) .
td
' L]
- l'-_' d = [

AR e N
v -
i
q
o '
it‘f ] T N -
. i
— # IJ.' P " i
-
a5 Ll
'l-':l'-il-'r i
‘-."
2
s -
| e [l
L

Real—World A]gorlthms

o D . -
[ ‘ " A BEGINNER'S ILE

\1’ R F‘ u&u " ".

PANOS LOURIDAS

J; 4-5__-_,I



Panos Louridas

Real-World Algorithms
A Beginner's Guide

The MIT Press
Cambridge, Massachusetts London, England



©2017 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or
mechanical means (including photocopying, recording, or information storage and retrieval)
without permission in writing from the publisher.

This book was set in EIgX by the author using the Linux Libertine and Inconsolata fonts. The
figures were drawn with TikZ, except for a few that were made with Python. Printed and bound
in the United States of America.

Library of Congress Cataloging-in-Publication Data

Names: Louridas, Panos, author.

Title: Real-world algorithms : a beginner’s guide / Panos Louridas.

Description: Cambridge, MA : The MIT Press, [2017] | Includes bibliographical references and
index.

Identifiers: LCCN 2016025660 | ISBN 9780262035705 (hardcover : alk. paper)

Subjects: LCSH: Computer algorithms—Popular works. | Computer programming—Popular
works,

Classification: LCC QA76.9.A43 L67 2017 | DDC 005.1-dc23

LC record available at https://Llcen. loc, gov/2016025660.

10987654321

Copyrighted material



Preface

Contents

Stock Spans
1.1 Algorithms

1.2  Running Times and Complexity
1.3 Stock Span Using a Stack

Notes

Exercises
Expluring the Labyrinth
2.1  Graphs

2.2  Graph Representation
2.3 Depth-first Graph Traversal
2.4  Breadth-first Search

Notes

Exercises

Cumpressing

3.1 Compression

3.2 Trees and Priority Queues

3.3 Huffman Coding

34 Lempel-Ziv-Welch Compression

Notes
Exercises

Secrets

4.1 A Decryption Challenge

4.2 One-time Pad

4.3 The AES Cipher

44 Diffie-Hellman Key Exchange

4.5 Fast and Modular Exponentiation

Notes
Exercises

Split Secrets

5.1 Public Key Cryptography
5.2 The RSA Cryptosystem
5.3 Message Hashing

X

FSERREEERE REZ v -

g RIS BRERRBERRIRE

SREEE
[ =] o |4

[—
| g
N



vi

I~

Contents

5.4 Internet Traffic Anonymization

Notes
Exercises

Tasks in Order
61 Topological Sort
6.2 Weighted GraPhs
"3 Critical Patl
Notes

Exercises

Lines, Paragraphs, Paths

7.1 Shortest Paths

7.2 Dijkstra’s Algorithm
Notes

Exercises

Routing, Arbitragn_e

8.1 Internet Routing
8.2 The Bellman-Ford(-Moore) Algorithm

8.3 Negative Weights and Cycles
8.4 Arbitrage
Notes

What's Most Important

9.1 The PageRank Idea

9.2 The Hyperlink Matrix

9.3 The Power Method

94 The Google Matrix
Notes

Voting Strengths

10.1 Voting Systems

10.2 The Shulze Method

10.3 The Floyd-Warshall Algorithm

Notes

Brute Forces, Secretaries, and Dichotomies

11.1 Sequential Search

—-
.
[

EEREEE ER

e
-
O

[
]
b

B EER

O g o
BB EIZ
= b L

EEEEEE

S E‘m
L S
— e |

B
—
-~

h - -
=B B
o I~ '



Contents

11.2 Matching, Comparing, Records, Keys
11.3 The Matthew Effect and Power Laws
11.4 Self-Organizing Search
11.5 The Secretary Problem
11.6 Binary Search
11.7 Representing Integers in Computers
11.8 Binary Search Revisited
11.9 Comparison Trees

Notes

A Menagerie of Sorts
12.1 Selection Sort
12.2 Insertion Sort
12.3 Heapsort
124 Merge Sort
12.5 Quicksort
12.6 Spoilt for Choice
Notes
Exercises
The Cloakroom, the Pigeon, and the Bucket
13.1 Mapping Keys to Values
13.2 Hashing
13.3 Hashing Functions
13.4 Floating Point Representation and Hashing

