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Part I
Ramanujan and Other Mathematical
Luminaries



Chapter 1 )
Ramanujan: An Estimation e

Ancient India has a rich mathematical tradition. The Hindus understood the role
of zero within the algebraic framework of numbers. This led them to the decimal
system which was transmitted to Europe by the Arabs. As in other civilisations,
astronomy provided the Indians a motivation for mathematical exploration. In
studying the duration of the eclipses, Aryabhatta, Bhaskara and Brahmagupta
systematically investigated a class of equations in number theory. In the post-
Newtonian era, although great strides were made in Europe, for various reasons,
nothing of scientific significance emanated from India. With the emergence of
Ramanujan during the beginning of this century, this long period of hibernation
came to an end, and Indian mathematical research was rejuvenated mainly in the
realms of analysis and number theory.

Ramanujan is admired, and rightly so, for having achieved so much in such a
short lifetime that was filled with the impediments of poverty. But examples abound
of persons who did outstanding work under the most formidable circumstances.
What makes Ramanujan unique is that in spite of the trammels of superstition and
orthodox traditions that surrounded him, his untutored genius produced mathemat-
ics of the very highest quality.

Contempt expressed by peers strikes a more cruel blow than poverty. When
Euclidean geometry was considered to be the only sensible geometry, a young
Hungarian Bolyai ventured dangerously against established beliefs and sent his
work on non-Euclidean geometry to Gauss, the unquestioned leader of mathematics
during the early eighteenth century. After a prolonged silence, Gauss replied that
he too had made similar attempts but had given them up because they were of
no consequence. Bolyai succumed to the severity of the verdict and did not live
to see the day when Einstein utilised non-Euclidean geometry in the theory of

This article appeared in the center page of The Hindu, India’s National Newspaper, on 19
December 1987, for the Ramanujan Centenary. The article was accompanied by a short note by
Hindu Reporter M. Prakash which appeared as a boxed inset.
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4 1 Ramanujan: An Estimation

relativity. On the contrary, Ramanujan was lucky to be recognised by the British
mathematician Hardy.

Is sound knowledge of related fields necessary for research? A moot question
indeed! A sophisticated mathematician looks at a problem not in isolation, but in
terms of its relationship with other questions and then chooses the appropriate tools
to solve it. Sometimes when such approaches have not made headway, a radically
new idea from a relatively inexperienced researcher produces a breakthrough.
Ramanujan was an extreme example of a mathematician whose contributions were
of such high calibre that they belied his lack of formal training. But the penalty he
paid was that much of his work turned out to be rediscovery. Whether Ramanujan
would have reached greater heights had he been provided rigorous training is
debatable. Hardy was of the opinion that such training would have made Ramanujan
less of a genius. Instead of taking sides on this issue, we make note that the brilliance
of Ramanujan combined with the sophistication of Hardy was the key to their
successful collaboration.

Mathematics has grown so vast and intricate that it is unlikely that a Ramanujan-
like phenomenon will ever surface again as it will be difficult to make fundamental
contributions without a clear understanding of connections between different fields.
In the contemporary scene, Paul Erdés is one leading mathematician who defies
sophistication. Now past seventy, Erdos continues to be the most itinerant of
scientists. His unconventional approach is marked with such distinction that an
“Erdosian proof™ is instantly recognisable. He is one of the principal architects of
probabilistic number theory whose origins can be traced back to a joint paper that
Ramanujan wrote with Hardy in 1917.

Ramanujan has to be measured only by the impact of his contributions. One
may feel that the most important papers are those that solve longstanding problems.
These are significant, but so also are those that trigger new questions and open up
fresh avenues of thought. The great mathematician Bernhard Riemann, who worked
mainly in analysis, wrote just one paper in number theory with the intention of
proving the prime number theorem that was conjectured nearly a century earlier
by Gauss. Although Riemann did not prove this theorem, he created a totally new
approach and raised several questions that have kept mathematicians busy ever
since. Even Ramanujan pursued some ideas akin to those in Riemann’s paper.
Certain questions raised in that paper have been solved, but one known as “The
Riemann Hypothesis” remains unsolved to this day, and the very effort to find
a solution has been rewarding.

Ramanujan has also raised several fundamental questions that have engaged
mathematicians for decades. Some of his papers have created fruitful areas of
research such as the one which led to probabilistic number theory. In another paper
he raised a problem which Hardy later called “The Ramanujan Hypothesis”, and
this was settled only recently by Pierre Deligne in Paris. That the solution came
after more than half a century is a measure of the depth of the problem. Deligne
was honoured with the Fields Medal which is awarded once every four years at the
International Congress of Mathematicians. There is no Nobel Prize for mathematics,
but the Fields Medal is considered to be equivalent in prestige although not as
lucrative.
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Ramanujan lives today through the many questions he has raised. Deligne’s
achievement is a monumental inscription to his illustrious memory.

100 Percent Pure Talent

Paul Erdos, a distinguished member of the Hungarian Academy of Sciences,
told The Hindu in Gainesville, Florida, USA, that he was greatly inspired by
Ramanujan’s work. He said that Ramanujan’s contribution to number theory
in collaboration with Hardy formed the basis for his work which led to the
creation of probabilistic number theory.

Paul Erdos said that when Hardy was asked what was his greatest contri-
bution to mathematics, he unhesitatingly said “The discovery of Ramanujan”.
Hardy told him that Ramanujan went far beyond his theorems.

Hardy once gave an estimation of mathematicians on the basis of pure
talent on a scale of 1-100. Professor Erdos said that Hardy gave Ramanujan
100, 80 to the famous mathematician David Hilbert, 30 to colleague Little-
wood, and only 25 to himself. “Although Hardy was modest in giving himself
only 25, the fact that he gave 100 to Ramanujan revealed the regard he had
for Ramanujan’s work.”

A man who lives by numbers, Prof. Erdos noted that Ramanujan was so
multifaceted that no mathematician could fully decipher or comprehend all of
his creations. “I wish I had a chance to meet Ramanujan. Unfortunately he
died when I was seven.” Incidentally Ramanujan’s Centenary also coincided
with the 75th birthday of Professor Erdos. His admirers are planning to
celebrate it in a big way.

Hardy was of the opinion that education would not have made Ramanujan
a greater mathematician; it might have stifled his genius. However Professor
Erdos expressed the view that education would have proved a great deal more
for Ramanujan. “He would not have wasted so much time rediscovering the
work of other mathematicians.”

M. Prakash
Reporter, The Hindu



Chapter 2 )
Ramanujan: The Second Century e

When European mathematicians first came to know of Ramanujan’s spectacular
results during the early part of this century, they perceived him as a singular genius
who produced numerous beautiful but mysterious identities. To a mathematician
a result is mysterious if he is not able to understand it in terms of well-known
theorems or see it as part of a general theory. Lacking formal education, Ramanujan
was in no position to motivate his results or supply rigorous proofs. Even Professor
G.H. Hardy could not fully understand many of these identities on infinite series
and products. Although Hardy compared Ramanujan to Euler and Jacobi for sheer
manipulative ability, he expressed the opinion that Ramanujan’s results lacked the
simplicity of the very greatest works. But during the last half a century, many of
Ramanujan’s identities have been studied in detail and put in proper perspective with
respect to contemporary theories. Hence his results do not appear now to be quite
that mysterious, and in fact by the time his centenary was celebrated, it became clear
that his work compared well with those of the very greatest mathematicians. But the
study of Ramanujan’s formulae is by no means over. As Professor Atle Selberg
of The Institute for Advanced Study, Princeton, remarked during the Ramanujan
Centenary, it will take many more decades, possibly even more than a century, to
completely understand Ramanujan’s contributions. Mathematicians know well that
Selberg is not given to hyperbole, and so this is very high praise! I will now describe
some features of Ramanujan’s work which continue to excite researchers today and
will engage them in the near future.

