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Rationality for Mortals



Chapter 1

Bounded and Rational

At first glance, Homo sapiens is an unlikely contestant for
taking over the world. “Man the wise” would not likely win an
Olympic medal against animals in wrestling, weightlifting,
jumping, swimming, or running. The fossil record suggests
that Homo sapiens is perhaps 400,000 years old and is
currently the only existing species of the genus Homo. Unlike
our ancestor, Homo erectus, we are not named after our
bipedal stance, nor are we named after our abilities to laugh,
weep, and joke. Our family name refers to our wisdom and
rationality. Yet what is the nature of that wisdom? Are we
natural philosophers equipped with logic in search of truth?
Or are we intuitive economists who maximize our expected
utilities? Or perhaps moral utilitarians, optimizing happiness

for everyone?

Why should we care about this question? There is little
choice, I believe. The nature of sapiens is a no-escape issue. As
with moral values, it can be ignored yet will nonetheless be
acted upon. When psychologists maintain that people are
unreasonably overconfident and fall prey to the base rate
fallacy or to a litany of other reasoning errors, each of these
claims is based on an assumption about the nature of sapiens—

as are entire theories of mind. For instance, virtually



everything that Jean Piaget examined, the development of
perception, memory, and thinking, is depicted as a change in
logical structure (Gruber & Voneéche, 1977). Piaget’s ideal

image of sapiens was logic. It is not mine.

Disputes about the nature of human rationality are as old
as the concept of rationality itself, which emerged during the
Enlightenment (Daston, 1988). These controversies are about
norms, that is, the evaluation of moral, social, and intellectual
judgment (e.g., Cohen, 1981; Lopes, 1991). The most recent
debate involves four sets of scholars, who think that one can
understand the nature of sapiens by (a) constructing as-if
theories of unbounded rationality, by (b) constructing as-if
theories of optimization under constraints, by (c) demonstrating
irrational cognitive illusions, or by (d) studying ecological
rationality. I have placed my bets on the last of these. Being
engaged in the controversy, I am far from dispassionate but

will be as impartial as I can.

This chapter is a revised version of G. Gigerenzer, “Bounded
and Rational,” in Contemporary Debates in Cognitive Science, ed.
R. J. Stainton (Oxford, UK: Blackwell, 2006), 115-133.

Four Positions on Human Rationality

The heavenly ideal of perfect knowledge, impossible on earth,
provides the gold standard for many ideals of rationality.
From antiquity to the Enlightenment, knowledge—as opposed
to opinion—was thought to require certainty. Such certainty

was promised by Christianity but began to be eroded by



events surrounding the Reformation and Counter-Reformation.
The French astronomer and physicist Pierre-Simon Laplace
(1749-1827), who made seminal contributions to probability
theory and was one of the most influential scientists ever,
created a fictional being known as Laplace’s superintelligence
or demon. The demon, a secularized version of God, knows
everything about the past and present and can deduce the
future with certitude. This ideal underlies the first three of the
four positions on rationality, even though they seem to be
directly opposed to one another. The first two picture human
behavior as an approximation to the demon, while the third

blames humans for failing to reach this ideal.

I will use the term omniscience to refer to this ideal of
perfect knowledge (of past and present, not future). The
mental ability to deduce the future from perfect knowledge
requires omnipotence, or unlimited computational power. To be
able to deduce the future with certainty implies that the
structure of the world is deterministic. Omniscience,
omnipotence, and determinism are ideals that have shaped
many theories of rationality. Laplace’s demon is fascinating
precisely because he is so unlike us. Yet as the Bible tells us,
God created humans in his own image. In my opinion, social
science took this story too literally and, in many a theory, re-

created us in proximity to that image.

Unbounded Rationality

The demon’s nearest relative is a being with “unbounded



rationality” or “full rationality.” For an unboundedly rational
person, the world is no longer fully predictable, that is, the
experienced world is not deterministic. Unlike the demon,
unboundedly rational beings make errors. Yet it is assumed
that they can find the optimal (best) strategy, that is, the one
that maximizes some criterion (such as correct predictions,
monetary gains, or happiness) and minimizes error. The
seventeenth-century French mathematicians Blaise Pascal and
Pierre Fermat have been credited with this more modest view
of rationality, defined as the maximization of the expected
value, later changed by Daniel Bernoulli to the maximization
of expected utility (chap. 10). In unbounded rationality, the
three O’s reign: optimization (such as maximization) replaces
determinism, whereas the assumptions of omniscience and
omnipotence are maintained. I will use the term optimization

in the following way:

Optimization refers to a strategy for solving a problem,
not to an outcome. An optimal strategy is the best for a
given class of problems (but not necessarily a perfect
one, for it can lead to errors). To refer to a strategy as
optimal, one must be able to prove that there is no
better strategy (although there can be equally good

ones).

Because of their lack of psychological realism, theories that
assume unbounded rationality are often called as-if theories.

They do not aim at describing the actual cognitive processes,



but are concerned only with predicting behavior. In this
program of research, the question is: if people were
omniscient and had all the necessary time and computational
power to optimize, how would they behave? The preference
for unbounded rationality is widespread. This is illustrated by
those consequentionalist theories of moral action, which
assume that people consider (or should consider) the
consequences of all possible actions for all other people before
choosing the action with the best consequences for the largest
number of people (Gigerenzer, 2008). It underlies theories of
cognitive consistency, which assume that our minds check
each new belief for consistency with all previous beliefs
encountered and perfectly memorized; theories of optimal
foraging, which assume that animals have perfect knowledge
of the distribution of food and of competitors; and economic
theories that assume that actors or firms know all relevant

options, consequences, benefits, costs, and probabilities.

Optimization under Constraints

Unbounded rationality ignores the constraints imposed on
human beings. A constraint refers to a limited mental or
environmental resource. Limited memory span is a constraint
of the mind, and information cost is a constraint on the
environment. The term optimization under constraints refers to

a class of theories that model one or several constraints.

Lack of omniscience—together with its consequence, the

need to search for information—is the key issue in



optimization under constraints, whereas the absence of models
of search is a defining feature of theories of unbounded
rationality. Models of search specify a searching direction
(where to look for information) and a stopping rule (when to
stop search). The prototype is Wald’s (1947) sequential
decision theory. In Stigler’s (1961) classical example, a
customer wants to buy a used car. He continues to visit used
car dealers until the expected costs of further search exceed its
expected benefits. Here, search takes place in the
environment. Similarly, in Anderson’s (1990) rational theory
of memory, search for an item in memory continues until the
expected costs of further search exceed the expected benefits.
Here, search occurs inside the mind. In each case, omniscience
is dropped but optimization is retained: The stopping point is

the optimal cost-benefit trade-off.

Optimization and realism can inhibit one another, with a
paradoxical consequence. Each new realistic constraint makes
optimization calculations more difficult, and eventually
impossible. The ideal of optimization, in turn, can undermine
the attempt to make a theory more realistic by demanding
new unrealistic assumptions—such as the knowledge
concerning cost and benefits of search necessary for estimating
the optimal stopping point. As a consequence, models of
optimization under constraints tend to be more complex than
models of unbounded rationality, depicting people in the
image of econometricians (Sargent, 1993). This unresolved
paradox is one reason why constraints are often ignored and

theories of unbounded rationality preferred. Since many



economists and biologists (wrongly) tend to equate
optimization under constraints with bounded rationality, the
latter is often dismissed as an unpromisingly complicated
enterprise and ultimately nothing but full rationality in
disguise (Arrow, 2004). Theories of optimization under
constraints tend to be presented as as-if theories, with the goal
of predicting behavior but not the mental process—just as
models of unbounded rationality do. Many sophisticated
Bayesian models in cognitive science are of this kind,
sacrificing the goal of modeling cognitive processes for that of

applying an optimization model.

