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Preface

To understand quantum mechanics one ought to see how this remarkable
world picture was discovered, and one must work through the details of
some nontrivial applications that show how the theory works. Most of us
also require a good deal of practice working physically interesting prob-
lems. My approach in this book, that grew out of a heavy but I hope
not impossibly hard one-year course, is to introduce the full details of
the theory as needed, so one can see specific and interesting applica-
tions, and to make room for this by dropping things like the analysis of
special functions that are not important for the chosen applications. My
hope is that this book will find a niche between introductory surveys,
that can give some idea of what is going on but may leave the reader
with the feeling that there are mysterious corners to the theory, and the
standard treatises, which contain more than most of us want to know
about quantum mechanics.

My arrangement of material roughly follows standard precedents,
but with some exceptions that should be explained. The first chapter
presents the origins of quantum mechanics in the usual pseudohistor-
ical style of physics. It is important to convince the reader that the
theory was not derived from measurements, nor discovered by a single
theoretical stroke, but instead grew by a complicated interplay of ex-
perimental hints, theoretical insights, and good luck, intermingled with
many wrong turns. An adequate study of this development would take a
whole course; the survey presented here is misleading because it ignores
the wrong turns, and incorrect because it doesn’t even present the main
advances in the right order, but there is not time to do better. Instead,
I attempt to give some flavor of what went on by presenting a set of
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examples of physics that are well worth knowing independent of their
historical interest. Here, and throughout the book, sections marked by
an asterisk contain material I do not always include in the course for
lack of time. For example, I like the treatment of phonons in section 12¢
as an introduction to the eigenvalue problem, but usually conclude that
it takes more time than I can afford.

I hope the introductory chapter shows how people could have hit
on wave mechanics, if not how it really happened. Chapter 2 develops
the wave mechanics formalism. The emphasis here is on symmetries and
conservation laws: parity, linear and angular momentum, and the elec-
tromagnetic interaction. The only specific physical application is the
completion of the study of an isolated hydrogen atom, with some dis-
cussion of the motion of a particle in a magnetic field. This is a little
dry, but of course it is needed if one is to do grown-up quantum me-
chanics, and I think the symmetry methods are clarified by presenting
the standard cases all in the same chapter.

The formal development could end here, but I find it more satisfy-
ing, and not a lot more time consuming, to redevelop the theory in the
abstract Dirac bracket formalism. It is fairly easy, and I think fascinat-
ing, to see how wave mechanics follows from the position representation
and the canonical commutation relations. The main new application in
this chapter is the treatment of spin.

At this point, which is about midway in the course, one is ready to
practice quantum mechanics by applying it to real physical problems,
but I think it is good to pause and consider measurement theory. Since
this undoubtedly is part of the physics, it is striking to see how little
space is devoted to it in many of the standard books (with notable excep-
tions, including David Bohm’s Quantum Theory, and some more recent
books such as Hans Ohanian’s Principles of Quantum Mechanics). One
reason is easy to see: a physicist can spend a career working on quantum
mechanics without thinking about measurement theory beyond the bare
prescription that can be written down in a few paragraphs. Another
likely reason is that the attempt to decide what the measurement pre-
scription really is telling us about the deeper nature of physical reality
is a slippery business that so far has led to no fully satisfying conclu-
sion. But much the same is true of any open research problem, and a
discussion of open questions in the measurement puzzle may be a useful
antidote to our tendency in physics textbooks to gloss over complexities.
There is considerably more material on measurement theory in chapter 4
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CHAPTER 1

HISTORICAL DEVELOPMENT

The story of how people hit on the highly nonintuitive world picture
of quantum mechanics, in which the physical state of a system is rep-
resented by an element in an abstract linear space and its observable
properties by operators in the space, is fascinating and exceedingly com-
plicated. The theory could not have been deduced from experiment, for
the elements of the linear space are in principle not observable. It is also
true that the theory did not arise from one person’s great insight, as
happened in Einstein’s discovery of general relativity theory. The much
greater change from the classical world picture of Newtonian mechanics
and general relativity to the quantum world picture came in many steps
taken by many people, often against the better judgment of participants.

