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INTRODUCTION

In this book we explore using Racket (a

language descended from the Scheme fam-
ily of programming languages—which in turn

descended from Lisp) and DrRacket, a graphi-

cal environment that allows us to make the most of all
the features of Racket. One of the attractive features
of this ecosystem is that it’s equipped with a plethora
of libraries that cover a wide range of disciplines. The
developers describe Racket as a system that has “bat-
teries included.” This makes it an ideal platform for
the interactive investigation of various topics in com-
puter science and mathematics.

Given Racket’s Lisp pedigree, we would be remiss to omit functional
programming, so we will definitely explore it in this text. Racket is no one-
trick pony though, so we will also explore imperative, object oriented, and
logic programming along the way. Also on the computer science front, we
will look at various abstract computing machines, data structures, and a
number of search algorithms as related to solving some problems in recre-
ational mathematics. We will finish the book by building our own calcula-




tor, which will entail lexical analysis using regular expressions, defining the
grammar using extended Backus—Naur form (EBNF), and building a recur-
sive descent parser.

Racket

Racket features extensive and well-written documentation, which includes
Quick: An Introduction to Racket with Pictures, the introductory Racket Guide,
and the thorough Racket Reference. Various other toolkits and environments
also have separate documentation. Within DrRacket these items can be ac-
cessed through the Help menu.

Racket is available for a wide variety of platforms: Windows, Linux, mac-
OS, and Unix. It can be downloaded from the Racket website via the link
https.//download.rackel-lang.org/. Once downloaded, installation simply en-
tails running the downloaded executable on Windows, .dmg file on macOS,
or shell script on Linux. At the time of writing, the current version is 7.8.
Examples in the book will run on any version 7.0 or later. They will likely
run on earlier versions as well, but since the current version is freely avail-
able there is really no need to do so. When the DrRacket environment is
first launched, the user will be prompted to select a Racket language variant,
The examples in this book all use the first option in the pop-up dialog box
(that is, the one that says “The Racket Language”).

The DrRacket window provides a definitions pane (top pane in Figure 1)
where variables and functions are defined and an interactions pane (bottom
pane in Figure 1) where Racket code can be interactively executed. Within
these panes, help is a single keypress away. Just click on any built-in function
name and press F1.

The definitions window contains all the features one expects from a ro-
bust interactive development environment (I1DE) such as syntax highlighting,
variable renaming, and an integrated debugger.

Racket enthusiasts are affectionately known as Racketeers (catchy, ehr).
Once you've had an opportunity to explore this wonderful environment,
don’t be surprised if you become a Racketeer vourself,



) Untitled - DrRacket - O X
File Edt View Language Racket Insert Scripts Tabs Help

Untitledv (define ..)v Dy Pl 8Pl runp stop

#$lang racket

Welcome to DrRacket, version 7.2 [3m].
Lall'lgl.lage: racket, with debugging, memory limit: 128 MB.
>

Determine language from source v 32 41687MB %@

Figure 1: DrRacket IDE

Conventions Used in This Book

DrRacket supports a number of programming and learning languages. In
this book we focus exclusively on the default Racket language. Thus, unless
otherwise stated, all definition files should begin with the line

#lang racket

Code entered in the definitions section will be shown in a framed box as
above.

Expressions entered in the interactive pane will be shown prefixed with
a right angle bracket > as shown below, The angle bracket is DrRacket’s in-
put prompt. Outputs will be shown without the angle bracket. To easily dif-
ferentiate inputs and outputs, inputs will be shown in bold in this book (but
they are not bold in the IDE).

> (# 12 3) ; this is an input, the following is an output
6

Inroducion  XXi
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We occasionally make use of some special symbols that DrRacket sup-
ports, such as the Greek alphabet (for example, we may use # as an identifier
for an angle). These symbols are listed in Appendix B. The method used to
enter these symbols is also given there. If you're typing the examples in by
hand and don’t want to use the special symbols, simply substitute a name of
your choosing: for example use alpha instead of a.

An example of a program listing entered in the definitions window is
shown below.

#lang racket

(define (piscis x y r b)

(let* ([y (- y 1)]
2r (* 2 1)]
(yi (sqrt (- (sqr r) (sqr x)))] ; y-intersection
7 pi]
O [& (asin (/ yi 1))]
@ [0 (- 7))
® [path (new dc-path%)])

(send dc set-brush b)
© (send path move-to 0 (- yi))
® (send path arc (- x 1) yrar 0 (+ m 0))
® (send path arc (- (- x) r) y 2r 2r (- @) @)
@ (send dc draw-path path)))

We'll use Wingdings symbols such as @ to highlight interesting portions
ol the code.

Who This Book Is For

While no prior knowledge of Racket, Lisp, or Scheme is required, it wouldn’t
hurt to have some basic programming knowledge, but this is certainly not re-
quired. The mathematical prerequisites will vary. Some topics may be a bit
challenging, but nothing more than high school algebra and trigonometry is
assumed. A theorem or two may surface, but the treatment will be informal.

About This Book

If you're already familiar with the Racket language, feel free to skip (or per-
haps just skim) the first couple of chapters as these just provide an introduc-
tion to the language. These early chapters are by no means a comprehensive
encyclopedia of Racket functionality, The ambitious reader should consult
the excellent Racket Documentation for fuller details. Here is a brief de-
scription of each chapter’s content.

Chapter 1: Racket Basics Gives the novice Racket user a grounding
in some of the basic Racket concepts that will be needed to progress
through the rest ol the book.



Chapter 2: Arithmetic and Other Numerical Paraphernalia De-
scribes Racket's extensive set of numeric data types: itegers, true ra-
tional numbers, and complex numbers (to name a few). This chapter
will make the reader adept at using these entities in Racket.

Chapter 3: Function Fundamentals Introduces Racket's multi-
paradigm programming capability. This chapter introduces the reader
to both functional and imperative programming. The final section will
look at a few fun programming applications.

Chapter 4: Plotting, Drawing, and a Bit of Set Theory Introduces in-
teractive graphics. Most IDEs are textual only; DrRacket has extensive
capability for generating graphical output in an interactive environment.
This chapter will show vou how it's done.

Chapter 5: GUI: Getting Users Interested Shows how to construct
mini graphics applications that run in their own window.

Chapter 6: Data Explores various ways of handling data in Racket. It
will discuss how to read and write data to and from files on your com-
puter. It will also discuss ways to analyze data using statistics and data
visualization.

Chapter 7: Searching for Answers Examines a number ol powerful
scarch algorithms. These algorithms will be used to solve various prob-
lems and puzzles in recreational mathematics.

Chapter 8: Logic Programming Takes a look at another powerful pro-
gramming paradigm. Here we explore using Racket’s Prolog-like logic
programming library: Racklog.

Chapter 9: Computing Machines Takes a quick look at various ab-
stract computing machines. These simple mechanisms are a gateway
into some fairly deep concepts in computer science.

Chapter 10: TRAC: The Racket Algebraic Calculator Leverages skills
developed in the previous chapters to build a stand-alone interactive
command line calculator.

Introduction XX



Copyrighted material



RACKET BASICS

Let’s begin with an introduction to some

basic concepts in Racket. In this chapter,
we'll cover some of the fundamental data

types that will be used throughout the book.

You'll want to pay particular attention to the discus-
sion of lists, which underpin much of Racket’s func-
tionality. We'll also cover how to assign values to vari-
ables and various ways to manipulate strings, and
along the way, you'll encounter a first look at vectors
and structs. The chapter wraps up with a discussion
on how to produce formatted output.

Atomic Data

Atomic data is the basic building block of any programming language, and
Racket is no exception. Atomic data refers to elementary data types that
are typically considered to be indivisible entities; that is, numbers like 123,
strings like "hello there”, and identifiers such as pi. Numbers and strings



Lists

evaluate to themselves: if bound, identifiers evaluate to their associated
value:

> 123
123

> “"hello there"
"hello there”

> pi
3.141592653589793

Evaluating an unbound identifier results in an error. To prevent an un-
bound identifier from being evaluated, you can prefix it with an apostrophe:

> alpha
. alpha: undefined;

cannot reference an identifier before its definition

> 'alpha
‘alpha

We can organize atomic data together using lists, which are covered
next.

In Racket, lists are the primary non-atomic data structures (that is, some-
thing other than a number, string, and so on). Racket relies heavily on lists
because it’s a descendant of Lisp (short for LISt Processing). Before we get
into the details, let’s look at some simple representative samples.

A First Look at Lists

Here's how to make a list with some numbers:

> (list 1 2 3)

Notice the syntax. Lists typically begin with an open parenthesis, (, fol-
lowed by a list of space-separated items and end with a closed parenthesis, ).
The first item in the list is normally an identifier that indicates how the list is
to be evaluated.

Lists can also contain other lists.

> (list 1 (list "two" "three") 4 5)

which prints as

‘(1 ("two" "three") 4 5)




Note the apostrophe (or tick mark) at the beginning of the last example.

This is an alias for the quote keyword. If you want to enter a literal list (a list
that is simply accepted as is), you can enter it guoted:

> (quote (1 ("two" "three") 4 5))

Or

> "(1 ("two" "three") 4 5)

Either of which print as

"(1 ("two" “"three") 4 5)

While 1ist and quote seem like two equivalent ways to build lists, there’s
an important difference between them. The following sequence illustrates
the difference.

> (quote (3 1 4 pi))
(314 pi)

> (list 3 1 4 pi)
"(3 1 4 3.141592653589793)

Notice that quote returns the list exactly as it was entered, but when list
was used, the identifier pi was evaluated and its value was substtuted in its
place. In general, in a non-quoted list, all identifiers are evaluated and re-
placed by their associated values. The keyword quote plays an important role
in macros and symbolic expression evaluation, which are advanced topics
that we will not cover in this text.

One criticism of the Lisp family of languages is the proliferation of pa-
rentheses. To alleviate this, Racket allows either square brackets or curly
brackets to be used instead. For example, it's perfectly acceptable to write
the last expression as

> "(1 ["two" “"three"] 4 5)

or

> (1 {"two" “"three"} 4 5)

S-Expressions

A list is a special case of something called an s-expression. An s-expression (or
symbolic expression) is defined as being one of two cases:

Case 1 The s-expression is an atom,

Case 2 The s-expression is expression of the form (x . y) where x and
y are other s-expressions.

Rocket Basics 3



The form (x . y) is typically called a pair. This is a special syntactic form
used to designate a cons cell, which we will have much more to say about
shortly.