13.5 Collisions

13.6 Digital Fingerprints

13.7 Bloom Filters
Notes

Exercises
Bif LT
14.1 Divination as a Communications Problem
14.2 Information and Entropy
14.3 Classification
44 Decision T
14.5 Attribute Selection

vii

K [

B E 2

[ o)
~J
—

5 B

28

FEEE &

e
=
o

W
o

1

uE
o
e |

g K|

-
-
—

s
N

3

C.opvrighted material



viil

Contents

14.6 The ID3 Algorithm
14.7 The Underlying Machinery
14.8 Occam’s Razor
14.9 Cost, Problems, Improvements
Notes
Exercises

Stringing Along

15.1 Brute Force String Matching

15.2 The Knuth-Morris-Pratt Algorithm
15.3 The Boyer-Moore-Horspool Algorithm

Notes
Exercises

Leave to Chance
16.1 Random Numbers

16.2 Random Sampling
16.3 Power Games
16.4 Searching for Primes

Notes
Exercises

Bibliography

Index

Copyrighted materia



Preface

Like most of my generation, I was brought up on the
saying: “Satan finds some mischief for idle hands to do”.
Being a highly virtuous child, I believed all that I was
told, and acquired a conscience which has kept me
working hard down to the present moment. But although
my conscience has controlled my actions, my opinions
have undergone a revolution. I think that there is far too
much work done in the world, that immense harm is
caused by the belief that work is virtuous, and that what
needs to be preached in modern industrial countries is

quite different from what always has been preached.

Bertrand Russell, In Praise of Idleness (1932)

This book is about algorithms; and algorithms are what we do in order not
to have to do something. It is the work we do to avoid work. By virtue of
our inventions we have always been good at using brain for brawn. With
algorithms we are using brain for brain.

Reducing human effort is a noble task. It is well ingrained in our minds
that we should use machines to reduce our toil whenever possible and this
has allowed us to reduce back-breaking work that was the norm for centuries.
That is a wonderful thing, and there is no reason to stop at avoiding physical
effort when we can also avoid mental labor. Drudgery, dull, repetitive work
are the bane of human creativity, and we should do our best to avoid it; and
algorithms allow us to do that.

Besides, digital technology today can accomplish feats that do not seem
to be mind-numbing, but the essence of human nature. Machines recognize
and produce speech, translate texts, categorize and summarize documents,
predict the weather, find patterns in mounts of stuff with uncanny accuracy,
run other machines, do mathematics, beat us at games, and help us to invent
yet other machines. All these they do with algorithms, and by doing them
they allow us to do less, they give us time to pursue our interests, and they
even give us time and opportunity to discover yet better algorithms that will
reduce our daily grind even more.

Algorithms did not start with computers; they have been with us from
ancient times; nor are they limited to computer science. It is difficult to come
up with a discipline that has not be transformed in some way by algorithms. In
this way, many people encounter algorithms through the back door, as it were:
they discover that they have become an important part of their discipline, no
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matter how distant from computers it might appear to be. It behooves them
then to learn about algorithms, to be able to reason with and use them.

Even with simple things and everyday tasks, it is amazing how much effort
is squandered every day because some modicum of right thinking is not
applied. Every time vou find yourself doing something repetitive, chances
are you should not be doing it. The author has encountered, time and again,
that in the course of their daily office jobs, people perform sequences of oper-
ations that could be done in a blink of time, if only they knew how to apply
themselves on how to avoid doing their work; not by shirking (some people
are very adept at that), but getting a computer to do the job for them (more
people should be more adept at that).

Intended Audience

This book was written to serve as a first encounter with algorithms. If you
study computer science, you can benefit from it for an initial approach and
then you can delve into more advanced texts; algorithms are the core of com-
puting and an introduction such as this one can only skim the surface.

There are many others, though, that while pursuing other careers, or study-
ing for them, become aware that algorithms have also become an essential
part of their tool-chest. In many disciplines, it is pretty much impossible not
to work with algorithms. This book intends to bring algorithms to this audi-
ence: those, and there are many, that need to use and understand algorithms
as part, even though not as the center, of their job or studies.

And then there are all those who could use some algorithms, no matter how
small or trivial, to simplify their work and avoid wasting time on chores. A
task that would take hours for a diligent worker can be performed in virtually
no time by using just a few lines of computer code in a modern scripting
language. Sometimes this can come as an epiphany to the uninitiated, which is
a pity because algorithmic thinking is not the prerogative of some illuminated
elite.