The goal of this chapter is to show how classical physicists could
have hit on wave mechanics. The strategy is to select topics that still
are (or ought to be) part of the fundamental lore of any modern physicist.
There are three major elements in the story. The first is the experimental
evidence that the energy of an isolated system can only assume special
discrete or quantized values. The second is the idea that the energy
is proportional to the frequency of a wave function associated with the
system. (This is the famous de Broglie relation E = hv, for energy E and
frequency v). The third is the connection between the de Broglie relation
and energy quantization through the mathematical result that a wave
equation with fixed boundary conditions allows only discrete quantized
values of the frequency of oscillation of the wave function (as in the
fundamental and harmonics of the vibration of a violin string). Some
substantial computations are presented in this chapter, but the physics
is introduced piecemeal, as needed. The principles of wave mechanics are
collected in the next chapter, and are generalized to an abstract linear
space in chapter 3.
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1 Energy Quantization and Heat Capacities

The Boltzmann Distribution

Consider an object—an atom, molecule, rock—in a mechanically stable
state and well isolated from its surroundings. In classical or quantum
theory the object has a definite energy, F, that is conserved. Also, if
the object consists of several weakly coupled parts E is the sum of the
energies of the parts. In classical mechanics, E can assume any value
from some minimum to the maximum allowed by stability. In quantum
theory the possible values of the energy are discrete, or quantized,

E=E;, i=012,..., (1.1)

with Ey the ground state energy, F; the energy in the first excited state,
and so on. This remarkable quantization concept first appeared in 1900,
in Planck’s derivation of the blackbody radiation spectrum, as described
in section 2. We will consider first the relevance of energy quantization
to heat capacities of material objects, because the analysis is a little less
lengthy.

To describe what happens when an object is heated to a given tem-
perature 7', let us imagine we have a statistical ensemble of M >> 1 me-
chanically identical copies of the object, each of which has been placed in
contact with a heat reservoir at temperature T, allowed to come to equi-
librium, and then isolated. The reservoir is a macroscopic body much
larger than the object. The ensemble might literally be a collection of
objects, such as a large number of nearly free atoms, or we can think of
the ensemble as representing one almost isolated object that is sampled
at widely separated times.

The accidents of interaction of each object with the enormous num-
ber of atoms in the reservoir determine the probability distribution of
final energies of the objects in the ensemble. Let N; be the number of
the M objects that are found to be in the i*" energy level. Then in the
limit M — oo the probability of finding that a randomly chosen object
from the ensemble is in level i is defined to

P, = N;/M. (1.2)

The value of M is required to suppress sampling fluctuations. If the
ensemble represents one object sampled at many different times, P; is



Historical Development 5

the probability that the object observed at a randomly chosen time is
found to be in level 7.

It will be assumed that the probability P; in equation (1.2) depends
only on the temperature T of the reservoir and on the energy E; of
the object (or more generally on the conserved quantities, which could
include particle number), so at fixed temperature T' the probability P;
is some function of energy,

P, = F(Ey). (1.3)

This assumption is justified below, in section 26 on measurement theory.
For now the problem is to find the function F(E;).

Suppose the object consists of two weakly interacting parts, 1 and
2, so the allowed values of the energy of the object are of the form

E; = E! + E}, (1.4)

for all combinations a, b of energy levels E} of part 1 and E} of part 2.
The probability that part 1 is found to have energy E! is P! = F(E}),
and part 2 has energy E? with probability P? = F(E?). Since the two
parts are not interacting, the probability that one part has a given energy
cannot depend on what the energy of the other part happens to be,
that is, the parts are statistically independent. Since probabilities for
independent events multiply, the probability that the object that consists
of the two parts is in the energy level E; in equation (1.4) is

P, = P!P2. (1.5)
By equation (1.3) this is
F(E; + E3) = F(E;)F(E}). (1.6)

Since this equation is supposed to hold whatever the energies, we can
write it as

F(Ea + Eb) = F(EG)F{Ea)v (17)

for any values of E, and Ej.