Cognitive Illusions: Logical Irrationality

Unbounded rationality and optimization under constraints
conceive of humans as essentially rational. This is sometimes
justified by the regulating forces of the market, by natural
selection, or by legal institutions that eliminate irrational
behavior. The “heuristics and biases” or “cognitive illusions”
program (Kahneman & Tversky, 1996; Gilovich, Griffin, &
Kahneman, 2002) opposes theories assuming that humans are
basically rational. It has two goals. The main goal is to
understand the cognitive processes that produce both valid
and invalid judgments. Its second goal (or method to achieve
the first one) is to demonstrate errors of judgment, that is,
systematic deviations from rationality also known as cognitive
illusions. The cognitive processes underlying these errors are
called heuristics, and the major three proposed are

representativeness, availability, and anchoring and



adjustment, with some new additions, including “affect.” The
program has produced a long list of biases. It has shaped many
fields, such as social psychology and behavioral decision
making, and helped to create new fields, such as behavioral

economics and behavioral law and economics.

Although the heuristics-and-biases program disagrees with
rational theories on whether or not people follow some norm
of rationality, it does not question the norms themselves.
Rather, it retains the norms and interprets deviations from
these norms as cognitive illusions: “The presence of an error of
judgment is demonstrated by comparing people’s responses
either with an established fact . . . or with an accepted rule of
arithmetic, logic, or statistics” (Kahneman & Tversky, 1982:
493). For instance, when Wason and Johnson-Laird (1972)
criticized Piaget’s logical theory of thinking as descriptively
incorrect, they nevertheless retained the same logical
standards as normatively correct for the behavior studied.
When Tversky and Kahneman (1983) reported that people’s
reasoning violated a law of logic (the “conjunction rule”), they

nevertheless retained logic as the norm for rational judgment.

The heuristics-and-biases program correctly argues that
people’s judgments do in fact systematically deviate from the
laws of logic or optimization. But it has hesitated to take two
necessary further steps: to rethink the norms, and to provide
testable theories of heuristics. The laws of logic and
probability are neither necessary nor sufficient for rational
behavior in the real world (see below), and mere verbal labels

for heuristics can be used post hoc to “explain” almost



everything.

The term bounded rationality has been used both by
proponents of optimization under constraints, emphasizing
rationality, and by the heuristics-and-biases program,
emphasizing irrationality. Even more confusing is the fact that
the term was coined by Herbert A. Simon, who was not
referring to optimization or irrationality but to an ecological
view of rationality (see next section), which was revolutionary

in thinking about norms, not just behavior.

The Science of Heuristics: Ecological
Rationality

The starting point for the study of heuristics is the relation
between mind and environment rather than between mind
and logic (Gigerenzer, Todd, & the ABC Research Group,

1999; Gigerenzer & Selten, 2001a). Humans have evolved in
natural environments, both social and physical. To survive and
reproduce, the task is to adapt to these environments or else to
change them. Piaget called these two fundamental processes
assimilation and accommodation, but he continued to focus on
logic. The structure of natural environments, however, is
ecological rather than logical. In Simon’s words: “Human
rational behavior is shaped by a scissors whose two blades are
the structure of task environments and the computational
capabilities of the actor” (Simon, 1990: 7). Just as one cannot
understand how scissors cut by looking only at one blade, one

will not understand human behavior by studying either



cognition or the environment alone.

The two key concepts are adaptive toolbox and ecological
rationality. The analysis of the adaptive toolbox is descriptive,
whereas that of ecological rationality is normative. The
adaptive toolbox contains the building blocks for fast and frugal
heuristics. A heuristic is fast if it can solve a problem in little
time and frugal if it can solve it with little information. Unlike
as-if optimization models, heuristics can find good solutions
independent of whether an optimal solution exists. As a
consequence, using heuristics rather than optimization
models, one does not need to “edit” a real-world problem in
order to make it accessible to the optimization calculus (e.g.,
by limiting the number of competitors and choice alternatives,
by providing quantitative probabilities and utilities, or by
ignoring constraints). Heuristics work in real-world
environments of natural complexity, where an optimal

strategy is often unknown or computationally intractable.

A problem is computationally intractable if no mind or
machine can find the optimal solution in reasonable time,
such as a lifetime or a millennium. The game of chess is one
example, where no computer or mind can determine the best
sequence of moves. In order to be able to compute the optimal
strategy, one could trim down the 8 X 8 board to a 4 X 4 one
and reduce the number of pieces accordingly. Whether this
result tells us much about the real game, however, is

questionable.

The study of ecological rationality answers the question: In



what environments will a given heuristic work? Where will it
fail? Note that this normative question can only be answered
if there is a process model of the heuristic in the first place,
and the results are gained by proof or simulation. As
mentioned beforehand, the ecological rationality of a verbal
label such as “representativeness” cannot be determined. At
most one can say that representativeness is sometimes good
and sometimes bad—without being able to explicate the

“sometimes.”

The science of heuristics has three goals, the first

descriptive, the second normative, and the third of design.

The adaptive toolbox. The goal is to analyze the
adaptive toolbox, that is, the heuristics, their building
blocks, and the evolved capacities exploited by the
building blocks. Heuristics should be specified in the
form of computational models. This analysis includes
the phylogenetic and ontogenetic development of the
toolbox as well as cultural and individual differences.
Ecological rationality. The goal is to determine the
environmental structures in which a given heuristic is
successful, that is, the match between mind and
environment (physical and social). This analysis
includes the coevolution between heuristics and
environments.

Design. The goal is to use the results of the study of the
adaptive toolbox and ecological rationality to design

heuristics and/or environments for improving decision



making in applied fields such as health care, law, and

management.

To see how this program differs from the cognitive
illusions program, consider four general beliefs about
heuristics that are assumed to be true in the cognitive illusions
program but that turn out to be misconceptions from the point
of view of the ecological rationality program (table 1.1). First,
heuristics are seen as second-best approximations to the
“correct” strategy defined by an optimization model; second
and third, their use is attributed either to our cognitive
limitations or to the fact that the problem at hand is not
important; and finally, it is assumed that more information
and more computation is always better if they are free of
charge. I use an asset-allocation problem to demonstrate that,
as a general truth, each of these beliefs is mistaken. Rather,
one has to measure heuristics and optimization models with

the same yardstick—neither is better per se in the real world.

Table 1.1: Four common but erroneous beliefs about heuristics



Mizconception

Clarification

1. Heuristics produce second-best
results; optimization is always better

Z. Our minds rely on heuristics only
hecause of our cognitive limitations.

3. People rely or should rely on
heuristics only in routine decisions of
little importance.

4. More information and computation is
alwavs better

Optimization is not always the better
solution, for instance, when it is
computationally intractable or lacks
robustness due to estimation errors.,
We rely on heuristics for reasons that
have to do with the structure of the
problem, including computational
intractahility, robustness, and speed of
action.

Peaple relv on heuriztics for decisions
of low and high importance, and this it
not necessarily an error.

Good decision making in a partly
uncertain world requires ignoring part
of the available information and, as a
consequence, performing less complex
estimations because of the robustness
problem, See investment examjla,

Investment Behavior

In 1990, Harry Markowitz received the Nobel Prize in

Economics for his theoretical work on optimal asset allocation.

He addressed a vital investment problem that everyone faces

in some form or other, be it saving for retirement or earning

money on the stock market: how best to invest your money in

N assets. Markowitz proved that there is an optimal portfolio

that maximizes the return and minimizes the risk. One might

assume that when he made his own retirement investments he

relied on his award-winning optimization strategy. But he did

not. Instead he relied on a simple heuristic, the 1/N rule:

Allocate your money equally to each of N

funds.



There is considerable empirical evidence for this heuristic:
About 50 percent of people studied rely on it, and most
consider only about 3 or 4 funds to invest in. Researchers in
behavioral finance have criticized this behavior as naive. But
how much better is optimizing than 1/N? A recent study
compared twelve optimal asset-allocation policies (including
that of Markowitz) with the 1/N rule in seven allocation
problems, such as allocating one’s money to ten American
industry portfolios. The twelve policies included Bayesian and
non-Bayesian models of optimal choice. Despite their
complexity, none could consistently beat the heuristic on
various financial measures (DeMiguel, Garlappi, & Uppal,
2006).