In the same way that nobody could seriously argue today that a basic
knowledge of mathematics and science is not essential to engage meaning-
fully with the modern world, it is no longer possible to be a productive mem-
ber of contemporary society without a grasp of algorithms. They underlie
your daily human experience.



Preface xiii

years ago, and different languages are more appropriate for certain things
than others. Language wars are silly and counterproductive. Also, a happy
outcome of all the wonderful things that computers can do for us now is that
people seek actively new ways to work with computers, and this effort leads
to new programming languages being invented and older ones evolving.

The author does prefer some computer languages over others, but it is per-
haps unfair to impose on the reader his own preferences. Moreover, computer
languages go in and out of fashion, and yesterday's darling is frumpy today.
Hoping to make the book as widely usable as possible and with an eye to
longevity, there are no examples in an actual programming language in these
pages. Algorithms are described using pseudocode. The pseudocode can be
understood more easily than actual computer code, as it can glide over the
foibles that real programming languages invariably have. It is often also eas-
ier to reason with pseudocode; when you try to develop a deep understanding
of an algorithm, you must write down parts of it, and this is easier in pseu-
docode than in real code, where you need to attend carefully to syntax.

That said, it is difficult to work with an algorithm unless you do write com-
puter code that implements it. The adoption of pseudocode in this book does
not mean that the reader should also adopt a cavalier attitude towards com-
puter code in general. Whenever possible, the algorithms presented should
be implemented in a language of choice. Do not underestimate the sense of
accomplishment you will get when you manage to create a computer program
that implements an algorithm correctly.

How to Read this Book

The best way to read the book is sequentially, as earlier chapters provide
instruction on concepts that are used later on. In the beginning, you will
encounter basic data structures that all kinds of algorithms use, and that are
indeed taken up in later chapters. However, once the foundation has been
laid down, you may choose later chapters as you wish, if you find some more
interesting than others.

You should therefore start with chapter 1 where you will see the way the
rest of the chapters are structured: they begin with a description of a problem
and then present algorithms that can solve it. Chapter 1 also introduces the
pseudocode conventions used in the book and basic terminology and the first
data structures you will encounter: arrays and stacks.
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Chapter 2 gives a first glimpse of graphs and ways to explore them. It also
covers recursion, so even if you have seen graphs before but you are not
entirely sure about your grasp of recursion, you should not skip it. Chap-
ter 2 presents additional data structures that we will see time and again in
algorithms in other chapters. Then, in chapter 3, we turn to the problem of
compression and how two different compressing schemes work: this allows
us to introduce some further important data structures.

Chapters 4 and 5 treat cryptography. This is different from graphs and com-
pression, but it is an important application of algorithms, especially in recent
years where personal data can be found in all sort of places and devices, and all
sort of entities are willing to peek into them. These two chapters can be read
more or less independently from the rest, although some important pieces,
such as how to pick large prime numbers, are left for chapter 16.

Chapters 6-10 describe problems related to graphs: ordering tasks, finding
your way in a maze, how to decide the importance of things linked to other
things (such as pages in the web), how graphs can be used in elections. Finding
your way in a maze has more applications than you might initially think, from
typesetting paragraphs, to Internet routing and financial arbitrage; a variant
of it appears in the context of elections, so chapters 7, 8, and 10 can be treated
as a unit.

Chapters 11 and 12 deal with two of the most fundamental problems in
computing: searching and sorting. These two topics can fill entire volumes,
and they have. We present some important algorithms that are in common
use. When dealing with searching, we take the opportunity to deal with some
additional material, such as online searching (searching for something among
items that come streaming to you, without being able to revise your decision
afterwards) and scale-free distributions, which researchers have found pretty
much everywhere they have cared to look. Chapter 13 gives another way of
storing and retrieving data, that of hashing, which is extremely useful, com-
mon, and elegant.

Chapter 14 covers a classification algorithm: the algorithm learns how to
classify data, based on a set of examples, and then we can use it to classify
new, unseen instances. This is an example of Machine Learning, a field whose
importance has increased immensely as computers have become more and
more powerful. The chapter also covers basic ideas on Information Theory,
another beautiful field related to algorithms. Chapter 14 is different from the
other chapters in the book because it also presents how an algorithm works
by calling on smaller algorithms to do part of its work, in the same way that
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computer programs are composed of small building parts, each one of which
does a particular job. It also shows how data structures that have been intro-
duced elsewhere into the book play an essential role in implementing the clas-
sification algorithm. The chapter should appeal particularly to readers who
would like to see how the details of a high-level algorithm are worked out—an
important step in the process of turning algorithms into programs.