Mock Theta Functions Ramanujan’s work on mock theta functions is considered
to be one of his deepest contributions. These results were discovered by him just
before he died, and he communicated them to Hardy in his last letter dated January
1920. A major portion of The Lost Notebook is devoted to mock theta functions.

This article appeared in The Hindu, India’s national newspaper, on December 22, 1991, on
Ramanujan’s 104-th birth anniversary.
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8 2 Ramanujan: The Second Century

In his letter Ramanujan listed several mock theta functions of orders three, five, and
seven. Hardy passed on to Professor G.N. Watson the task of analysing Ramanujan’s
mock theta identities. Watson wrote two papers on this topic, the first of which
was his presidential address to The London Mathematical Society entitled “The
Final Problem: An Account of the Mock Theta Functions.” Watson explained the
choice of the title as follows: “I doubt whether a more suitable title could be
found for it than used by John H. Watson, M.D., for what he imagined to be his
final memoir on Sherlock Holmes.” Watson’s first paper (1936) dealt with mock
theta functions of third order, and the second (1937) with those of fifth order.
Watson did not consider the seventh-order functions, but these were investigated by
Selberg in 1938. In the last two decades Professor George Andrews has analysed
and explained combinatorially many of Ramanujan’s mock theta identities. In
collaboration with his former student Frank Garvan, Andrews was led to conjecture
that some of Ramanujan’s mock theta identities were equivalent to certain results
on partitions (a partition of a positive integer n is a representation of n as a sum of
positive integers not exceeding ). These were called the “Mock Theta Conjectures.”
These conjectures were settled by Dean Hickerson in 1989, after the Ramanujan
Centenary. Just this year Andrews and Hickerson have completed the study of eleven
identities of Ramanujan on sixth-order mock theta functions in The Lost Notebook.
Another recent advance is the work of Henri Cohen who explained certain mock
theta identities in the context of Algebraic Number Theory.

In spite of these breakthroughs, several fundamental questions remain. For
instance, no one knows what Ramanujan meant by the “order” of a mock theta
function. Ramanujan divided his list of functions into those of third, fifth, and
seventh orders. Known identities indicate that these are related to the numbers 3,
5, and 7, but a precise definition of order is yet to be given. So for now, the order
of a mock theta function is a convenient label which may or may not have deeper
significance. Ramanujan had defined mock theta functions to be those satisfying
two conditions. But no one has rigorously shown yet that any of these mock theta
functions actually satisfy the second of Ramanujan’s conditions. Also, in dealing
with mock theta functions, special techniques have been used based on the specific
function being discussed. There are attempts to find a unified approach to deal with
mock theta functions like the theory of modular forms that is used in the study of
theta functions.

Ramanujan’s Congruences Some of the most surprising observations by
Ramanujan concern congruences or divisibility properties for the partition function.
Hardy had asked MacMahon to prepare a table of first two hundred values of the
partition function using a certain formula of Euler. As soon as Ramanujan saw this
table, he pointed out three congruences involving the primes 5, 7, and 1 1. The first
congruence states that the number of partitions of an integer of the form 5n + 4 is
divisible by 5. For example, there are 30 partitions of 9, and 30 is divisible by 5.
Hardy was simply stunned, because partitions represent an additive process, and so
he did not expect such divisibility properties. MacMahon had prepared the table,
and Hardy had checked it, but neither observed such a relation! Ramanujan had the
eye for such connections, and this is an example of the element of surprise that is
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present throughout Ramanujan’s work. Ramanujan generalised his congruences to
the powers of 5, 7, and 11. Watson (1938) proved the congruences for the powers of
5 and (in a slightly modified form) for the powers of 7; the congruences involving
the powers of 11 were established later by Atkin.

In 1944, Freeman Dyson, then a young student at Cambridge University,
conjectured a combinatorial explanation for the congruences involving the primes 5
and 7 using the concept of “rank™ for partitions. Dyson published his conjecture
in “Eureka”, a Cambridge student journal. The Dyson rank conjectures were
proved in 1954 by A.O.L. Atkin and H.PF. Swinnerton-Dyer using the theory of
modular forms. Dyson had pointed out that the rank does not explain the third
(and deeper) congruence involving the prime 11, but he conjectured the existence
of a statistic, which he called the “crank”, that would explain the third congruence
combinatorially. But he had no idea of what the crank would be. Freeman Dyson
has humorously remarked that this was the only instance in mathematics when
an object had been named before it had been found! The crank sought by Dyson
was found in 1987, one day after the Ramanujan centenary conference in Urbana,
Illinois, by Andrews and Garvan. The solution was based on Garvan’s Ph.D. thesis
at Pennsylvania State University.

Whenever Ramanujan pointed out a relation, it was usually one of many that
existed, and often the most striking among those. It has been shown that the
coefficients in the expansions of various modular forms satisfy such congruences.
During the last two years, Garvan, who is now at the University of Florida, has
developed the idea of the crank to combinatorially prove and explain many such
congruences. Also, Garvan, Kim and Stanton have applied ideas from Group Theory
to explain deeper congruences. Thus the study of Ramanujan-type congruences will
continue to be an active line of research in the future.

Rogers-Ramanujan Identities This pair of identities (discovered independently
by Rogers in 1894 and Ramanujan around 1910) are considered among the most
beautiful in mathematics. The combinatorial description of the first identity is
that the number of partitions of an integer n into parts differing by at least two
equals the number of partitions of n into parts which when divided by 5 leave
remainder 1 or 4. The second identity has a similar description. The simplicity of
the identities belies their depth. Several proofs have been given, but none can be
considered simple or straightforward. In an attempt to understand these identities,
a rich theory has developed, concerning, on the one hand, partitions whose parts
satisfy gap conditions and, on the other, partitions whose parts satisfy congruence
conditions. For a quarter century beginning around 1960, considerable work has
been done in this direction, especially by Professor Basil Gordon of the University
of California, Los Angeles, and by Professors George Andrews and David Bressoud
of Pennsylvania State University.

Rogers actually found several elegant companions to the Rogers—Ramanujan
identities. Fundamental discoveries always find applications eventually. In 1979,
the Australian mathematical physicist Rodney Baxter showed that the Rogers—
Ramanujan identities and these companions are the solutions to the Hard Hexagon
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Model in Statistical Mechanics. For this work, Professor Baxter was awarded the
Boltzman medal of the American Physical Society. In recent years, identities of the
Rogers—Ramanujan type have found more applications to problems in mathematical
physics.

Ramanujan considered the Rogers—Ramanujan identities as arising out of a
continued fraction possessing a product representation. It was Ramanujan’s insight
to have realised the importance of this continued fraction in the theory of modular
forms. This is only one of many continued fractions studied by Ramanujan, but
perhaps the most appealing. Professor Bruce Berndt of The University of Illinois has
analysed several continued fractions of Ramanujan. These continued fractions can
be approached in various ways and offer a wide range of problems for exploration.

Products of the Ramanujan type established for this continued fraction are of
interest in themselves. In 1980, Andrews and Bressoud showed that there was a
pattern among the coefficients of certain Rogers—Ramanujan-type products that had
value zero. Professor Gordon and I have recently extended these results to general
Rogers—Ramanujan-type products, and there is scope for more work in this area.