If it is not obvious that the solution to the functional equation (1.7)
is an exponential, take the logarithm and differentiate with respect to
E, or Ey:

dE, & ~F(E)dE ~ F(E,)dE, F(Ey)dE;

-3, (1.8)
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The momentum is p = md& = mdz/dt, with m the mass, so the kinetic
energy is p?/2m. The spring constant is K, and the potential energy is
Kz?/2. As is readily checked, the natural frequency of the oscillator is
w = (K/m)"? (units of radians per second) or ¥ = w/(27) (units of
cycles per second = Hertz).

As discussed in the next section and in section 37, an electromag-
netic radiation field can be described as a set of simple harmonic oscil-
lators, one for each mode of oscillation. In working through the theory
of thermal blackbody radiation, Planck introduced the constraint, as an
intermediate step in the calculation, that the energy of each oscillator is
only allowed to assume the discrete values

E,, = nhv = nhw, n=2012,.... (1.21)

(We will use h and h = h/2m, as convenient.) Planck’s sensible plan was
to take the limit h — 0 at the end of the calculation, but he noticed that
the predicted blackbody spectrum would agree with the measurements
if instead he took h to be a nonzero constant,

h= 2% = 1.05457 x 10~ %" ergs. (1.22)

The value quoted here is the modern result. The only other improvement
to the energy spectrum (allowed values of the energy) of a simple har-
monic oscillator is to replace the integers n with n + 1/2. The additive
constant of course does not affect a heat capacity (which is the rate of
change of mean energy with temperature).

Einstein proposed that Planck’s quantization rule might apply to
a material oscillator such as an atom oscillating about its equilibrium
position in a solid. Let us see how that would affect the heat capacity.

With Planck’s quantization rule (1.21), the partition function (eq.
[1.14]) for a one-dimensional simple harmonic oscillator is

Z= ie-"""/k’” =) A, (1.23)
0

with A = e /KT = ¢=Bhv_ The trick for evaluating this sum is to note
that we can write it

Z=1+A+A%4+ A%+ ...
=1+Al+A+A%+..) (1.24)
=1+ AZ.
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Thus we see that the sum is

1 1 1

Z={ A= {—epmw = 1 — e-hu/kT" (1.25)
Equation (1.19) gives the mean thermal energy,
v=29 log(1 — e™#"), (1.26)
dp
On differentiating this expression out we get
U= - (1.27)

This is the wanted expression for the mean thermal energy of a one-
dimensional simple harmonic oscillator with natural frequency v at tem-
perature T'.

The classical limit is obtained at high temperature, kT' > hv. When
hv/kT is small, the Taylor series expansion of the exponential in equa-
tion (1.27), keeping only the first nontrivial term, is

M/ T 14—, (1.28)

This brings equation (1.27) to
U = kT. (1.29)

The heat capacity in this limit is C' = dU/dT = k. This is a special case
of the classical energy equipartition theorem. The theorem says that for
every quadratic term in position or momentum in the Hamiltonian there
is a contribution kT"/2 to the mean thermal energy of the system. There
are two quadratic terms in equation (1.20), giving a net value of kT,
which checks equation (1.29). Of course, a reasonable quantum theory
must agree with classical physics in the high energy limit where we know
classical physics works.

In the opposite low temperature limit, kT < hv, the mean energy
in equation (1.27) is suppressed by the exponential in the denominator,
as is the heat capacity. That is, Planck’s energy quantization assump-
tion in equation (1.21) leads to a characteristic temperature T, = hv/k
for an oscillator with natural frequency v. If the temperature is much
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larger than T, the energy quantization is scarcely noticeable, and we see
classical behavior. If the temperature is well below T, the situation is
decidedly nonclassical: the oscillator is forced to the ground state that
has the minimum allowed value of the energy. As discussed next, a sim-
ilar effect applies to the kinetic energy of tumbling of a molecule in a
gas.