How can a heuristic strategy be better than an optimizing
one? At issue is not computational intractability, but
robustness. The optimization models performed better than
the simple heuristic in data fitting (adjusting their parameters
to the data of the past ten years) but worse in predicting the
future. Similar to the results that will be reported in the
following chapters (figures 2.6 and 3.1), they thus overfitted
the past data. The 1/N heuristic, in contrast, does not estimate

any parameter and consequently cannot overfit.

Note that 1/N is not always superior to optimization. The
important question of when in fact it predicts better can be
answered by studying the rule’s ecological rationality. Three
relevant environmental features for the performance of 1/N

and the optimizing models are:



(i) the predictive uncertainty of the problem,
(ii) the number N of assets, and

(iii) the size of the learning sample.

Typically, the larger the uncertainty and the number of assets
and the smaller the learning sample, the greater the advantage
of the heuristic. Since the uncertainty of funds is large and
cannot be changed, we focus on the learning sample, which
comprised 10 years of data in the above study. When would
the optimization models begin to outperform the heuristic?
The authors report that with 50 assets to allocate one’s wealth
to, the optimization policies would need a window of 500

years before it eventually outperformed the 1/N rule.

Note that 1/N is not only an investment heuristic. Its range
is broader. For instance, 1/N is employed to achieve fairness
in sharing among children and adults (dividing a cake
equally), where it is known as the equality rule; it is the
voting rule in democracies, where each citizen’s vote has the
same weight; it represents the modal offer in the ultimatum
game; and it is a sibling of the tallying rules that will be
introduced in chapter 2, where each reason is given the same
weight. 1/N can achieve quite different goals, from making

money to creating a sense of fairness and trust.

Markowitz’s use of 1/N illustrates how each of the four
general beliefs in table 1.1 can be wrong. First, the 1/N
heuristic was better than the optimization models. Second,

Markowitz relied on the heuristic not because of his cognitive



limitations. Rather, as we have seen, his choice can be
justified because of the structure of the problem. Third, asset
allocations, such as retirement investments, are some of the
most consequential financial decisions in one’s life. Finally,
the optimization models relied on more information and more
computation than 1/N, but that did not lead to better

decisions.

The Problem with Content-Blind Norms

In the heuristics-and-biases program, a norm is typically a law
(axiom, rule) of logic or probability rather than a full
optimization model. A law of logic or probability is used as a
content-blind norm for a problem if the “rational” solution is
determined independent of its content. For instance, the truth
table of the material conditional if P then Q is defined
independent of the content of the Ps and Qs. The definition is
in terms of a specific syntax. By content, [ mean the semantics
(what are the Ps and Qs?) and the pragmatics (what is the
goal?) of the problem. The program of studying whether
people’s judgments deviate from content-blind norms proceeds

in four steps:

Syntax first. Start with a law of logic or probability.

Add semantics and pragmatics. Replace the logical terms
(e.g., material conditional, mathematical probability)
by English terms (e.g., if . . . then; probable), add

content, and define the problem to be solved.



Content-blind norm. Use the syntax to define the
“rational” answer to the problem. Ignore semantics
and pragmatics.

Cognitive illusion. If people’s judgments deviate from
the “rational” answer, call the discrepancy a cognitive
illusion. Attribute it to some deficit in the human mind

(not to your norms).

Content-blind norms derive from an internalist conception
of rationality. Examples are the use of the material conditional
as a norm for reasoning about any content and the set-
inclusion or “conjunction rule” (chap. 4). Proponents of
content-blind norms do not use this term but instead speak of
“universal principles of logic, arithmetic, and probability
calculus” that tell us how we should think (Piatelli-Palmarini,
1994:158). Consider the material conditional.

In 1966, the British psychologist Peter Wason invented the
selection task, also known as the four-card problem, to study
reasoning about conditional statements. This was to become
one of the most frequently studied tasks in the psychology of
reasoning. Wason’s starting point was the material conditional
P — Q, as defined by the truth table in elementary logic. In
the second step, the Ps and Qs are substituted by some
content, such as “numbers” (odd/even) and “letters”
(consonants/vowels). The material conditional “—" is
replaced by the English terms “if . . . then,” and a rule is

introduced:



If there is an even number on one side of the card,

there is a consonant on the other.

Four cards are placed on the table, showing an even number,
an odd number, a consonant, and a vowel on the surface side.
People are asked which cards need to be turned around in
order to see whether the rule has been violated. In the third
step, the “correct” answer is defined by the truth table: to turn
around the P and the not-Q card, and nothing else, because
the material conditional is false if and only if PNnot-Q.
However, in a series of experiments, most people picked other
combinations of cards, which was evaluated as a reasoning
error due to some cognitive illusion. In subsequent
experiments, it was found that the cards picked depended on
the content of the Ps and Qs, and this was labeled the “content
effect.” Taken together, these results were interpreted as a
demonstration of human irrationality and a refutation of
Piaget’s theory of operational thinking. Ironically, as
mentioned before, Wason and Johnson-Laird (1972) and their
followers held up truth-table logic as normative even after

they criticized it as descriptively false.

Are content-blind norms reasonable norms? Should one’s
reasoning always follow truth-table logic, the conjunction
rule, Bayes’s rule, the law of large numbers, or some other
syntactic law, irrespective of the content of the problem? My
answer is no and for several reasons. A most elementary point
is that English terms such as “if . . . then” are not identical to

logical terms such as the material conditional “—”. This



confusion is sufficient to reject logic as a content-blind norm.
More interesting, adaptive behavior has other goals than
logical truth or consistency, such as dealing intelligently with
other people. For instance, according to Trivers’s (2002)
theory of reciprocal altruism, each human possesses altruistic
and cheating tendencies. Therefore, one goal in a social
contract is to search for information revealing whether one
has been cheated by the other party (Cosmides, 1989). Note
that the perspective is essential: You want to find out whether
you were cheated by the other party, not whether you cheated
the other. Logic, in contrast, is without perspective. Consider a
four-card task whose content is a social contract between an
employer and an employee (Gigerenzer & Hug, 1992):

If a previous employee gets a pension from the firm,
then that person must have worked for the firm for at

least 10 years.

The four cards read: got a pension, worked 10 years for the
firm, did not get a pension, worked 8 years for the firm. One
group of participants was cued into the role of the employer
and asked to check those cards (representing files of previous
employees) that could reveal whether the rule was violated.
The far majority picked “got a pension” and “worked for 8
years.” Note that this choice is consistent with both the laws
of the truth table and the goal of cheater detection.
Proponents of content-blind norms interpreted this and similar

results as indicating that social contracts somehow facilitated



logical reasoning. But when we cued the participants into the
role of an employee, the far majority picked “did not get a
pension” and “worked for 10 years.” (In contrast, in the
employer’s group, no participant had checked this
information.) Now the result was inconsistent with the truth
table, but from the employee’s perspective, again consistent
with the goal of not being cheated. Search for information was
Machiavellian: to avoid being cheated oneself, not to avoid

cheating others.

The perspective experiment clearly demonstrates that
logical thinking is not central to human reasoning about these
problems as well as that truth-table logic is an inappropriate
norm here. Yet several decades and hundreds of thousands of
dollars of grant money have been wasted trying to show that
human thinking violates the laws of logic. We have learned
next to nothing about the nature of thinking from these
studies. The same holds for research on other content-blind
norms (Gigerenzer, 2001). Inappropriate norms tend to
suggest wrong questions, and the answers to these generate
more confusion than insight into the nature of human
judgment. My point is not new. Wilhelm Wundt (1912/1973),
known as the father of experimental psychology, concluded
that logical norms have little to do with thought processes and
that attempts to apply them to learn about psychological
processes have been absolutely fruitless. But psychologists do
learn. For instance, Lance Rips, who had argued that
deductive logic might play a central rule in cognitive
architecture (Rips, 1994), declared that he would not defend



this “imperialist” theory anymore (Rips, 2002).