Let’s see if we can construct a few examples of s-expressions. Ah, how
about 17 Yes, it's an atom, so it satisfies case 1. What about "spud”? Yep,
strings are atoms, and thus "spud” is also an s-expression. We can combine
these to make another s-expression: (1 . "spud"), which satisfies case 2. Since
(1 . "spud") is an s-expression, case 2 allows us to form another s-expression
as ((1 . "spud”) . (1 . "spud")). We can see from this that s-expressions
are actually tree-like structures as illustrated in Figure 1-1. (Technically s-
expressions form a binary tree, where non-leal nodes have exactly two child

nodes).

Figure 1-1: ((a . (2 . pi) . x))

In Figure 1-1, the square boxes are leaf nodes representing atoms, and
the circle nodes represent pairs. We'll see how s-expressions are used to con-
struct lists in the next section.

List Structure

As mentioned above, a list is a special case of an s-expression. The difference
is that, in a list, if we follow the rightmost elements in each pair, the final
node is a special atomic node called nil. Figure 1-2 illustrates what the list

'(1 2 3)=which as an s-expression is (1 . (2 . (3 . nil)))=looks like inter-
nally.

car cdr

' v

nil

I 2 3
Figure 1-2: List structure

We've flattened the tree to better resemble a list. We've also expanded
each pair node (aka a cons cell) to show that it consists of two cells, each of
which contains a pointer to another node. These pointer cells, for historical
reasons, are called car and cdr respectively (the names ol computer registers



used in early versions of Lisp). We can see that the last cdr cell in the list is
pointing to nil. Nil is indicated in Racket by an empty list: *() or null.

Cons cells can be created directly by using the cons function. Note that
the cons function does not necessarily create a list. For example

> (cons 1 2)
"(1.2)

produces a pair but not a list. However, if we use an empty list as our second
s-expression

> (cons 1 '())

(1)

we produce a list with just one element.
Racket provides a couple of functions to test whether something is a list
or a pair. Note in Racket #t means true and #f means false:

> (pair? (cons 1 2))
#t

> (list? (cons 1 2))
#f

> (pair? (cons 1 '()))
#t

> (list? (cons 1 '()))
#t

From this we can see that a list is always a pair, but the converse is not
always true: a pair is not always a list.

Typically, cons is used to add an atomic value to the beginning of a list,
like so:

> (cons 1 '(2 3))
(12 3)

Racket provides special functions to access the components of a cons
cell. The function car returns the item being pointed to by the car pointer,
and correspondingly the cdr function returns the item being pointed to by
the cdr pointer, In Racket the functions first and rest are similar to car and
cdr but are not aliases for these functions, since they only work with lists. A
few examples are given below.

> (car '(1 ("two" “three”) 4 5))
1

> (first '(1 ("two" "three") 4 5))
1

Rocket Basics 5



> (cdr "(1 ("two" “three") 4 5))
"(("two" "three") 4 5)

> (rest "(1 ("two" "three") 4 5))
"(("two" "three") 4 5)

List elements can also be accessed with the functions second, third, ...,
tenth.

> (first '(1 2 3 4))
1

> (second '(1 2 3 4))
2

> (third '(1 2 3 4))
3

Finally, a value at any position can be extracted by using list-ref.

> (list-ref "(a b c) 0)
‘a

> (list-ref "(a b c) 1)
'b

The list-ref function takes a list and the index of the value you want,
with the list coming first. Notice that Racket uses zero-based indexes, meaning
for any sequence of values, the first value has an index of 0, the second value
has an index of 1, and so on.

A Few Useful List Functions

Let’s quickly go through a number of useful list functions.

length

To get the length of a list, you can use the length function, like so:

> (length '(1 2 3 4 5))
5

reverse
If you need the elements in a list reversed, you can use the reverse function.

> (reverse '(1 2 3 4 5)) ; reverse elements of a list
'"(54321)




sort

The sort function will sort a list. You can pass in < to sort the list in ascend-
ing order:

> (sort '(136579248) <)
'(1234567809)

Or, if you pass in >, it will sort the list in descending order:

> (sort "(136579248)>)
‘9876543 21)

append

To merge two lists together, you can use the append function:

> (append '(1 2 3) '(4 5 6))
‘(12345 6)

The append function can take more than two lists:

> (append ‘(1 2) '(3 4) '(56))
'"(123456)

range

The range function will create a list of numbers given some specifications.
You can pass a start value and an end value, as well as a step to increment:

Or, if you just pass an end value, it will start at O with a step of 1:

> (range 10)
'"(0123456789)

make-list

Another way to make lists is using the make-1list function:

> (make-list 10 "me)
"(me me me me me me me me me me)

As you can see, make-1list takes a number and a value, and makes a list
that contains that value repeated that number of times.

nll?

To test whether a list is empty or not, you can use the null? function:

> (null? "()) ; test for empty list
#t

Rocket Basics [



> (null? (1 2 3))
i

index-of

If you need to search a list for a value, vou can use index-of. It'll return the
index of the value if it appears:

> (index-of ‘(8 7195 2) 9)
3

I’ return #f if it doesn’'t:

> (index-of '(8 71 9 5 2) 10)
8

member

Another way to search lists is to use member, which tests whether a list con-
tains an instance of a particular element. It returns the symbol #f if it does
not, and returns the tail of the list starting with the first instance of the
matching element if it does.

> (member 7 '(9 35 (6 2) 51 4))
#f

> (member 5 '(9 35 (62)514))
(5 (6 2) 51 4)

> (member 6 "(9 3 5 (6 2) 51 4))
#f

Notice that in the last instance, even though 6 is a member of a sublist of
the searched list, the member function still returns false. However, the follow-

ing does work.

> (member '(6 2) "(9 35 (62)514))
'((62) 514)

You'll see later that in functional programming, you often need to de-
termine whether an item is contained in a list. The member function not only
finds the item (if it exists) but returns the actual value so that it can be used
in further computations.

We'll have much more to say about lists in the remainder of this text.

Defines, Assigns, and Variables

Thus far, we've seen a lew examples of a function, something that takes one
or more input values and provides an output value (some form of data).
The first element in a function-call expression is an identifier (the function



name). The remaining elements in a function form are the arguments to the
function. These elements are each evaluated and then fed to the function,
which performs some operation on its arguments and returns a value.

More specifically, a form or expression may define a function, execute a
function call, or simply return a structure (normally a list), and may or may
not evaluate all its arguments. Notice that quote is a different type of form
(distinct from a function form, which evaluates its arguments) since it does
not first evaluate its arguments. In the next section you'll meet define, which
is yet another type of form since it does not evaluate its first argument, but it
does evaluate its second argument. We will meet many other types of forms
as we progress through the text.

A variable is a placeholder for a value. In Racket, variables are spec-
ified by identifiers (specific sequences ol characters) associated with one
thing only. (We’ll have more to say about what constitutes a valid identifier
shortly.) To deline a variable, you use the define form. For example:

> (define a 123)
> a
123

Here define 1s said to bind the value 123 to the identifier a. Virtually any-
thing can be bound to a variable. Here we'll bind a list to the identifier b.

> (define b '(1 2 3))
> b
(1 23)

It’s possible to bind several variables in parallel:

> (define-values (x y z) (values 1 2 3))

Racket makes a distinction between defining a variable and assigning a
value to a variable. Assignments are made with a set! expression. Typically
any form which changes, or mutates, a value will end with an exclamation
point. Attempting to assign to an identifier that hasn’t been previously de-
fined will result in an ugly error message:

> (set! ice 9)
. set!: assignment disallowed;
cannot set variable before its definition
variable: ice
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But this is okay:

> (define ice 9)
> ice

9

> (set! ice 32)
32

One way to think of this is that define sets up a location to store a value,
and set! simply places a new value in a previously defined location.

When we speak of a variable x that is defined in Racket code, it will be
typeset as x. If we're simply speaking of the variable in the mathematical
sense, it will be typeset in italics as x.

Symbols, Identifiers, and Keywords

Chaper |

Unlike most languages, Racket allows just about any string of characters to
be used as an identifier. For example we can use 2x3 as an identifier:

> (define 2x3 7)
> 2%3
7

You could conceivably define a function literally called rags->riches that
would convert rags to riches (let me know when you get that working). All
this seems quite bizarre, but it lends Racket an expressive power not found
in many other computer languages. There are of course some restrictions
to this, but aside from a few special characters such as parentheses, brackets,
and arithmetic operators (even these are usually okay if they aren’t the first
character), just about anything goes. In fact it’s common to see identifiers
containing dashes, as in solve-for-x.

A symbol is essentially just a quoted identifier:

> "this-is-a-symbol
"this-is-a-symbol

They are sort of a second-rate string (more on strings below). They are
typically used much like an enum in other programming languages where
they're used to stand for a specific value,

A keyword 1s an identifier prefixed with #:. Keywords are mainly used to
identify optional arguments in function calls. Here's an example of a func-
tion ("r) that uses a keyword to output 7 as a string with two decimal places
of accuracy.

> (*r pi #:precision 2)
I3.14-

Here we define the optional precision argument to specify that the value
of pi should be rounded to two decimal places.



Equality

Racket defines two different kinds of equality: things that look exactly alike
and things that are the same thing. Here's the difference. Suppose we make
the following two definitions.

> (define a '(1 2 3))
> (define b "(1 2 3))

Identiliers a and b look exactly alike, and il we ask Racket if they are the
same with the equal? predicate, it will respond that they are the same, Note a
predicate is a function that returns a Boolean value of true or false.

> (equal? a b)
#t

But if we ask whether they are the same thing by using the eq? predicate,
we get a different answer,

> (eq? a b)
#t

So when does eq? return true? Here's an example,

> (define x "(1 2 3))
> (define y x)

> (eq? x y)
#t

In this case we have bound x to the list "(1 2 3). We then bind y to the
same value location that x is bound to, effectively making x and y be bound to
the same thing. The difference is subtle, but important. In most cases equal?
1s what you need, but there are scenarios where eq? is used to ensure that
variables are bound to the same object and not just to things that look the
same.

