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Chapter 1
The quantum postulates

1.1 The scope of quantum mechanics

Perhaps the first thing to understand about quantum mechanics is that it has as much
to do with mechanics as with, say, electrodynamics, optics, condensed-matter, or
high-energy physics. Rather than describing a particular class of physical pheno-
mena, quantum mechanics provides a universal theoretical framework that can be
used in all fields of physics — akin to a computer’s operating system that provides a
foundation upon which other applications can run. The term “quantum mechanics”
emerged historically, because the first successful applications of the quantum fra-
mework were in studies of the mechanical motion of electrons in an atom. A better
term would be “quantum physics” or “quantum theory”.

So the scope of quantum physics is global: it covers all physical phenomena in
the universe. However, a quantum treatment is practical only in the case of very
small (microscopic) physical systems. The behavior of larger systems is very well
approximated by the laws of classical physics, which are much simpler and more
intuitive, at least for beings that have evolved on that length scale.

Let me illustrate this by an example. You have probably heard of Heisenberg’s
uncertainty principle: ApAx 2 /2. That is, a particle’s position and momentum
cannot be measured precisely and simultaneously: the product of the uncertainties is
atleast i/2 = 5 x 1073 kg-m? /s. For a macroscopic object with a mass on a scale of
a kilogram, reaching the quantum uncertainty limit would require measuring either
the position with a precision on a scale of at least ~ 10~!7 m or the velocity with
precision ~ 1077 m/s. This is, of course, unrealistic, so for all practical purposes
we may as well forget about the uncertainty principle and treat the position and
momentum as precise quantities. But for an electron of mass ~ 10730 kg, the product
of the position and velocity uncertainties will be about 5 x 10~ m?/s, which is
well within experimentally attainable measurement precision and must be taken into
account.

So the predictions of quantum theory are different from classical ones only for
relatively simple, microscopic objects. This explains why quantum mechanics was

A solutions manual for this chapter is available for download at
https://www.springer.com/gp/book/9783662565827
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2 A. L. Lvovsky. Quantum Physics

not discovered until the early 20th century. Before then, we (who ourselves are ma-
croscopic entities) only dealt with macroscopic objects. But as soon as we developed
tools to probe the microscopic world deeply enough, quantum phenomena became
manifest.

This is an example of the correspondence principle: a philosophical maxim that
states that any new, more modern, theory should reproduce the results of older well-
established theories in those domains where the old theories have been tested. Here
is another example of this principle. As long as we had to do with objects that
move much more slowly than light, Newtonian mechanics was sufficient to describe
the world around us. But as soon as we became able to observe bodies that move
quickly (e.g., the Earth around the sun in the Michelson-Morley experiment), we
began to see discrepancies and were compelled to develop the theory of relativity.
This theory is distinctly different from Newtonian mechanics — yet it is consistent
with the latter in the limiting case of low velocities. It would be unwise to use spe-
cial relativity to describe, for example, a tractor transmission, because the classical
approximation is in this case both sufficient and tremendously simpler. Similarly,
using quantum physics to describe macroscopic phenomena would in most cases be
overcomplicated and unnecessary.

In classical physics, we deal with guantities: a rock flying at a speed of 10 meters
per second, a circuit carrying a current of (.2 amperes, and so on. Even if we do not
know a physical quantity exactly, we can work on improving our theory and expe-
riment to predict and measure it with ever increasing precision. In other words, the
classical world is infinitely knowable. In quantum physics, the situation is different:
some knowledge (such as the simultaneous values of the position and momentum)
is “sacred”: it cannot be attained even in principle. And this situation can no longer
be described in terms of quantities alone. Instead, we must use the concept of the
quantum state of a physical system. As we shall see, this concept incorporates the
boundary between the knowledge that is possible and the knowledge that is impos-
sible to obtain. We can learn precisely what state the system is in, but each state is
associated with fundamental limits on the precision with which physical quantities
can be known.

Because quantum mechanics has this role as a general framework, we will study
it in a fairly rigorous, mathematical fashion. I will introduce definitions and axioms,
then predict phenomena that arise from them, and then illustrate these phenomena
with examples from different fields of physics, primarily from optics.

The main mathematical tool of quantum mechanics is linear algebra. Appendix
A of this book teaches the concepts of this discipline that are relevant to quantum
physics. So if you feel comfortable with your linear algebra, please proceed to the
next section. Otherwise I would recommend that you study the first four sections of
Appendix A before moving on.
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1.2 The Hilbert Space Postulate

Let me first give a succinct formulation of the Postulate!, and then explain its mea-
ning in more detail.

a) Possible states of a physical system form a Hilbert space over the field of com-
plex numbers.

b) Incompatible quantum states correspond to orthogonal vectors.

c) All vectors that represent physical quantum states are normalized.