Special Functions Ramanujan wrote down several beautiful formulae involving
various special functions (like the Beta and Gamma functions). For the past
two decades, Professor Richard Askey of the University of Wisconsin, with his
students and co-workers, systematically studied g-analogues of various special
functions. In the course of this study, many of Ramanujan’s identities found in his
original notebooks and in the Lost Notebook were extremely useful. Many of the
g-analogues found by Askey and others are now finding important applications in
Physics, through the idea of Quantum Groups.

The Notebooks When Bruce Berndt began editing the notebooks of Ramanujan, he
envisaged publishing three volumes. Springer-Verlag has brought out three volumes,
but the work is not over yet. Professor Berndt has almost completed work on
the fourth volume, and there will be a fifth! This clearly demonstrates the depth
and scope of Ramanujan’s contributions. It is now possible to offer courses on
Ramanujan’s work since much of his work has been edited and books available
on the subject. Thus a greater number of bright students will take to a study of
Ramanujan’s formulae in the decades to follow. In this connection, Robert Kanigel’s
recent book “The man who knew infinity” will open the eyes of the general public
to the wonder that Ramanujan was.

The Lost Notebook It was George Andrews who discovered the Lost Notebook
in 1976 at the Wren Library in Cambridge University. Since then, he has analysed
hundreds of incredible identities contained in it and published several papers on
them, most notably in the journal Advances in Mathematics. On 22 December
1987, Ramanujan’s hundredth birthday, the printed version of the Lost Notebook
was released. Professors Andrews and Berndt are planning an edited version of the
Lost Notebook, much like Berndt’s edited version of the original notebooks. This
project will have great impact in the coming decades.
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The Undying Magic In closing we emphasise certain features about Ramanujan’s
mathematics.

Ramanujan had the knack of spotting seemingly unexpected relations. Thus
there is always an element of surprise for someone who studies his work. Quite
often, a closer analysis reveals that there are many more such relations and that
Ramanujan was pointing out only the most striking cases. So, one begins to suspect
whether Ramanujan had a method to generate such relations. In an effort to find such
methods, interesting theories emerge, sometimes leading to connections between
different areas of mathematics. Some of the most intriguing connections recently
found are between root systems of Lie algebras and the theory of g-series and
modular forms. This is the work of Professors V.G. Kac, I.G. MacDonald, and
D.H. Peterson. Such connections not only enrich the two areas but also offer several
fruitful research projects.

Ramanujan’s mathematics remains youthful even in the modern world of the
computer. His modular equations were used by Canadians Jonathan and Peter
Borwein to calculate 7 (the ratio of the circumference of a circle to its diameter) to
several million decimal places. The Borweins showed that these modular equations
produce efficient algorithms to obtain approximations to 7 and other numbers. More
recently, Ramanujan’s transformations for elliptic functions were used by David and
Gregory Chudnovsky to produce very rapidly convergent algorithms to compute 7;
in fact the Chudnovskys have now calculated 7 to the order of about a billion digits!

Finally there is a lasting quality about Ramanujan’s mathematics and about
fundamental research in general. In the mid-eighteenth century, the British math-
ematician Stirling did calculations to produce the table of logarithms. With the
advent of modern computers, such tables are among the least useful possessions
of a library. But the mathematics that went into the construction of such tables
never loses its lustre. Indeed, Stirling had developed methods for the acceleration
of convergence of series, and this has been the basis for William Gosper’s recent
program to generate identities using computer algebra packages like MACSYMA.
Motivated by Gosper’s ideas, Ira Gessel and Dennis Stanton have used g-Lagrangian
inversion to generate many identities of the Rogers—Ramanujan type.

Thus Ramanujan has left behind enough ideas to keep mathematicians busy
well into the twenty-first century. Professor Dyson has remarked that we should be
grateful to Ramanujan not only for discovering so much but also for providing others
plenty to discover! What sets Ramanujan apart from the rest of the mathematical
giants is that feeling of astonishment he creates with his stunningly beautiful
identities. Ramanujan is like a gem with many faces. His identities can be studied
from different viewpoints. Each face of this gem dazzles the beholder with its array
of colours!



Chapter 3
L.J. Rogers: A Contemporary Er
of Ramanujan

Rogers

Most of us associate the name of L.J. Rogers with the celebrated Rogers—
Ramanujan identities and rightly so, because these identities which are unmatched
in simplicity of form, elegance and depth, are representative of the best discoveries

This article appeared in The Hindu, India’s National Newspaper, in December 1992 for
Ramanujan’s 105th birth anniversary.
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14 3 L.J. Rogers: A Contemporary of Ramanujan

by both these mathematicians. Although Rogers had proved these identities in 1894
nearly twenty years before Ramanujan discovered them, his work was neglected
even by his British peers. Indeed, it was only after Ramanujan’s rediscovery of
Rogers’ paper in 1917 that Rogers received belated recognition leading eventually
to his election as Fellow of The Royal Society (FR.S.) in 1924, In spite of
this, the mathematical world remained largely unaware of the true significance of
Rogers’” work. We owe primarily to George Andrews and Richard Askey our present
understanding of the range of Rogers’ contributions to the theory of g-series and
special functions.

L.J. Rogers was a first rate mathematician and a man of many talents ranging
from music to linguistics. In Hardy’s own admission, Rogers was a mathematician
whose talents in the manipulation of series were not unlike Ramanujan’s. For sheer
manipulative ability, Ramanujan had no rival, except for Euler and Jacobi of an
earlier era. But if there was one mathematician in Ramanujan’s time who came
closest to the Indian genius in his mastery over infinite series and products, it was
Rogers. In this article I will describe some of the mathematical contributions of
Rogers, their significance and impact on current problems and how they relate to
Ramanujan’s work. I first describe the fascinating personality of this multi-talented
man. This article would not have been possible without the help of Professor
George Andrews of Pennsylvania State University, who provided me with several
documents relating to Rogers including the Obituary Notices of the Royal Society
of 1934.

Man of Many Talents Leonard James Rogers was born in Oxford, England, on
30 March, 1862. His father J.E. Thorold Rogers was a well-known Professor of
Economics. In his childhood Rogers had a serious illness and although he recovered
completely, he was not sent to school. J. Griffith, an Oxford mathematician,
noticed that Rogers had superior mathematical ability and taught him in his
boyhood. Rogers had a brilliant undergraduate career at Oxford University. In 1888
an independent Chair of Mathematics was created at Yorkshire College (now the
University of Leeds), and Rogers was appointed Professor. He held that position
with distinction until 1919 when ill-health forced him to retire prematurely. In 1921
he returned to Oxford, where he lived in retirement until his death on 12 September
1933 at the age of 71.

Rogers was tall, loose limbed and a rather gaunt figure. He was bespectacled and
had a beard. He was careless of his appearance and said that his drab clothes were
in keeping with his complexion.

Rogers was extra-ordinarily gifted and indeed a genius. His interests extended
well beyond mathematics into music, languages, phonetics, skating and even rock-
gardens! In this sense he was very different from Ramanujan who had few interests
outside of his obsessive love of mathematics, Whatever Rogers studied, he not only
acquired a full knowledge of it, but had enough mastery to have it at his fingertips.
Combined with this was his whimsical wit and ironic humour, heightened by his
ability to keep a serious countenance. With such combination of talent and humour,
he was in constant demand at various social gatherings.
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Of his varied talents, special mention must be made of his ability to play the
piano, helped by his long and nimble fingers. He was a multi-linguist and could
speak French, German, Italian and Spanish fluently. Some have attributed this to
his interest in phonetics, and the study of various dialects gave him the opportunity
of exercising his wonderful ear to the differences of sound. His students enjoyed
listening to his lectures, and to some the boredom of mathematical calculations was
relieved by his sparkling sense of humour.