Rethinking Cognitive Biases

The above selection task illustrates the limits of logical norms
for understanding good thinking. That is not to say that logic
is never an appropriate norm, but rather that, like other
analytical and heuristic tools, its domain is restricted.
Violations of logical reasoning were previously interpreted as
cognitive fallacies, yet what appears to be a fallacy can often
also be seen as adaptive behavior, if one is willing to rethink
the norms. More recently, a reevaluation of so-called cognitive
biases that takes into account the structure of the environment
and the goals of the decision maker has finally taken place.
Table 1.2 illustrates a dozen cognitive illusions that are under
debate. What unites these examples is the fact that as soon as
researchers began to study the structure of information in the
environment, an apparently dull cognitive illusion often took
on the form of a sharp pair of scissors.

Consider the first item in the list, overconfidence bias, as
an illustration. In a series of experiments, participants

answered general-knowledge questions, such as:

Which city is farther north—New York or Rome?
How confident are you that your answer is correct?

50 percent / 60 percent / 70 percent / 80 percent / 90
percent / 100 percent



The typical finding was that when participants were 100
percent confident of giving a correct answer, the average
proportion correct was lower, such as 80 percent; when they
said they were 90 percent confident, the average proportion
correct was 75 percent, and so on. This “miscalibration”
phenomenon was labeled overconfidence bias and interpreted
as a cognitive illusion. The explanation was sought in the
minds of people who participated in the experiments, not in
the environment. It was attributed to a confirmation bias in
memory search: People first choose an answer, then search for
confirming evidence only and grow overly confident. Yet
Koriat, Lichtenstein, and Fischhoff’s (1980) experiments
showed only small or nonsignificant effects that disappeared
in a replication (Fischhoff & MacGregor, 1982). Others
proposed that people are victims of insufficient cognitive
processing or suffer from self-serving motivational biases or
from fear of invalidity. No explanation could be verified. In a
social psychology textbook, the student was told:
“Overconfidence is an accepted fact of psychology. The issue
is what produces it. Why does experience not lead us to a
more realistic self-appraisal?” (Myers, 1993: 50).
Overconfidence bias was taken as the explanation for various
kinds of personal and economic disasters, such as the large
proportion of start-ups that quickly go out of business. As
Griffin and Tversky (1992: 432) explained, “The significance
of overconfidence to the conduct of human affairs can hardly
be overstated.” Finally, in a Nobel laureate’s words, “some

basic tendency toward overconfidence appears to be a robust



human character trait” (Shiller, 2000: 142).

Eventually several researchers realized independent of
each other that this phenomenon is a direct reflection of the
unsystematic variability in the environment (Erev, Wallsten, &
Budescu, 1994, Pfeiffer, 1994; Juslin, Winman, & Olsson,
2000). The large unsystematic variability of confidence
judgments leads, in the absence of any overconfidence bias, to
regression toward the mean, that is, the average number
correct is always lower than a high confidence level. When
one plots the data the other way round, the same unsystematic
variability produces a pattern that looks like underconfidence:
When participants answered 100 percent correctly, their mean
confidence was lower, such as 80 percent, and so on (Dawes &
Mulford, 1996). The phenomenon seems less a result of
systematic cognitive bias and more a consequence of task
environments with unsystematic error. Every unbiased mind

and machine exhibits it.

To return to the initial question, which city is in fact
farther north, New York or Rome? Temperature is a very good
cue for latitude, but not a certain one. The correct answer is
Rome. When researchers predominantly select questions
where a reliable cue fails (but do not inform experiment
participants), the mean proportion correct will be lower than
the mean confidence. This difference has also been called
overconfidence, the second item in table 1.2, and attributed to
people’s mental flaws rather than to researchers’
unrepresentative sampling. When researchers began to sample

questions randomly from the real world (e.g., comparing all



metropolises on latitude), this alleged cognitive illusion

largely disappeared (see chap. 7).

Table 1.2: Twelve examples of phenomena that were first

interpreted as cognitive illusions (left) but later revalued as

reasonable judgments given the environmental structure

(right)

Is a phenomenon due to a
“rognitive illusion™. ..

Coor toan environmental structure plus an
unbiased mind?

Overconfidence bias (defined as
miscalibration]

Overconfidence bias (defined as
mean confidence minus proportion
comgct)

Hard-easy effect

Owverestimation of low risks and
underestimation of high risks

Contingency illusion

Most drivers say they drive more
safely than average

Availability bias (letter "R study)

“Miscalibration” can be deduced from an
unhiased mind in an environment with
unsvsteamatic error, causing regression toward
the mean (Dawes & Mulford, 1996; Erev

et al., 1994).

“Overconfidence bias” can be deduced from
an unbiased mind in an environment with
unrepresentative sampling of questions;
dizsappears largelv with random sampling
(Gigerenzer et al., 1991; Juslin et al., Z000).
“Hard-easy effect” can be deduced from

an unbiased mind in an environment with
unsystematic error, cansing regression toward
the mean (Juslin et al., 2000},

This classical phenomenon can be deduced
from an unbiased mind in an environment
with unsystematic error, causing regression
toward the mean (Hertwig, Pachur, &
Kurzenhiuser, 20035].

“Contingency illusion” can be deduced from
an unhiased mind performing significance
tests on samples with unequal sizes, such as
mamorities and majorities (Fiedler, Walther, &
Nickel, 19949).

The distribution of the actual number of
accidents is highly skewed, which results in
the fact that most drivers (0% in one LIS,
study) have fewer than the average number of
accidents (Lopes, 1992; Gigerenzer, 2002a).

* Availability bias™ largely disappears when
the stimuli (letters) are representatively
sampled rather than selected {Sedlmeier,
Hertwig, & Gigerenzer, 1998).



Preferencs raversals Congistent social values (e.g., don't take
the largest slice; don’t be the first Lo cross
a picket ling) can create what look like
preference reversals (Sen, Z002),

Prohability matching Probability matching is suboptimal for
an individual studied in isolation but not
necessarily for individuals in an environment
of social competition (Gallistel, 1990),

Conjunction fallacy “Conjunction fallacy™ can be deduced from
the human capacity for semantic inference
in social situations (Hertwig & Gigerenzer,
1993},

False consonsus aoffact This “egocentric as” can be deduced from
Baves's rule for situations where a person
has no knowledge about prior probabilities
(Dawes & Mulford, 1996).

Violations of logical reasoning A number of apparent “logical fallacies”
cian be deduced from Bayesian statistics
for environments where the empirical
distribution of the events (e.g.. P, (0, and their
negations) is highly skewed (McKenzie &
Amin, 2002; Oaksford & Chater, 1994] and
from the logic of social contracts (Cosmides &
Tooby, 1992)

The _gﬁn-:'-r;\! argument is that an unbiased (not omniscient]) mind |I|I.I.-\~ R L;|||'!r:"|ﬁr: environmenial
steucture [such as unsvslematic error, unegual sampla sizes, skewed distributions) is sufficient o
prodluce the phenomenon. Mote that other factors can also contribuie to these phenomena, The
moral is not that people would never err but that in order 10 understand good and bad judgments,
one needs o analvee the siructure of the problem or of the natural ervironment.

Cognitive Luck

Matheson (2006) discusses the study of ecological rationality
as a way to overcome the epistemic internalism of the
Enlightenment tradition. But he raises a concern: “If cognitive
virtue is located outside the mind in the way that the Post-
Enlightenment Picture suggests, then it turns out to be
something bestowed on us by features of the world not under
our control: It involves an intolerable degree of something
analogous to what theoretical ethicists call ‘moral luck’ (cf.

Williams, 1981, Nagel, 1993)—‘cognitive luck,” we might



say.” His worry is based on the assumption that internal ways
to improve cognition are under our control, whereas the

external ones are not.

This assumption, however, is not always correct and
reveals a limit of an internalist view of cognitive virtue. I
conjecture that changing environments can in fact be easier
than changing minds. Consider a fundamental problem in our
health systems, namely that a large number of physicians are
innumerate (Gigerenzer, 2002a), as illustrated by screening
for breast cancer. A woman with a positive mammogram asks
the physician what the probability is that she actually has
cancer. What do physicians tell that worried woman? In 2007,
I asked 160 experienced gynecologists this question. To help
them out, I gave them the relevant information, in the form of

conditional probabilities (expressed as percentages).