This Postulate contains two notions that have not been defined: quantum state
and physical system. They are so basic that their rigorous definition is difficult®, So
let me try to explain these notions intuitively, using examples.

A physical system is an object, or even one or several degrees of freedom of
an object, that can be studied independently of other degrees of freedom and other
objects. For example, if our object is an atom, quantum mechanics can study its
motion as a whole (one physical system) or the motion of its electrons around the
nucleus (another physical system). On the other hand, if we wish to study the for-
mation of a molecule out of two atoms, motional states of both the atoms and the
electrons therein affect each other, so we must consider all these degrees of free-
dom as one physical system. For a molecule itself, quantum mechanics can study
its center of mass motion (one physical system), rotational motion (another physical
system), vibration of its atoms (a third system), quantum states of its electrons (a
fourth system), and so on.

To grasp the notion of a state, consider the following physical system: a mas-
sive particle that can move along the x coordinate axis. One can define its quantum
state by saying “the particle’s coordinate is exactly x = 5 meters”. This is a va-
lid definition; we would denote this state as [x = 5m). Another valid state would
be |x = 3m). These states are orthogonal ({x = 5m| x = 3m) = 0) because they are
“incompatible”: if a particle’s coordinate is definitely known to be 5 meters, it can-
not be detected at x = 3 meters. On the other hand, the particle can be in the state
“moving at a speed v = 4 meters per second”. This is also a valid quantum state. Be-
cause the momentum of the particle is certain in this state, the position is completely
uncertain, which means that the particle in this state can, with some probability, be
detected at x = 5 m. Hence the inner product (x = 5m| v =4m/s) does not vanish;
these states are not incompatible.

The Postulate also says that if |x = 5m) and [x = 3m) are valid quantum states,
then (Jx =5m) + |x=3m))/v/2 (where 1/v/2 is the normalization factor — see
Ex. 1.1 for the explanation) is also a valid state. It is called a superposition state.

! There are no universally accepted postulates of quantum mechanics. If you say “This follows
from Newton’s Second Law”, people will understand you, but if you say “This follows from the
First Postulate of quantum mechanics”, they won’t. You should instead say, for example, “It follows
from the linearity of the quantum Hilbert space”.

2 As in geometry, which is an extremely rigorous science, despite the fact that its primary notions
such as the point, straight line, and plane are not defined.
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More spectacularly, if |living cat) and |dead cat) are valid states of the physical sy-
stem “cat”, so is the superposition of these states®.

Are superposition states a mathematical abstraction or do they manifest them-
selves in their physical behavior? The answer is, certainly, the latter. As we
shall see shortly, if we subject, e.g., a cat in states ([living cat) + |dead cat))/v/2,
(|living cat) — |dead cat))/+/2 and just a probabilistic mixture of either |living cat)
or |dead cat) to a guantum measurement, we will observe distinctly different results.

Another natural question to ask here is the following. We don’t see superposi-
tion states in everyday life — and yet they are fully compatible with the canons
of quantum mechanics. Why is that so? As we shall see in the next chapter, this is
because superpositions of macroscopically distinct states are extremely fragile and
quickly transform into one of their components — in the case of Schriédinger’s cat,
into either the dead state or the alive state. In the microscopic world, on the other
hand, superposition states are relatively robust and are necessary for its physical
description. The need to deal with entities whose very existence is in conflict with
our everyday experience is one of the reasons why quantum mechanics is so difficult
to comprehend.

Exercise 1.1. What is the normalization factor .4 of the state of the Schridinger
cat |y) = .4 [2]alive) +i|dead)] that ensures that | y) is a physical state?

Exercise 1.2. What is the dimension of the Hilbert space associated with one moti-
onal degree of freedom of a massive particle?
Hint: If you think the answer is obvious, check the solution.

1.3 Polarization of the photon

We will begin studying quantum mechanics with one of the simplest physical sys-
tems: the polarization of the photon®. The dimension of its Hilbert space is just two,
yet it is quite sufficient to show how amazing the world of quantum mechanics can
be.

Suppose we can isolate a single particle of light, a photon, from a polarized wave.
The photon is a microscopic object and must be treated quantum-mechanically. We
begin this treatment by defining the associated Hilbert space. We first notice that the
horizontally polarized photon state, which we denote by |H), is incompatible with its
vertical counterpart, |V): an |H) photon can never be detected in a |V) state. That is,
if we prepare a horizontally polarized photon and send it through a polarizing beam
splitter (with the properties described in Sec. C.2), it will always be transmitted and
never reflected. This means that states |H) and |V) are orthogonal.

* This state is sometimes called Schradinger’s cat, after one of the founding fathers of quantum
physics, Erwin Schrodinger. But in fact, Schrodinger discussed a more complex entity, see Box 2.5.