Although he was admired and respected by those around him for his many-sided
brilliance, he complained that people were ignorant of his real interest, namely,
mathematics. Even British mathematicians of his day paid little attention to his
papers, and it was not until Ramanujan drew attention to Rogers” work in 1917
that Hardy realised the fundamental nature of Rogers’ contributions. Rogers was
then conferred the Fellowship of The Royal Society in 1924. In spite of this
recognition, in an obituary published in Nature in 1933, it was said that apart from
the Rogers—Ramanujan identities, he found little of mathematical value. The writer
even expressed the opinion that had not Rogers wasted his time with his other
interests but approached mathematics with a single minded purpose, he would have
achieved a good deal more and therefore could have been considered a success in
life. The research of Andrews in the realm of g-series and that of Askey on special
functions have demonstrated that these opinions on Rogers were far from the truth.
In fact, in his fundamental papers Rogers had anticipated the discoveries of many
noted mathematicians.

The Rogers-Ramanujan Identities During 1893-1895, Rogers published three
memoirs in The Proceedings of The London Mathematical Society on the expansion
of certain infinite products. In these papers the Rogers—Ramanujan identities and
several related results are proved. Ramanujan discovered these two identities
in India between 1910 and 1913 and communicated them in letters to Hardy.
Ramanujan did not have a proof of these identities and could not supply one
when asked by Hardy. Neither Hardy nor his British colleagues had any idea how
to approach these identities. The combinatorial version of the first identity is as
follows: The number of partitions of a positive integer into parts which differ by at
least 2 is equal to the number of partitions of that integer into parts which when
divided by 5 leave remainder I or 4. The second identity has a similar description.
This combinatorial description is due to MacMahon and Schur. Neither Rogers nor
Ramanujan viewed these identities in terms of partitions.

In 1917, while going through some old issues of the Proceedings of The London
Mathematical Society, Ramanujan came across Rogers’ papers accidentally. Hardy
said that Ramanujan expressed great appreciation for the work of Rogers. A corre-
spondence between Rogers and Ramanujan followed, resulting in a considerable
simplification of the proof. At about the same time, the German mathematician
I. Schur, who was cut off from England by World War I, discovered these identities
independently.

Rogers alluded to his re-emergence ironically, as was characteristic of him, in a
letter to EH. Jackson dated 13 February 1917: * It was with a certain amusement that



16 3 L.J. Rogers: A Contemporary of Ramanujan

a theorem which I proved nearly 24 years ago should have remained in obscurity so
long and recently brought into prominence as a conjecture. MacMahon wrote to me
on the publication of his book regretting that he overlooked my work before it was
too late. Since then, I have other ways of proving both identities in a more direct
way ....”

In the last few decades several proofs of the Rogers—Ramanujan identities have
been given. A major advance was made by Basil Gordon (University of California,
Los Angeles) in 1961, who produced an elegant generalisation. Spurred by this,
Andrews made great progress and discussed a whole class of related identities. Yet,
none of these proofs of the Rogers—Ramanujan identities are simple. In some sense,
the simplest proof so far is the one due to David Bressoud (Pennsylvania State
University) in 1983. Although the identities have a combinatorial interpretation, no
simple combinatorial proof is available converting partitions of one type to another.
A combinatorial proof was given by Garsia and Milne in 1981, but it runs to 50
printed pages! Soon after, a shorter combinatorial bijective proof was given by
Zeilberger and Bressoud in 1982.

The Hard Hexagon Model In 1979, the Australian mathematical physicist Rodney
Baxter was working on a problem in Statistical Mechanics concerning the behaviour
of liquid helium over a graphite plate. The Rogers—Ramanujan identities arose as
one set of solutions to the model he considered. While struggling to understand these
identities he found a proof. Baxter then worked out the full set of solutions and six
other companion identities came up. He then contacted George Andrews, the leading
authority on this subject, who pointed out that all these identities were contained in
Rogers’ papers of 1893-1895. A fruitful collaboration between Andrews and Baxter
followed, and they obtained significant extensions of Baxter’s original model. Thus
Rogers’ work found application to a problem in Physics nearly a century later. For
this work, Baxter was awarded The Boltzman Medal of The American Physical
Society. In a series of lectures given in Tempe, Arizona, in 1985, jointly sponsored
by The American Mathematical Society and The National Science Foundation of
U.S.A., Andrews discussed the eight identities of Rogers and their role in Baxter’s
Hard Hexagon Model.

Of these six companion identities of Rogers, two of them bear remarkable
resemblance to the original Rogers—Ramanujan identities. Andrews and Askey
asked for a combinatorial explanation of these two identities of Rogers. An elegant
explanation was found by Bressoud in 1978, and these ideas led him to provide
combinatorial insights into many partition problems.

The Mechanism Rogers had beaten Ramanujan in his own game by proving two
identities that Ramanujan could not! What was the mechanism behind his proof
that worked so well? There were several ideas. Rogers viewed these identities as
coming out of a process of comparing coefficients in certain general expansions. He
considered various combinations of sine and cosine, the trigonometric functions,
and compared expansions obtained in two different ways. Such tricks were right
up Ramanujan’s alley but had escaped his attention. These ideas of Rogers have
proved extremely fruitful and have led to the discovery of many partition identities.
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W.N. Bailey pursued certain ideas of Rogers and invented a powerful technique
now known as The Bailey Chain. But Bailey did not realise the true potential of
this technique which has now become the standard process to generate identities
of Rogers—Ramanujan type. In two papers which appeared in The Proceedings of
The London Mathematical Society (1951-1952), Lucy Slater carried out Bailey’s
programme and listed over one-hundred such identities.

Anticipated Others The Rogers—Ramanujan identities were not the only instance
when Rogers anticipated the work of other great mathematicians. In their famous
book “Inequalities” published by Cambridge University Press in 1934, Hardy,
Littlewood and Polya observed that Rogers had discovered Holder’s inequality in
1888 one year prior to Holder. In 1936, Atle Selberg (now at The Institute for
Advanced Study, Princeton) discovered certain identities related to the number 7
just as the Rogers—Ramanujan identities are related to the number 5. Freeman Dyson
(also at Princeton now) noticed in 1943 that these identities were buried in Rogers’
papers of 1895 and 1917.

In his third memoir of 1895, Rogers had considered certain extensions of the
famous Hermite polynomials. In 1978, Richard Askey and Mourad Ismail made a
systematic study of various results on Special Functions in this memoir and pointed
out that Rogers had anticipated the work of many noted mathematicians in this
important area.

Invariant Theory During 1886-1887, Rogers wrote four papers in The Theory
of Invariants, a subject dealing with algebraic expressions which remain invariant
under certain transformations. Such invariance is of great interest to physicists,
especially to those working in Relativity. In MacMahon’s words, “The theory
of invariants sprang into existence under the strong hand of Cayley, but that it
emerged finally into a complete work of art for the admiration of future generations
of mathematicians, was largely owing to the flashes of inspiration with which
Sylvester’s intellect illuminated it.” Rogers’ papers on Invariant Theory published
in 1886 formed the main topic of lectures given that year by Sylvester, who was
Savillian Professor of Geometry at Oxford University. Invariant Theory was one
area where Rogers’ work drew immediate attention.