One other nuance of equality that must be discussed is numeric equal-
ity. In the discussion above, we were focused on structural equality. Num-
bers are a different animal. We'll have much more to say about numbers in
the next chapter, but we need to clarify a few things about numbers that re-
late to equality. Examine the following sequence:

> (define a 123)
> (define b 123)

> (eq? a b)
#t

Above we bound a and b to identical lists *(1 2 3), and in that case eq? re-
turned false. In this case we bound a and b to the identical number 123, and
eq? returned true. Numbers (technically fixnums, that is, small integers that
fit into a fixed amount of storage—typically 32 or 64 bits, depending on your
computing platform) are unique in this sense. There is only one instance of
every number, no matter how many different identifiers it is bound to. In
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other words, each number is stored in one and only one location. Further-
more, there’s a special predicate (=) that can only be used with numbers:

> (= 123 123)
#t

> (= 123 456)
#f

(= "(123) '"(123))
. =i contract violation
expected: number?
given: '(1 2 3)
argument position: 1st
other arguments...:

In this section we only cover equality in general. We'll look at more
specifics on numerical comparisons in the next chapter.

Strings and Things
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In this section, we'll look at different ways of handling text values in Racket.
We'll begin with the simplest kind of text value.

Characters

Individual text values, like single letters, are represented using a character, a
special entity that corresponds to a Unicode value. For example, the letter A
corresponds to the Unicode value 65. Unicode values are usually specified in
hexadecimal, so the Unicode value for A is 65 = 0041,5. Character values
either start with #\ followed by a literal keyboard character or #\u followed
by a Unicode value.

Here's a sampling ol the multiple ways to write a character using char-
acter functions. Notice the use of the comment character (;), which allows
comments (non-compiled text) to be added to Racket code.

> #\A
#\A

> #\u0041
#\A

> #\ ; this is a space character
#\space

> #\u0020 ; so is this
#\space



> (char->integer #\u0041)
65

> (integer->char 65)
#\A

> (char-alphabetic? #\a)
#t

> (char-alphabetic? #\1)
#.f

> (char-numeric? #\1)
#t

> (char-numeric? #\a)
#f

Unicode supports a wide range of characters. Here are some examples:

> "(#\u2660 #\u2663 #\u2665 #\u2666)
(#dh tde #0 £))

> "(#\u263A #\u2639 #\u2638B)
(MO \#E \1@)

> '(#\u2sA1 #\u25CB #\u25C7)
(D O \#O)

Most Unicode characters should print fine, but this depends to some
extent on the fonts available on your computer,

Strings
A string typically consists of a sequence of keyboard characters surrounded
by double-quote characters.

> "This is a string.”
“This is a string.”

Unicode characters can be embedded in a string, but in this case, the
leading # is left off.

> "Happy: \u263A."
"Happy: @."

You can also use string-append on two strings to create a new string.

> (string-append "Luke, " "I am " "your father!™)
"Luke, I am your father!"
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To access a character within a string, use string-ref:

> (string-ref "abcdef" 2)
#\c

The position of each character in a string is numbered starting from 0,
so in this example using an index of 2 actually returns the third character.

The strings we have seen so far are immutable, To create a mutable
string, use the string funcuon. This allows changing characters in the string.

> (define wishy-washy (string #\I #\ #\a #\m #\ #\m #\u #\t #\a #\b #\1 #\e)

)
> wishy-washy
"I am mutable”

> (string-set! wishy-washy 5 #\a)
> (string-set! wishy-washy 6 #\ )

> wishy-washy
"I am a table”

Note that for mutable strings we have to define the string using individ-
ual characters.
Another way to create a mutable string is with string-copy:

> (define mstr (string-copy "I am also mutable"))
> (string-set! mstr 5 #\space)

> (string-set! mstr 6 #\space)

> mstr

"I am so mutable”

You can also use make-string to do the same thing:

> (define exes (make-string 10 #\X))
> (string-set! exes 5 #\0)

> exes
"XXXXXOXXXX"

Depending on what's needed, any one of the above may be preferred.
If you need to make an existing string mutable, string-copy is the obvious
choice. If you only want a string of spaces, make-string is the clear winner.

Useful String Functions

There are of course a number of other useful sl;ring functions. a few of which
we illustrate next.



string-length

The string-length function outputs the number of characters in a string (see
wishy-washy earlier in “Strings” on page 14.)

> (string-length wishy-washy)
12

substring

The substring function extracts a substring from a given string.

> (substring wishy-washy 7 12) ; characters 7-11
"table”

string-titlecase

Use string-titlecase to capitalize the first character of each word in a string.

> (string-titlecase wishy-washy)
"I Am A Table"

string-upcase

To output a string in all caps, use string-upcase:

> (string-upcase "big")
"BIG"

string-downcase

Conversely, for a lowercase string, use string-downcase:

> (string-downcase "SMALL")
"small"

string<=?

To perform an alphabetical comparison, use the string<=? function:

> (string<=? "big" "small") ; alphabetical comparison
#t

string=?

The string=? function tests whether two strings are equal:

> (string=? "big" "small")
#f
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string-replace

The string-replace function replaces part of a string with another string:

> (define darth-quote "Luke, I am your father!")
> (string-replace darth-quote "am" "am not")
“"Luke, I am not your father!"”

string-contains?

To test whether one string is contained within another, use string-contains?:

> (string-contains? darth-quote “Luke")
#t

> (string-contains? darth-quote "Darth")
#f

string-split

The string-split function can be used to split a string into tokens:

> (string-split darth-quote)
l(llukel’l‘ I'II- “a." -ywrll -fatherl-)

> (string-split darth-quote ",")
"("Luke"™ " I am your father!")

Notice that the first example above uses the default version that splits
on spaces whereas the second version explictly uses a comma (,).

string-trim

The string-trim function gets rid of any leading and/or trailing spaces:

> (string-trim " hello ")
"hello”

> (string-trim " hello " #:right? #f)
"hello "

> (string-trim " hello " #:left? #f)
" hello”

Notice in the last two versions, #:1eft? or #:right? is used to suppress
trimming the corresponding side. The final #f argument (the default) is
used to specify that only one match is removed from each side; otherwise
all initial or trailing matches are trimmed.

For more advanced string functionality, see “Regular Expressions” on
page 279,



String Conversion and Formatting Functions

There are a number of functions that convert values to and from strings.
They all have intuitive names and are illustrated below.

> (symbol->string 'FBI)
“FBI"

> (string->symbol "FBI")
"FBI

> (list->string '(#\x #\y #\z))

Xyz

> (string->list "xyz")
"(#\x #\y #\z)

> (string->keyword "string->keyword")
"#:string->keyword

> (keyword->string '#:keyword)
"keyword"

For a complete list of these, go to hitps.//docs. racket-lang.org/reference/
strings.himl.

A handy function to embed other values within a string is format.

> (format "let ~a = ~a" "x" 2)
"let x = 2"

Within the format statement, “a acts as a placeholder. There should
be one placeholder for each additional argument. Note that the number
2 is automatically converted to a string before it's embedded in the output
string.

If you want to simply convert a number to a string, use the number->string
function:

> (number->string pi)
"3.141592653589793"

Conversely:

> (string->number "3.141592653589793")
3.141592653589793

Tryving to get Racket to translate the value of words into numbers, how-
ever, will not work:

> (string->number “"five")
#f
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Vectors
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For more control we can use the "r function, defined in the racket/format
library, which has many options that can be used to convert a number to
a string and control the precision and other output characteristics of the
number. For example, to show 7 to four decimal places, we would use this:

> (*r pi #:precision 4)
"3.1416"

To show this right-justified, in a field 20 characters wide, and left padded
with periods, we execute the following:

> (*r pi #:min-width 20 #:precision 4 #:pad-string ".")
e eesarnannns 3.1416"

Additional info on "1 is available in Appendix A, which talks about num-
ber bases. There are a number of other useful tilde-prefixed string conver-
sion functions available, such as “a, v, and “s. We won't go into detail here,
but you can consult the Racket Documentation for details: https://docs. racket

-lang.org/refevence/strings.himl.

Vectors bear a superficial resemblance to lists, but they are quite different.
In contrast to the internal tree structure of lists, vectors are a sequential ar-

ray of cells (much like arrays in imperative languages) that directly contain
values, as illustrated in Figure 1-3.

i 3fwrfe]2
0 1 2 3 4

Figure 1-3: Vector structure

Vectors can be entered using the vector function.

> (vector 1 3 "d" 'a 2)
'#(1 3 "d" a 2)

Alternatively, vectors can be entered using # as follows (note that an un-
quoted # implies a quote):

> #(1 3 "d" a 2)
'#(1 3 "d" a 2)

It’s important to note that these methods are nof equivalent. Here's one
reason why:

> (vector 1 2 pi)
'#(1 2 3.141592653589793)

> #(1 2 pi)
‘#(1 2 pi)

' - - - - - -
;opyrighted eria



In the first example, just as for list, vector first evaluates its arguments
before forming the vector. In the last example, like quote, # does not evalu-
ate its arguments. More importantly, # is an alias for vector-immutable, which
leads to our next topic.

Accessing Vector Elements

The function vector-ref is an indexing operator that returns an element of a
vector. This function takes a vector as its first argument and an index as its
second:

> (define v (vector "alpha 'beta 'gamma))
> (vector-ref v 1)
'beta

> (vector-ref v 0)
'alpha

To assign a value to a vector cell, vector-set! is used. The vector-set!
expression takes three arguments: a vector, an index, and a value to be as-
signed to the indexed position in the vector.,

> (vector-set! v 2 "foo)
>V
'#(alpha beta foo)

Let’s try this a bit differently:

> (define u #(alpha beta gamma))
> (vector-set! u 2 "foo)
. . vector-set!: contract violation
expected: (and/c vector? (not/c immutable?))
given: "#('alpha 'beta 'gamma)
argument position: 1st
other arguments...:

Remember that # is an alias for vector-immutable. What this means is that
vectors created with # (or vector-immutable) are (drum roll . . . ) immutable:
they cannot be changed or assigned new values. On the other hand, vectors
created with vector are mutable, meaning that their cells can be modified.