Heat Capacity of Molecular Hydrogen

From the energy equipartition theorem of classical statistical mechanics
we would have expected that the mean thermal energy of a gas of N
hydrogen molecules is

U =%N kT3 (for the kinetic energy of translation in 3 dimensions)
+ 2 (for rotation of the axis in two directions)
+ 2 (for vibration along the axis)

+ 1 (for rotation about the axis)],

(1.30)
plus maybe more for vibrations of the internal structures of the individ-
ual atoms.

At T £ 100K the measured heat capacity is dU/dT ~ 3Nk/2, so
the hydrogen molecules act like a gas of pointlike particles, the only
energy being the kinetic energy of translation. Following the discussion
of the simple harmonic oscillator, we conclude that the energy levels
corresponding to the kinetic energy of translation are close together
compared to kT at T ~ 100 K, so classical energy equipartion applies to
the motions of the molecules, and that the energy levels corresponding to
the other modes of motion in equation (1.30) are more broadly separated,
so these modes are not appreciably excited at T ~ 100 K.

At T ~ 200 to 400K the heat capacity of molecular hydrogen gas
is close to dU/dT ~ 5Nk/2, which is that of a classical gas of rigid
dumbbells (the first two lines of eq. [1.30]). This means the energy of
the first rotationally excited state of the molecule exceeds that of the
ground state by the amount

Ey— Eg~kTr, Tgr~ 200K. (1.31)
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The allowed values of angular momentum in quantum mechanics will
be computed in section 17. A useful order of magnitude approximation
is Bohr’s assumption, that the rotationally excited states are spaced at
increments of angular momentum equal to k. (This is discussed in section
4 below.) Let us check that these numbers make sense.

If the hydrogen molecule has angular momentum % in the first ro-
tationally excited state, and the moment of inertia of the molecule is I,
then the kinetic energy of rotation in this state is

ﬁ2

UR:E

~ kTg, (1.32)
with Tr ~ 200K. The first equation is the classical expression for kinetic
energy of rotation. The second equation with equation (1.11) for k and
(1.22) for h gives I ~ 2 x 10~! gem?. We are only interested in checking
the orders of magnitude, so let us approximate the moment of inertia of
the molecule as I ~ m,r?, where

m, =167 x10"%g (1.33)

is the proton mass and r is the separation of the two protons in the
molecule. That gives r ~ 3 x 1072 cm = 0.3 A. The size of a hydrogen
atom is set by the Bohr radius (eq. [4.9] below). Our result is about half
a Bohr radius, reasonably close considering the rough approximations.

At T ~ 2000K the heat capacity approaches that of a classical gas
of dumbbells each of which can vibrate in length. This means the first
vibrationally excited state of the molecule has energy roughly an order
of magnitude above the first rotationally excited state. At T ~ 3000 K
the gas dissociates into atomic hydrogen.

Einstein and Debye Solids

A solid stores energy in the vibrations of the atoms about their equilib-
rium positions. In the simplest approximation, which Einstein consid-
ered, each atom vibrates with the same frequency, v, in each of three
dimensions, so a solid containing N atoms can be thought of as 3N one-
dimensional simple harmonic oscillators. The thermal energy of the solid
is then, by equation (1.27),

3Nhv

= - (1.34)
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The high temperature limit is U = 3NkT, as in equations (1.28) and
(1.29), so the heat capacity at high temperature is the classical energy
equipartition expression

C=

S{ES

= 3Nk. (1.35)

By 1900 it was known that equation (1.35) is a good approximation to
the heat capacities of solids at room temperature (this is the empirical
law of Dulong and Petit), but Nernst had found that the heat capacity
drops well below this value at low temperature, approaching zero at
T — 0. Einstein (1907) showed how the energy quantization assumption
allows us to understand the decrease of heat capacity at low temperature:
the heat capacity in equation (1.34) is strongly suppressed at T' < hv/k.