False Theta Functions As is now well known, the mock theta functions are among
Ramanujan’s deepest contributions. In his last letter to Hardy dated January 1920,
Ramanujan said that he had discovered a new class of functions called the mock
theta functions which arise more naturally than the false theta functions of Rogers.
While it is true that Ramanujan’s discoveries on mock theta functions are deeper,
the false theta identities of Rogers have beautiful partition theoretic interpretation
as was shown by Andrews in his 1979 New Zealand lectures.

Continuing Rediscovery Thus the rediscovery of the mathematical contributions
of Rogers is continuing, and he is finally getting the recognition he deserved.
Rogers published 35 papers spanning g-series, invariant theory and elliptic function
theory. These papers contain important ideas which have sown the seeds of many
developments in the succeeding decades.
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It would be fair to say that had not Ramanujan unearthed the Rogers papers of
1893-1895, Rogers would not have been elected Fellow of The Royal Society. India
owed a great debt to Cambridge University and to Professor Hardy in particular,
for encouraging Ramanujan. And this debt has been repaid with Ramanujan’s
rediscovery of the work of Rogers, thereby showing the British mathematical
community that they had a mathematician among them whom they needed to
recognise!



Chapter 4 ()
P.A. MacMahon: Ramanujan’s G
Distinguished Contemporary

MacMahon

Percy Alexander MacMahon was an unusual and noteworthy British mathematician,
unusual because he had a distinguished career both in mathematics and in the
military. Well known as Major MacMahon, he made fundamental contributions to
combinatorics and the theory of algebraic forms and received several honours from

This article appeared in The Hindu, India’s National Newspaper, in December 1993 for
Ramanujan’s 106th birth anniversary.
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The Royal Society and The London Mathematical Society. He is best remembered
for his work on symmetric functions, permutations and partitions. MacMahon’s
investigations in the theory of partitions not only brought him into contact with
Srinivasa Ramanujan but, had a direct effect on some of the brilliant contributions
of the Indian genius. In this article I will first describe briefly MacMahon’s life in
the military owing to connections with India. Next I will discuss some of his major
contributions to mathematics and finally emphasise those which have connections
with Ramanujan. For biographical facts, I have benefitted from two obituaries
of MacMahon, one by H.F. Baker which appeared in 1930 in the Proceedings
of The London Mathematical Society, and another by H.H. Turner presented to
the Royal Astronomical Society of which MacMahon was president. I have also
referred to the Collected Works of MacMahon which have been edited by George
Andrews. Finally, I have profited from several stimulating conversations with
Professor George Andrews of The Pennsylvania State University and comments
from Professor Richard Askey of the University of Wisconsin.

Military Career and India P.A. MacMahon was born in Malta on 26 September
1854 as the second son of Brigadier General P.W. MacMahon. He went to school
in Cheltenham. Following in his father’s footsteps, he entered the Royal Military
Academy in Woolwich in 1871 as a gentleman cadet. He was swiftly made a
Lieutenant and posted in the 5th Brigade at St. Thomas Mount in Madras. His stay
in Madras was brief because he was transferred to the 8th Brigade in Lucknow soon
after. He was again transferred to Meerut in the Punjab but there he stayed for three
years. In 1877 he was posted in the Northwestern Frontier Force in Kohat in the
Punjab. For his service in the military, he was promoted to the rank of Captain in
1881 and Major in 1889, the title by which he was known since then even in the
mathematical world. In 1882 MacMahon returned to his alma mater, The Royal
Military Academy, as an Instructor in Mathematics, a post that he held until 1888.
He was then appointed as Professor of Physics at The Royal Artillery College in
Woolwich, a position that he held with distinction until 1898. From 1906 to 1920 he
was Deputy Warden of Standards under the Board of Trade.

Contributions to Mathematics Ever since his youth, MacMahon was absorbed
by mathematics. But it was his contact in 1882 with Professor George Greenhill
of The Royal Artillery College that changed his whole life for he was exposed to
the theory of algebraic forms which at that time was undergoing a full flight of
development under masters like Cayley and Sylvester. (Incidentally, Greenhill may
have also had an effect on Ramanujan, because according to Hardy, Greenhill’s
book on elliptic functions was perhaps the source in India from which Ramanujan
acquired a knowledge of that wonderful subject). To quote Sir Joseph Larmor,
“MacMahon threw himself with indomitable zeal and insight into the great problems
of this rising edifice of science. In a short time he was being counted as conspicuous
among the leaders largely by the invention of new methods.” MacMahon’s great
strength was his mastery over combinatorial techniques. In particular MacMahon
made fundamental contributions to the theory of permutations and the theory of
symmetric functions with which it was intimately connected.
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In simple terms, a permutation of a set is a rearrangement of its elements, and
symmetric functions are those whose values do not change under permutations of the
variables. Permutations and symmetric functions occur in a wide variety of settings
in different areas of mathematics. In the theory of probability, which often deals
with games of chance, one is always interested in the number of possible outcomes.
Permutations often dominate such calculations. In linear algebra, while solving
systems of equations, the determinant is of paramount importance. As is well
known, a system of n linear equations in n unknowns has a unique solution if and
only if the determinant of the matrix of coefficients is non-zero. And permutations
play a crucial role in the definition of the determinant of a square matrix. As is
known to most students of mathematics, symmetric functions arise while solving
polynomial equations. More precisely, the coefficients of the polynomial can be
expressed in terms of various symmetric functions involving the roots of the
equation. In a paper that appeared in the Proceedings of The London Mathematical
Society in 1884, MacMahon obtained an elegant extension of a famous formula of
Newton involving symmetric functions and the powers of the roots of a polynomial
equation.

MacMahon’s influence can be seen throughout the theory of permutations. He
studied special types of permutations such as those called derangements. These are
permutations in which every object is in the wrong position. For example, consider
n persons going to a restaurant and each turning in his hat at the entrance. When the
guests are ready to leave, the clerk returns the hats at random. The question now is
in how many ways can the hats be returned such that no guest receives his hat. What
is asked here is the number of derangements of n objects. In a paper of 1912 that
appeared in the Transactions of The Cambridge Philosophical Society, MacMahon
obtained several pretty formulas involving derangements.

MacMahon realised that it was important to study indices of permutations.
Roughly speaking an index of a permutation is a measure of how much things
have gone wrong in the rearrangement. In a massive paper that appeared in 1913
in The American Journal of Mathematics, MacMahon studied a variety of indices:
the greater index, the lesser index, etc. For example, in the permutation 2, 1, 3,
6, 5, 4 of the integers 1, 2, 3, 4, 5, 6, consider those pairs of consecutive terms
(k,1) in the permutation for which k is greater than [ and k£ comes before /. In
the above example, the required pairs are (2, 1), (6,5) and (5, 4). For each such
pair, note the position where the first entry k& occurs and add up the values of these
positions. That gives the greater index of the permutation. In the above example,
the greater index is 1 +4 4 5 = 10. MacMahon established a variety of important
results on the indices of permutations. In particular, he showed that the generating
function of the greater index is the same as the generating function of the number
of inversions, both being equal to the g-multinomial coefficient. MacMahon was
the first to study systematically the combinatorial properties of the g-multinomial
coefficients and in particular the gq-binomial coefficient. Today we understand the ¢-
binomial coefficient as arising out of the expansion of (x+y)", where the variables x
and y satisfy the g-commutation relation yx = gxy. Such variations in the familiar
commutative law of multiplication are of great interest to physicists, and conditions
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such as the g-commutation relation are the type one encounters in the study of
Quantum Groups which play an important role in modern physics.