One advantage of vectors over lists is that elements of vectors can be
accessed much faster than elements of lists. This is because to access the
100th element of a list, each cell of the list must be accessed sequentially to
get to the 100th element. Conversely, with vectors, the 100th element can
be accessed directly, without working through earlier cells. On the other
hand, lists are quite flexible and can easily be extended as well as being used
to represent other data structures like trees. They are the bread and butter
of Racket (and all Lisp-based languages), so much of the functionality of the
language depends on the list structure. Predictably, functions are provided
o easily convert from one to the other.
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Useful Vector Functions
vector-length

The vector-length function returns the number of elements in a vector:

> (vector-length #(one ringy dingy))
3

vector-sort
The vector-sort functuon sorts the elements ol a vector:

> (vector-sort #(9 138254076 ) <)
'#(01234567809)

> (vector-sort #(9 138254076 ))>)
'#(9876543210)

To whet your appetite for what'’s to come later, vector-sort is a typical
example of functional programming. The last argument actually evaluates a
function that determines the direction of the sort.

vector->list

The vector->list funcuon takes a vector and returns a list:

> (vector->list #(one little piggy))
'(one little piggy)

list->vector
Conversely list->vector takes a list and returns a vector:

> (list->vector '(two little piggies))
"#(two little piggies)

make-vector

To create a mutable vector, use the make-vector form:

> (make-vector 10 'piggies) ; create a mutable vector
"#(piggies piggies piggies piggies piggies piggies piggies piggies piggies
piggies)

vector-append

To concatenate two vectors together, use vector-append:

> (vector-append #(ten little) #(soldier boys))
‘#(ten little soldier boys)




vector-member

The vector-member function returns the index to where an item is located in a
vector:

» (vector-member 'waldo (vector 'where 'is 'waldo '?) )
2

There are of course many other useful vector functions, and we will ex-
plore some of them in the chapters to come,

Using structs

To introduce the next Racket feature, let’'s build an example program. In-
stead of keeping your checkbook transactions in a paper bankbook, you
could create an electronic version using Racket. Typically such transactions
have the following components:

*  Transactuon date
* Pavee
*  (Check number

«  Amount

One way to keep track of these disparate pieces of information is in a
Racket structure called a struct. A Racket struct is conceptually similar to
a struct in languages such as C or C++, It's a composite data structure that
has a set of predefined fields. Before you can use a struct, vou have to tell
Racket what it looks like. For our bank transaction example, such a defini-
tion might look like this:

> (struct transaction (date payee check-number amount))

Each of the components of a structure (date, payee, etc.) is called a field.
Once we've defined our transaction struct, we can create one like this:

> (define trans (transaction 20170907 "John Doe" 1012 100.10))

Racket automatically creates an accessor method for each of the fields in
the structure. An accessor method returns the value of the field. They al-
ways begin with the name of the structure (in this case transaction), a hy-
phen, and then the name of the field.

> (transaction-date trans)
20170907

> (transaction-payee trans)
“John Doe"

> (transaction-check-number trans)
1012
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> (transaction-amount trans)
100.1

Suppose, however, that vou made a mistake and determined that the
check to John Doe should have been for $100.12 instead of $100.10 and try
to correct it via set-transaction-amount!. Note the exclamation point: this is
a signal that set-transaction-amount! is a mutator, that is, a method that mod-
ifies a field value). These mutators are generated when the struct is defined
and typically start with set and end with 1.

> (set-transaction-amount! trans 100.12)
. set-transaction-amount!: undefined;

cannot reference an identifier before its definition

Oops . . . Fields in a structure are immutable by default and hence do
not export mutators. The way around this is to include the #:mutable keyword
in the structure definition for any field that may need to be modified.

> (struct transaction
(date payee check-number [amount #:mutable]))
> (define trans (transaction 20170907 "John Doe” 1012 100.10))
> (set-transaction-amount! trans 100.12)
> (transaction-amount trans)
100.12

{

If all the fields should be mutable, adding the #:mutable keyword after
the field hist will do the rick.

» (struct transaction
(date payee check-number amount) #:mutable)
> (define trans (transaction 20170907 "John Doe" 1012 100.10))
> (set-transaction-check-number! trans 1013)
> (transaction-check-number trans)
1013

While the accessor methods are sutficient for getting the value of a sin-
gle field, they are a bit cambersome for seeing all the values at once. Just
entering the structure name does not yield much information.

> trans
#<transaction»

To make your structure more transparent, include the #:transparent op-
tion in the struct definition.

> (struct transaction

(date payee check-number amount) #:mutable #:transparent)
> (define trans (transaction 20170907 "John Doe" 1012 100.10))
> trans
(transaction 20170907 "John Doe" 1012 100.1)




There are additional useful options that can be applied when defining
structures, but one that is of particular interest is #:guard. #:guard provides
a mechanism to validate the fields when a structure is constructed. For in-
stance, to ensure that negative check numbers are not used, we could do the
following.

> (struct transaction
(date payee check-number amount)
#:mutable #:transparent
#:guard (A (date payee num amt name)
(unless (> num 0)
(error "Not a valid check number"))
(values date payee num amt)))

> (transaction 20170907 "John Doe" -1012 100.10)
Not a valid check number

> (transaction 20170907 "John Doe" 1012 100.10)
(transaction 20170907 "John Doe" 1012 100.1)

Don’t panic. We haven’t covered that funny-looking symbol (A, or
lambda) yet, but you should be able to get the gist of what’s going on. The
#:guard expression is a function that takes one parameter for each field and
one additional parameter that contains the structure name. In this case
we're only testing whether the check number is greater than zero. The #:
guard expression must return the same number of values as the number of
fields in the struct.

In the previous example we simply returned the same values that were
entered, but suppose we had a variable that contained the last check number
called last-check. In this case, we could enter a 0 for the check number and
use the #:guard expression to plug in the next available number as shown
here.

> (define last-check 1000)

> (struct transaction
(date payee check-number amount)
#:mutable #:transparent
#:guard (A (date payee num amt name)
(cond
[(¢< num 0)
(error “"Not a valid check number")]
[(= num 0)
(let ([next-num (add1 last-check)])
(set! last-check next-num)
(values date payee next-num amt))]
[else
(set! last-check num)
(values date payee num amt)])))
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> (transaction 20170907 "John Doe" 0 100.10)
(transaction 20170907 "John Doe" 1001 100.1)

> (transaction 20170907 "Jane Smith" 1013 65.25)
(transaction 20170907 "Jane Smith" 1013 65.25)

> (transaction 20170907 "Acme Hardware" 0 39.99)
(transaction 20170907 "Acme Hardware" 1014 39.99)

As you can see, non-zero check numbers are stored as the last check
number, but if a zero is entered lor the check number, the struct value gets
generated with the next available number, which becomes the current value
lor last-check. The cond statement will be explained in more detail a bit later
in the book, but its use here should be fairly clear: it's a way to check multi-
ple cases.

Controlling Output
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In the interactions pane, DrRacket immediately displays the output result-
ing from evaluating any expression. It's often desirable to have some con-
trol over how the output is presented. This is especially important when the
output i1s being generated by some function or method. Racket provides a
number of mechanisms for generating formatted output. The main forms
are write, print, and display. Each of these works in a slightly different way.
The best way to illustrate this is with examples.

write

The write Expn:ﬂsinn outputs in such a way that the output value forms a
valid value that can be used in the input:

> (write "show me the money")
"show me the money”

> (write '(show me the money))
(show me the money)

> (write #\A)
#\A

> (write 1.23)
1.23

> (write 1/2)
1/2

> (write #(a b c))
#(a bc)




display

The display expression is similar to write, but strings and character data
types are written as raw strings and characters without any adornments such
as quotation or tick marks:

> (display "show me the money")
show me the money

> (display '(show me the money))
(show me the money)

> (display #\A)
A

> (display 1.23)
1.23

> (display 1/2)
1/2

> (display #(a b ¢))
#(a b c)

print
The print expression is also similar to write, but adds a bit more formatting

to the output. The intent of print is to show an expression that would evalu-
ate to the same value as the printed one:

> (print "show me the money")
"show me the money"

> (print '(show me the money))
"(show me the money)

> (print #\A)
#\A

> (print 1.23)
1.23

> (print 1/2)
1

2

> (print #(a b c))
'#(a b )
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Notice how the rational value 1/2 is printed (more on rationals in the
next chapter).

Each of these comes in a form that ends with 1n. The only difference
is that the ones that end with 1n automatically print a new line at the end.
Here are a couple of examples to highlight the difference.

> (print "show me ") (print "the money")
"show me ""the money”

> (display "show me ") (display "the money")
show me the money

> (println "show me ") (println "the money")
“show me "
"the money"

> (displayln "show me ") (displayln “"the money")
show me
the money

One very useful form is printf. The printf expression works much like
the format function: it takes a format string as its first argument and any
number of other values as its other argument. The format string uses "a as a
placeholder. There must be one placeholder for each of the arguments after
the format string. The format string is printed exactly as entered, with the
exception that for each placeholder the corresponding argument is substi-
tuted. Here's printf in action.

> (printf "~a + ~a ="a"12 (+12))
1+2=3

> (printf "~a, can you hear ~a?" "Watson" "me")
Watson, can you hear me?

> (printf "~a, can you hear ~a?" "Jeeves" "the bell")
Jeeves, can you hear the bell?

There are additional format specifiers (see the Racket Documentation
for details), but we’ll mostly be using print since it gives a better visual indica-
tion of the data type of the value being output.

Summary

Chaper |

In this chapter, we laid the groundwork for what's to come. Most of the core
data types have been introduced along with what are hopefully some helptul
examples. By now you should be comfortable with basic Racket syntax and
have a pretty good understanding of the structure of lists and how to manip-
ulate them. The next chapter will take a detailed look at the various numeric
data types provided by Racket.



ARITHMETIC AND OTHER
NUMERICAL PARAPHERNALIA

In this chapter, we'll take a look at the rich

set of numerical data types that Racket pro-
vides. We'll discover the expected integer

and floating-point values, but we’ll also learn

that Racket supports rational (or fractional) values
along with complex numbers (don’t worry if you don't
know what complex numbers are; they are not heavily
used in this text, but we take a brief look for those that
may be interested).

Booleans

Booleans are true and false values, and while they aren’t strictly numbers,
they behave a bit like numbers in that they can be combined by various op-
erators to produce other Boolean values, The discipline governing these
operations 1s known as Boolean algebra. In Racket, Booleans are represented
by the values #t and #f, true and false respectively. It's also possible to use
#true (or true) and #false (or false) as aliases for #t and #f respectively.
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Before we introduce specific Boolean operators, one important obser-
vation about Racket Boolean operators in general is that they typically treat
any value that’s not literally #f as true. You'll see some examples of this be-
havior below.

The first operator we'll look at is not, which simply converts #t to #f and
vice versa.