4 1f you are not familiar with the polarization of an electromagnetic wave, this is a good place to
read the first two sections of Appendix C.
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Box 1.1 Discovery of the photon

In 1900, Max Planck explained the experimentally observed
spectrum of blackbody radiation by introducing the quantum of light,
now known as the photon*. He found that a good agreement between
theory and experiment can be obtained if one assumes that the energy
of the photon is proportional to the frequency @ of the light wave. The
proportionality coefficient, i = 1.05457148 x 10~ became known
as Planck’s constant.

In 1905, Albert Einstein reconfirmed the validity of Planck’s for-
mula

E=how Max Planck

by using it to explain quantitatively the experimental results on the photoelectric effect (see
Box 4.6 for more details)**. Later, in 1916, Einstein argued that, since it is known from clas-
sical electrodynamics™™ that an electromagnetic wavepacket carrying energy E also carries
momentum p = E /¢, the same must be true for photons. From Planck’s formula he found®
p = hw/c. Expressing the frequency of the wave in terms of its wavelength, @ = 2mc/A, he
then wrote

p=2mh/A.

Arthur Holly Compton used Einstein’s findings in 1923 to provide
a theoretical explanation for his own experiments in which he studied
the scattering of X rays on free electrons’". By treating X ray pho-
tons as high-energy particles, he applied the laws of momentum and
energy conservation to the collision between a photon and an electron
to calculate the scattered photon energy as a function of the scattering
angle. He then related that energy to the wavelength, thereby obtaining
a theoretical fit to his experimental data. The excellent agreement he
observed serves as an explicit proof of the photon’s existence.

Curiously, the term “photon” did not exist at that time. It was in-
troduced later, in 1926, by the physical chemist Gilbert Lewis.

s i
Arthur Compton

*M. Planck, Uber das Gesetz der Energieverteilung im Normalspectrum, Anna-
len der Physik 4, 553 (1901).
“*A. Einstein, Uber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichts-
punkt, Annalen der Physik 17, 132 (1905).
***This phenomenon manifests itself, in particular, through the effect of radiation pressure, which was
observed experimentally by Peter Lebedev in 1900.
¥ The expression for the photon momentum can also be obtained as follows. Using Einstein’s famous rela-
tion E = Mc? together with Planck’s formula, we can calculate the mass of the photon, M = h@/c>. The photon
moves with the speed of light, and hence its momentum is p = Mc = hw/c.
' A. H. Compton, A Quantum Theory of the Scattering of X-Rays by Light Elements, Physical Review 21
483 (1923).
TG. N. Lewis, The conservation of photons, Nature 118, 874 (1926).




6 A. L. Lvovsky. Quantum Physics

A light wave whose electric field is given as a function of space and time by
[see Eq. (C.2)] ‘ ‘ o
E(z,1) = Re[(Axe'?i+ Aye'® j)elka—ier (1.1)

(with real Ay v and @g v) consists of photons in the state’

1
W)= ——
\J AR +AL

For example, if Ay = Ay and @y = @y = 0, the associated classical wave is E =
Re[Ay (i + j)ee~19) ie., linearly polarized at +-45°. Accordingly, the state (|H) +
IV))/v/2 (where the factor of 1/2 is due to normalization) denotes a single photon
with +45° linear polarization. Some further examples are listed in Table 1.1°.

It follows that states |H) and |V) form an orthonormal basis in the Hilbert space
of photon polarization states — so this space is two-dimensional. To begin with,
these states are orthogonal and thus linearly independent (Ex. A.17). Furthermore,
any polarized classical wave can be written in the form (1.1), so any polarization
state of the photon can be written in a similar way to (1.2), i.e., as a linear combina-
tion of the states |H) and |V). We will call the basis {|H),|V)} the canonical basis
of our Hilbert space.

(AHei9°H H) + Ayel® \v)) e o (1.2)

Table 1.1 Important polarization states.

| state [ matrix | description [ notation |
|HY) ((l) ) horizontal |H)
0 .
V) 1 vertical (V)
cosO|H) +sin6|V) (z?;g) linear polarization at angle 0 to horizontal |8)
é (|H)+|v)) ﬁ ( } ) diagonal, +45° polarization |-+45°) or |+)
L (|HY =V L ! (anti-)diagonal, —45° polarization —45°) or |—
V2 2\ -1
%(|H} +i|V)) % ( : ) right circular polarization |R)
£(|H) —i|V})) % ( _IJ left circular polarization |L)

3 It may appear surprising that Eq. (1.2) carries no information about the position of the photon
along the z axis. The reason is that the photon, as a quantum particle, is smeared across space and
time, potentially to a large extent. Among the factors affecting the spread are the properties of the
source, as well as the “quantization volume” chosen for the theoretical analysis. In the case of a
coherent laser beam, the photon length is limited by the coherence length of the laser, which can be
many kilometers. In this book, we will usually assume that the photons are spread over a distance
that is much larger than the size of any apparatus, and can therefore be treated as infinitely long.