Though the Einstein model gives the right qualitative picture, it
says the heat capacity goes to zero at low temperature much faster than
the measurements. It is easy to see why. When an atom moves it can
bring its neighbors with it. This lowers the restoring force, which greatly
lowers the frequency. That is, a solid acts like a collection of oscillators
with a wide range of different frequencies. The lower frequency modes
of oscillation are thermally excited at lower temperatures, so the heat
capacity varies more slowly with temperature than it would if all the
frequencies were the same. The Debye model to be discussed next ap-
proximates the low frequency modes of vibration of the solid as sound or
pressure waves. The computation is lengthy but worth knowing, because
it is used not only here but in the theory of blackbody radiation (section
2) and radiative transitions (section 37).

The low frequency modes that can be excited at low temperatures
have long wavelengths and so are not much affected by the fact that the
mass is in discrete lumps, in the atoms. For these long wavelength modes
it is a good approximation to treat the solid as a continuous fluid, with
smoothly varying mass density p(r,t) and velocity v(r,t).

The mass and velocity functions obey two equations that express
mass conservation and momentum conservation. The former is

ap
ot

while Newton’s law F = ma generalizes for a fluid to

+V.pv =0, (1.36)

% +(v-V)v=-VP/p. (1.37)
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as r, or by its components, as r = (z,y, z), or by the index notation r,
with ry =z, ro =y, and r3 = 2.)

Equations (1.46) to (1.48) describe the normal modes of pressure
oscillations of the solid in the fluid model, which we have noted is a good
approximation at low temperatures where only the low frequency long
wavelength modes are excited. (In a normal mode each mass element
vibrates with the same frequency, as in eq. [1.46]. The word normal
refers to the orthogonality relations discussed in section 12.) Since each
mode behaves as a simple harmonic oscillator, we will follow Planck
and Einstein in assuming that the allowed values of the energy of each
mode are quantized, E = hv = hw, where w is the classical frequency
of vibration of the mode (eq. [1.21]). (This assumption is justified in
section 12 below.) Then at temperature 7' the mean thermal energy of
the solid is given by equation (1.27):

U= Z ehun/kT (1.49)

Na>0

The sum is over the triplets of nonnegative integers, with w, given by
equations (1.47) and (1.48),

e
Wp = Ts(ni+n§+n3)l/2. (1.50)

The sum in equation (1.49) can be approximated by an integral, as
follows. Let us write the change in k, in equation (1.48) when n, is
incremented by unity, to n, 4+ 1, as

Ak, = (1.51)

E
I

Then we can write the sum over n, as
L L[>
= — Aky ~ — dk,. .
=X ak [ ke (152

The last step is a good approximation if the temperature is not exceed-
ingly low, so that the sum extends to large n, before the exponential
in the denominator in equation (1.49) becomes large. In this case the
fractional increment in k. on each increment of n, is small, so the sum
is well approximated as an integral.
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In three dimensions, equation (1.52) generalizes to

L3 /
= — d3k. 1.53
=3/ ., (1.53)

At this point it is convenient to introduce new and even simpler
boundary conditions. If the thermal energy is dominated by modes with
wavelengths much shorter than the size of the solid, the heat capacity
cannot depend on the shape of the object—we just have to specify some
shape in order to fix definite boundary conditions for the wave equation.
Mathematically convenient boundary conditions are that the solid fills
a space periodic in a cube of width L, volume V = L3, so the point
(z,y,2) is the same as the point (z + L,y,2) and so on for the other
three directions. We can write solutions to the wave equation that satisfy
these periodic boundary conditions as the real part of

§ o etkT-wt w = kes. (1.54)

The periodic boundary condition is that é cannot change if z is shifted
to = + L, so the propagation vector k has to satisfy