> (not #t)
#t

> (not #f)
#t

> (not 5)
#f

Notice that 5 was converted to #f, meaning that it was originally treated
as #t,

The next Boolean operator we'll look at is and, which returns true if all
its arguments are true, Let’s look at some examples:

> (and #t #t)
#t

> (and #t #f)
#f

> (and 'apples #t)
#t

> (and (equal? 5 5) #f)
#f

> (and (equal? 5 5) #t)
#t

> (and (equal? 5 5) #t 23)
23

You may be a bit puzzled by the last example (and rightfully so). Re-
member that Racket considers all non-false values as true, so 23 is in fact
a valid return value. More important though is how and evaluates its argu-
ments. What happens in reality is that and sequentially evaluates its argu-
ments until it hits a #f value. If no #f value 1s encountered, it returns the
value of its last argument, 23 in the example above. While this behavior
seems a bit odd, it is consistent with how the or operator works, where, as
we'll see shortly, it can be quite useful in certain circumstances.



The last Boolean operator we'll look at is the or operator, which will re-
turn true if any of its arguments are true and #f otherwise. Here are some
examples:

> (or #f #f)
#f

> (or #f #t)
#t

> (or #f 45 (= 1 3))
45

Much like and, or sequentially evaluates its arguments. But in or’s case,
the first frue value is returned. In the example above, 45 is treated as true, so
that’s the value returned. This behavior can be quite useful when one wants
the first value that’s not #f.

Other less frequently used Boolean operators are nand, nor, and xor. Con-
sult the Racket Documentation for details on these operators.

The Numerical Tower

In mathematics there’s a hierarchy of number types. Integers are a subset of
rational (or fractional) numbers. Rational numbers are a subset of real num-
bers (or floating-point values as they are approximated by computers). And
real numbers are a subset of complex numbers. This hierarchy is known as
the numerical tower in Racket.

Integers

In mathematics the set of integers is represented by the symbol Z. Racket
integers consist of a sequence of digits from 0 to 9, optionally preceded by a
plus or minus sign. Integers in Racket are said to be exact. What this means
is that applying arithmetical operations to exact numbers will always pro-
duce an exact numerical result (in this case a number that’s still an integer).
In many computer languages, once an operation produces a number of a
certain size, the result will either be incorrect or it will be converted to an
approximate value represented by a floating- point number. With Racket,
numbers can get bigger and bigger until your computer literally runs out of
memory and explodes. Here are some examples.

> (+11)
2

> (define int 1234567890987654321)
> (* int int int int)

2323057235416375647706123102514602108949250692331618011140356079618623681

> (- int)
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-1234567890987654321

> (-5 -7)
12

> (7 4 8)
1/2

> (75)
1/5

Note that in the last examples, division doesn’t result in a floating-point
number but rather returns an exact value: a rational number (discussed in
the next section).

It’s possible to enter integers in number bases other than 10. Racket
understands binary numbers (integers prefixed by #b), octal numbers (integers
prefixed by #0), and hexadecimal numbers (integers prefixed by #x):

> #b1011
11

> #xadded
712173

Non-decimal bases have somewhat specialized use cases, but one exam-
ple is that HI'ML web pages typically express color values as hexadecimal
numbers. Also, binary numbers are how computers store all values inter-
nally, so they can be useful for individuals studying basic computer science.
Octal and hexadecimal values have a further advantage: binary numbers can
easily be converted to octal since three binary digits equates to a single octal
value and four binary digits equates to a single hexadecimal digit.

Rationals

Next up on the mathematical food chain are the rational numbers (or frac-
tions), expressed by the mathematical symbol . Fractions in Racket con-
sist of two positive integer values separated by a forward slash (no spaces
allowed), optionally preceded by a plus or minus sign. Rational numbers are
also an exact numeric type, and all operations permitted for integers are also
valid for rational numbers,



> =2/4
-1/2

> 4/6
2/3

> (+ 1/2 4/8)
1

> (- 1/2 2/4 4/8 8/16)
-1

> (* 172 2/3)
1/3

> (7 2 2/3)
3

The numerator and denominator of a rational number can be obtained
with the numerator and denominator functions.

> (numerator 2/3)
2

> (denominator 2/3)
3

Reals

A real number is a mathematical concept (specified by the symbol B) that,
in reality, does not exist in the world of computers. Real numbers such as 7
have an infinite decimal expansion that can only be approximated in a com-
puter. Thus, we reach our first class of inexact numbers: floating-point num-
bers. Floating-point numbers in Racket are entered in the same way as they
are in most programming languages and calculators. Here are some (unfor-
tunately boring) examples:

> =3.14159
= 3 . 14159

> 3.14e159
3.14e+159

> pi
3.141592653589793

> 2.718281828459045

Arithmetic and Other Numericol Poraphernalia 31



Chapter 2

2.718281828459045

> -20e-2
'012

It's important to keep in mind that there are some subtle distinctions in
the mathematical concept of certain number types and what they mean in a
computing environment. For example a number entered as 1,/10 1s, as men-
tioned above, treated as an exact rational number since it can be represented
as such in a computer (internally it’s stored as two binary integer values), but
the value 0.1 is treated as an inexact floating-point value, an approximation
of the real number value, since it cannot be represented internally a single
binary value (at least not without using an infinite number of binary digits).

Complex Numbers

When we use the term complex number it does not mean we are speaking of
a complicated number, but rather a special type of number. If you're not al-
ready familiar with this concept, there’s no harm in moving on to the next
section, since complex numbers aren’'t used in the remainder of the book
(although I would encourage you to read up on this fascinating subject).
This section is included as a reference for the brave souls who may make use
of this information in their own projects.

Complex numbers are entered almost exactly as they appear in any
mathematical text, but there are some points to note. First, if the real com-
ponent is omitted, the imaginary part must be preceded by a plus or minus
sign. Second, there can be no spaces in the string used to define the num-
ber. And third, complex numbers must end in i. Examples:

> +1i ; our friend, the imaginary number
0+11

> 11 ; this will give an error
. . 1i: undefined;
cannot reference an identifier before its definition

> +#1 ; it is even possible to leave off the 1
0+1i

> -1-2341
-1-234i

>‘ '1113“- 561
'1&23“! 56i

> 1e10-2e10i
10000000000 . 0-20000000000. 01




Note that complex numbers can be exact or inexact. We can test exact-
ness using the exact? operator:

> (exact? 1/2+48/31)
#t

> (exact? 0.5+8/3i)
#t

To get at the components of a complex number, use real-part and imag-
part:

> (real-part 1+2i)
1

> (imag-part 1+2i)
2

This concludes our look at the numerical tower and basic arithmetical
operations on the various number types. In the next few sections we'll look
at comparison operators, what happens when different number types are
added together (for example adding an integer to a floating-point number),
and some useful mathematical functions.

Numeric Comparison

Racket supports the usual complement of numeric comparison operators.
We can test if numbers are equal:

> (= 1 1.0)
#t

> (=1 2)
#f

> (= 0-5 1,2)
#t

and compare their sizes:

» (¢ 12)
#t

> (¢=12)
#t

> (}l 2 1-9)
#t
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You can also use these operators on multiple arguments, and Racket will
ensure that the elements pair-wise satisfy the comparison operator. In the
example below, this means that 1 <2, 2 <3, and 3 <4,

> (¢12334)
#t

> (¢1243)
#t

But there’s no not equals operator, so to test if two numbers are not equal
to each other, you would have to do something like the following:

> (not (=1 2))
#t

Combining Data Types

Chapter 2

As you saw above, you can compare numbers of different types. But no-
tice that we only performed arithmetic on exact numbers with exact num-
bers and vice versa. Here we'll discuss the implications of mixing exact and
inexact numbers. Mixing exact and inexact numbers won't result in mass
chaos (think Ghostbusters stream-crossing), but there are some fine points
you should be aware of.

First and foremost, when it comes to arithmetic operators (addition,
subtraction, and so on), the rules are fairly simple:

Mixing exact with exact will give an exact result.
Mixing inexact with inexact will give an inexact result.

Mixing exact with inexact (or vice versa) will give an inexact result.

No surprises here, but there are some nuanced exceptions to these rules,
such as multiplying anything by zero gives exactly zero.

Trigonometric functions will generally always return an inexact result
(but again, there are some reasonable exceptions; for example exp 0 gives an
exact 1). You'll see some of these functions later in the chapter. The square
function, sqr, will return an exact result if given an exact number. Its square
root counterpart, sqrt, will return an exact result if it's given an exact num-
ber and the result is an exact number; otherwise, it will return an inexact
number:

> (sqrt 25)
5

» (sqrt 24)
4.898979485566356

> (sqr 1/4)
1/16



> (sqr 0.25)
0.0625

> (sqrt 1/4)
1/2

> (sqrt -1)
0+11

There are a couple of functions available to test exactness. Earlier you
saw the function exact?, which returns #t if its argument is an exact number;
otherwise it returns #f. Its counterpart is inexact?. It's also possible to force
an exact number to be inexact and vice versa using two built-in functions:

> (exact->inexact 1/3)
0.3333333333333333

> (inexact->exact pi)
3 39854788871587/281474976710656
>

There's a predicate to test for each of the numeric data types we have
mentioned in this section, but they may not work exactly as you expect.

> (integer? 70)
#t

> (real? 70.0)
#t

> (complex? 70)
#t

> (integer? 70.0)
#t

> (integer? 1.5)
#f

> (rational? 1.5)
#t

> (rational? 145i)
#f

> (real? 2)
#t
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> (complex? 1+2i)
#t

These predicates return a result that honors the mathematical mean-
ing of the predicate. You may have expected (complex? 70) to return #f, but
integers are complex numbers, just with a zero real component. Likewise,
you may have expected (integer? 70.0) to return #f since it’s a floating-point
number, but since the fractional part is (0, the number (while also real) 1s
in fact an integer (but not an exact number). The number 1.5 is equivalent
to 3/2, so Racket considers this to be a rational number (but again, inex-
act). The number type predicates (integer?, rational?, real?, and complex?) are
aligned with the mathematical hierarchy (or numerical tower) as mentioned
at the beginning of the section.

Built-in Functions
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Aside from the normal arithmetical operators illustrated above, Racket pro-
vides the usual complement of mathematical functions that are standard
fare in any programming language. A generous litany of examples follows.

> (abs -5)
5

> (ceiling 1.5)
2.0

> (ceiling 3/2)
2

> (floor 1.5)
1.0

> (tan (/ pi 4))
0.9999999999999999

> (atan 1/2)
0.4636476090008061

> (cos (* 2 pi))
1.0

> (sqrt 81)
9

> (sqr 4)
16

> (log 100) ; natural logarithm



4,605170185988092

> (log 100 10) ; base 10 logarithm
2.0

> (exp 1) ; el
2.718281828459045

> (expt 2 8) ; 2”8
256

Note that when possible, a function that has an exact argument will re-
turn an exact result.