Chapter 15 goes into sequences of symbols, called strings, and how we can
find things inside them. It is an operation we call our computers to do every
time we look for something inside a text, yet it is not obvious how to do it
efficiently. Fortunately, there are ways to do it fast and gracefully. Moreover,
sequences of symbols can represent many other kinds of things, so that string
matching has applications in many areas, for example, in biology.

Finally, chapter 16 treats algorithms that work with chance. It is surprising
how many applications of such randomized algorithms exist, so it is only pos-
sible to include a smattering of them here. Among other things, they provide
answers to problems we have encountered previously in the book, such as
how to find large prime numbers, required in cryptography. Or, again related
to voting, how you count the impact of your vote.

Course Use

The material in the book can be used for a full semester course that covers
algorithms and focuses on understanding the main ideas without going deep
into a technical treatment of the subject. Students in diverse disciplines such
as business and economics; life, social, and applied sciences: or formal sci-
ences like mathematics and statistics, can use it as the main text in an intro-
ductory course, supplemented with programming assignments in which they
are called to implement working instances of real, practical algorithms. Those
studying computer science per se could use it as an informal introduction that
would spur them to appreciate the full depth and beauty of algorithms as pre-
sented in a more technical book on the subject.
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Last First Words

If you write algorhythm instead of algorithm, you get a portmanteau word
that means “the rhythm of pain,” as algos is Greek for pain. In reality, the word
algorithm comes from al-Khwarizmi, the name of a Persian mathematician,
astronomer, and geographer (¢. 780-¢. 850 CE). Hoping that this book will
engage you and not pain you, let’s get on with algorithms.
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Stock Spans

Imagine that you are given daily price quotes for a stock. That is, you have
a series of numbers, each one representing the closing price of a given stock
at a given day. The days are in chronological order. No quote is given for the
days on which the stock market is closed.

The span of a stock’s price on a given day is the number of consecutive
days, from the given day going backwards, on which its price was less than
or equal to its price on the day we are considering. The Stock Span Problem
then is, given a series of daily price quotes for a stock, to find the span of the
stock on each day of the series. So, for instance, consider figure 1.1. The first
day is day zero. On day six of our data the span is five days, on day five it is
four days, and on day four it is one day.

In reality the series can contain thousands of days, and we may want to
compute the span for many different series, each one describing the evolution
of a different stock price. We therefore want to use a computer to give us the
solution.

In many problems that we use computers to solve, there is usually more
than one way to arrive at a solution, more than one way to solve it. Usually
some of them are better than others. Now, “better” by itself does not really
mean anything; when we say better, we actually mean better in terms of some-
thing. This can be in terms of speed, memory, or something else that impacts
on a resource such as time or space. We will have more to say on this in a bit,
but it is important to keep that in mind from the outset because a solution to a
problem may be simple but may not be optimal according to some constraint
or criterion we have placed.

Suppose you are on day m of the series. One way you could find the span
of the stock on day m is to go back one day, so you will be on day m - 1. If
the price on day m - 1 is greater than the price on day m, then you know that
the span of the stock on day m is just one. But if the price on day m — 1 is less
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Algorithm 1.1 shows how we will be describing algorithms. Instead of using
a computer language, which would force us to deal with implementation
details that are not relevant to the logic of the algorithm, we will be using
a form of pseudocode. Pseudocode is something between real programming
code and an informal description. It employs a structured format and adopts
a set of words that it endows with specific meaning. However, pseudocode is
not real computer code. It is not meant to be executed by computers, but to be
understood by humans. By the way, programs should also be understood by
humans, but not all programs are—there are a lot of running, badly written,
incomprehensible computer programs out there,

Each algorithm has a name, takes some input, and produces some output.
We will write the name of the algorithm in CamelCase and its input in paren-
theses. Then we will indicate the output with a —. In the lines that follow, we
will be describing the algorithm’s inputs and outputs. The name of the algo-
rithm followed by its input in parentheses can be used to call the algorithm.,
Once an algorithm has been written, we can treat it as a black box that we can
use by feeding it with some input; the black box will return the algorithm’s
output. When implemented in a programming language, an algorithm is a
named piece of computer code, a function. In a computer program, we call the
function that implements the algorithm.