= 20 ke 28 (1.55)

ka 7

Here n means the triplet of integers n, of either sign,
Ne =0,£1,+2,.... (1.56)

Note that in the standing wave solution in equation (1.46) negative
and positive integers (which means negative and positive k,) are phys-
ically equivalent, the only difference being a change of sign which can
be absorbed in the phase ¢. Equation (1.54) represents a running wave,
so a change of sign of n, means a change in the direction the wave is
running, which is a physical difference. Thus here we must sum over
all eight octants of n, while the sum in equation (1.53) is over the first
octant only. A second difference is that here the increment in k, for a
unit increment of n, is, by equation (1.55),

Aky = = (1.57)
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twice the value in equation (1.51). Thus with periodic boundary condi-
tions the sum over modes is approximated as the integral

3 = (—5%-3/&‘;: (1.58)

The integral is over all octants, 8 times the volume of the integral over
the first octant in equation (1.53). This cancels the extra factor 2% in
the denominator in equation (1.58).

Collecting equations (1.49) and (1.58), we see that the thermal en-
ergy of the solid is

U= e /d b (1.59)

Because of the appearance of the factor V' from the conversion of the
sum to an integral, this equation says the energy per unit volume, U/V/,
is independent of the volume of the solid, which makes sense.

Since the integrand in equation (1.59) depends only on the magni-
tude of k, we can write the volume element as d*k = 4wk?dk. Then with
w = key (eq. [1.54]) and the change of variables

huw

V=5 (1.60)

(and taking care not to confuse Boltzmann'’s constant and the magnitude
of the propagation vector) we get

V(KT)* f"" yidy
U= 5ame )y o1 (1.61)

The dimensionless integral is

oo .3 4
yidy w

The final step is to note that energy can be stored also in shear
waves, of which there are two for every pressure wave (shear in the
two orthogonal directions perpendicular to the propagation vector k),
so we should multiply U by three and replace ¢, with a mean velocity ¢,



18 Chapter 1

suitably averaged over pressure and shear modes. This gives the Debye
equation,
U w2 (kT)*

v = 10 (e (1.63)

It will be recalled that this equation applies at low temperature where
only long wavelength modes are excited. It gives a good approximation
to the low temperature heat capacity of many solids. In others there
are significant additional contributions, such as from thermal motions of
electrons.

2  Blackbody Radiation

What Was Known in 1900

Consider a black cavity with walls at temperature 7' and a small hole
to let us sample the radiation it contains. “Black” means that any light
that enters the hole from outside is absorbed; any radiation coming out
was emitted by the walls. At thermal equilibrium, the radiation energy
with frequency in the range w to w + dw found in the volume element
dV in the cavity is

du = u,dVdw. (2.1)

As indicated, the energy has to be proportional to the size dV of the
volume element and to the bandwidth dw. The constant of proportion-
ality, u,, is the spectral energy density, the energy per unit volume and
unit, bandwidth.

The second law of thermodynamics says u,, can only depend on w
and on the wall temperature, T, independent of the nature of the wall.
For we can imagine connecting two cavities made of different materials
at the same temperature by a light pipe that passes only frequencies in
the range w to w + dw. If the radiation energy densities were different
in the two cavities, we would find that heat is moving spontaneously
from one reservoir to another at the same temperature, which alas is
forbidden by the second law.

The net energy density is

u= -/0‘00 uydw = aT*. (2.2)
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This T* law was found empirically by Stefan (1879) and derived (apart
from the value of Stefan’s constant, a) by Boltzmann (1884) from ther-
modynamics.