There are of course many other functions available. Consult the Racket
Documentation for details.

Infix Notation

As we've seen, in Racket, mathematical operators are given before the oper-
ands: (+ 1 2). Typical mathematical notation has the operator between the
operands: 1 + 2. This is called infix notation. Racket natively allows a form of
infix notation by using a period operator. Here are some examples.

> (1 .= . 2)

it

> (1. ¢ . 2)
#t

> (1. 4+ . 2)
> (2.7 .4)
1/2

> (2. *%.3)
6

This can be useful when we want to make explicit the relationship be-
tween certain operators, but it’s unwieldy for complex expressions.

For complex mathematical expressions, Racket provides the infix pack-
age. This package can be imported with the following code:

#lang at-exp racket
(require infix)

The #lang keyword allows us to define language extensions (in this
case the at-exp allows us to use (@-expressions, which we will see shortly).
The require infix expression states that we want to use the infix library.
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Unfortunately, the infix package is not installed by default and must be in-
stalled from the Racket package manager (the package manager can be ac-
cessed through the DrRacket File menu) or the raco command line tool (if
the

executable for raco is not in your execution path, it can be launched directly
from the Racket install folder). To install using raco, execute the following
on the command line:

> raco pkg install infix

Also note that we're using the language extension at-exp, which, while
not entirely necessary, provides a nicer syntax to enter infix expressions. For
example without at-exp, to compute 1 +2 * 3, we would enter the following:

> ($ "142%3")

7

With the at-exp extension, we could enter this:
> #%{1+2%3}
7

While this only saves a couple of keystrokes, it removes the annoying
string delimiters and just looks a bit more natural.

Function calls are handled in a familiar way by using square brackets.
For example

> #%{1 + 2*sin[pi/2]}
3.0

There is even a special form for lists:

> #%{{1, 2, 1+2}}
(12 3)

And there’s one for variable assignments (which use :=, equivalent to
set!, so the variable must be bound first):

> (define a 5)
> #%{a"2}

25

> #%{a := 6}
> #%{2*%a + 7}
19

To further illustrate the capabilities of the infix package, below is a com-
plete program containing a function called quad, which returns a list contain-
ing the roots of the quadratic equation

ax- +bx+c¢=0
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As yvou'll recall from your algebra class (you do remember, don’t you), these

roots are given by
b+ Vb2 - dac

*e 2a

#lang at-exp racket
(require infix)

(define (quad a b ¢)
(let ([d 0])
@8${d := sqrt[b*2 - 4 * a * c];
{(-b + d)/(2*a), (-b - d)/(2*%a)}}))

After compiling this, we can solve 2x* - 8x + 6 = 0 for x, by entering

> @%{quad[2, -8, 6]}
(31)

or equivalently . . .

> (quad 2 -8 6)
(31)

Summary

With these first two chapters under your belt, you should be thoroughly fa-
miliar with Racket’s basic data types. You should also be comfortable per-
forming mathematical operations in Racket’s rich numerical environment.
This should prepare you for the somewhat more interesting topics to follow
where we will explore number theory, data analysis, logic programming, and
more. But, next up is functional programming, where we get down to the
nitty-gritty of actually creating programs.
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FUNCTION FUNDAMENTALS

In the last chapter, we introduced you to

Racket's basic numerical operations. In
this chapter, we'll explore the core 1deas that
form the subject of functional programming.

What Is a Function?

A function can be thought of as a box with the following characteristics: 1f
you push an object in one side, an object (possibly the same, or not) comes
out the other side; and for any given input item, the same output item comes
out. T'his last characteristic means that if yvou put a tnangle in one side and

a star comes out the other, the next time vou put a triangle in, vou will also
get a star out (see Figure 3-1). Unlortunately, Racket doesn 't have any built-
in functons that take geometric shapes as input, so we'll need to settle for
more-mundane objects like numbers or strings.

Figure 3-1: How a function works
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Chapter 3

Lambda Functions

In its most basic form, a function in Racket is something produced by a
lambda expression, designated by the Greek letter A. This comes from a math-
ematical discipline called lambda calculus, an arcane world we won’t explore
here. Instead, we’ll focus on practical applications of lambda expressions.
[Lambda functions are intended for short simple functions that are imme-
diately applied, and hence, don’t need a name (they're anonymous). For
example, Racket has a built-in function called add1 that simply adds 1 to its
argument. A Racket lambda expression that does the same thing looks like
this:

(lambda (x) (+ 1 x))

Racket lets you abbreviate lambda with the Greek symbol A, and we'll
frequently designate it this way. You can enter A in DrRacket by selecting
it from the Insert menu or using the keyboard shortcut CTRL-\. We could
rewrite the code above to look like this:

(A (x) (+1x))

To see a lambda expression in action, enter the following in the interac-
tions pane:

> ((A (xy) (# (*2x)y)) a5)
13

Notice that instead of a function name as the first element of the list, we
have the actual function. Here 4 and 5 get passed to the lambda function for
evaluation.

An equivalent way of performing the above computation is with a let
form.

> (let ([x 4]
[y 5])
(+ (*2x)y))
13

This form makes the assignment to variables x and y more obvious.
We can use lambda expressions in a more conventional way by assigning
them to an idenufier (a named function).

> (define foo (A (xy) (+ (* 2 x) y)))
> (foo 4 5)
13

Racket also allows you to define functions using this shortcut:

> (define (foo x y) (+ (* 2 x) y))
> (foo 4 5)
13

These two forms of function definition are entirely equivalent,



Higher-Order Functions

Racket is a functional programming language. Functional programming is a
programming paradigm that emphasizes a declarative style of programming
without side effects. A side effect is something that changes the state of the
programming environment, like assigning a value to a global variable.
LLambda values are especially powerful because they can be passed as
values to other functions. Functions that take other functions as values (or
return a function as a value) are known as higher-order functions. In this sec-
tion, we'll explore some of the most commonly used higher-order functions.

The map Function
One of the most straightforward higher-order functions is the map function,
which takes a function as its first argument and a list as its second argument,

and then applies the function to each element of the list. Here'’s an example
of the map function:

> (map (A (x) (+1x)) "(123))
(2 3 4)

You can also pass a named function into map:

> (define my-add1 (A (x) (+ 1 x)))
> (map my-add1 '(1 2 3)) ; this works too
(2 3 4)

In the first example above, we take our increment function and pass it
into map as a value. The map function then applies it to each element in the list
"(1 2 3).

[t turns out that map is quite versatile. It can take as many lists as the
function will accept as arguments. The effect is sort of like a zipper, where
the list arguments are fed to the functon in parallel, and the resulting values
is a single list, formed by applying the function to the elements from each
list. The example below shows map being used to add the corresponding ele-
ments of two equally sized lists together:

> (map + "(123) "(234))
'(357)

As you can see, the two lists were combined by adding the correspond-
ing elements together.

The apply Function

The map function lets you apply a function to each item in a list individually.
But sometimes, we want to apply all the elements of a list as arguments in
a single function call. For example, Racket arithmetical operators can take
multiple numeric arguments:

> (#1234)
10
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But if we try to pass in a list as an argument, we'll get an error:

> (+ '(1234)
. +: contract violation
expected: number?

given: ‘(1 2 3 4)

The + operator is only expecting numeric arguments. But not to worry,
There’s a simple solution: the apply function:

> (apply + '(1 2 3 4))
10

The apply function takes a function and a list as its arguments. It then
applies the function to values in the list as if they were arguments to the func-
Lion.

The foldr and foldl Functions

Yet another way to add the elements of a list together is with the foldr func-
tion. The foldr function takes a function, an initial argument, and a list:

> (foldr + 0 '(1 2 3 4))
10

Even though foldr produced the same result as apply here, behind the
scenes it worked very differently. This is how foldr added the list together:
I +(2+(3+(4+0))). The function *folds™ the list together by performing its
operation in a right-associative fashion (hence the r in foldr).

Closely associated with foldr is foldl. The action of foldl is slightly differ-
ent from what you might expect. Observe the following:

> (foldl cons ‘() '(1 23 4))
'(4321)

> (foldr cons '() '(1 2 3 4))
"(1234)

One might have expected foldl to produce '(1 2 3 4), but actually foldl
performs the computation (cons 4 (cons 3 (cons 2 (cons 1 '())))). The list
arguments are processed from left to right, but the two arguments fed to
cons are reversed—for example, we have (cons 1 '()) and not (cons "() 1).

The compose Function

Functions can be combined together, or compaosed, by passing the output of
one function to the input of another. In math, if we have f(x) and g(x), they
can be composed to make A(x) = flg(x)) (in mathematics text this is some-
times designated with a special composition operator as i(x) = (fo g)(x). We
can do this in Racket using the compose function, which takes two or more
functions and returns a new composed function. This new function works a
bit like a pipeline. For example, it we want to increment a number by 1 and



square the result (that is, for any n compute (n + 1)*), we could use following
functon:

(define (n+1_squared n) (sqr (addi n)))

But compose allows this to be expressed a bit more succinctly:

> (define n+1_squared (compose sqr addi))
> (n+1_squared 4)
25

Even simpler . . .

> ((compose sqr addi) 4)
25

Please note that addi1 is performed first and then sqr. Functions are com-
posed from right to left—that is, the rightmost function is applied first.

The filter Function

Our final example is filter. This function takes a predicate (a function that
returns a Boolean value) and a list. The returned value is a list such that only
elements of the original list that satisfy the predicate are included. Here's
how we'd use filter to return the even elements of a list:

> (filter even? '(1 2345 6))
‘(2 4 6)

The filter function allows you to filter out items in the original list that
won't be needed.

As you've seen throughout this section, our description of a function as
a box is apt since it is in reality a value that can be passed to other functions
just like a number, a string, or a list.

Lexical Scoping

Racket is a lexically scoped language. The Racket Documentation provides
the following definition for lexical scoping:

Racket is a lexically scoped language, which means that whenever an
identifier is used as an expression, something in the textual environ-
ment of the expression determines the identifier’s binding.

What's important about this definition is the term textual environment. A
textual environment is one of two things: the global environment, or forms
where identifiers are bound. As we've already seen, identifiers are bound in
the global environment (sometimes referred to as the top level) with define.
For example

> (define ten 10)

> ten
10
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The values of identifiers bound in the global environment are available
everywhere. For this reason, they should be used sparingly. Global defini-
tions should normally be reserved for function definitions and constant
values. This, however, is not an edict, as there are other legitimate uses for
global variables.