% See footnote 1 on page 289 for a discussion of conventions for circularly polarized states.
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We have come to an apparent contradiction. On the one hand, we know that a
classical wave, which consists of photons, divides. On the other hand, every indi-
vidual photon is indivisible. How can these two imperatives be upheld at the same
time?

It seems that the only way to solve the conundrum is to postulate that the outcome
will be random: the photon will be transmitted through the PBS with probability
pry =A% /(A4 +A%) = | (H| y) |2, and reflected with probability pr, = A? /(A% +
A%) = | (V| w)|? In this way, if a large number N of photons are incident on the
PBS, the number ratio of the transmitted and reflected energies will be A7 /A%, as
expected classically (see Sec. C.2). And yet, no individual photon is divided.

As we know, the part of the classical wave that is transmitted through the PBS is
horizontally polarized — that is, all photons making up the wave are of horizontal
polarization. The same is true for the reflected wave: all its photons are vertically
polarized. But then, the same must be true if the photons are sent to the PBS one-by-
one. Not only will the photon randomly choose its path, but also, in a quite Orwellian
fashion, it will change its state to conform with the path chosen. After the PBS, the
photon state in the transmitted channel will become |H), and in the reflected channel
[V). If we place a series of additional PBS’s in the transmitted channel of the first
PBS, the photon will be transmitted through all of these PBS’s — there will be no
further randomness.

The process I just described constitutes the polarization state measurement of a
photon. To complete it, we place single-photon detectors (Box 1.2) into both output
channels of the PBS. Of these two detectors, only one will click, thereby providing
us with the information about the photon’s polarization [Fig. 1.2(a)].

The above measurement apparatus is designed to distinguish between the hori-
zontal and vertical polarizations. One can think of other designs as well. For ex-
ample, by tilting the PBS by 45°, we can have it transmit |+) and reflect |—),
so if we send an arbitrary state |y), it will transmit or reflect with probabilities
pr. = |{+| y)|* and pr_ = | (—| y) |%, respectively. More generally, we can con-
struct a measurement apparatus that would distinguish between any two polarization
states, as long as these states are orthogonal to each other.

We are now ready to formulate our Postulate.

W, o e,

display

measurement apparatus

Fig. 1.1 A theoretician’s picture of a quantum measurement.

Measurement Postulate. An idealized measurement apparatus is associated with
some orthonormal basis {|v;}}. After the measurement, the apparatus will randomly,
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with probability
pr = | (vil w) %, (1.3)

where | ) is the initial state of the system, point to one of the states |v;). The system,
if not destroyed, will then be converted (projected) onto state |v;) (Fig. 1.1).

A quantum measurement that proceeds in accordance with the above Postulate
is called a projective measurement. The projection of the state measured onto one
of the basis elements is also called collapse of the quantum state. Equation (1.3) is
called Born’s rule.

The probabilistic behavior of quantum objects led to a lot of controversy at the
time quantum mechanics was founded. This is because, by the end of the 19th cen-
tury, the principle of determinism was universally accepted: physicists believed that,
if the initial conditions of a given quantum system are known precisely enough, its
future evolution can be predicted arbitrarily well. Quantum physics breached this
fundamental belief, and many physicists found it extremely difficult to accept. For
example, Albert Einstein made a famous statement that “God does not play dice”
and came up with a brilliant Gedankenexperiment’ showing that the postulates of
quantum mechanics are in contradiction with common sense. We will study this Ge-
dankenexperiment in the next chapter and see that quantum randomness can be at-
tributed to observers themselves being quantum objects, but not being able to verify
their own quantum nature experimentally. For now, however, let us accept quantum
randomness as a postulate corroborated by vast experimental evidence.

Exercise 1.6. Show mathematically that, for a state |y), the sum of detection proba-
bilities (1.3) for all basis elements is {y| ¥), i.e., it equals 1 if the state is physical.

Exercise 1.7. Show that applying an overall phase factor to a quantum state will
not change the probabilities of its measurement results — in agreement with the
fact that this phase has no influence on the physics of a state, as discussed in the
previous section.

1.4.2 Polarization measurements

Above, we discussed the fact that one can rotate the PBS to modify the apparatus
of Fig. 1.2(a) so that it can measure the polarization in a non-canonical, linearly
polarized basis. However, the photon reflected from the PBS will not propagate in
the horizontal direction, and this is not convenient in a practical tabletop experiment
(Box 1.3). Therefore most experimentalists take advantage of the optical element
called a waveplate® which interconverts polarization states of a photon from one to
another. Here are some examples.

