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Foreword XV

Such approach presumes of the reader a substantial knowledge of both contexts,
that of quantum mechanics, and that of the particular social field ot application.
That 1s asking a lot.

I chose to address this 1ssue, that of more needed interdisciplinary competence in
education, science, and the general public, in my recent autobiography The Crossing
of Heaven: Memoirs of a Mathematician, Springer (2012). 1 have come to the
conclusion that we must invoke and enforce a new term, that of Multidisciplinarity.
Interdisciplinarity 1s a weak word. It implies that one is less than one hundred
percent committed to each of the two fields. Or that one is slightly weak in one’s
own field and leaning on an expert tfrom the other field, who 1s probably a bit weak
also in his field. I have worked successtully 1n several fields of science and I can
assure you that you should plan on becoming an expert also in “the other field,”
and that will take you, say, at least five years before you have a chance of becoming
competitive there.

Thus a collateral message of this foreword is that of advancing the concept and
indeed the cause of creating more multidisciplinarity in our future mathematicians,
physicists, social scientists, and, in a more general sense, throughout the educated
public. A tall order! But great opportunities will open up to those who are strong
enough.

This book by Haven and Khrennikov is a move in that direction, a pioneering
cttort.

Karl Gustafson
Professor Of Mathematics
University of Colorado at Boulder
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Preface

The current level of specialization of knowledge 1n a variety of fields of inquiry
may make it quite challenging for a researcher to be at the same time a “developer”
and a “tester’” of a theory. Although a theory can exist without a necessary clear
and obvious practical end goal, the ultimate test of the validity of a theory (whether
it 18 situated in the exact or social sciences) will always be how measurement can
“confirm”™ or dislodge a theory.

This book is largely dedicated to the development of a theory. We will be the
very first to accept the accusation that the duo “theory-test” 1s widely absent in this
work, and we believe 1t necessary to make this statement at the very beginning.

This book 1s about a very counter-intuitive development. We want to use a
physics machinery which 1s meant to explain sub-atomic behavior, in a setting
which 1s at the near opposite end of the size spectrum, 1.¢. the world as we know
and live 1t through our senses. We may know about the sub-atomic world, but we
do not have human experience of the sub-atomic world. Do we have credible and

provable stories which can explain how the sub-atomic engages into the mechanics

of the statistical macro-world? Probably not. Why do we bother then about being
so exotic? The interested reader will want us to provide for a satisfactory answer
to this obvious question, and we want to leave 1t up to him or her to decide
whether we have begun, via the medium of this book, to convince that the level of
“exoticality” (and “yes” how exotic 1s that word?) is sensibly less than anticipated.
We can possibly give a glimmer of “hope,” even at this early stage. Consider
the words of one of the towering giants of physics of the twentieth century —
Wolteang Pauli. In an unpublished essay by Pauli, entitled "Modern examples
of ‘background physics’,” which 1s reproduced in Meier® (pp. 179-196), we can
read Pauli’s words (Meier™ (p. 185)): “Complementarity in physics. . . has a very
close analogy with the terms ‘conscious’ and ‘unconscious’ i1n psychology in

" Meier C. A. (2001). Atom and Archetype: The Pauli/lung Letters, 1932—1958. Princeton University Press.

XVii



XVIII Preface

that any ‘observation” of unconscious contents entails fundamentally indefinable
repercussions of the conscious on these very contents.” The words of Pauli are
important. They show there 1s promise for a connection between “concepts” of
utmost importance in two very different sciences: complementarity in quantum
physics and “complementarity’” between consciousness and unconsciousness in
psychology.

In this book, we intend to give the reader a flavor of an intellectual development
which has taken shape over several years via the usual media many academics
use: conference presentations and academic articles. The theory presented here is
nowhere complete but we strongly believe that it merits presentation in book form.

The models presented in this book can be called “quantum-like.” They do not
have a direct relation to quantum physics. We emphasize that in our approach,
the quantum-like behavior of human beings is not a consequence of quantum
physical processes in the brain. Our basic premise 1s that information processing
by complex social systems can be described by the mathematical apparatus of
quantum mechanics. We present quantum-like models for the financial market,
behavioral economics, and decision making.

Connecting exact science with social science is not an easy endeavor. What
reveals to be most difficult is to dispel an intuition that somehow there should exist
a natural bridge between physics and the modeling of social systems. This 1s a very
delicate 1ssue. As we have seen above it 1s possible to think of “complementarity™
as a concept which could bridge physics and psychology. However, in some specific
arcas of social systems, the “physics equivalent” of the obtained results may have
very little meaning.

It 18 our sincere hope that with this book we can convince the brave reader that
the intuition of the authors 1s not merely naive, but instead informative. Hence,
may we suggest that “reading on” 1s the command of the moment? Let the neurons

fire!



Acknowledgements

Luigi Accardi and A. Khrennikov and M. Ohya (2009). Quantum Markov model for
data from Shafir-Tversky experiments in cognitive psychology. Open Systems
& Information Dynamics, 16(4), 378-383. This material is reproduced with
permission of World Scientific Publishing Co Pte Ltd.

Masanari Asano and M. Ohya and A. Khrennikov (2011). Quantum-like model
for decision making process in two players game. Foundations of Physics,
41, 538-548. Foundations of Physics by Springer New York LLC. Repro-
duced with permission of Springer New York LLC in the format reuse in a
book/textbook via Copyright Clearance Center.