Assume that you screen women in a particular region
for breast cancer with mammography. You know the

following about women in this region:

The probability that a woman has breast

cancer is 1 percent (prevalence).

If a woman has breast cancer, the probability
is 90 percent that she will have a positive
mammogram (sensitivity).

If a woman does not have breast cancer, the
probability is 9 percent that she will still have

a positive mammogram (false positive rate).



A woman who tested positive asks if she really has
breast cancer or what the probability is that she

actually has breast cancer. What is the best answer?

(1) “It is not certain that you have breast cancer,

yet the probability is about 81 percent.” [14]

(2) “Out of 10 women who test positive as you

did, about 9 have breast cancer.” [47]

(3) “Out of 10 women who test positive as you

did, only about 1 has breast cancer.” [20]

(4) “The chance that you have breast cancer is

about 1 percent.” [19]

Note that the gynecologists’ answers ranged between 1
percent and 9 out of 10 (90 percent)! The best answer is 1 out
of 10, which only 20 percent of them gave. (The numbers in
brackets give the percentage of gynecologists [out of 160]
who chose each answer.) The most frequent answer was 9 out
of 10. Consider for a moment the undue anxiety and panic
women with positive mammograms have been caused by such

physicians who do not understand the medical evidence.

In an earlier study with 48 physicians from various
specialized fields (Hoffrage & Gigerenzer, 1998), we asked for
numerical estimates (rather than multiple-choice selection),
with similar results. Once again, the estimates ranged between
1 percent and 90 percent. One-third of the physicians thought
the answer was 90 percent, one-third gave estimates between

50 percent and 80 percent, and one-third between 1 percent



and 10 percent. Physicians’ intuitions could hardly vary more

—a worrying state of affairs.

This result illustrates a larger problem: When physicians
try to draw a conclusion from conditional probabilities, their
minds tend to cloud over (chap. 9). What can be done to
correct this? From an internalist perspective, one might
recommend training physicians how to insert the probabilities
into Bayes’s rule. Yet this proposal is doomed to failure. When
we taught students statistics in this way, their performance
dropped by 50 percent just one week after they successfully
passed the exam and continued to fade away week by week
(Sedlmeier & Gigerenzer, 2001). Moreover, the chance of
convincing physicians to take a statistics course in the first
place is almost nil; most have no time, little motivation, or
believe they are incurably innumerate. Are innumerate
physicians then inevitable? No. In the ecological view,
thinking does not happen simply in the mind, but in
interaction between the mind and its environment. This opens
up a second and more efficient way to solve the problem: to
change the environment. The relevant part of the environment
is the representation of the information, because the
representation does part of the Bayesian computation. Natural
(nonnormalized) frequencies are such an efficient
representation; they mimic the way information was
encountered before the advent of writing and statistics,
throughout most of human evolution. Here is the same

information as above, now in natural frequencies:



10 out of every 1,000 women have breast cancer.

Of these 10 women, we expect that 9 will have a

positive mammogram.

Of the remaining 990 women without breast cancer,

some 89 will still have a positive mammogram.

Imagine a sample of women who have positive
mammograms. How many of these women actually

have cancer? out of )

When I presented the numerical information in natural
frequencies, the confusion in most physicians’ minds
disappeared; 87 percent of the gynecologists chose “1 out of
10.” Most realized that out of some 98 [89 + 9] women who
test positive, only 9 are likely to have cancer. Thus, the
chances of having breast cancer based on a positive screening
mammogram are less than 10 percent, or about 1 in 10.
Proper representation of information, such as natural
frequencies, helps physicians to understand the outcomes of
medical tests and treatments (see also Elmore & Gigerenzer,
2005) and prevents needless shocks to wrongly informed
patients. In 2006, this program of teaching transparent risk
communication became part of continuing education for
gynecologists in Germany; I myself have trained some one
thousand physicians in using representations that turn

innumeracy into insight (see chap. 9).

Similarly, by changing the environment, we can make
many so-called cognitive illusions largely disappear, enable

fifth and sixth graders to solve Bayesian problems before they



even heard of probabilities (chap. 12), and help judges and
law students understand DNA evidence (Hoffrage, Lindsey et
al., 2000). Thus, an ecological view actually extends the
possibilities to improve judgment, whereas an internalist view
limits the chances. To summarize, worrying about “cognitive
luck” is bound to an internalist view, where enablers outside
the mind are considered suspicious. From an ecological view,
environmental structures, not luck, naturally and inevitably
influence the mind and can be designed to enable insight.
Cognitive virtue is, in my view, a relation between a mind and
its environment, very much like the notion of ecological

rationality.

What Is the Rationality of Homo sapiens?

What makes us so smart? I have discussed four answers. The
first is that we are smart because we behave as if we were
omniscient and had unlimited computational power to find
the optimal strategy for each problem. This is the beautiful
fiction of unbounded rationality. The second is a modification
of the first that diminishes omniscience by introducing the
need for searching for information and the resulting costs but
insists on the ideal of optimization. These two programs define
the theories in much of economics, biology, philosophy, and
even the cognitive sciences. Both have an antipsychological
bias: They try to define rational behavior without cognitive
psychology, promoting as-if theories, which illustrates that
“black box” behaviorism is still alive. In the image of Laplace’s

demon, Homo economicus has defined Homo sapiens: We are



basically rational beings, and the nature of our rationality can
be understood through the fictions of omniscience,
omnipotence, and optimization. The heuristics-and-biases
program has attacked that position but only on the descriptive
level, using content-blind norms as the yardstick to diagnose
human irrationality. The conclusion has been that we are
mostly or sometimes irrational, committing systematic errors

of reasoning.

There is now a literature that tries to determine which of
these positions is correct. Are we rational or irrational? Or
perhaps 80 percent rational and 20 percent irrational? Some
blessed peacemakers propose that the truth lies in the middle
and that we are a little of both, so there is no real
disagreement. For instance, the debate between Kahneman
and Tversky (1996) and myself (Gigerenzer, 1996) has been
sometimes misunderstood as concerning the question of how
much rationality or irrationality people have. In this view,
rationality is like a glass of water, and Kahneman and Tversky
see the glass as half-empty, whereas I see it as half-full. For
instance, Samuels, Stich, and Bishop (2004: 264) conclude
their call for “ending the rationality war” with the assertion
that the two parties “do not have any deep disagreement over
the extent of human rationality” (but see Bishop, 2000).
However, the issue is not quantity, but quality: what exactly
rationality and irrationality are in the first place. We can
easily agree how often experiment participants have or have
not violated the truth-table logic or some other logical law in

an experimental task. But proponents of the heuristics-and-



biases program count the first as human irrationality and the
second as rationality. I do not. I believe that we need a better
understanding of human rationality than that relative to
content-blind norms. These were of little relevance for Homo
sapiens, who had to adapt to a social and physical world, not

to systems with artificial syntax, such as the laws of logic.

The concept of ecological rationality is my answer to the
question of the nature of Homo sapiens. It defines the
rationality of heuristics independently of optimization and
content-blind norms, by the degree to which they are adapted
to environments. The study of ecological rationality facilitates
understanding a variety of counterintuitive phenomena,
including when one reason is better than many, when less is
more, and when partial ignorance pays. Homo sapiens has been
characterized as a tool-user. There is some deeper wisdom in
that phrase. The tools that make us smart are not bones and

stones, but the heuristics in the adaptive toolbox.



Chapter 2

Fast and Frugal Heuristics

If you open a book on judgment and decision making, chances are
that you will stumble over the following moral: Good reasoning
must adhere to the laws of logic, the calculus of probability, or the
maximization of expected utility; if not, there must be a cognitive or
motivational flaw. Don’t be taken in by this fable. Logic and
probability are mathematically beautiful and elegant systems. But
they do not always describe how actual people—including the
authors of books on decision making—solve problems, as the
subsequent story highlights. A decision theorist from Columbia
University was struggling whether to accept an offer from a rival
university or to stay. His colleague took him aside and said, “Just
maximize your expected utility—you always write about doing
this.” Exasperated, the decision theorist responded, “Come on, this

is serious.”