Some algorithms do not produce an output that they explicitly return.
Instead, their actions impact some part of their context. For example, we may
provide the algorithm with some space where to write its results. In this case,
the algorithm does not return its output in the conventional sense, but there
is an output anyway, the changes it effects on its context. Some program-
ming languages make the distinction between pieces of named program code
that explicitly return something, calling them functions, and pieces of named
program code that do not return something but have nevertheless other side
effects, calling them procedures. The distinction comes from mathematics,
where a function is something that must return a value. For us an algorithm,
when coded as an actual program, may turn out to be either a function or a
procedure.

Our pseudocode will use a set of keywords in bold whose meaning should
be self-explanatory if you have some acquaintance with how computers and
programming languages work. We will be using the character « for assign-
ment, and the equals sign (=) for equality. The usual five symbols are adopted
for the four mathematical operations (+, =, /, X, +): hence we have two signs
for multiplication; we will be using both, basing our choice on aesthetics.
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We will not be using any keywords or symbols to demarcate blocks of pseu-
docode; we will rely on indentation.

In this algorithm, we use arrays. An array is a structure holding data that
allows us to manipulate its data in specific ways. A structure holding data that
allows specific operations on the data it contains is called a data structure. An
array is therefore a data structure.

Arrays are to computers what series of objects are to people. They are
ordered sequences of elements. These elements are stored in the computer’s
memory. To obtain the space required for holding the elements and create an
array that can hold n elements, we call an algorithm CreateArray in line 1 of
algorithm 1.1. If you are familiar with arrays, then you may think it strange
that the creation of an array requires an algorithm. And vyet it does. To get a
block of memory to hold data, you must at least search for the available mem-
ory inside the computer and mark it for use by the array. The CreateArray(n)
call does all that is required. It returns an array with space for n elements; ini-
tially there are no elements in there, just the space that can hold them. It is
the responsibility of the algorithm that calls CreateArray(n) to fill the array
with the actual data.

For the array A, we denote and access its ith element by A|i]. The position
of an element in the array, such as i in A[i], is called its index. An array of
n elements contains elements A[0|,A[1],...,A|ln = 1|. This may strike you as
strange because its first element is the zeroth, and its last element is the (n -
1)th. You may have expected them to be first and nth instead. However, this
is how arrays work in most computer languages, so you had better get used
to it now. Because it is so common, when we iterate over an array of size n,
we iterate from place 0 to place n - 1. In our algorithms, when we say that
something will take the values from a number x to a number y (assuming
that x is less than y), we mean all the values from x up to but not including
y; check out line 2 of the algorithm.

We assume that accessing the ith element takes the same time, no matter
what i actually is. So accessing A|0] requires the same time as A|n — 1]. That is
an important feature of arrays: elements are uniformly accessible at a constant
time; the array does not have to search for an element when we want to access
it by its index.

Concerning notation, when describing algorithms we will be using lower-
case letters for the variables that appear in them; but when a variable refers
to a data structure we may be using uppercase characters, such as the array A,
to help them stand out; but this will not always be necessary. When we want
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to give to a variable a name consisting of many words, we will be using an
underscore (_) as a_connector; that is necessary because computers do not
understand that a set of words separated by spaces constitute a single variable
name.

Algorithm 1.1 uses arrays that store numbers. Arrays can hold any type of
item, although each array can hold items of a single type in our pseudocode.
This is also the case in most programming languages. For example you may
have an array of decimal numbers, an array of fractions, an array of items
that represent people, and another array of items that represent addresses.
You may not have an array that contains both decimal numbers and items
representing people. As to what the “items that represent people” may be,
that is down to the specific programming language used in a program. All
programming languages provides the means to represent meaningful stuff.

A particularly useful kind of array is an array that contains characters. An
array of characters represents a string, which is a sequence of letters, numbers,
words, sentences, or whatever. As in all arrays, the individual characters that
the array contains can be referenced individually by the index. If we have the
string s = "Hello, World”, then s[0] is the letter “"H" and s[11] is the letter “d".

Summing up, an array is a data structure that holds a sequence of items of
the same type. There are two operations on arrays:

« CreateArray(n) creates an array that can hold n elements. The array is
not initialized, that is, it does not hold any actual elements, but the required
space for them has been reserved and can be used to store them.

+ As we have seen, for an array A and its ith element, A[i] accesses the ele-
ment, and accessing any element in the array takes the same time. It is an
error to try to access Ali] when i < 0.

Back to algorithm 1.1. Following the above, the algorithm contains a loop,
a block of code that executes repeatedly, in lines 2-10. The loop is executed
n times, once for the calculation of a span, if we have prices for n days. The
current day whose span we are considering is given by variable i. Initially, we
are at day zero, the earliest point in time; each time we go through line 2 of
the loop, we will be moving to day 1,2,....n- 1.