Masanari Asano and M. Ohya and Y. Tanaka and I. Basieva and A. Khrennikov
(2011). Quantum like model of brain’s functioning: decision making from
decoherence. Journal of Theoretical Biology, 281, 63—-64. Journal of Theoret-
1cal Biology by Academic Press. Reproduced with permission of Academic
Press 1n the format reuse in a book/textbook via Copyright Clearance Center.

Sheldon Goldstein (2010). Bohmian mechanics and quantum information. Foun-
dations of Physics, 40, 335-355. © Springer Science+Business Media,
LLC 2009. Quotes reproduced with kind permission from Springer
Science+Business Media: Foundations of Physics.

Emmanuel Haven (2005). Analytical solutions to the backward Kolmogorov PDE
via an adiabatic approximation to the Schrodinger PDE. Journal of Mathe-
matical Analysis and Applications, 311, 442-443. © 2005. Reprinted with
Permission from Elsevier Inc.

Emmanuel Haven (2008). Private information and the “information function™: a
survey of possible uses. Theory and Decision, 64, 200-201. © Springer 2007.
Reprinted with kind permission from Springer Science-+Business Media.

Emmanuel Haven (2008). The variation of financial arbitrage via the use of an
information wave function. International Journal of Theoretical Physics, 47,

X1X



XXii List of symbols

P momentum

g: position
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[': phase space of hidden states
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(¢|: element of the dual space H™, the space of linear continuous functionals on
H : a bra vector

(Yr1|wr,): Dirac braket, where ¥; denotes the complex conjugate of | and w
acts on the state function ;.

k: wave number

A(k): amplitude function of wave number k

(p): average momentum

@: quantum potential

P(.|C): conditional probability dependent on the context, C

D_ : mean forward derivative

D_: mean backward derivative

Some economics/linance symbols used in the book

o volatility
a (o). drift function of volatility
B (o ): diffusion function of volatility
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[T: portfolio value
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Physics concepts 1n social science? A discussion
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N

I.1 Newtonian mechanics

| [k I
p = — (1.10)
27 ¥ m T

Remark that v indicates the frequency expressed as the number of cycles per time
unit. Clearly, as is intuitive, the force constant £ and the mass m influence this
frequency. The position x(7) depends on this frequency v but also on the amplitude
A and phase ¢. They can be found from the system of equations:

where:

A Cﬂﬁfi? = Xxp, A ‘ﬂﬂ(}j — —U[]/JZJTU. (ll])

In the case of a particle in the three-dimensional case, the force f i1s a vector
=/, [, f;). Itis called conservative if there exists a (real) potential V(q), g =
| , , 3V . av v e , :
(x,y,2), suchthat f, = ==, f, = Ty f. = R We also recall the notion of

the gradient of a function V. This 1s a vector composed of its partial derivatives

and it 1s denoted as VV. Hence, a conservative force can be represented as the
“negative gradient” of the potential:

f=—VV. (1.12)

Although in this book we try to minimize mathematical details as much as
possible, we need to point out the theorem of the existence and uniqueness of the
solution of the equation (1.4) with the initial conditions (1.5). Such a problem, i.e.
an equation with 1nitial conditions, 18 called the Cauchy problem. This 1s one of
the basic mathematical problems of classical mechanics. The simplest version of
the aforementioned theorem is that if the force is described by a smooth function
f, 1.e. differentiable and with continuous derivative, and the derivative 1s bounded,
i.e. there exists a constant ¢ > 0 such that, for every g € R, | f'(q)] < c, then, for
any pair (gg, vg), a unique solution of the Cauchy problem exists (1.4), (1.5). This
mathematical theorem was the main source of the causal deterministic viewpoint

to classical mechanics: 1f we know the position and velocity of a particle at 1 = 1o,
deglt)
dt -~

then we can find them at any instantoftime t > 15 : g = g(t), v = v(1) =
Consider the following quote by Laplace [1]:

We ought to regard the present state of the universe as the effect of its antecedent state and
as the cause of the state that is to follow. An intelligence knowing all the forces acting in
nature at a given instant, as well as the momentary positions ot all things in the universe,
would be able to comprehend in one single formula the motions of the largest bodies



0 Classical, statistical, and quantum mechanics: all in one

as well as the lightest atoms in the world; provided that its intellect were sufficiently
powerful to subject all data to analysis; to it nothing would be uncertain, the future as well
as the past would be present to its eyes.

Later interpretations of quantum mechanics also leave the theoretical possibility
of such a super intellect contested.

This is a good example of how pure mathematics generates fundamental philo-
sophic principles. As it often happens in science, it 18 not easy to change philosophic
principles which have been established on the basis of some special mathematical
results and models. During Laplace’s lifetime, the theory of differential equations
had not yet been well developed. Nowadays, 1t 1s well known that the Cauchy
problem (1.4), (1.5) may have a non-unique solution even for continuous forces.
[f f is smooth, then the solution is unique only locally, i.e. for a small neighbor-
hood of the point (#y, xg). However, globally it can be non-unique. Hence, modern
mathematics does not imply determinism even in classical mechanics (see [2] for
usage of this argument in classical non-deterministic biological dynamics). We
also remark that if the dynamics of a particle 1s even deterministic, but unstable,
then a small disturbance of initial conditions, can change crucially the trajectory
of such a particle. In such a case, although the principle of determinism 1s formally
valid, it has no usage in real practice, since i1t 18 1mpossible to determine initial
conditions with infinite precision. This argument against the uncontrollable usage
of the principle of determinism 1n classical mechanics was presented by Blohinzev
[3] in his comparison of classical and quantum mechanics. In conclusion, we can
see from the above that Laplace’s causal determinism 1s indeed a mere prejudice.