A Quick Review of Electromagnetism

As a first step in the derivation of u,, let us write down Maxwell’s equa-
tions. We will use Gaussian cgs units, where the electric and magnetic
fields satisfy

V- E = 4np, V-B=0,

10B
E+-— =0, L
VxE+ - (2.3)
10E 4rw
B--—=—].
VX c Ot ¢
The charge density is p, and the charge conservation equation is
dp
V-j=0, 2.4
5 TV (2.4)

where j is the current density. This can be compared to equation (1.36)
for mass conservation. The force on a charge ¢ moving at velocity v is

F=qg(E+vxB/e). (2.5)

The charge is measured in electrostatic units, where the static electric
field at position r relative to a point charge g is

E=T (2.6)

The electric and magnetic fields have the same units; for B the unit is
called a Gauss. The velocity of light is c.
To get the electromagnetic wave equation we need the identity

A x (BxC)=B(A-C)-C(A-B). (2.7)

This also applies to the gradient operator and a vector function of posi-
tion, as long as we are careful not to change the order of differentiation.
Thus we find from equation (2.7)

V x (VxE)=V(V-E) - V%E. (2.8)
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temperature, and the velocity of light ¢, Planck could solve for Boltz-
mann’s constant k£ and h; both were within 2 percent of the modern
values.

Planck emphasized that, if his approach has any validity, h ought to
show up somewhere else in physics. Einstein gave the first two examples:
heat capacities, as discussed in the last section, and the photoelectric
effect to be discussed next.

3 Photons

Light shining on a metal knocks out electrons. Einstein (1905) proposed
an interpretation of this effect based on Planck’s prescription E = nhw
(eq. [1.21]) for the energy of an oscillator. Planck’s prescription indicates
that light can only transfer energy in discrete units—photons, or quanta
of the electromagnetic field—of amount hw. If one of these units of energy
is given to an electron in a metal, then the electron ought to leave the
metal with energy

E < hw- 9, (3.1)

where @ is the binding energy (the work required to pull an electron
out of the metal). The inequality takes account of the fact that the
electron may lose energy before reaching the surface. By 1917, Millikan
had found that there is a linear relation between the maximum energy of
the electrons released and the frequency of the incident light, consistent
with equation (3.1), and had found that the slope h of the relation agrees
with Planck’s value within the errors, again about 1 percent.

As discussed in chapter 8, the relativistic relation between the energy
E of a particle, its momentum p, and its rest mass m is

E? = p*c? + m*¢'. (3.2)

If the energy in light acts as discrete units, photons, perhaps the photons
move as particles. Because these particles would have to move at the
velocity of light, their rest mass would have to vanish, m = 0. The
relativistic relation (3.2) indicates E = pe for massless particles. Thus a
photon with energy E = hw would be expected to have momentum

p=FE/c=hw/c. (3.3)
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Einstein was cautious about referring to the momentum of a photon;
that it really has momentum in agreement with this equation was made
clear by the Compton effect, that refers to the recoil of an electron that
scatters a photon, as follows.

Imagine a photon of energy pc and momentum p incident on an
electron of mass m that initially is at rest. The net energy and momen-
tum of the system are therefore E = pc + me? and p. If the photon
scatters off the electron and leaves with momentum p’, then to conserve
momentum the electron must end up with momentum P = p — p’. The
final energy, which must be the same as the initial, is

E =pc+mc® =p'c+ [(p - p')%c? + m?ct]/2, (3.4)
On subtracting p'c, squaring, and simplifying we get

, mep
= me 3.
P me+ p — peosf (3.5)

where @ is the angle between p and p’.
Using equation (3.3), we can write equation (3.5) as a relation be-
tween the initial and final frequencies w and w’ of the photon,

1 1 h

— = —+ —(1 —cos#). 3.6

W w + mc2( ) (3.6)
Compton experimentally found this relation between the initial and final
frequencies and the scattering angle, 6. This shows that light does scatter
like a gas of massless particles, photons, with the usual relation (3.2)
between energy and momentum.

4  Spectra and Energy Quantization of Atoms

The Combination Principle

A hot dilute gas of atoms or molecules emits light at sharply defined
frequencies, ;. The set of values of these frequencies for a given material
can be written as differences among a list of quantities called terms:

Vi = Ta - Tg- (41)



