understand-
ing the theory of option pricing. One of the four famous papers that Einstein (1905)
wrote was “On the Movement of Small Particles Suspended 1n a Stationary Liquid
Demanded by the Molecular-Kinetic Theory of Heat”. This phenomenon, called
Brownian motion, is explained by the theory of random walk, also called a stochas-
tic process. Interestingly enough, the first formalization of random walk was not in
Einstein’s paper, but instead in the study of finance.

The famous mathematician Henri Poincare assigned one of his graduate students,
Louis Bachelier (1900) to study the evolution of a financial security, such as a stock
of a company or a bond issued by a government. To price any financial instrument
one needs to model the evolution of a stock, and Bachelier assumed that the stock
price evolves randomly following a normal distribution. This is very close to the
modern approach pioneered by Black and Scholes (1973); except in the modern
approach 1t 1s the logarithm of the stock price, and not the stock price itself, that is
assumed to be normally distributed.

Ideas from theoretical physics have found increasing applications 1n finance
|Bouchaud and Potters (2003); Mantegna and Stanley (1999); Baaquie (2004,
2010)]. The discussion 1n this chapter 1s largely based on Baaquie (2008), with
the focus on deriving the main results of option theory using the mathematics of
quantum mechanics.

5.2 Options on a security

Financial derivatives, or derivatives for short, are important forms of financial
instruments that are traded 1n the financial markets. As 1ts name 1mplies, derivatives
are derived from other underlying financial instruments: the cash flows of a

77
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5.4 Quantum mechanical pricing of options

The central problem in option pricing 1s the following: given the payoff function
at some future time 7, what 1s the price of the option at an earlier time 1 < T,
namely C(z,S5(7))? The standard approach tor addressing option pricing in mathe-
matical finance is based on stochastic calculus [Jarrow and Turnbull (2000)]. An
independent derivation for the price of the option i1s given based on the formalism
of quantum mechanics [Baaquie (2008)].

A stock of a company 1s never negative since the owner of a stock has none
of the company’s habilities, and a right to dividends and pro rata ownership of a
company's assets. Hence

S=e¢">0 —o0<x <40

The stock price, at each instant, 1s considered to have a random value, making
it mathematically identical to a quantum particle. The real variable x, similar to
a quantum system, can consequently be considered to be a degree of freedom
describing the behavior of the stock price.

Financial instruments are functions of x and form a state space, which 1s always
taken to be an infinite-dimensional linear vector space. The state space is not a nor-
malizable Hilbert space since fundamental financial instruments such as the stock
price S(x) are not normalizable. The state space consists of all possible functions of
the degree of freedom x.

Consider a linear vector space V with elements given by |v/); the dual space Vp
consists of all mappings of elements V into the complex numbers. Elements of the
dual vector space are denoted by (x|; let |1) be an element of V. The mapping to
the complex numbers — called the inner product — 1s denoted by (x|y): complex
number.

The completeness equation for the degree of treedom, from Eq. 2.4.12, 1s
given by

o0
f dx|x) (x| = II: Completeness equation
— 00

I 1s the identity operator on (function) state space, |x) 1s a coordinate basis for the
state space and (x| 1s the basis of the dual state space. The mnner product can be
realized by the completeness equation by the following:

(X)) = (x| [f_ ﬂfi’fl-x‘)ﬁl] V) 2/_ dxx ™ ()Y ()2 X7 (x) = (x |x); ¥ (x) = (x|y)

Option pricing in the framework of quantum mechanics 1s based on the following
assumptions.