Exercise 1.8. Show that:

7 “Gedankenexperiment” is the German for “thought experiment”.
8 This is a good place to read the third section of Appendix C.
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Box 1.2 How to detect a photon?

photon

superconducting
nanowire

A photon detector is a device that converts a photon into a “click” — a macroscopic pulse
of electric current or voltage. Making such an extremely sensitive device is a challenging
technological task. This figure sketches one of the modern ways of addressing this challenge:
the superconducting single-photon detector.

The sensitive area of the detector is a nanowire that is cooled down to a superconducting
state, with a small constant current flowing in it. The nanowire is so thin that, when it absorbs
even a single photon, it warms up enough to become resistive in part of its length. The current
will then heat up this area as predicted by Joule’s law, further destroying superconductivity
around it. In this way, a kind of avalanche process develops, in such a way that the entire
nanowire becomes resistive for some time. This resistance leads to a pulse in the voltage
across the nanowire that is easily detectable.

This detector suffers from a few imperfections that are typical of practical photon de-
tectors. First, the detector is non-discriminating: its response to a pulse containing multiple
photons is the same as its response to a single photon. This is because the entire nanowire
will lose superconductivity and acquire the same resistance no matter how many photons are
absorbed. Second, a photon incident on the detector may get reflected, thereby generating no
click. The probability that a click will occur in response to a photon is known as the quantum
efficiency of the detector. In some modern detectors, this parameter exceeds 99%. Finally, a
detector may produce a click even in the absence of a photon. The frequency of such dark
counts is another important technical characteristic of this device.

a) the setup in Fig. 1.2(b) performs the photon polarization measurement in the
diagonal (|£45°)) basis;

b) the setup in Fig. 1.2(c) performs the measurement in the circular ({|R),|L)})
basis.

Hint: When a piece of apparatus described in the Measurement Postulate is mea-
suring one of its own basis states |v;), the measurement will point to that state with
probability 1. Conversely, if the apparatus can distinguish a particular orthonormal
set of states with certainty, we can conclude that this set is the measurement basis of
the apparatus. Therefore, to solve this exercise, it is enough to show that the basis
states [i.e., |[£45°) in (b) and |R),|L) in (c)], when sent onto the PBS, will generate
clicks in different photon detectors.

Exercise 1.98 Each of the states |[H),|V),

+),]=),|R),|L) is measured in

a) canonical,
b) diagonal,
¢) circular
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Box 1.3 Optical table

This photograph shows a typical quantum optical experiment. It is performed on an op-
tical table — a massive metal plate upon which one mounts various optical elements, such
as lenses, mirrors, lasers, crystals, and detectors. The beams typically run horizontally, at the
same level throughout the entire table.

bases. Find the probabilities of the possible outcomes for each case.
Answer: For each state, when the measurement is performed in the basis to which
the state belongs, the probabilities are O and 1. If the state does not belong to the

measurement basis, the probabilities of both outcomes are 1.

) polarizing b) 3 12-piate ¢) /a-plate N2-plate
beam splitter horizontal @225 @0 @225
polarization "D I ‘D I I "D
vertical
polarization
photon

o Ll N, o,

Fig. 1.2 Photon polarization measurements in the canonical {|H}),|V)} (a), diagonal {|+).|—)}
(b), and circular {|R),|L)} (c) bases.

Exercise 1.10. Propose a scheme for a quantum measurement in the basis
{|6),]5+0)}.
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Exercise 1.11. Propose a scheme for a quantum measurement in the basis {|R),|L)}
that would use just one waveplate.

Exercise 1.12. Consider a photon that is not in a superposition state, but in a random
statistical mixture, or ensemble’: either |H) with probability 1/2 or |V') with proba-
bility 1/2. The polarization of this photon is measured in

a) canonical,
b) diagonal,
¢) circular

bases. Find the probabilities of the possible outcomes for each case.

Exercise 1.13. A photon is prepared with a linear polarization 30° to horizontal.
Find the probability of each outcome if its polarization is measured in (a) the cano-
nical, (b) the diagonal, and (c) the circular basis.

Exercise 1.14. A photon in state |y) = (|H) +¢'? |V))/+/2 is measured in the dia-
gonal basis. Find the probability of each outcome as a function of ¢.

This exercise, along with Ex. 1.7, shows once again the important difference
between a phase factor applied to a part of a quantum state or applied to the whole.
In the former case the added phase has an effect on the measurable properties of the
object; in the latter, it doesn’t.

Although a single measurement provides us with some information about the
initial state of a quantum system, this information is very limited. For example,
suppose we have measured a photon in the canonical basis and found that it has
been transmitted through the PBS. Does this tell us that the initial photon was in the
state |H)? No. It could have been in any state Wy |H) + Wy |V); as long as yy # 0,
there is some probability of getting a click in the transmitted channel. So the only
thing we learn from this measurement is that the photon was not vertically polarized.