We use a variable k to indicate the length of the current span; a variable
is a name that refers to some piece of data in our pseudocode. The contents
of those data, to be precise, the value of the variable may change during the
execution of the algorithm; hence its name. The value of k when we start to
calculate a span is always 1, which we set in line 3. We also use an indicator
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variable, span_end. Indicator variables take the values TRUE and rALSE and
indicate that something holds or does not hold. The variable span_end will be
true when we reach the end of a span.

At the start of each span’s calculation span_end will be false, as in line 4.
The length of the span is calculated in the inner loop of lines 5-9. Line 5 tells
us to go backwards in time as far as we can, and as long as the span has not
ended. As far as we can is determined by the condition i = k > 0: i - k is the
index of the day to which we go back to check if the span ends, and the index
cannot be zero, as this corresponds to the first day. The check for the end
of a span is at line 6. If the span does not end, then we increase it in line 7.
Otherwise we note the fact that the span ends in line 9 so that the loop will
stop when execution goes back to line 5. At the end of each iteration of the
outer loop of lines 2-10, we store the value of k in the appropriate place in
the array span in line 10. We return spans, which contains the results of the
algorithm, in line 11 after exiting the loop.

Note that when we start we have i = 0 and k = 1. That means that the con-
dition in line 5 will certainly fail for the earliest point in time. That is as it
should, as its span can only be equal to 1.

At this point, remember what we just said about algorithms, pen, and paper.
The proper way to understand an algorithm is to execute it yourself, manually.
If at any time an algorithm seems complicated, or you are not sure you have
grasped it entirely, then write down what it does on some example. It will
save you a lot of time, old-fashioned though it may seem. If you are unsure
about algorithm 1.1 go and do it now, then return here when the algorithm is
clear.

1.2 Running Times and Complexity

Algorithm 1.1 is a solution to the Stock Span Problem, but we can do better.
Here better means that we can do faster, When we talk about speed in algo-
rithms, we are really talking about the number of steps the algorithm will
execute. No matter how fast computers get, although they will execute com-
putational steps faster and faster, the number of steps will remain the same,
so evaluating the performance of an algorithm in terms of the steps it requires
makes sense. We call the number of steps the running time of the algorithm,
although this is a pure number, not measured in any time units. Using time
units would make any running time estimate relative to a specific computer
model, which is not useful.
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Consider how long it takes to calculate the spans of n stock quotes. The
algorithm consists of a loop, starting at line 2, that will execute n times, one
for each quote. Then there is an inner loop, starting in line 5, that for each
iteration of the outer loop will try to find the quote’s span. For each quote it
will compare the price of the quote with all previous quotes. In the worst case,
if the quote is the highest price yet, then it will examine all previous quotes. If
quote k is the highest of all previous quotes, then the inner loop will execute
k times. Therefore, in the worst case, which is if the quotes are in ascending
order, line 7 will execute the following number of times:

nin+1)
1+2+4 - +n= 5

If the equation is not clear, then you can easily see that this is indeed so if you
add the numbers 1,2.....n twice:

1 + 2 44+ n
+ n +n-1+---+ 1
n+l+n+l1+---+n+l1=nn+1)

Because line 6 is the step of the algorithm that will execute most times, n(n +
1)/2 is the worst case running time of the algorithm.

When we talk about algorithm running times, we are really interested in
the running time when our input data is large (in our case, the number n).
That is the asymptotic running time of an algorithm because it deals with
the behavior of the algorithm when the input data increase without bounds.
There is some special notation that we use for this purpose. For any function
f(n), if for all values of n greater than some initial positive value the function
f(n) is less than or equal to another function g(n) scaled by some positive
constant value c, that is, cg(n), we say that O(f(n)) = g(n). In a more precise
way, we say that O( f(n)) = g(n) if there exist positive constants ¢ and ng such
that 0 < f(n) < cg(n) for all n > ny.

The notation O(f(n)) is called “big-Oh notation.” Keep in mind that we
are interested in big values of our input, because that is where we will have
the biggest savings. Take a look at figure 1.2, where we plot two functions,
fi(n) = 20n + 1000 and fi(n) = n®. For small values of n it is fi(n) that takes
biggest values, but the situation changes drastically quite early, after which
n* grows much faster.