The study of heuristics investigates how people actually make
judgments and decisions in everyday life, generally without
calculating probabilities and utilities. The term heuristic is of Greek
origin and means “serving to find out or discover.” In the title of his
Nobel Prize-winning paper of 1905, Albert Einstein used the term
heuristic to indicate an idea that he considered incomplete, due to
the limits of our knowledge, but useful (Holton, 1988). For the
Stanford mathematician George Polya (1954), heuristic thinking
was as indispensable as analytical thinking for problems that cannot

be solved by the calculus or probability theory—for instance, how



to find a mathematical proof. The advent of computer programming
gave heuristics a new prominence. It became clear that most
problems of any importance are computationally intractable; that is,
we know neither the optimal solution nor a method to find it. This
holds even for well-defined problems, such as chess, the classic
computer game Tetris, and the traveling salesman problem
(Michalewicz & Fogel, 2000). It also holds for less well-structured
problems, such as which job offer to accept, what stocks to invest
in, and whom to marry. When optimal solutions are out of reach,
we are not paralyzed to inaction or doomed to failure. We can use

heuristics to discover good solutions.

This chapter is a revised version of G. Gigerenzer, “Fast and
Frugal Heuristics: The Tools of Bounded Rationality,” in Blackwell
Handbook of Judgment and Decision Making, ed. D. J. Koehler and N.
Harvey (Oxford, UK: Blackwell, 2004), 62-88.

What Is a Heuristic?

How does a baseball outfielder catch a fly ball? He might compute
the trajectory of the ball and run to the point where it is supposed
to land. How else could he do it? In Richard Dawkins’s words
(1976/1989: 96):

When a man throws a ball high in the air and catches it
again, he behaves as if he had solved a set of differential
equations in predicting the trajectory of the ball. He may
neither know nor care what a differential equation is, but
this does not affect his skill with the ball. At some
subconscious level, something functionally equivalent to the

mathematical calculations is going on.



Note that Dawkins carefully inserts the qualifier “as if.” To
compute the trajectory is no simple feat; no computer program or
robot to date can compute it in real time. What about an
experienced player? First, we might assume that the player
intuitively knows the family of parabolas, because, in theory, balls
have parabolic trajectories. In order to select the right parabola, the
player needs to be equipped with sensory organs that can measure
the ball’s initial distance, initial velocity, and projection angle. Yet
in the real world, influenced by air resistance, wind, and spin, balls
do not fly in parabolas. Thus, the player would further need to be
capable of estimating the speed and direction of the wind at each
point of the ball’s flight, in order to compute the resulting path and
the point where the ball will land, and to then run there. All this
would have to be completed within a few seconds—the time a ball
is in the air. This explanation is based on the ideals of omniscience
and omnipotence: To solve a complex problem, a person constructs a
complete representation of its environment and relies on the most

sophisticated computational machinery.

An alternative vision exists, which does not aim at complete
representation and information. It poses the question: Is there a
smart heuristic that can solve the problem? One way to discover
heuristics is to study experienced players. Experimental studies
have shown that players actually use several heuristics (e.g.,
McLeod & Dienes, 1996). The simplest one is the gaze heuristic,
which works if the ball is already high up in the air:

Gage heuristic: Fixate your gaze on the ball, start running,
and adjust the speed so that the angle of gaze remains

constant.



The angle of gaze is the angle between the eye and the ball, relative
to the ground (figure 2.1). A player who uses this heuristic does not
need to estimate wind, air resistance, spin, or the other causal
variables. He can get away with ignoring every piece of causal
information. All the relevant information is contained in one
variable: the angle of gaze. Note that a player using the gaze
heuristic is not able to compute the point at which the ball will

land. But the player will be there where the ball lands.

Figure 2.1: How to catch a fly ball? Players rely on unconscious
rules of thumb. When a ball comes in high, a player fixates his gaze
on the ball, starts running, and adjusts the speed so that the angle

of gaze remains constant.

The gaze heuristic is a fast and frugal heuristic. It is fast because
it can solve the problem within a few seconds, and it is frugal
because it requires little information, just the angle of gaze. The
heuristic consists of three building blocks: fixate your gaze on the

ball, start running, and adjust your running speed. These building



blocks can be part of other heuristics, too.

Definition: A fast and frugal heuristic is a strategy, conscious
or unconscious, that searches for minimal information and
consists of building blocks that exploit evolved capacities

and environmental structures.

Heuristics can be highly effective because they are anchored in

the evolved brain and in the external environment. Let me explain.

Heuristics exploit evolved capacities. A heuristic is simple because it
can take advantage of the evolved or learned capacities of an
organism. For example, it is easy for humans to track a moving
object against a noisy background; three-month-old babies can
already hold their gaze on moving targets (Rosander & von Hofsten,
2002). Tracking objects, however, is difficult for a robot; a
computer program as capable as a human mind of solving this
problem does not yet exist. Similarly, in contrast to robots, humans
are able to run. Thus, the gaze heuristic is simple for humans but
not for robots. Simplicity is not only a characteristic of beautys; it
also enables fast, frugal, transparent, and robust judgments. The gaze
heuristic, like all heuristics, is transparent in the sense that it can be
easily understood and taught to a novice, and the term robust refers
to the ability of heuristics to generalize to new situations (see
below). To summarize, a heuristic exploits hard-wired or learned

cognitive and motor processes, and these features make it simple.

Heuristics exploit structures of environments. The rationality of
heuristics is not logical, but ecological. Ecological rationality
implies that a heuristic is not good or bad, rational or irrational per
se, only relative to an environment. It can exploit particular

environmental structures or change an environment. For instance,



the gaze heuristic transforms the complex trajectory of the ball in
the environment into a straight line. All heuristics are to some
degree domain-specific; they are designed to solve specific classes of
problems. The gaze heuristic can solve problems that involve the
interception of moving objects. If you learn to fly an airplane, you
will be taught a version of it: When another plane is approaching,
and you fear a collision, then look at a scratch in your windshield
and observe whether the other plane moves relative to that scratch.
If it does not, dive away quickly. For the pilot, the goal is to avoid a
collision, whereas for the outfielder, the goal is to produce a
collision. The nature of the heuristic is the same. To summarize,
evolved capacities can make a heuristic simple, while the structure

of the environment can make it smart.

Heuristics are distinct from as-if optimization models. The idea
of calculating the ball’s trajectory by solving differential equations
is a form of optimization. When optimization is proposed to explain
human behavior (as opposed to building artificial systems), this is
called as-if optimization. As-if optimization models are silent about
the actual process, although it is sometimes suggested that the
measurements and calculations might happen unconsciously. The
gaze heuristic, however, illustrates that the logic of a heuristic,
conscious or unconscious, can be strikingly distinct from as-if
optimization. This yields an advantage. With a good model of a
heuristic, one can deduce predictions that cannot be obtained from
an as-if optimization model. The gaze heuristic, for instance
predicts that players catch the ball while running, which follows
from the fact that the player must move to keep the angle of gaze
constant. Similarly, when the ball is thrown to the side of the
player, one can predict that the player will run a slight arc, as can

be observed in baseball outfielders and in dogs who catch Frisbees



(e.g., Shaffer & McBeath, 2002). In summary, a model of a heuristic
is a rule whose purpose is to describe the actual process—not

merely the outcome—of problem solving.

Models of Heuristics

A model of a heuristic specifies (i) a process rule, (ii) the capacities
that the rule exploits to be simple, and (iii) the kinds of problems
the heuristic can solve, that is, the structures of environments in

which it is successful.

Models of heuristics need to be distinguished from mere labels.
For instance, terms such as representativeness and availability are
commonsense labels without specification of a process and the
conditions under which a heuristic succeeds and fails. These need to
be developed into testable models; otherwise they can account for

almost everything post hoc.