Besides Laplace’s prejudice, we can also mention the Kantian prejudice which
says that physical space has to be identified with its Euclidean model [4]. This
prejudice was based on two-thousand years of Euclidean geometry. The first blow
to the Kantian views of physical space was given by Lobachevsky. However,
the genius of Einstein was needed to establish modern views of the geometry of
physical space.

The above discussion raises a reasonable recommendation: the reader may want
to veer close to mathematics and instead steer away from general physical, meta-
physical, and philosophic principles.

1.2 References

[1] See http://plato.stanford.edu/entries/determinism-causal and the reference contained
therein, cited as: Laplace, P. S. (1820). Essai philosophique sur les probabilités forming
the introduction to his Théorie analytique des probabilités, Paris: V. Courcier repr.
Truscott, F. W, and Emory, F. L. (1951). A Philosophical Essay on Probabilities.
Dover, New York.



1.3 The Hamiltonian formalism 7

(2] Conte, E., Federici, A., Khrennikov, A., and Zbilut, J. P. (2004). Is determinism the
basic rule in dynamics of biological matter? Proceedings of Quantum Theory: Recon-
sideration of Foundations. Series in Mathematical Modelling in Physics, Engineering
and Cognitive Science, 10, 639-678, Vixjo University Press, Sweden.

3] Blochinzev, D. 1. (1976). Elementary Quantum Mechanics. Nauka, Moscow
(in Russian).

(4] Kant, I. (2008). The Critique of Pure Reason. Penguin Classics, London.

1.3 The Hamiltonian formalism

To proceed from classical to quantum mechanics, one typically uses the Hamilto-
nian formalism for the description of the motion of classical particles. As usual, let
us introduce the momentum p = muv of a particle and consider phase space with
coordinates (g, p), where g 1s position. Points of the phase space are interpreted
as states of classical particles. We state again that, by Newton’s second law, to
determine the trajectory of a particle it 1 necessary to know both 1nitial position
go and the velocity vg. In particular, knowledge ot only position 18 not sufficient.
Therefore, 1t 18 natural to define the particle’s state as the pair (g, v). By scaling the
velocity by the particle’s mass, we introduce 1ts momentum, p, and equivalently
we represent the particle’s state as a pair (g, p).

We remark that the momentum’s definition can be expressed 1n the form of an
ordinary differential equation:

“a4_r (1.13)
dt m
Hence, Newton’s second law, (1.4), can be written as:
d dVv
Lt (1.14)
dt dqg
Let us introduce the following function on the phase space:
p?
H(g, p) = — + V(q). (1.15)

2m

H(.,.) 1s called the Hamiltonian function. This is the total energy of a particle
which moves under the action of the force induced by the potential V' and the
kinetic energy % The system of equations (1.13), (1.14) can be written as:

dg OH dp  OH

,, -, (1.16)
d1 dp dt 0q

This is the system of Hamiltonian equations. It is easy to prove that the energy is
preserved in the process of motion:

H(g(t), p(t)) = H(q(to), p(to)). (1.17)
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To prove this important fact (the law of energy conservation), it 1s sufficient to use
the basic rule for the differentiation of a composition of functions and then to apply
this rule to the system of Hamiltonian equations.

By using the Hamiltonian formalism, we can formulate a feature of classical
mechanics, which can be called locality. Let us consider a system consisting of N
particles with the three-dimensional coordinates q; = (x;, y;,2;),j=1,..., N
and corresponding momenta p;. The Hamiltomian function of a system of N
particles with masses m ; moving in the potential V(q, ..., gn) has the form:

N 2
p'.

Hig. p)=) 5=+ V(@) (1.18)
=1 <

whereg = (g1, ...,q9n), p = (p1, ..., pn). The above Hamiltonian gives the total
energy of this system composed ot N particles. The system of Hamiltonian equa-
tions describing the dynamics of this composite system can be written as:

dq; 9H(q,p) dp; (g,
da; _ 9Ha,p) dp; _ _H.p) . (1.19)
dt op; dt 04

Within the potential V, the interaction between different particles is described
by terms containing coordinates of a few particles. We can consider the interaction
between particles by writing for instance terms of the form g¢; ...gy (various
products of different coordinates). But let us consider now a potential which does
not contain interaction terms, V(g) = Vi(gq1) + - - -+ Vn(gn). The corresponding
system of Hamiltonian equations 1s:

daj _pi dpi OV

p— . :——}‘:1,...51'\"?. 120
dt m; di 0q / ( )

i)

This is a system of N-independent equations.

Hence, an important principle emerges from our discussion so far: Hamiltonian
mechanics is local, 1.e. in the absence of interaction between particles, such parti-
cles move independently of each other.