Suppose now we have performed the same measurement many times, every time
preparing our photon in the same state'’. Now we know much more! We know how
many clicks we obtained from the “horizontal” detector, and how many from the
“vertical” one — that is, we have measurement statistics. From these, we can cal-
culate, with some error, pry, = |y |? and pry, = |yy|?, i.e., learn about the absolute
values of the state components. But both Yz and yy are complex numbers, and their
arguments are still unknown. For example, if we observe pry = pry, = 1/2, the state
|y) could be |R) or |L) or |[+) or |—), or many other options. What can we do about
this?

As you will see in the following exercise, it is helpful to perform additional sets
of measurements in other bases. From the statistics acquired, we obtain additional
equations, which can be solved to find yy and wy up to an uncertainty associated
with a common phase factor.

% Such mixed states are not elements of the quantum Hilbert space. More detail on this in Sec. 2.2.4.

10" Although we don’t know what the state is, we can make sure we can repeatedly prepare the
photon in the same state by setting up identical experimental conditions.
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Box 1.4 Quantum weapon inspection
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Here is an exciting paradox associated with the single-photon interference experiment
discussed in Sec. 1.5*. Suppose there is a “bomb” equipped with a photon sensor, so that it
will explode if even a single photon interacts with it. Can we detect the presence of the bomb
in one of the arms of our interferometer without detonating it?

Let us set up the delay line in our single-photon interferometer (Fig. 1.3) such that ¢ = 0.
Then, if the bomb is absent, every incoming photon will leave the interferometer polarized at
+45° and cause an event in detector “+". Detector “—", on the other hand, will never click.

Now if the bomb is present, as shown in the figure above, it may explode or not, de-
pending on which way the photon goes. In this way, the bomb implements a Welcher-Weg
measurement. Accordingly, the photon will behave like a particle that goes randomly into
either the lower or the upper part of the interferometer. If it goes into the lower path, the
bomb will explode. But if it goes into the upper part, the bomb will remain intact and the
photon will exit the interferometer in the vertical polarization state. When measured in a
diagonal basis, this photon will be equally likely to generate an event in either of the two
detectors.

Hence, if the bomb is present, there will be a nonzero probability of hearing a click
in detector “—". Moreover, this detector can click only in the presence of the bomb. If this
detector does click, we know for certain that the bomb is present — without having interacted
with it!

The above setup is not a perfect tool for weapon inspection, as it does not guarantee a
conclusive result, nor that the bomb will not detonate (Ex. 1.17). However, if one places the
bomb in a high-finesse Fabry-Perot interferometer rather than a Mach-Zehnder interferome-
ter, one can achieve an efficiency close to 100%. In this case, the photon will likely pass
through the interferometer when the bomb is absent, but reflect if the bomb is present.

“A. C. Elitzur, L. Vaidman, Quantum mechanical interaction-free measurements, Foundations of Physics
23, 987 (1993).
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components of the superposition that play the role of the two waves in the classical
experiment, interfering with each other. This is known as the wave-particle duality
of quantum particles'*.

So, in a sense, the photon does get divided between the two interferometer chan-
nels. However, this wavelike behavior is only possible if the components remain in
the superposition state. To illustrate this, let us suppose that we place non-destructive
detectors in both interferometer arms, able to register the presence of the photon wit-
hout destroying it. Every time a photon is sent into the interferometer, one of these
detectors will “click”, indicating whether the photon went through the upper or the
lower path. In this way, as the founding fathers of quantum mechanics would say,
we obtain Welcher-Weg (which-way) information about the photon.

Obtaining Welcher-Weg information means measuring the location of the pho-
ton. As we learned in the previous section, such a measurement will collapse the
superposition state onto the photon being either in the upper or lower path of the
interferometer. By looking at the Welcher-Weg detector, the observer is able to tell
with certainty whether the photon will leave the interferometer in the horizontal or
vertical state. In either case, a subsequent measurement of that photon in the dia-
gonal basis will yield either outcome with probability 1/2, with no dependence on
the path-length difference. The Welcher-Weg measurement destroys the wavelike
property of the photon and makes it behave like a particle.

This is, of course, the case even if the observer does not look at the Welcher-Weg
detectors. The photon is then in a mixed state of being either in the upper or lower
path of the interferometer with probability 1/2, but no longer in the superposition
state. That is, we are now in the situation of Ex. 1.12 rather than 1.14. The photon
state has lost its quantum coherence — a well-defined phase relation between the
superposition terms. Hence it is no longer able to exhibit interference.

This Gedankenexperiment demonstrates quantum complementarity — a general
principle of quantum physics stating that objects may have complementary proper-
ties which cannot be observed or measured at the same time. We can have either the
Welcher-Weg information or interference, but not the two together.