The big-Oh notation allows us to simplify functions. If we have a function
like f(n)=3n"+ 5n® + 2n + 1000, then we have simply O(f(n)) = n’. Why?
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under the same complexity family, which we usually denote by O(log(n)),
although the more specific O(lg(n)) is also used a lot. Algorithms with O(lg(n))
complexity arise when the algorithm repeatedly divides a problem in two
because if you divide something repeatedly by two, you are essentially apply-
ing the logarithmic function to it. Important logarithmic time algorithms are
algorithms related to searching: the fastest searching algorithms run on base
two logarithmic time.

More time consuming than logarithmic time algorithms are linear time
algorithms that run in time f(n) = n, that is, in time proportional to their
input. For these algorithms, the complexity is O(n). These algorithms may
have to scan their whole input in order to find an answer. For example, if we
search a random set of items that are not ordered in any way, then we may
have to go through all of them to find the one we want. Therefore, such a
search runs in linear time.

Slower than linear time are the loglinear time algorithms, where f(n) =
nlog(n), and we therefore write O(nlog(n)). As before, the logarithm can be
to any base, although in practice algorithms to base two are common. These
algorithms in some way are a combination of a linear time algorithm and a
logarithmic time algorithm. That may involve repeatedly dividing a problem
and applying a linear time algorithm to each of the divided parts. Good sorting
algorithms have a loglinear time complexity.

When the function describing the running time of the algorithm is a poly-
nomial f(n) = (a;n* + azn*~' + -+ + a,n + b) we have, as we saw, a complex-
ity of O(n*) and the algorithm is a polynomial time algorithm. Many algo-
rithms run in polynomial time; an important sub-family are algorithms that
run in O(n*) time, which we call quadratic time algorithms. Some not efficient
sorting methods run in quadratic time, as does the standard way to multiply
two numbers with n digits each—note that there are actually more efficient
ways to multiply numbers, and we use these more efficient ways in applica-
tions where we want high performance arithmetic calculations,

Slower than polynomial time algorithms are exponential time algorithms,
where f(n)=c¢", with ¢ a constant value, so O(¢"). Be sure to notice the
difference between n“ and ¢". Although we swapped the place of n and the
exponent, it makes for a huge difference in the resulting function. As we said,
exponentiation is the reverse of the logarithmic function and is simply raising
a constant to a variable number. Careful: exponentiation is ¢"; the exponen-
tial function is the special case where ¢ = ¢, that is, f(n) = e¢*, where ¢ is the
Euler number we met before. Exponentiation occurs when we have to handle
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Table 1.1

Growth of functions.
Function Input size

1 10 100 1000 1,000, 000

lg(n) 0 3,32 6.64 9,97 19.93
" 1 10 100 1000 1, 000, 000
nln(n) 0 33.22 664.39 9965.78 1.9 % 107
n* 1 100 10,000 1,000, 000 104
n’ 1 1000 1,000,000 10" 10"
on 2 1024 1.3 x 10% 103! 101"
n! I 3,628,800 9.43 x 1057 4 X 107567 T

a problem of input n, where each of the n inputs can take a number of ¢ dif-
ferent values and we must try all possible cases. We have ¢ values for the first
input, and for each of these we have ¢ values for the second input; in total
¢ X ¢ = ¢*. For each of these ¢? cases, we have ¢ possible values for the third
input, which makes it ¢* X ¢ = ¢’; and so on until the last input that gives c".

Still slower than exponential time algorithms are factorial time algorithms
with O(n!), where the factorial number is defined as n! = 1 X2 x---xn and
the degenerate case 0! = 1. The factorial comes into play when in order to
solve a problem we need to try all possible permutations of input. A permu-
tation is a different arrangement of a sequence of values. For example, if we
have the values [1,2,3), then we have the following permutations: |1, 2, 3],
[1,3,2], |2.1,3), |2.3,1], [3,1,2], and [3,2,1]. There are n possible values in
the first position; then because we have used one value, there are n - 1 pos-
sible values in the second position; this makes n X (n — 1) different permuta-
tions for the first two positions. We go on like this for the remaining positions
until the last position where there is only one possible value. In all, we have
nx{(n-1)---x1=n! In this way the factorial number arises in shuffles: the
number of possible shuffles of a deck of cards is 52!; that’s an astronomical
number.

A rule of thumb is that algorithms with up to polynomial time complexity
are good, so our challenge is often to find algorithms with such performance.
Unfortunately, for a whole class of important problems, we know of no poly-
nomial time algorithms! Take a look at table 1.1; you should realize that if
for a problem we have only an algorithm with a running time of O(2"), then
the algorithm is pretty much worthless for anything apart from toy problems,
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with very small values of input. You can also check that with figure 1.3; in the
bottom row, O(2") and O(n!) start skyrocketing for small values of n.