We remark that non-local motion, as is the case with for instance Bohmian
mechanics (see Chapter 6), has the following (paradoxical from the viewpoint of
our classical intuition) feature. In the absence of interaction, even for V = 0, the
dynamics of different particles are dependent on each other. Changing the state of
one particle (¢;, p;) induces changing the states (¢;, p;), i # j, of other particles.
In the classical world, we have never seen such a behavior of physical systems.

Let us introduce a mathematical tool which has a key role in the Hamiltonian
formalism. The Poisson bracket of two functions on the N-particle phase space,
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f(q,p),g(q, p), is defined as:

N

0f(q,p)dglq,p) 9f(q,p)og(q, p)
{f,g}=Z( ; S : ) (1.21)
Py q; Pj Ip; qj
As an example, consider functions f(q, p) = q;, g(q, p) = p;. Then:
{i_-'[”(ﬂ}:o,, {p;& p.ﬁ} = 0. (123)

By using the Poisson bracket, we rewrite the system of Hamiltonian equations
as:
dq; dpj

o = {q;, H}, a'r. = {pj, H}. (1.24)

This form of the Hamiltonian dynamics will be used to proceed from classical
Hamiltonian mechanics to quantum mechanics.

1.4 Statistical mechanics and the Liouville equation

In studying the dynamics of an ensemble of a huge number, say N particles, the
presence of the system of Hamiltonian equations plays merely a methodologi-
cal role. From as early as the nincteenth century until the 1960s, it was simply
impossible to solve this system for large N and non-trivial potentials. Nowadays
in principle one can solve it numerically and obtain millions of trajectories in the
phase space. However, 1t 18 not clear how one can use or visualize the results of
such computations. Already in the nineteenth century it was proposed that instead
of studying the trajectories of individual particles, 1t would be better to consider
the probability to find a particle in some domain, say W, of the phase space. Such
an approach meant in effect a move away from the deterministic description of
mechanics to a statistical description. Hence, the name staftistical mechanics was
coined to denote this particular area of study:.

Let us consider the phase space of the system of N particles, R*", with points
(g, p), where g =(q1,...,95), p = (pP1...., pn). What is the probability den-
sity function which indicates the probability to find the first particle at point g
with momentum p;, the sccond particle at point g, with momentum p», ...,
the Nth particle at gy with momentum py? Since momenta are mass scalings
of velocities, the question can be reformulated as: “What 1s the probability den-
sity function of the first particle at point g; with velocity v, the second parti-
cle at point g» with velocity va, ..., the Nth particle at gy with velocity vy ?”
We state that mathematically a probability density 1s a function p(g, p) which 1s
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another, capitalism — socialism — communism. Even Sigmund Freud’s psy-
chological determinism was created under the influence of classical mechanics.
In [2], we can read about Freud’s psychoanalysis: “What 1s attractive about the
theory, even to the layman, 1s that it seems to offer us long sought-after and much-
needed causal explanations for conditions which have been a source of a great deal
of human misery. The thesis that neuroses are caused by unconscious conflicts
buried deep 1n the unconscious mind in the form of repressed libidinal energy
would appear to offer us, at last, an insight in the causal mechanism underlying
these abnormal psychological conditions as they are expressed in human behav-
1or, and further show us how they arc related to the psychology of the ‘normal
person” (see also [3]). Furthermore, [3] mentions that “In psychology, those, like
Freud, who believe 1n psychic determination in psychiatry, assume that all men-
tal events have causes. Freud believed that the existence of unconscious forces
proved psychic determinism to be a fact of mental life. .. he regarded psycho-
analysis as a science based on causal-deterministic assumptions.” See [4] [S] for
an attempt to combine Freudian psychological determinism and free will through
the Bohmian quantum model. See also Chapter 6 for the Bohmian mechanics
model.
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1.7 Classical fields

The completion of the theory of classical mechanics of particles was performed
via the introduction of the notion of the classical mechanics of fields, 1.e. classical
freld theory — the local deterministic theory of the electromagnetic field. The field’s
state (at the instant of time ¢) is given by the vector:

P(t,x,y,2)) = (E(t,x,y,2), B(t,x,y,2)), (1.31)
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where:
E(t,x,y,z) = (E(t,x,y,2), Ex(t,x, y,2), E3(t,x, y,2)) (1.32)
and:
B(t,x,y,z) =(Bi(t,x,y,z), Bx2(t, x, y,2), B3(t,x, y,2)) (1.33)

are electric and magnetic fields, respectively. The dynamics of the electromagnetic
ficld also can be described by the Cauchy problem (1.e., a dynamical equation
combined with 1nitial conditions):
IP(t, x,y,2)
dt
where L 1s a differential operator of the first order with partial derivatives with

= L(¢(t,x,y,2), ¢(to, x,y,2) = ¢o(t,x,y,2), (1.34)

respect to coordinates. At the moment, its form 1s not important. This operator was
found by Maxwell. We remark that the system of Maxwell equation (1.34) can be
written as a Hamiltonian system with respect to field components |1]. The electric
component plays a role of position, ¢g(t, x, v, z) = E(t, x, v, z), and the magnetic
component plays a role of momentum, p(¢, x, y, z) = B(t,x, vy, z). What is the
phase space of this field system? The energy of the electromagnetic field (at the
fixed instant of time) is given by the integral:

E(E,B) = f (E*(x,y,2)+ B*(x, y,2)dxdydz. (1.35)
R?