I[dentifiers bound within a form will nermally not be defined outside of
the form environment (but see “Time for Some Closure”™ on page 58 for an
intriguing exception to this rule).

Let’s look at a few examples.

Previously we explored the lambda expression ((A (xy) (+ (* 2 x) y
)) 4 5). Within this expression, the identifiers x and y are bound to 4 and
5. Once the lambda expression has returned a value, the identifiers are no
longer defined.

Here again is the equivalent let expression.

(let ([x 4]
ly 5)
(+ (*2x)y))

You might imagine that the following would work as well:

(let ([x 4]
[y 5]

[z (*2x)])
(+2zy))

But this fails to work. From a syntactic standpoint there’s no way to con-
vert this back to an equivalent lambda expression. And although the identi-
fier x is bound in the list of binding expressions, the value of x is only avail-
able inside the body of the let expression.

There is, however, an alternative definition of let called let*. In this case
the following would work.

> (let* ([x 4]
[y 5]
[z (* 2 x)])
(+zy))

13

The difference is that with let* the value of an identifier is available 1m-
mediately after it’s bound, whereas with let the identifier values are only
available after all the identifiers are bound.

Here's another slight variation where let does work.

> (let ([x 4]
[y s1)
(let ([z (* 2 x)])
(+2y)))
13
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In this case the second let is within the lexical environment of the first
let (but as we've seen, let* more efficiently encodes this type of nested con-
struct). Hence x is available for use in the expression (* 2 x).

Conditional Expressions: It's All About Choices

The ability of a computer to alter its execution path based on an input is an
essential component of its architecture. Without this a computer cannot
compute. In most programming languages this capability takes the form of
something called a conditional expression, and in Racket it’s expressed (in its
most general form) as a cond expression.

Suppose you're given the task to write a function that returns a value
that indicates whether a number is divisible by 3 only, divisible by 5 only, or
divisible by both. One way to accomplish this is with the following code.

(define (div-3-5 n)
(let ([div3 (= 0 (remainder n 3))]
[divs (= 0 (remainder n 5))])
(cond [(and div3 divs) 'div-by-both]
‘div3 'div-by-3]
divs 'div-by-5]
else 'div-by-neither])))

The cond form contains a list of expressions, For each of these expres-
sions, the first element contains some type of test, which if it evaluates to
true, evaluates the second element and returns its value. Note that in this ex-
ample the test for divisibility by 3 and 5 must come first. Here are trial runs:

> (div-3-5 10)
'div-by-5

> (div-3-5 6)
'div-by-3

> (div-3-5 15)
"div-by-both

> (div-3-5 11)
‘div-by-neither

A simplified version of cond is the if form. This form consists of a sin-
gle test (the first subexpression) that returns its second argument (after it’s
evaluated) if the test evaluates to true; otherwise it evaluates and returns the
third argument. This example simply tests whether a number is even or odd.

(define (parity n)
(if (= 0 (remainder n 2)) 'even 'odd))
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If we run some tests:

> (parity 5)
‘odd

> (parity 4)
'even

Both cond and if are expressions that return values. There are occasions
where one simply wants to conditionally execute some sequence ol steps if a
condition is true or false. This usually involves cases where some side effect
like printing a value is desired and returning a result is not required. For
this purpose, Racket provides when and unless. If the conditional expression
evaluates to true, when evaluates all the expressions in its body; otherwise it
does nothing.

> (when (> 5 4)
(displayln 'a)
(displayln 'b))

a

b

> (when (< 5 4) ; doesn't generate output
(displayln 'a)
(displayln ‘b))

The unless form behaves in exactly the same way as when; the difference is
that unless evaluates its body if the conditional expression is not true.,

> (unless (> 5 4) ; doesn't generate output
(displayln ‘a)
(displayln 'b))

> (unless (¢ 5 4)
(displayln 'a)
(displayln ‘b))

I’'m Feeling a Bit Loopy!

Chapter 3

Loops (or iteration) are the bread and butter of any programming language.
With the discussion of loops, invariably the topic of mutability comes up.
Mutability of course implies change. Examples of mutability are assigning
values to variables (or worse, changing a value embedded in a data struc-
ture such as a vector). A function is said to be pure if no mutations (or side
effects, like printing out a value or writing to a file—also forms of mutation)
occur within the body of a function. Mutations are generally to be avoided
if possible. Some languages, such as Haskell, go out of their way to avoid



this type of mischief. A Haskell programmer would rather walk barefoot
through a bed of glowing, hot coals than write an impure function.

There are many good reasons to prefer pure functions, such as some-
thing called referential transparency (this mouthful simply means the abil-
ity to reason about the behavior of your program). We won’t be quite so
persnickety and will make judicious use of mutation and impure functions
where necessary.

Suppose you're given the task of defining a function to add the first »
positive integers. If you're familiar with a language like Python (an excellent

language in its own right), you might implement it as follows.

def sum(n):
s =0
while n » 0:
Qs -54+n
On=n-1
return s

This is a perfectly good function (and a fairly benign example of using
mutable variables) to generate the desired sum, but notice both the variables
s and n are modified @ 8. While there’s nothing inherently wrong with this,
these assignments make the implementation of the function sum impure.

Purity

Before we get down and dirty, let’s begin by seeing how we can implement
looping using only pure functions. Recursion is the custom when it comes to
looping or iteration in Racket (and all functional programming languages).
A recursive function is just a function defined in terms of itself. Here's a
pure (and simple) recursive program to return the sum of the first n positive

integers.
(define (sum n)
O (if(so0n)o
@ (+n (sum (- n 1)))))

As you can see, we first test whether n has reached 0 @, and if so we sim-
ply return the value 0. Otherwise, we take the current value of n and recur-
sively add to it the sum of all the numbers less than n @. For the mathemati-
cally inclined, this is somewhat reminiscent of how a proof by mathematical
induction works where we have a base case @ and the inductive part of the
proof @,

Let’s test it out.

> (sum 100)
5050

There's a potential problem with the example we have just seen. The
problem is that every time a recursive call is made, Racket must keep track of
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where it is in the code so that it can return to the proper place. Let’s take a
deeper look at this function.

(define (sum n)
(if (=0n) o
QO (+n (sum (- n 1)))))

When the recursive call to sum is made @, there’s still an addition re-
maining to be done after the recursive call returns. The system must then
remember where it was when the recursive call was made so that it can pick
up where it left off when the recursive call returns. This isn't a problem for
functions that don’t have to nest very deeply, but for large depths of recur-
sion, the computer can run out of space and fail in a dramatic fashion.

Racket (and virtually all Scheme variants) implement something called
tail call optimization (the Racket community says this is simply the proper way
to handle tail calls rather than an optimization, but tail call optimization is
generally used elsewhere). What this means is that if a recursive call is the
very last call being made, there’s no need to remember where to return to
since there are no further computations to be made within the function.
Such functions in effect behave as a simple iterative loop. This is a basic
paradigm lor performing looping computations in the Lisp family of lan-
guages. You do, however, have to construct your functions in such a way as
(o take advantage of this feature. We can rewrite the summing function as
follows.

(define (sum n)
(define (s n acc)
O (if (= 0 n) acc
® (s (- n1) (+ acc n))))
(s n 0))

Notice that sum now has a local function called s that takes an additional
argument called acc. Also notice that s calls itself recursively @, but it’s the
last call in the local function; hence tail call optimization takes place. This all
works because acc accumulates the sum and passes it along as it goes. When
it reaches the final nested call @, the accumulated value is returned.

Another way to do this 1s with a named let form as shown here.

(define (sum n)
(let loop ([n n] [acc 0])
(if (= 0 n) acc
(loop (- n 1) (+ acc n)))))

The named let form, similar to the normal let, has a section where local
variables are initialized. The expression [n n] may at first appear puzzling,
but what it means is that the first n, which is local to the let, is initialized
with the n that the sum function is called with. Unlike define, which simply
binds an identifier with a function body, the named let binds the identifier
(in this case loop), evaluates the body, and returns the value resulting from
calling the function with the intialized parameter list. In this example the




function is called recursively (which is the normal use case for a named let)
as indicated by the last line in the code. This is a simple illustration of a side-
effect-free looping construct favored by the Lisp community.

The Power of the Dark Side

Purity is good, as far as it goes. The problem is that staying pure takes a lot
of work (especially in real life). It’s time to take a closer look at the dreaded
set! form. Note that an exclamation point at the end of any built-in Racket
identifier 1s likely there as a warning that it’s going to do something impure,
like modify the program state in some fashion. A programming style that
uses statements to change a program's state is said to use imperative pro-
gramming. In any case, set! reassigns a value to a previously bound identi-
fier. Let’s revisit the Python sum function we saw a bit earlier. The equivalent
Racket version is given below.

(define (sum n)
(let ([s 0]) ; initialize s to zero
(do () ; an optional initializer statement can go here

((< n1)) ; do until this becomes true
(set! s (+ s n))
(set! n (- n1)))

s))

Racket doesn’t actually have a while statement (this has to do with the
expectation within the Lisp community that recursion should be the go-to
method for recursion). The Racket do form functions as a do-until.

If you're familiar with the C family of programming languages, then you
will see that the full form of the do statement actually functions much like
the C for statement. One way to sum the first n integers in C would be as
follows:

int sum(int n)

{
int s = 0;

for (i=1; i<= n; i++) // initialize i=1, set i = i+1 at each iteration
// do while i¢= n

{
S =5+ 1;
}
return s; // return s

}

Here's the Racket equivalent:

(define (sum n)
O (let ([s 0])
® (do ([i 1 (add1 i)]) ; initialize i=1, set i = i+1 at each iteration
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® ((>in)s) ; do until i»>n, then return s
O (set! s (+ s 1)))))

In the above code we first initialize the local variable s (which holds our
sum) to (0 @. The first argument to do @ initializes i (i is local to the do form)
to | and specifies that i is to be incremented by | at each iteration of the
loop. The second argument @ tests whether i has reached the target value
and if so returns the current value of s. The last line @ is where the sum is
actually computed by increasing the value of s with the current value of i via
the set! statement.

The value of forms such as do with the set! statement is that many algo-
rithms are naturally stated in a step-by-step fashion with variables mutated by
equivalents to the set! statement. This helps to avoid the mental gymnastics
needed to convert such constructs to pure recursive functions.