There already exist a number of testable models for heuristics,
such as satisficing (Selten, 2001; Simon, 1982), elimination-by-
aspects (Tversky, 1972), and various heuristics for multiattribute
choice discussed in Payne, Bettman, & Johnson 1993. Much of this
earlier work addressed heuristics for preferences, not for inferences,
that is, for problems where no single external criterion of success
exists. Criteria for the accuracy of heuristics were typically internal,
such as whether they used all of the information or how closely
they mimicked the gold standard of a weighted additive model.
Because there were no external criteria for accuracy, the true power

of heuristics could not be fully demonstrated.

I focus on heuristics for inferences—such as comparative
judgments, classification, and estimation. From the seminal work on

heuristics with simple unit weights (+1 and -1; see Dawes, 1979),



we know that the predictive accuracy of simple heuristics can be as
high as or higher than that of the gold standard of weighing and
adding. For instance, unit weights matched multiple regression in
predicting the academic performance of students (Dawes &
Corrigan, 1974), and the take-the-best heuristic was as successful as
Bayes’s rule at predicting the outcomes of basketball games in the
1996 NBA season, but it did so faster and with less information
(Todorov, 2002). Models of heuristics for classification, estimation,
comparative judgments, and choice are discussed in Gigerenzer,
Todd, and the ABC Research Group 1999, and Gigerenzer and
Selten 2001b. In what follows, I will select a few heuristics and

discuss their ecological rationality and the empirical evidence.

Recognition Heuristic

Imagine you are a contestant in a TV game show and face the $1
million question: “Which city has more inhabitants, Detroit or

Milwaukee?”

What is your answer? If you are American, then your chances of
finding the right answer, Detroit, are not bad. Some 60 percent of
undergraduates at the University of Chicago did (Goldstein &
Gigerenzer, 1999). If, however, you are German, your prospects
look dismal because most Germans know little about Detroit, and
many have not even heard of Milwaukee. How many correct
inferences did the less knowledgeable German group that we tested
make? Despite a considerable lack of knowledge, virtually all of the
Germans answered the question correctly. How can people who
know less about a subject nevertheless make more correct
inferences? The answer is that the Germans used a fast and frugal
heuristic, the recognition heuristic: If you recognize the name of

one city but not the other, then infer that the recognized city has



the larger population. The Americans could not use the heuristic,

because they had heard of both cities. They knew too much.

The recognition heuristic is useful when there is a strong
correlation—in either direction—between recognition and criterion.
For simplicity, let us assume that the correlation is positive. For

two-alternative choice tasks, the heuristic can be stated as follows:

Recognition heuristic: If one of two objects is recognized and
the other is not, then infer that the recognized object has

the higher value with respect to the criterion.

The recognition heuristic builds on an evolved capacity for
recognition—such as face, voice, and name recognition. No
computer program yet exists that can perform face recognition as
well as a human child. Note that the capacity for recognition is
different from that for recall. For instance, one may recognize a face
but not recall anything about who that person is. If people use the
recognition heuristic in an adaptive way, they will rely on it in

situations where it is ecologically rational.

Ecological Rationality: The recognition heuristic is successful
when ignorance is systematic rather than random, that is,

when recognition is strongly correlated with the criterion.

The direction of the correlation between recognition and the
criterion can be learned from experience, or it can be genetically
coded. Substantial correlations exist in competitive situations, such
as between name recognition and the excellence of colleges, the
value of companies’ products, and the quality of sports teams. One

way to measure the degree of ecological rationality of the



recognition heuristic (the correlation between recognition and
criterion) is the recognition validity a, which is the proportion of
times a recognized object has a higher criterion value than an
unrecognized object in a reference class, such as cities, companies,

or sports teams:

a=R/I(B+W), (2.1)

where R is the number of correct (right) inferences the recognition
heuristic would achieve, computed across all pairs in which one
object is recognized and the other is not, and W is the number of
incorrect (wrong) inferences, computed under the same

circumstances.

The research summarized in Table 2.1 suggests that people use
the recognition heuristic in a relatively adaptive way, that is, it is
followed most consistently when the recognition validity is high.
For instance, Pohl (2006, Exp. 1) used the 20 largest Swiss cities
and asked one group of participants to judge which of two cities has
the larger population and another group to judge which of the two
cities was located farther from the Swiss city Interlaken.
Recognition is valid for inferring population (a= .86) but not for
inferring distance (o= .51). Participants were not informed about
validity. Nevertheless, they intuitively followed the recognition
heuristic for inferring population in 89 percent of all cases,
compared to in only 54 percent for inferring distance, which is
almost at chance level. The correlation between recognition validity
and proportion of judgments consistent with the recognition
heuristic in Table 2.1 isr = .55.

Table 2.1: People tend to rely on the recognition heuristic in

situations where the recognition validity is substantially above



chance (.5).

Task Reference Recognition Consistant with
validity o recognition
heuristic
Career point total of  Snook & Cullen K7 96
NHL hockey players 2006
Winner of 2003 Serwe & Frings 2006 73 (amateurs) B3
Wimbladon tennis 67 (laypeopla) nah,
malches
Winner of 2005 Scheibehenne & .71 {amateurs) 89
Wimbledon tennis Brider 2007 .69 (lavpeople) 7%,
matches
Winner of 2004 Pachur & Biele 2007 71 1%
European Soccer
Championship
matches
Population of German  Goldstein & LB 0%
cities Gigerenzer 2002
Population of Swiss Pohl 2006, Exp. 86 [Exp. 1) 29U
cities 1and 2 J2{Exp. 2) 75%
Distancs of Swiss Pohl 2006, Exp. 1 .51 549
cities from
Interlaken
Population of Pohl 2006, Exp. 3 .84 {Ttalian) BB
European cities .82 {Belgian) B
Largest mountains, Pohl 2006, Exp. 4 49 {mountains) #9%
rivers, and islands 74 [rivers) FEE
45 lislands) 1%
Population of Volz et al. 2006 B3 N
European cities
Prevalence of Pachur & Hertwig B2 (Study 1) 629
infactious diseases 2006 B2 (Study 2) BO%

Faor instance, when judging which of two NHL hockev plavers has the highes career point total
{iz= 87, participants followed the recognition heuristic in 8% of the cases. All studios tested
inferences from memaory (not from glvens) with recognition that is ecologically valid (rather than
dafined as objects presented in a previous experimental session, as in many memory Lasks).

The adaptive toolbox perspective implies two processes that

precede the use of the recognition heuristic: recognition and
evaluation. To be able to use the heuristic, one alternative must be
recognized and the other not. To decide whether to use the
heuristic (as opposed to another strategy) in a given situation, an
evaluation process is enacted. Consistent with this hypothesis, a
neuroimaging study (Volz et al., 2006) showed that different brain



regions were activated for mere recognition judgments (“Which of
the two cities do you recognize?”) compared to tasks that allow the
recognition heuristic to be used (“Which city has the larger
population?”). Specifically, a deactivation was observed within the
anterior frontomedian cortex (aFMC) when people did not follow
the recognition heuristic. Since the aFMC has been previously
associated with self-referential judgments, this result indicates that
the recognition heuristic is the default, but that contradicting source

knowledge can inhibit its use.

Knowledge that seems to inhibit the use of the recognition
heuristic includes (i) low recognition validity (see above); (ii)
recognizing individual objects for reasons that have nothing do to
with the criterion, such as recognizing Chernobyl because of its
nuclear power accident (Oppenheimer, 2003); and (iii) direct
criterion knowledge for the recognized object, such as when
comparing the population of the town around the corner with a
known small population to that of an unknown city. Reliance on the
recognition heuristic seems to be largely maintained even in the
presence of contradicting cue information. For instance, the median
participant in Richter and Spath (2006, Exp. 3) judged a recognized
city as larger than an unrecognized one in 100 percent of the cases
when they were told that the recognized city had an international
airport, 97 percent when they were given no information, and 97
percent when they were told that the recognized city had no such
airport. Contradicting cue information has an effect on some
participants, but the majority in this experiment abided by the

default: “go with what you know.”