Since this integral i1s finite, the field’s position g(x, v,z) = E(x, v, z) and the
field’s momentum p(x, v, z) = B(x, y, z) have to be square integrable (integrals
of squared functions are less than infinity). By using mathematical analogy, we can
see E relates to a real potential — B? relates to kinetic energy — in the non-field
setting. Denote the space of square integrable functions by L,. Thus, the field’s
phase space is the Cartesian product of two Lj-spaces: L, X Ls.

The electric and magnetic components can be combined 1n a single complex
valued field ¢ = E 4+ iB. This 1s well known (in classical signal thecory) as the
Riemann—Silberstein representation of the classical electromagnetic field. This rep-
resentation induces the complex structure on the phase space, ¢ = g + ip, where
all functions depend on spatial coordinates.” This is equivalent to the consideration
of the space H of square integrable complex valued functions:

H = {qb : / d(x, v, 2)|*dxdydz < o0} . (1.36)

 This complex representation of the classical electromagnetic field was in usage before the creation of quantum
mechanics. Nowadays, little attention 1s paid to this historical fact. The fathers of quantum mechanics, including
Schridinger, were well aware of the Riemann—Silberstein representation. Originally, the complex wave function
was invented merely as an analogue of the complex (classical) electromagnetic field.
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1.9 The Born—-Sommerfeld quantization

Contrary to what could be expected, the first steps towards edifying quantum
mechanics were not revolutionary at all! We note that those first steps were not
at all accompanied by a fundamental change 1n the philosophical foundations of
science. The story started with a graph representing experimental data, and it
contained a spike, which from the viewpoint of classical mechanics was quite
difficult to explain. The experimental graph turned out to be about black body
radiation and it was Max Planck who found that the spike could be explained 1in
a classical statistical mechanics framework, but it required one novel assumption:
radiation is emitted not continuously, but by discrete portions. Purely formally
the energy space was decomposed 1nto cells. The size of a cell depends on the
frequency v of the oscillations of the electromagnetic field. Max Planck postulated
that dependence on the frequency 1s linear and the coefficient does not depend on
the frequency:

AE, = hv. (1.37)

This coefficient of proportionality was later called Planck’s constant. Since the fre-
quency has dimension [/time, the Planck constant 1s expressed in units of “energy X
time.” This 18 the dimension of the classical physical variable called action. This
constant was measured with very good precision:

h ~ 6.6260693(11) x 107°* J x sec. (1.38)

The decomposition of the energy space into small cells and the summation over
cells is similar to the standard procedure of forming Riemann sums.? To calculate
the Riemann integral, the size of cells has to go to zero. However, Planck did not
make this last step and wrote the answer using cells of a finite size (proportional to
h). We note that in quantum folklore, one can find a story that Max Planck obtained
the correct answer, because he simply did not know that in order to calculate
Riemann’s integral one has to consider that the limit of the cell’s size goes to zero.

We remark that the tool of discretization of the energy space was not as novel
as it 1s typically presented in textbooks on quantum mechanics. It was actually
rather standard in classical statistical mechanics! In particular, Boltzmann used

4 These sums are used in the construction of the Riemann integral.
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discretization €, 2¢, ..., ne, ..., where € was a "minimal quant” of energy. This
18 maybe the reason why the work of Planck was very welcome 1n the classical
statistical community: nobody considered the introduction of a parameter of energy
discretization as an attack against classical statistical mechanics!

The discretization parameter & ceased to be merely a parameter only after
Einstein’s work [1] (1905). In his work, Einstein claimed that A E, = hv 1s not
just a minimal portion of energy which can be transmitted for the frequency v,
but that even in the absence of interaction of the electromagnetic field and matter,
the field 1s “quantized,” i.e. it is split into a collection of quanta of lights. Later
these quanta were called photons. Thus, 1n opposition to classical field theory, the
clectromagnetic fiecld has to be decomposed into an ensemble of photons, 1.c. it has
corpuscular features.’

The next step towards quantum theory was performed on the basis of Bohr's
quantization condition. We want to explicitly state that in classical Hamiltonian
mechanics, the energy is preserved on each trajectory (see (1.17)). Suppose now
that there exist constraints (of an unknown nature) which forbid some motions
and some trajectories, and that the system can move only via a discrete set of
trajectories. Denote those possible trajectories (consistent with the constraints) by:

Vis oo s Vg o os (139)

Since the energy 1s constant on each of them, we obtain a discrete set of possible
energies:

El :E(:Vl)? EEZE(FE):”-:EH :E(:VH) (140)

This idea was explored by Niels Bohr in his model of the atom. It was known from
experiments that atoms can emit and absorb energy only by quantized portions.
Bohr proposed a model describing this feature of atoms. In this model, the electron
18 a classical-like particle which moves around the nucleus. However, in such a
motion a purely classical charged particle would continuously emit radiation and
lose energy. Finally, it would fall onto the nucleus. This was one of the main
unsolved problems of classical electrodynamics. Bohr postulated that an electron
can move only on a discrete sct of orbits (1.39) and hence its energy can take
only a discrete series of values (1.40). Since an electron can only jump from
one orbit to another, the atom can emit (absorb) only discrete portions of energy
AE;; = E; — E;. To match experimental data, Bohr postulated that the frequency