The results on derangements as well as other results on permutations were all
special cases of a rather general result that MacMahon called as the Master Theorem,
which he proved in his paper of 1912 in The Philosophical Transactions of The
Royal Society of London. The master theorem asserts the equality of the coefficients
of monomials in the expansion of certain products to the coefficients that occur
in the expansion of the reciprocal of a certain determinant. MacMahon himself
demonstrated the usefulness of this in two memoirs. Subsequently several proofs
of the master theorem have been given the most important in recent years being that
of Dominique Foata of the University of Strasbourg in France, who explained its
real combinatorial significance.

MacMahon’s results on symmetric functions were extensive, and the great
majority of his papers relate to them in some way. The basic tool that he used
in studying symmetric functions were the Hammond operators. One of the active
areas of research today is algebraic combinatorics, and two of the most prominent
mathematicians in this field currently are Professors Gian-Carlo Rota and Richard
Stanley of the Massachusetts Institute of Technology. The widespread influence of
MacMahon’s research can be seen in algebraic combinatorics while studying group
representations or the Young tableaux.

In 1915 and 1916, Cambridge University Press published his book on Combi-
natory Analysis in two volumes. These volumes contain an extensive treatment of
symmetric functions, partitions, compositions, and his work on the Master Theorem
and on the enumeration of multipartite numbers.

As professor of physics at the Artillery College in the 1890s, it is not surprising
that MacMahon was interested in problems in physics as well. In particular
MacMahon published a paper in 1909 in the London Astronomical Society Monthly
Notices dealing with the determination of the apparent diameter of a fixed star.
This was his only paper in Astronomy. The great British cosmologist Sir Arthur
Eddington criticised MacMahon’s technique, and this held back its application for
quite a long time. We know now that MacMahon'’s technique was a good one and
that he had been correct even in the details. At this juncture it may be worth pointing
out that Eddington was also very critical of Chandrasekhar’s idea that massive stars
would eventually contract under the influence of their own gravity. As it turned out,
not only was Chandrasekhar correct, but his ideas became the starting point for the
study of neutron stars and black holes.

For his significant contributions to mathematics, MacMahon received several
honours. He was conferred Fellowship of The Royal Society (FRS) in 1890. He
was elected as President of The London Mathematical Society for a two-year term
in 1894. He served as President of The Royal Astronomical Society in 1917-1918.
In 1900, The Royal Society first gave him the Royal Medal and later in 1919, the
Sylvester Medal. In addition he received the de Morgan Medal of The London
Mathematical Society in 1923. In his retiring Presidential address to The London
Mathematical Society he gave a superb review of the progress in Combinatory
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Analysis during the second half of the nineteenth century. He died in Bognor on
Christmas day in 1929.

Connection with Ramanujan It was MacMahon’s work in the theory of partitions
that brought him into contact with Ramanujan. A partition of an integer is a
representation of that integer as a sum of positive integers, two partitions being
considered the same if they differ only in the order of the parts. Thus we do not
distinguish between 2 + 1 + 1 and 1+ 1 4 2 as partitions of 4. So the five partitions
of4dare4,3+1,24+2,24+1+1and 1+ 1+ 1+ 1. If we make a distinction
between two representations having the same parts but occurring in different order,
then we are dealing with compositions. MacMahon studied both partitions and
compositions combinatorially. Whereas MacMahon used combinatorial techniques,
Ramanujan employed analytic methods. MacMahon was very quick in computation
and was equal to Ramanujan in this regard. The number of partitions of an integer
n, denoted by p(n), grows quite rapidly, and MacMahon used a recurrence formula
of Euler involving the pentagonal numbers to compute the first two hundred values
of the partition function. This computation of MacMahon had a direct effect on
Ramanujan’s work as we shall see presently.

The Hardy-Ramanujan Formula The asymptotic formula obtained by Hardy
and Ramanujan for the number of partitions of an integer is the finest example
of what was achieved when the brilliance of Ramanujan combined with the
sophistication of Hardy. Ramanujan realised even in India prior to his departure
to England that there are analytic series representations for p(n) and other related
functions. It really stunned Hardy when Ramanujan asserted that such a series would
give the exact value of p(n). Hardy initially disbelieved this claim because p(n)
being a function on the integers has jumps, whereas the series that Ramanujan
wrote down involved continuous functions. Ramanujan’s spectacular discoveries
are full of unexpected relations such as this. But Ramanujan had no proof of
this claim. What was required was an ingenious use of the theory of functions
of a complex variable, and here the mastery of Hardy over such sophisticated
techniques was crucial. Hardy and Ramanujan obtained a series representation for
the number of partitions of an integer n by an entirely new technique called the
circle method. This method was later improved substantially by Hardy and his
distinguished colleague Littlewood and is the standard technique used now in a wide
variety of additive problems in number theory. Hardy and Ramanujan wanted to
check their formula numerically, and for this, MacMahon’s table of values for p(n)
proved useful. The value p(200) = 3972999029388 given by the series coincided
with the value that MacMahon had calculated using Euler’s recurrence. Actually a
significant improvement over the Hardy—Ramanujan formula for p(n) was obtained
subsequently by Hans Rademacher, but 1 will discuss this in a separate article
devoted to the life and contributions of Rademacher and highlight connections with
Ramanujan’s work.

The Ramanujan Congruences MacMahon’s table of values of the partition
function had another effect on Ramanujan’s work, this one being much more
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Fermat

Although Pierre Fermat (1601-1665), one of the founding fathers of Number
Theory, and Srinivasa Ramanujan (1887-1920), the legendary Indian genius, are
separated by centuries, there are many similarities between the two in style and
substance. An important part of the legacy of both Fermat and Ramanujan are

This article appeared in The Hindu, India’s National Newspaper, in January 1995.
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their many observations recorded informally which have inspired several succeeding
generations of mathematicians. Fermat’s Last Theorem, which until recently was
the most famous unsolved problem in mathematics, was just a marginal entry made
by Fermat in a book written by Bachet on the work of the Greek mathematician
Diophantus. The statement of the Last Theorem is that for any integer n greater
than 2, there are no positive nth powers which are the sum of two other positive
nth powers. Fermat claimed that he had a truly marvelous proof of this assertion
but unfortunately the margin was too small to contain it! This naturally added a
spirit of intrigue to the problem. The simplicity of Fermat’s Last Theorem belies
its depth and difficulty. For the last three centuries, mathematicians both amateur
and professional, have attempted to find a proof of Fermat’s assertion but did not
succeed. These attempts however did yield plenty of new techniques which have
proved immensely useful elsewhere. For example, the subject Algebraic Number
Theory was born owing to efforts by Kummer and others to understand the unique
factorisation property in very general settings, being motivated to study this question
while attempting to solve Fermat’s Last Theorem. The proof of Fermat’s Last
Theorem announced by Andrew Wiles in June 1993 and now completed by Wiles
and Taylor is the culmination of years of effort by many illustrious mathematicians
and is the result of the fusion of the Theory of Elliptic Curves and Number Theory.
In a similar vein, Ramanujan’s incomplete entries in his two notebooks and in the
Lost Notebook have engaged mathematicians since the beginning of this century.
Several branches of mathematics such as Number Theory, The Theory of Partitions,
The Theory of Modular Forms, The Theory of Elliptic and Theta Functions, Hyper-
Geometric Series and others have been enriched out of attempts to understand
Ramanujan’s jottings.