Exercise 1.17. In the setting of Box 1.4, what are the probabilities of

a) detecting a bomb without detonating it,
b) detonating the bomb,
¢) obtaining an inconclusive result without detonating the bomb?

1.6 Quantum cryptography

We can now discuss the first application of quantum physics in this course. This ap-
plication is to cryptography — the art of exchanging secret messages over insecure
channels.

1 This is probably why popular quantum books like to describe superposition states as ones in
which “an object is in two different places at the same time”.
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Box 1.5 Classical cryptography

Cryptography is easily implemented if the communication parties, which we call Alice
and Bob, share a prearranged, secret data set (a sequence of 0’s and 1’s) known as secret key or
one-time pad. With this resource available, a cryptographic protocol can proceed as follows.
Alice chooses a piece of the secret key which has the same length (i.e., the same number of
bits) as the message she wishes to send to Bob. She then applies an XOR (exclusive OR, or
bitwise sum modulo 2) operation to every bit of her message and the corresponding bit of her
secret key:

original message 01110011...
XOR

secret key 10011010. ..

encrypted message 11101001, ..

In this way she obtains an encrypted message which can be safely transmitted over an
insecure channel, as it cannot be decrypted by anyone who is not privy to the secret key. Bob,
on the other hand, can easily decrypt the message. To this end, he applies XOR to every bit
of the encrypted message he receives and the corresponding bit of the secret key, thereby
recovering the original message.

encrypted message 11101001. ..
XOR
secret key 10011010. ..
recovered original message 01110011...

This protocol, known as private-key cryptography, is very secure and simple; it has been
known for hundreds of years. The trouble is, it is not easy for Alice and Bob to arrange
sharing random data that would be secret to everyone else. As a rule, the only safe way to
do this would be to send a courier carrying a briefcase loaded with random data. This is, of
course, very expensive. For this reason, private-key cryptography is only used in the most
sensitive government and commercial communications.

For other applications, such as e-commerce, a family of protocols known as public-key
cryptography is used. Without going into details, these protocols rely on the existence of
“one-way” functions that are easy to compute, but very difficult to invert. For example, mul-
tiplying two prime numbers containing a few dozen digits will take microseconds on a mo-
dern computer, but factoring a number of similar length will take months or years. Public-key
cryptography protocols rely on one-way functions to enable secure communication between
parties who have never had an opportunity to exchange a secret key.

While public-key protocols are convenient and inexpensive, they are not perfectly secure.
The computational power available to us doubles every year or two, so a calculation that
takes years at present may take only hours a few years in the future. Furthermore, quantum
computers (Sec. 2.5) are potentially capable of cracking the security of public-key protocols
almost instantly.
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Known since ancient times, cryptography is now a major branch of the telecom-
munications industry, aimed at protecting the privacy and information security of
individuals, businesses and government entities. Box 1.5 reviews classical approa-
ches to cryptography. To sum it up, within the classical domain we are compelled
to choose between private-key cryptography, which is secure but expensive, and
public-key cryptography, which is cheap, but not perfectly secure.

Quantum mechanics offers us a solution that takes “the best from both worlds”.
On the one hand, its security is guaranteed by fundamental laws of nature. On the
other hand, it does not require random information to have been shared previously
between the parties.

1.6.1 The BB84 protocol

Quantum cryptography, or, more precisely, quantum key distribution, relies on the
property of measurements to alter the quantum state they are used on. The idea is
that the sending party (Alice) sends secret data to the receiving party (Bob) by means
of single photons, encoding the data in their quantum states. Anyone who tries to
eavesdrop on this transmission will either destroy or alter these photons, thereby
revealing themselves.

The best known quantum cryptography protocol is named “BB84" after its in-
ventors C.H. Bennett and G. Brassard'®. To implement it, Alice and Bob perform
the following operations.

1. Alice tosses a coin to randomly choose the value of a bit, either 0 or 1, to be
sent.

2. Alice tosses a coin again to choose the encoding basis, either canonical or dia-
gonal.

3. Alice generates a photon and encodes the bit in that photon’s polarization:

0 |H) 0 — |+45°)
{l—>|V) r{1—>—45°)

She then sends the photon to Bob.
4. Bob tosses a coin to choose the measurement basis, either canonical or diagonal.
5. Bob measures the arriving photon in the chosen basis:

e if he chooses the same basis as Alice, he will detect the same bit value as the
one Alice sent;
e if he chooses the other basis, he will detect a random bit value.