> There is a piece of irony in this story. Although Albert Einstein introduced quanta of light and hence in this way
he made the first step towards modern quantum theory, later (in the 1920s) he gave up and until the end of his
lite he worked to create a classical field theory which would describe quantum phenomena.
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v of emitted (absorbed) electromagnetic radiation 1s determined by Planck’s law:

AE;; = E;, — E; =hv. (1.41)
Since these frequencies were known from experiment, he could find energy spacing
in the atom. Bohr was also able to “derive” energy spacing even theoretically and he
obtained a key result which indicates that the angular momentum L of an electron
is to be an integer multiple of 7z

/
L = n— = nfi, (1.42)
27T
where n = 1,2, 3, ...1s the quantum number, and 2 = h/27x.

Bohr’s quantization condition (1.42) determining the electron’s orbits in the
atom was generalized to the famous Bohr—Sommerfeld quantization rule (which
also had been postulated):

f pdqg = hn, (1.43)
y

L

where y,, 1s the permitted orbit corresponding to a natural number n. In the original
Bohr model, only circular orbits were permitted; in the Bohr—Sommerfeld model
orbits can be elliptic.

Thus, the first step towards quantum theory was the recognition that some phys-
1cal quantities, first of all energy, which were considered as continuous 1n classical
mechanics, are fundamentally discrete. Discreteness by itself is less fascinating.
However, the concept 1s fascinating, and even mystical, when it is combined with
the wave features of the systems under consideration (sec below). Photons are
mystical not because they have corpuscular features,® but because these features
are combined with wave behavior. As was shown 1n the famous experiment on the
interference of quantum light (see Chapter 5, Section 5.3), photons did not lose
their wave features. They interfere as usual waves. “Quantumness” was exhibited
by the detection procedure. As a consequence of the discreteness of energy in
experiments on quantum interference, one registers not intensities of signals and
interference of these intensities, but rather clicks of detectors which are “eating”
discrete portions of energy. The probability density of the number of clicks presents
the interference picture similar to the ordinary wave interference.

6 Already Newton invented corpuscles of light.
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was trivial by 1ts very mathematical nature, but it turned out to play a fundamental
role 1n the further development of quantum theory.

Consider the notion of the Hermitian matrix A = (a;;). 1ts elements satisfy
the condition a;; = a;;, where, for a complex numbera = a; +i1ax, a = a; —ia
denotes its conjugate. Heisenberg identified discrete values of physical observables
with eigenvalues of Hermitian matrices. In Heisenberg’s approach, all physical
observables have to be represented by Hermitian matrices.

As is well known from linear algebra,'”
n X n, can be diagonalized in the basis consisting of eigenvectors corresponding

any Hermitian matrix of finite size,

to 1ts eigenvalues (eigenvalues are real numbers and eigenvectors are orthogo-
nal). However, matrices in quantum theory are of infinite size. We shall explain
later 1n the book why one cannot proceed with matrices of finite size. In such
a case, some Hermitian matrices cannot be diagonalized. Besides eigenvalues,
their spectra can contain a non-discrete part. It can even happen that there are no
eigenvalues at all, and then such spectra are called continuous. This mathemat-
ical formalism matches the physical situation: some physical observables, such
as the particle’s position and momentum, are still continuous (as it is in classical
mechanics).

1.13.1 Canonical commutation relations

Heisenberg performed a formal translation of classical Hamiltonian mechanics
(in which observables were given by functions on the phase space) into a new
type of mechanics (quantum mechanics), in which observables are represented by
Hermitian matrices. He correctly noted the crucial role the Poisson brackets could
play 1in classical formalism. They are defined for any pair of classical observables,
f1, f>. We remark that Poisson brackets are antisymmetric { f1, f»} = —1{f2, f1}.
A natural operation on the set of Hermitian matrices corresponding to Poisson
brackets 1s the commutator of two matrices:

A, Ayl = A1Ay) — Ar Ay, (1.44)

defined with the aid of standard matrix multiplication. Note that the commutator 183
anti-symmetric as well. The transformation of the usual multiplication of functions
into matrix multiplication was the great contribution of Heisenberg towards the
creation of quantum formalism. Starting with the classical position and momentum
observables g;, pr (coordinates on the phase space) and the equalities for their
Poisson brackets, see (1.22), (1.23), he postulated that corresponding quantum
observables denoted by §;, p; (hats are used to distinguish classical and quantum

10 Please see Chapter 4 where various linear algebra concepts are dealt with in more detail.
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observables, functions and matrices) have to satisty the following commutation
relations:

[G;.4x] =0, [pj, pr] =0, (1.40)

where 7 1s the unit matrix. These commutation relations were called the canonical
commutation relations. The appearance of i in the non-trivial commutator 1s not
surprising. One cannot simply borrow the relation (1.22) and put the unit matrix
I, instead of the constant function f = 1, on the phase space. Take two Hermitian
matrices A; and A, and form their commutator B = [A{, A-»]. The latter 1s a skew-
Hermitian, i.e. its elements satisfy the condition b;; = —531-. However, the unit
matrix 1s simply Hermitian; by multiplying it by ¢, we obtain a skew-Hermitian
matrix i /. The Planck constant /2 in (1.45) plays a role of scaling factor (the scale
of energy for micro-systems under consideration). One can say that Heisenberg
introduced a non-commutative phase space.