Both Fermat and Ramanujan communicated their wonderful findings in letters.
Ramanujan wrote letters to mathematicians in England, desperately seeking recog-
nition for his work. Fortunately, Hardy responded favourably. Fermat communicated
regularly with his French peers Pascal and Mersenne among others, as well as with
British mathematicians. Fermat’s challenge to the British mathematicians was what
ultimately led to the complete solution of what is now known as Pell’s equation. The
name Pell’s equation is due to Euler who was under the mistaken impression that
the British mathematician Pell had done most of the work on this; but we know now
that several centuries earlier, the Indian mathematicians Bhaskara and Brahmagupta
had made significant progress on such questions.

There are many number theoretic problems which interested both Fermat and
Ramanujan. Fermat stated that every positive integer is a sum of no more than three
triangular numbers, four squares, five pentagonal numbers, and so on. Special types
of numbers like these had been of interest since the days of the Pythagoreans, but
no one before Fermat had made such a fundamental observation about them. This
assertion of Fermat attracted the attention of many outstanding mathematicians.
Gauss gave a proof of the statement that every positive integer is a sum of no more
than three triangular numbers, while Lagrange proved the assertion about sums of
four squares. The general assertion that every positive integer is a sum of n or fewer
n-gonal numbers was established by Cauchy.
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Ramanujan was also interested in the representation of integers as sums of
squares. But he viewed it from an entirely different angle, in terms of infinite series
identities for theta functions. Although Ramanujan seldom stated number-theoretic
forms of his identities, such interpretations were natural consequences of his results.

Just as Carr’s Synopsis, the first book to make an impression on Ramanujan,
so strongly influenced his style of writing, Bachet’s Diophantus was the book that
dominated Fermat’s mathematical life. And it was in this book that Fermat copiously
made marginal notes, commenting on possible extensions and improvements of
results contained therein. In particular, Pythagorean triangles fascinated Fermat.

It is a fact well known to all high school students that if x, y and z denote the
lengths of the three sides of a right-angled triangle with z being the length of the
hypotenuse, then x” + y> = z2. Pythagorean triangles are those where the x, y and
z are integers without a common factor. An example is the triangle with sides 3, 4,
and 5. Another example is provided by the triple 5, 12 and 13. There are infinitely
many Pythagorean triangles, and a formula to generate all of them has been known
since antiquity and can be found in Bachet’s book. Fermat was interested in finding
whether there were any Pythagorean triangles whose area was also a square, and this
problem was not discussed by Diophantus or Bachet. Fermat proved by the method
of infinite descent that such triangles could not exist. The key idea in the method
of infinite descent is to show that any positive solution will generate a smaller such
solution. By iteration, an infinite sequence of decreasing positive integer solutions
would be generated, and this is clearly impossible.

Fermat was not the first person to investigate areas of Pythagorean triangles.
As early as the tenth century A.D., the Arabs were interested in determining those
numbers which arise as areas of Pythagorean triangles. Fermat proved that squares
cannot be areas of Pythagorean triangles. This apparently idle question as to which
rational numbers can be realised as areas of right-angled triangles with rational sides
has been shown to have significant implications in the modern theory of elliptic
curves.

With the exception of The Last Theorem, Fermat is most famous for his method
of infinite descent. Fermat used the method of infinite descent to show that various
equations do not have solutions among the positive integers, and perhaps believed
that this method could be used to give a “truly marvelous proof” of the Last
Theorem. In the course of proving that it is impossible to have Pythagorean triangles
whose area is a square, Fermat showed that x* + y* = z* has no positive integer
solutions. He then observed that he could also apply the method of descent on the
equation x* + y3 = z3, which is the first case of The Last Theorem. But it was left
to Euler to supply the arguments for this case.

In contrast, Ramanujan was interested mainly in equations which had solutions,
and especially providing algorithms or formulas for the solutions. The famous
Ramanujan taxi-cab number 1729 is a solution to what appears like a mild variation
of the Fermat equation. Indeed 1729 is interesting because 1729 = 12° + 1° =
10° + 9%, and this is a solution to x* + y* = z* + w?. In other words, addition of
an extra variable w to the Fermat equation provides a solution. Euler had provided a
formula for the general solution to this equation, but in Ramanujan’s third notebook
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there is also a formula for the general solution to the taxi-cab equation which is in
some ways more elegant than Euler’s.

During the Ramanujan Centennial, Atle Selberg of the Institute for Advanced
Study at Princeton pointed out that raising fundamental questions is just as important
as solving long-standing problems. Both Fermat and Ramanujan have raised several
important questions which have engaged mathematicians of the highest calibre in
the decades that followed. Fermat’s assertions interested Euler, who systematically
supplied proofs for many of them. And in doing so, Euler noticed improvements
and generalisations. Gauss then took over where Euler had left off. Number Theory
as it is taught today, is based on Gauss’ Disquisitiones Arithmeticae, which is the
finished product of the foundation laid by Fermat and the structure erected by Euler.
Ramanujan’s observations have been food for thought since the beginning of this
century. At first, Hardy, Watson and Mordell supplied proofs and explanations for
many of Ramanujan’s observations. In the past few decades, the work of Erdos,
Selberg, Deligne, Askey, Andrews, Berndt and others have revealed the grandeur
of Ramanujan’s discoveries. However, a complete understanding of Ramanujan’s
writings will take many decades, possibly more than a century.

The importance of the work that has been generated by a study of the writings
of Fermat and Ramanujan can be judged by the kind of recognition that the
international mathematical community has given to such efforts. In 1986, Gerd
Faltings of Germany was awarded the Fields Medal (the equivalent of the Nobel
Prize in mathematics for prestige) for proving the Mordell-Weil conjecture. From
this work of Faltings it followed that every Fermat equation had at most a finite
number of solutions. Faltings’ methods have now led to the creation of a new field
known as Arithmetic Geometry. Similarly, Andrew Wiles’ proof of Fermat’s Last
Theorem contains many new ideas which will be developed to yield more results
in the future. The most famous of Ramanujan’s problems was what Hardy called
The Ramanujan Hypothesis concerning the size of Ramanujan’s tau function. Pierre
Deligne was honoured with the Fields Medal in 1978 for proving the Ramanujan
hypothesis.

Freeman Dyson of The Institute for Advanced Study in Princeton has said that
we should be thankful to Ramanujan for not only discovering so much, but also
leaving plenty for others to discover! Similarly, we should be grateful to Fermat for
raising questions which have kept mathematicians busy for the past three centuries.
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Sylvester

The Theory of Partitions, an active area of research today, has gone through four
major periods of development. The first era is that of Euler who founded the subject
in the 18th century. The second period in the latter half of the 19th century is that of

This article appeared in The Hindu, India’s National Newspaper, in December 1995, on
Ramanujan’s 108-th birth anniversary.
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paper dealt with complex roots of certain algebraic equations. This problem was
first considered by Newton and had defeated even giants like Euler, but Sylvester
was successful with it. Sylvester also worked on partitions during this period, prior
to his stay at Johns Hopkins. MacMahon observes that in June/July 1859, Sylvester
delivered a series of seven lectures on partitions at Kings College, London. Printed
outlines of these lectures were distributed to the members of the audience and some
others. Much later, in 1897, The London Mathematical Society published these
lecture outlines, and they attracted considerable attention.

Unfortunately, at Woolwich Sylvester was in constant dispute with the authorities
who considered his manners eccentric and irritable. Therefore, in 1870, even though
his research was still going strong, he was forcibly “super-annuated” at the age of
56. But in a few years a new direction in his career was about to begin.