In the next section, we examine the for family of looping variants. Here
we will see that Racket’s for form provides a great deal of flexibility in how to
manage loops.

The for Family

Racket provides the for form along with a large family of for variants that
should satisfy most of your iteration needs.

A Stream of Values

Before we dive into for, let’s take a look at a couple of Racket forms that are
often used in conjunction with for: in-range and in-naturals. These functions
return something we haven’t seen before called a stream. A stream is an ob-
ject that's sort of like a list, but whereas a list returns all its values at once, a
stream only returns a value when requested. This is basically a form of lazy
evaluation, where a value is not provided until asked for. For example, (in-
range 10) will return a stream of 10 values starting with 0 and ending with 9,
Here are some examples of in-range in action.

> (define digits (in-range 10))
> (stream-first digits)
0

> (stream-first (stream-rest digits))
1

> (stream-ref digits 5)
5

In the code above, (in-range 10) defines a sequence of values 0, 1, . . .,
9, but digits doesn’t actually contain these digits. It basically just contains
a specification that will allow it to return the numbers at some later time.
When (stream-first digits) is executed, digits gives the first available value,
which in this case is the number 0. Then (stream-rest digits) returns the



stream containing the digits after the first, so that (stream-first (stream-rest
digits)) returns the number 1. Finally, stream-ref returns the i-th value in the
stream, which in this case 1s 5.

The function in-naturals works like in-range, but instead of returning a
specific number of values, in-naturals returns an infinite number of values.

> (define naturals (in-naturals))
> (stream-first naturals)
0

> (stream-first (stream-rest naturals))
1

> (stream-ref naturals 1000)
1000

How the stream concept is useful will become clearer as we see it used
within some for examples. We'll also met some useful additional arguments
for in-range.

for in the Flesh

Here's an example of for in its most basic form. The goal is to print each
character of the string “Hello” on a separate line.

> (let* ([h “"Hello"]
O [1 (string-length h)])
® (for ([i (in-range 1)])
® (display (string-ref h i))
(newline)))

S - = N X

We capture the string-length @ and use this length with the in-range
function @, for then uses the resulting stream of values to populate the iden-
tifier i, which is used in the body of the for form to extract and display the
characters @. In the prior section it was pointed out that in-range produces
a sequence of values, but it turns out that in the context of a for statement,

a positive integer can also produce a stream as the following example illus-
trates.

> (for ([i 5]) (display i))
01234

The for form is quite forgiving when it comes to the type of arguments
that it accepts. It turns out that there’s a much simpler way to achieve our
goal.
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> (for ([c "Hello"])
(display c)
(newline))

C = = N X

Instead of a stream of indexes, we have simply provided the string itself.
As we'll see, for will accept many built-in data types that consist of muluple
values, like lists, vectors, and sets. These data types can also be converted to
streams (for example, by in-1ist, in-vector, and so on), which in some cases
can provide better performance when used with for, All expressions that
provide values to the identifier that for uses to iterate over are called sequence
exprressions,

It’s time to see how we can make use of the mysterious in-naturals form
introduced above.

> (define (list-chars str)
(for ([c str]
[i (in-naturals)])
(printf "~a: ~a\n" i c)))

(list-chars "Hello")

T s #
o = = n I

>
0
1
2:
3
4

The for form inside the list-chars function now has fwe sequence ex-
pressions. Such sequence expressions are evaluated in parallel until one ol
the expressions runs out of values. That is why the for expression eventually
terminates, even though in-naturals provides an infinite number of values.

There is, in fact, a version of for that does not evaluate its sequence ex-
pressions in parallel: it’s called for*. This version of for evaluates its sequence
expressions in a nested fashion as the following example illustrates.

> (for* ([i (in-range 2 7 4)]
[ (in-range 1 4)])

(display (list i j (* i j)))
(newline))

(212)

(2 24)

(2 36)

(6 16)



(6 2 12)
(6 3 18)

In this example we also illustrate the additional optional arguments that
in-range can take. The sequence expression (in-range 2 7 4) will result in a
stream that starts with the number 2, and increment that value by 4 with
each iteration. The iteration will stop once the streamed value reaches one
less than 7. So in this expression, i is bound to 2 and 6. The expression (in-
range 1 4) does not specify a step value, so the default step size of 1 is used.
This results in j being bound to 1, 2, and 3.

Ultimately, for* takes every possible combination of i values and j values
to form the output shown,

Can You Comprehend This?

There is a type of notation in mathematics called set-builder notation. An
example of set-builder notation is the expression {.12 | xe N, x < 10}. This
is just the set of squares of all the natural numbers between 0 and 10. Racket
provides a natural (pun intended) extension of this idea in the form of some-
thing called a list comprehension. A direct translation of that mathematical
expression in Racket would appear as follows.

> (for/list ([x (in-naturals)] #:break (> x 10)) (sqr x))
‘(014916 25 36 49 64 81 100)

The #:break keyword is used to terminate the stream generated by in-
naturals once all the desired values have been produced. Another way to do
this, without having to resort to using #:break, would be with in-range.

> (for/list ([x (in-range 11)]) (sqr x))
'(0149 16 25 36 49 64 81 100)

If you only wanted the squares of even numbers, you could do it this
way:

> (for/list ([x (in-range 11)] #:when (even? x)) (sqr x))
"(0 4 16 36 64 100)

This time the #:when keyword was brought into play to provide a condi-
tion to filter the values used to generate the list.

An important difterence of for/list over for is that for/list does not
produce any side effects and is therefore a pure form, whereas for is ex-
pressly for the purpose of producing side effects.

More Fun with for

Both for and for/list share the same keyword parameters. Suppose we
wanted to print a list of squares, but don’t particularly like the number 5.
Here’s how it could be done.
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> (for ([n (in-range 1 10)] #:unless (= n §))
(printf "~a: ~a\n" n (sqr n)))

|

4

: 9

: 16

: 36

1 49

: 64

: 81

W 00~ O B W N

By using #:unless we've produced an output for all values, 1 < n < 10,
unless n = 5.

Sometimes it’s desirable to test a list of values to see if they all meet
some particular criteria. Mathematicians use a fancy notation to designate
this called the universal quantifier, which looks like this ¥ and means “for
all.” An example is the expression Vx € {2,4,6},x mod 2 = 0, which is
literally interpreted as “for all x in the set {2. 4, 5}. the remainder of x after
dividing by 2 is 0.” This just says that the numbers 2, 4, and 6 are even. The
Racket version of “for all” is for/and.

Feed the for/and form a list of values and a Boolean expression to evalu-
ate the values. If each value evaluates to true, the entire for/and expression
returns true; otherwise it returns false. Let’s have a go at it

> (for/and ([x "(2 4 6)]) (even? x))
#t

> (for/and ([x '(2 4 5 6)]) (even? x))
#f

Like for, for/and can handle multiple sequence expressions. In this case,
the values in each sequence are compared in parallel.

> (for/and ([x '(2 4 5 6)]

[y #(3 5 9 8)])

(< xy))
#t

> (for/and ([x '(2 6 5 6)]
[y #(3 5 9 8)])

(¢ xy))
#f

Closely related to for/and is for/or. Not to be outdone, mathematicians
have a notation for this as well: it’s called the existential quantifier, 3. For ex-
ample, they express the fact that there exists a number in the set {2, 7.4, 6}

greater than 5 with the expression 3x € {2,7,4,6}, x > 5.



> (for/or ([x '(2746)]) > x5))
#t

> (for/or ([x '(2145)]) (> x5))
#f

Suppose now that you not only want to know whether a list contains a
value that meets a certain criterion, but vou want to extract the first value
that meets the criterion. This is a job for for/first:

> (for/first ([x ‘(2146 7 1)] #:when (> x 5)) x)
0

> (for/first ([x "(2 1 45 2)] #:when (> x 5)) x)
#f

The last example demonstrates that if there is no value that meets the
criterion, for/first returns false.
Correspondingly, if you want the last value, you can use for/last:

> (for/last ([x (2146 7 1)] #:when (> x 5)) x)
7

The for family of functions is fertile ground for exploring parallels be-
tween mathematical notation and Racket forms. Here is vet another exam-
ple. To indicate the sum of the squares of the integers from 1 to 10, the fol-
lowing notation would be employed:

10
§=% i

i=1
The equivalent Racket expression is:

> (for/sum ([i (in-range 1 11)]) (sqr i))
385

The equivalent mathematical expression for products is

10
p=11#

=]
which in Racket becomes
> (for/product ([i (in-range 1 11)]) (sqr i))
13168189440000

Most of the for forms discussed above come in a starred version (for ex-
ample for*/list, for*/and, for*/or, and so on). Each of these works by evaluat-
ing their sequence expressions in a nested fashion as described for for*,
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Suppose you had $100 in the bank and wanted to explore the effects of com-
pounding with various interest rates. If you're not familiar with how com-
pound interest works (and vou very well should be), it works as follows: if
you have ng in a bank account that pays i periodic interest, at the end of the
period you would have this:

ny = ng + ngi = ng(1 +1)

Using your $100 deposit as an example, if your bank pays 4 percent (i =
0.04) interest per period (good luck getting that rate at a bank nowadays),
you would have the following at the end of the period:

100+ 100 - 4% = 100(1 + 0.04) = 104

One way to do this is to create a function that automatically updates
the balance after applying the interest rate. A clever way to compute this
in Racket is with something called a closure, which we use in the following
function:

(define (make-comp bal int)
(let ([rate (add1 (/ int 100.0))])
O () () (set! bal (* bal rate)) (round bal))))

Notice that this function actually returns another function—the lambda ex-
pression (A . . . ) @—and that the lambda expression contains variables from
the defining scope. We shall explain how this works shortly.

In the code above, we've defined a function called make-comp which takes
two arguments: the starting balance and the interest rate percentage. The
rate variable is initialized to (1 + 7). Rather than return a number, this func-
tion actually returns another function. The returned function is designed in
such a way that every time it's called (without arguments) it updates the bal-
ance by applying the interest and returns the new balance. You might think
that once make-comp returns the lambda expression, the variables bal and rate
would be undefined, but not so with closures. The lambda expression is said
to capture the variables bal and rate, which are available within the lexical
environment where the lambda expression is defined. The fact that the re-
turned funcuon contains the variables bal and rate (which are defined out-
side of the function) 1s what makes it a closure,

Let’s try this out and see what happens.

> (define bal (make-comp 100 4))

> (bal)
104.0

> (bal)
108.0