1.13.2 Schrodinger’s representation

Later Schrodinger tound a concrete representation for the quantum observables of
position and momentum, and nowadays authors of textbooks typically simply start
with this (Schrodinger) representation. However, this may give the impression that
Schrodinger’s concrete choice of the operators of position and momentum ¢;, p;
played a primary role in the derivation of the canonical commutation relations.
This was not the case. As was pointed out, Heisenberg really started with classical
Poisson brackets on the phase space variables. As was mentioned in Section 1.11,
Schrodinger considered the wave function of a quantum system as a real physical
wave. Therefore, we work in the space L, (IR?) of square integrable complex valued
functions ¢ : R? — C, i.c.:

f Y (q)*dg < . (1.47)
'E_a

For a shorter notation, one can set H = L,(R?). This is a complex Hilbert space
with the scalar product:

(W1, Yn)(= (YY) = (g )va(q)dq. (1.48)

[
We note that the Hilbert space 1s defined in Chapter 4, Section 4.3. Contrary
to Heisenberg, Schrodinger worked with operators (and not matrices), 1.e. he
considered a more general framework. For simplicity, we consider here the
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one-dimensional case, i.e. of a particle moving on the real line. Here H = L,(IR).
He introduced the operators of position and momentum:

Y (q)
g

qv(q) = q¥(q), py(q) = —il (1.49)

The result of the action of the position operator on the square integrable function
v (q) (vector in H) leads to another function, ¢ — g¥(g). In the same way, the
momentum operator p transforms ¥ (g) into its derivative, up to the constant factor
—ih. Formally, we can write:

d

qg—=¢q, p—=—ith—. (1.50)

dq
We remark that // was considered by Schrodinger as the space of classical fields.
See also Section 1.7 and especially (1.36). Thus, originally the appearance of the
complex Hilbert space to represent operators ot position and momentum was just
the operator reformulation of the theory of classical fields and signals. Of course,
this 1s correct only with respect to views relative to Schrodinger, but not at all
relative to Heisenberg or Bohr.

1.13.3 Heisenberg’s dynamics

Finally, Heisenberg put operators satisfying the canonical commutation relations
in the system of the Hamiltonian equation (1.24), instead of the classical phase
space variables. In this way, he derived the basic equations of quantum dynamics:
d9; _ 1o ‘zi; - ;:[ﬁj,m, (1.51)
where 7{ is a Hermitian matrix representing the energy observable. It 1s called
the quantum Hamiltonian. Thus, classical and quantum dynamics have the same
form, cf. (1.24) and (1.51). However, the variables have different physical mean-
ings and mathematical representations. In (1.24), the “position” and “momentum”™
are real valued functions; in particular they commute. In (1.51), the “position”
and “momentum’™ are Hermitian operators (which can be represented by infinite
Hermitian matrices); they satisty the canonical commutation relations. In classical
mechanics, the position and momentum are interpreted as objective properties ot
systems. In quantum mechanics, these are observables which cannot be considered
as objective properties of quantum systems.
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1.13.4 Quantization procedure

How can one find such a Hamiltonian? Consider the classical Hamilton function
of the form (see also Section 1.3):

2

Hig. p) = 5—+ V(). (1.52)

where V is a polynomial function, e.g. V(q) = kq? and k is a real constant. Then
one can construct the corresponding Hermitian matrix, 1.e the quantum observable,
by formally putting matrices ¢ and p in the classical Hamiltonian function, instead
of classical variables. For the aforementioned potential, we obtain:

- 1 ,:,
H = — p> + k>, (1.53)

2m

If the potential is not a polynomial, then the mathematics are more complicated.
The operator theory and Schrodinger’s representation of the canonical commutation
relations have to be used, see Section 1.13.1. The main problem arises for classical
observables, functions on the phase space, which contain products of position and
momentum variables, ¢.2. f(g, p) = gp. In principle, we can form a family of
matrix expressions corresponding to this function, f =agp+ Bpg, where a, B
are real numbers, o + g = 1. However, we obtain the Hermitian matrix only for
o =pB=1/2, f =(Gp+ p§)/2. This rule is known as the Weyl quantization."'

If one uses the Schrodinger’s representation of the canonical commutation rela-
tions, i.e. (1.50), the quantum Hamiltonian, (1.52), can be written as:

12 52

H = — - V(q),
2m Hsz (@)

where V(g) 1s the operator of multiplication by the function V(g) in the space
of square integrable functions, namely ¥ (g) — V(g )¥(q). Thus, in Schrodinger’s
representation all Hamiltonians are simply partial ditterential operators.

In general, quantization has the meaning of a transition from functions on the
phase space, f(g, p), to Hermitian matrices or more generally operators, by using
operators of position and momentum, instead of corresponding classical variables.
[t 1s important to stress that there 1s no “reasonable explanation™ for such a formal
procedure which 1s required when transiting from classical physical quantities to
quantum physical quantities. However, it works well.