The recognition heuristic should not be confused with
availability (Tversky & Kahneman, 1974). Availability refers to ease

of recall, not recognition. The recognition heuristic implies several



counterintuitive phenomena that cannot be deduced from any other
theory I am aware of. As mentioned before, recognition information
tends to dominate contradictory clues, in rats as well as in people,
even if there is conflicting evidence (Pachur, Broder, & Marewski, in
press). Next, I will deduce a counterintuitive phenomenon, the less-

is-more effect, and the conditions under which it occurs.

The Less-Is-More Effect

Equation 2.2 specifies the proportion of correct answers ¢ on an
exhaustive test of all pairs of N objects (such as cities, soccer teams)
for a person who recognizes n of these objects.

2n(N - n) (N-n)IN-n-1)1 n(n-1)
c= a+ —+
N(N-1) N(N -1) 2 N(N-1)

p (2.2)

The three terms on the right side of the equation correspond to
the three possibilities: A person recognizes one of the two objects,
none, or both. The first term accounts for the correct inferences
made by the recognition heuristic, the second term for guessing,
and the third term equals the proportion of correct inferences made
when knowledge beyond recognition is used. The knowledge validity
b is the relative frequency of getting a correct answer when both
objects are recognized, which is computed like the recognition
validity. All parameters in equation 2.2 can be independently

measured.
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Figure 2.2: The less-is-more effect is a consequence of the
recognition heuristic. It occurs when the recognition validity a is
larger than the knowledge validity  (and a and 8 are constant). The
curves shown are for a= .8. A less-is-more effect can occur between
people with the same 3, as shown by the middle and right-hand
point. It can also occur between people with different knowledge
validities. For instance, a person who recognizes only half of the
objects (n= 50) and has no useful knowledge (8= .5) will
nevertheless make more correct inferences than a person who

recognizes all objects (n= 100) and has useful knowledge (b= .6).

When one plots equation 2.2, a counterintuitive implication can
be seen (figure 2.2). Consider first the curve for f= .5, that is, for
people who have no predictive knowledge beyond recognition. A
person who has heard of none of the objects will perform at chance

level (50 percent, left side). A person who has heard of all objects



will also perform at chance level (50 percent, right side). Only a
person who has heard of some but not all objects can use the
recognition heuristic, and their accuracy will first increase with n
but then decrease again. The reason is that the recognition heuristic
can be used most often when about half of the objects are
recognized, in comparison to when all or none are recognized.
When half of the objects are recognized, a person can use the
recognition heuristic about half of the time, which results in some
65 percent (40 percent for a= .8 plus 25 percent for guessing)
correct inferences, as can be calculated from equation 2.2. The next
curve with three dots shows a less-is-more effect in the presence of
knowledge beyond mere recognition, for f= .6. The left dot
represents a person who has not heard of any objects, while the dot
on the right represents someone who has heard of all objects and
has recall knowledge that does better than chance. The middle dot
represents a person who recognizes less objects but gets more
correct inferences. In general, assuming that ¢ and f3 are constant,

the following result can be proven (Goldstein & Gigerenzer, 2002):

Less-is-more effect: The recognition heuristic will yield a less-

is-more effect if a>pf.

A less-is-more effect can emerge in at least three different
situations. First, it can occur between two groups of people, when a
more knowledgeable group makes worse inferences than a less
knowledgeable group in a given domain. An example is the
performance of the American and German students on the question
of whether Detroit or Milwaukee is larger. Second, a less-is-more
effect can occur between domains, that is, when the same group of
people achieve higher accuracy in a domain in which they know

little than in a domain in which they know a lot. For instance, when



American students were tested on the 22 largest American cities
(such as New York versus Chicago) and on the 22 largest German
cities (such as Cologne versus Frankfurt), they scored a median 71
percent (mean 71.1 percent) correct on their own cities but slightly
higher on the less familiar German cities, with a median of 73
percent correct (mean 71.4 percent). This effect was obtained
despite a handicap: Many Americans already knew the three largest
U.S. cities in order and did not have to make any inferences. A
similar less-is-more effect was demonstrated with Austrian students,
whose scores for correct answers were slightly higher for the 75
largest American cities than for the 75 largest German cities
(Hoffrage, 1995; see also Gigerenzer, 1993a). Third, a less-is-more
effect can occur during knowledge acquisition, that is, when an
individual’s performance curve first increases but then decreases

again.

Less-Is-More in Groups

Consider now group decision making. Three people sit in front of a
computer screen on which such questions as “Which city has more
inhabitants: Milan or Modena?” are displayed. The task of the group
is to find the correct answer through discussion, and they are free to
use whatever means. In this task, the correct solution is difficult to
“prove” by an individual group member; thus, one might expect
that the majority determine the group decision (the majority rule;
see Gigone & Hastie, 1997). Consider now the following conflict.
Two group members have heard of both cities, and each concluded
independently that city A is larger. But the third group member has
not heard of A, only of B, and concludes that B is larger (relying on
the recognition heuristic). After the three members finished their

negotiation, what will their consensus be? Given that two members



have at least some knowledge of both cities, one might expect that
the consensus is always A, which is also what the majority rule
predicts. In fact, in more than half of all cases (59 percent), the
group voted for B (Reimer & Katsikopoulos, 2004). This number

rose to 76 percent when two members relied on mere recognition.

That group members let their knowledge be dominated by
others’ lack of recognition may seem odd. But in fact this
apparently irrational decision increased the overall accuracy of the
group. This result can be analytically deduced and intuitively seen
from figure 2.2. When the recognition heuristic is used in group
decisions, a less-is-more effect results if a> f, just as in figure 2.2,
but more strongly. Consistent with the theory, Reimer and
Katsikopoulos (2004) observed that when two groups had the same
average a and f3, the group that recognized fewer cities (smaller n)
typically had more correct answers. For instance, the members of
one group recognized on average only 60 percent of the cities, and
those in a second group 80 percent; but the first group got 83
percent answers correct in a series of more than one hundred
questions, whereas the second got only 75 percent. Thus, group
members seem to intuitively trust the recognition heuristic, which
can improve accuracy and lead to the counterintuitive less-is-more

effect between groups.

Heuristics Based on Reasons and Imitation

When recognition is not valid, or people know too much, heuristics
can involve the search for reasons or cues. A few years after his
voyage on the Beagle, the 29-year-old Charles Darwin divided a
scrap of paper (titled “This Is the Question”) into two columns with
the headings “Marry” and “Not Marry” and listed supporting

reasons for each of the two possible courses of action, such as “nice



soft wife on a sofa with good fire” opposed to “conversation of
clever men at clubs.” Darwin concluded that he should marry,
writing “Marry—Marry—Marry Q. E. D.” decisively beneath the
first column (Darwin, 1887/1969: 232-233). The following year,
Darwin married his cousin, Emma Wedgwood, with whom he
eventually had 10 children. How did Darwin decide to marry, based
on the possible consequences he envisioned—children, loss of time,
a constant companion? He did not tell us. But we can use his
“Question” as a thought experiment to illustrate various visions of

decision making.

Darwin searched his memory for reasons. There are two visions
of search: optimizing search and heuristic search. Following Wald’s
(1947) optimizing models of sequential analysis, several
psychological theorists postulated versions of sequential search and
stopping rules (e.g., Busemeyer & Townsend, 1993). In the case of a
binary hypothesis (such as to marry or not marry), the basic idea of
most sequential models is the following: A threshold is calculated
for accepting one of the two hypotheses, based on the costs of the
two possible errors, such as wrongly deciding that to marry is the
better option. Each reason or observation is then weighted, and the
evidence is accumulated until the threshold for one hypothesis is
met, at which point the search is stopped and the hypothesis is
accepted. If Darwin had followed this procedure, he would have
had to estimate, consciously or unconsciously, how many
conversations with clever friends are equivalent to having one child
and how many hours in a smoky abode can be traded against a
lifetime of soft moments on the sofa. Weighting and adding is a
mathematically convenient assumption, but it assumes that there is
a common currency for all beliefs and desires in terms of

quantitative probabilities and utilities. These models are often