This procedure is repeated many times. Of course, both Alice and Bob must keep
record of the bases they used, states sent or detected, and the exact time when the

15 C. H. Bennett, G. Brassard, “Quantum Cryptography: Public Key Distribution and Coin Tos-
sing”, Int. Conf. on Computers, Systems and Signal Processing, Bangalore, India (IEEE, New
York, 1984), p. 175.
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photons were sent or received. After many thousands of such records have been
collected, Alice and Bob inform each other (via a classical, insecure channel) of
their choice of bases for each photon, but noz the bit values they sent or measured.
Bob also informs Alice of those instances when he did not detect a photon, e.g., if it
has been absorbed in the transmission line (this requires, of course, that the timing
of Alice’s transmissions be known to Bob, but this information need not be secret).
Subsequently, Alice and Bob discard the data for those events in which different
bases were used or the photon has been lost.

Alice and Bob now share a string of identical bits, which they can use as the one-
time pad in a private-key protocol. To see why this string is guaranteed to be secret,
let us suppose an eavesdropper (Eve) cuts the transmission line, intercepts Alice’s
photons, measures their polarization, and re-sends them to Bob (Fig. 1.4). Will she

be able to obtain a copy of the secret key?

Fig. 1.4 Eavesdropping in quantum cryptography.

The answer is negative. Eve’s problem is that, according to the Measurement
Postulate, she must measure in a particular basis, and does not know which basis to
choose. No matter how she chooses that basis, it will sometimes happen that Alice
and Bob work in the same basis and Eve in a different one. But in this case Eve’s
measurement will alter the photon’s state and Bob may not receive the same bit
value as the one Alice sent him. The secret keys that Alice and Bob record will end
up being different, and this will alert them to the eavesdropping.

Suppose, for example, that Alice and Bob both work in the canonical basis, but
Eve in the diagonal basis. Alice sends a horizontally polarized photon, encoding bit
value 0. But Eve uses the diagonal basis, so she will detect |+) or |—) with equal
probabilities. If she detects and resends either of these states, Bob (who detects in
the canonical basis) is equally likely to observe |H) or |V'). Bob’s observation of |V')
will cause him to record a different bit value compared to the one Alice has sent.

In order to check whether the eavesdropper was present, Alice and Bob exchange,
via an insecure channel, a part of the secret bit string they obtained. If there are no
(or very few) errors, they can use the remainder of that string as the one-time pad.

Exercise 1.18. Suppose Eve intercepts Alice’s photons and measures them in either
the canonical or diagonal basis (she chooses at random). She then encodes the bit
she measured in the same basis and re-sends it to Bob. What error rate will Alice
and Bob register, i.e., what fraction of bits in the secret key they created will come
out differently on average?
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e frequency of dark events that are synchronized with Alice’s photons!” in each of
Bob’s detectors: f; = 105 !;

Answer: see Fig. 1.5,

The range of secure quantum communication can be improved by increasing
Alice’s photon emission rate or reducing the detector dark counts. However, this
will not lead to dramatic results: the exponential nature of Beer’s law prevents quan-
tum communication at distances beyond a few hundred kilometers. In the setting of
Ex. 1.21, increasing the emission rate by three orders of magnitude increases the
communication distance by only a factor of 1.7 (Fig. L.5).

To overcome this limit — and create the “quantum internet” that would cross
oceans and eventually cover the entire planet — we need a fundamentally different
technology. This technology, known as the guantum repeater, is discussed at the end
of Chapter 2.

1.7 Operators in quantum mechanics

We now proceed to discussing linear operators, which are a key element of quan-
tum physics'®. They play a dual role. First, they describe evolution: as time passes,
quantum states change, and this change is described mathematically by operators.
A second, less obvious application of linear operators is the formal description of
quantum measurements. We shall start with the first role in this section.

Exercise 1.22. Find the matrix of the operator |[+){—| in the canonical and the
(IR),|L)) bases.

Exercise 1.23. Find, in the canonical basis, the matrix of the linear operator A that
maps

a) |H) onto |R) and |V) onto 2 |H};
b) |+) onto |R) and |—) onto |H).

The waveplate, which transforms photon polarization states, is an example of
a physical operation that can be associated with a quantum operator. In order to
calculate this operator, we need to adopt a convention. As discussed in Sec. C.3,
the waveplate changes the relative phase of the extraordinary (parallel to the optic
axis) and ordinary (orthogonal to the optical axis) polarization states by an angle
A, which is equal to 7 for a half-wave plate and 7/2 for a quarter-wave plate. In
addition, it introduces a common phase shift for the entire wave.

These optical phase shifts transform into quantum phase shifts when applied to
the single photon. The overall phase shift, common for all polarization components,

17 The actual dark count rate can be higher. But because Bob knows the exact timing of Alice’s
transmission, the only dark count events that contribute to the error rate are those that occur syn-
chronously with the clicks expected due to Alice’s photons.

18 A fuller introduction into linear operators and matrices can be found in Sections A.5 and A.6.