We remark that one of the problems in the application of quantum formalism to
social sciences (such as economics, finance, psychology, and cognitive science) 18
that, roughly speaking, we do not have classical (such as Newtonian or Hamiltonian)

'l Let (g, p) = g° p. Find the corresponding matrix representation.
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mechanics. In other words, we do not have classical quantities which we can
automatically quantize. Therefore, the majority of quantum-like quantities used in
the aforementioned domains of science are phenomenological. They are invented
by analogy with quantum theory. Hence, and we need to emphasize this, we do
not start with a classical model and then quantize it, but we directly mimic the
quantum approach. This forms one of the important problems of the quantum-like
approach. One possible solution of this problem consists in using phenomenological
Hamiltonians.

1.14 Heisenbergian symbolism in physics: a version of symbolism in art

Heisenberg’s approach to micro-phenomena was really symbolic (operational).
Heisenberg was not able to present physical reasons (in the classical meaning)
for the introduction of matrices, instead ot functions on the phase space. His
calculus was useful to encode observed energy levels 1n the spectra of Hermitian
matrices, but nothing more.'* Nevertheless, this symbolic approach has been very
fruittul and it played a key role. The history of the creation of quantum mechanics
18 an interesting subject for some social scientists. The main positive impact of
Heisenberg’s symbolic approach was the novelty in the description of physical

phenomena. In fact, this was not a detailed and realistic description as in classical

physics, but instead a fuzzy (operational) description of results of measurements.
We should also mention Bohr’s contribution who emphasized the role of the so-
called experimental context. For him, it was meaningless to speak about an object
outside of the concrete measurement context. The main negative impact was the
ageressive anti-classical attitude. From the very beginning, Heisenberg claimed that
his symbolic (operational) description of experimental data for micro-systems could
not be derived on the basis of a finer classical-like model of micro-reality. Moreover,
he and Bohr strongly advertised the viewpoint Mach held that it is meaningless
even to try to create such models, since such an activity belongs to the domain of
metaphysics and not real physics.'® One could say that Heisenberg and Bohr were
not correct, since a number of “prequantum’ (classical-like) models reproducing
results of quantum experiments have been created, for example Bohmian mechanics
(see Chapter 6) and stochastic electrodynamics. However, 1t is clear that Heisenberg
and Bohr would not agree with such a statement, as for them “prequantum models”™
are metaphysical.

The behavior and writings of Heisenberg and especially Bohr remind us very
much of the manifestos of symbolism and futurism. Please see [ 1] [2].

'> We note that to find theoretically these levels, one has to use Schrédinger’s approach.

'3 This is a good place to recall that Mach intensively attacked Boltzmann by claiming that. since molecules
are not observable (as was the case at that time). they are metaphysical creatures and hence they have to be
excluded from real physical theory. Mach’s attacks against Boltzmann’s realism may have played a role in
Boltzmann's tragic death.
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additional variables which might improve the quantum description. Nowadays,
such variables are known under the name hidden variables. When this term was
coined, the idea was that position and momentum were known. What was hidden
was only the pair of those variables, 1.e. a point of the phase space. The complete-
ness of quantum mechanics implies that determinism cannot be recovered through
a finer description. Thus, instead of the symbolic dynamics of Hermitian matrices,
a more detailed dynamics, e.g2. 1n space time, cannot be constructed.

We state again that one has to distinguish determinism as a general philosophic
principle from its applications to real phenomena. As was remarked, even in clas-
sical mechanics determinism can be violated by dynamics with some (continuous)
forces f(g). Morcover, the initial conditions (position and velocity) cannot be
determined with infinite precision. If the dynamics are unstable, a small pertur-
bation can change the trajectory crucially. In this case, the principle of deter-
minism has merely a theoretical value.” For an ensemble consisting of a huge
number of particles, in practice we can operate only with probabilities and the
dynamics will be given by the Liouville equation. The fact of the existence of the
underlying Hamiltonian mechanics has merely a metaphysical value: positions and
momenta can be really assigned to individual particles and these quantities can be
imagined as evolving in space independently of our measurements. By the Bohr—
Heisenberg approach, it is sufficient to operate only with probabilities for results of
measurcments.

A reader may be curious and ask the following question: “Why do we need all
these philosophic considerations on the completeness of quantum mechanics?” 1he
main problem 1s that we want to use quantum mathematics without having to share
the views of Bohr and Heisenberg, 1.¢. the so-called Copenhagen interpretation
of quantum mechanics. Our position 1s that we consider Heisenberg’s discovery
as merely a discovery of a new mathematical formalism describing results of
measurements for systems characterized by a high sensitivity to external influences.
The reader can hopefully understand our dilemma: we want to use the total power
of the quantum operational (symbolic) approach and at the same time we do not
want to give up realism. The latter 1s very important for us. The very subject of this
book is tied to this position we adopt. We plan to apply quantum mathematics to
social and cognitive phenomena. We cannot forget (even if we wished) that these
phenomena are based on classical physical processors of information, the brains
(individual and collective).

1> We remark that classical mechanical determinism is rigidly coupled to the mathematical model of space-time,
namely to the real continuum. The states of classical systems are given by pairs of real numbers (or by pairs of
real vectors). The infinite divisibility of this space plays an important role, cf. with p-adic spaces which have
been recently used in theoretical physics [3].