Sylvester at Johns Hopkins In 1875, the Johns Hopkins University was founded
in Baltimore, Maryland, under the brilliant leadership of President Gilman, who
felt that the ideal way to start would be to appoint two outstanding professors, one
in Classics and the other in Mathematics. This way they would be able to ensure
excellence without a huge financial commitment. The exact words of Daniel Gilman
were: “Enlist a great Mathematician and a distinguished Grecian; your problem will
be solved. Such men can teach in a dwelling house as well as in a palace. Part
of the apparatus they will bring, part we will furnish. Others will follow.” So the
famous Joseph Henry sent a letter to Sylvester in August 1875 inviting him to build
the mathematics department at Johns Hopkins and offered him a handsome salary,
$5000 per annum paid in gold. Sylvester was free to teach whatever he wanted in any
manner he saw fit. It was a bold experiment in the educational method. Sylvester,
who was still full of fire and enthusiasm, once again crossed the Atlantic.

At Johns Hopkins University, Sylvester founded The American Journal of
Mathematics, one of the leading mathematical research journals today. He found
the freedom given to him to be so conducive to research. Perhaps the happiest years
of his life were the ones he spent at Johns Hopkins. He lectured on a wide variety of
topics, the choices being made at the spur of the moment on what he was thinking
at that time. Undoubtedly this was difficult for some, but the spontaneity had a
profound positive effect on many of his students and associates. The experiment in
education taken by the regents of the university was a success. The contents of many
of Sylvester’s lectures became papers in the newly formed journal. In fact Sylvester
published as many as 30 long papers in this journal during the first five years.

Many students and associates of Sylvester in Baltimore have commented on
his lecturing style. W.P. Durfee has written: “His manner of lecturing was highly
rhetorical and elocutionary. When about to enunciate an important or remarkable
statement, he would draw himself up till he stood on the very tip of his toes and
in deep tones thunder out his sentences. He preached at us at such times, and not
infrequently he wound up quoting a few lines of poetry to impress upon us the
importance of what he had been declaring.”

A.S. Hathaway says: “I can see him now with his white beard and a few locks
of grey hair, his forehead wrinkled o’er with thoughts, writing rapidly his formulae
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on the board, sometimes explaining as he wrote, while we, his listeners, caught the
reflected sounds from the board. But stop, something is not right; he pauses, his hand
goes over his forehead to help his thought; he goes over the work again, emphasises
the leading points and finally discovers his difficulty ... But at the next lecture, we
would hear of some new discovery that was the outcome of that difficulty and some
article for the journal that he had begun.”

It was during this period that Sylvester wrote a long and important paper
entitled “A constructive theory of Partitions arranged in three Acts, an Interact
and an Exodion” (American Journal of Mathematics, 1882). This paper contains
several seminal ideas of Sylvester and members of his group of whom the most
prominent were F. Franklin and W.P. Durfee. In this massive paper, Sylvester laid
the foundations of the combinatorial theory of partitions by studying properties
of partition graphs. He provided combinatorial proofs of Euler’s assertions and
extended them. In particular he obtained a significant refinement of Euler’s theorem
on odd parts and non-repeating parts. Contained in this paper is Franklin’s famous
proof of Euler’s celebrated Pentagonal Numbers Theorem. This proof by Franklin
is considered to be the first significant achievement in American mathematics. Yet
another idea in this paper which is useful even today, is the concept of a Durfee
square (named after W.P. Durfee).

By studying Durfee squares for partitions into non-repeating parts, Sylvester
proved a general identity from which Euler’s Pentagonal Numbers Theorem
followed as a special case. It is normally the experience that one discovers a
g-series identity first and later obtains a combinatorial explanation or proof. In
this situation, Sylvester had obtained his general identity combinatorially but was
unable to provide a generating function proof. So he challenged the mathematical
community to find such a proof. His long time friend Cayley responded to the
challenge and produced a beautiful generating function proof. This has a connection
with the Rogers—Ramanujan identities as we shall soon see. George Andrews has
remarked that Sylvester’s identity holds the distinction of being the first g-series
identity whose first proof was purely combinatorial!

Sylvester stayed in Baltimore for only 8 years. In 1883 he was elected to the
Savillian Professorship of Geometry at Oxford University. He occupied this position
until 1893 when his health began to decline. He died in 1897 in England at the age
of 83. Ramanujan was then a ten year old boy in India.

Connection with Ramanujan’s Work As is well known, the Rogers—Ramanujan
identities are among the deepest and most elegant in the theory of partitions and
g-series, Ramanujan discovered these identities in India prior to his departure to
England but was unable to prove them. The British mathematician L.J. Rogers had
proved them in 1894. Rogers later gave a second proof which was considerably
simpler in detail than his first. After Ramanujan arrived in England and studied
Rogers’ paper in 1917, he was able to give his own proof. When Rogers and
Ramanujan corresponded in 1917, it turned out that Rogers had a third proof
which was remarkably similar to Ramanujan’s. In view of the importance of these
identities, Professor G.H. Hardy arranged for Rogers and Ramanujan to write a
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joint paper in which both their proofs were presented. This paper appeared in The
Proceedings of The Cambridge Philosophical Society in 1919. The paper opens with
Hardy’s introductory remarks. Rogers’ proofis given in Section 1, and Ramanujan’s
in Section 2. It is interesting that both Rogers’ and Ramanujan’s proofs make use
of an identity which can be considered as the next case beyond the general identity
that Sylvester found. But the method employed by Rogers and Ramanujan is not
the combinatorial method of Sylvester, but the method underlying Cayley’s proof of
Sylvester’s identity.

In the 1960s Basil Gordon obtained an elegant and important generalisation of
the Rogers—Ramanujan identities. One way to prove Gordon’s generalisation is to
establish a suitable extension of Sylvester’s identity.

It should be noted that I. Schur, the German mathematician, independently
proved the Rogers—Ramanujan identities in 1917. Owing to World War I, he was
cut off from England and so was unaware of the work of Rogers and Ramanujan.
Schur’s proof is very much combinatorial and in fact goes along the lines of
Franklin’s proof of Euler’s Pentagonal Numbers Theorem. Although several proofs
of the Rogers—Ramanujan identities are known today, none are simple. For a long
time, it was an open question whether a combinatorial bijective proof of the Rogers—
Ramanujan identities can be found. In 1980, Garsia and Milne found a bijective
proof, but even this is very complicated. The key idea in the Garsia—Milne proof
is based on Schur’s combinatorial constructions which can be traced back to the
techniques put forth by Sylvester and his students. Thus we see that Sylvester’s
paper has an influence in current research.

There are other instances where Sylvester’s work intersects with that of Ramanu-
jan, as Andrews has pointed out in his New Zealand Lectures. In Ramanujan’s
Lost Notebook there are several identities which have partition interpretations,
but Ramanujan, as was his custom, never stated their combinatorial significance.
Ramanujan was more an analyst than a number theorist. So he preferred the analytic
form of his identities and did not make their number-theoretic or combinatorial
forms explicit. Andrews has shown that many of Ramanujan’s identities have
elegant partition interpretations and that by using Durfee squares one can not only
prove some of these identities but extend them as well.

George Andrews, who has explained the significance of many of Sylvester’s ideas
on partitions in the context of current research, has said often that Sylvester’s paper
of 1882 is still worthy of deeper study. On the subject of partitions Sylvester said:
“Partitions constitute the sphere in which analysis lives, moves and has its being; and
no power of language can exaggerate or paint too forcibly the importance of this till
recently almost neglected, but vast, subtle and universally permeating, element of
algebraical thought and expression.” The theory of partitions continues to be active
area of research because of the wealth of ideas handed down by mathematicians of
eminence like Euler, Sylvester and Ramanujan.