In figure 1.3, we show the plots of functions as lines, although in reality
the number n when we study algorithms is a natural number, so we would
expect to see scatter plots, showing points instead of lines. Logarithmic, lin-
ear, loglinear, and polynomial functions are of course directly defined for real
numbers, so there is no problem in plotting them with lines by using the
normal functional definitions. The usual interpretation of exponentiation is
for integers, but powers with rational exponents are also possible because
x'a/b) = (x@)(/8) = {/x@ Then powers with exponents that are real numbers
are defined as b* = (¢"?)* = ¢*'"?_ Concerning factorials, with some more
advanced mathematics, it turns out that they can also be defined for all real
numbers (negative factorials are taken to be infinite). So we are justified in
drawing the complexity functions with lines.

Lest you think that complexity O(2") or O(n!) rarely occurs in practice,
consider the famous (or infamous) Traveling Salesman Problem. In this prob-
lem, a traveling salesman must travel to a number of cities, visiting each one
of them only once. Every city is directly connected to every other city (per-
haps the salesman travels by plane). The twist is that the salesman must do
that while traveling as few kilometers as possible. A direct solution is to try
all possible permutations of the cities. For n cities, this is O(n!). There is a bet-
ter algorithm that solves the problem in O(n°2")—a bit better, but not much
of a practical difference. Then how do we solve this (and other similar prob-
lems)? It turns out that, although we may not know a good algorithm that
will give us a precise answer, we may know good algorithms that will give us
approximate results.

The big-Oh provides an upper bound on the performance of an algorithm.
The converse is a lower bound, when we know that its complexity will be
always no better than a certain function, after some initial values. This is
called "big-Omega,” or 2(n), and the precise definition is that Q( f(n)) = g(n) if
there exist positive constants ¢ and ng such that f(n) = cg(n) = 0foralln = ny.
Having defined big-Oh and big-Omega, we can also define the situation when
we have both an upper and a lower bound. This is "big-Theta,” and we say
that ©( f(n)) = g(n) if and only if O( f(n)) = g(n) and Q( f(n)) = g(n). Then we
know that the algorithm has a running time that is bounded both from below
and from above by the same function, scaled by a constant. You can think of
it as the algorithm running time lying in a band around that function.
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Different complexity families.
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1.3 Stock Span Using a Stack

Let's return to the Stock Span Problem now. We have found an algorithm with
a complexity of O(n(n + 1/2)). According to what we have been saying, this is
equivalent to O(n*). Can we do better? Go back to figure 1.1. Notice that when
we are at day six, we do not need to compare with all the previous days until
day one. Because we have gone through all days up to day six, we already
“know” that days two, three, four, and five all have quotes less than or equal
to that of day six. If we somehow keep that knowledge, then instead of doing
all these comparisons, we only need to compare with the quote on day one.

This is a general pattern. Imagine you are on day k. If the stock price quote
on day k -1 is less than or equal to the stock price on day k, so that we
have quotes|k — 1] < quotes|k| or equivalently quotes|k| > quotes|k — 1], then
there is no reason to even compare with k - 1 again. Why? Take a future
day k + j. If the quote on k + j is less than the quote on day k, quotes|k +
j| < quotes| k|, then we do not have to compare with k — 1 because the span
starting from k + j ends at k. If the quote on k + j is greater than the quote on
k, then we know already that it must be quotes|k + j| = quotes|k — 1] because
quotes|k + j| = quotes|k| and quotes|k| > quotes|k - 1]. So each time that we
are searching backwards for the end of the span, we may throw away all days
with values less than or equal to the day whose span we are examining and
we may exclude the thrown away days from consideration in any future span.

The following metaphor may help: Imagine you are sitting on top of the
column for day six in figure 1.4. You look straight back, not below. You see
the column for day one only. That is the only column with which you need
to compare the stock value of day six. In general, at each day you only need
to compare what is directly in your line-of-sight.

That means that we waste our time in algorithm 1.1 when in the inner loop
starting in line 5 we start comparing with each and every previous day. We
can save the waste by using some mechanism by which we have at hand the
limits of the highest established spans.

We can do that by using a special data structure for holding data called a
stack. A stack is a simple data structure. It is something on which we can put
data, one after the other, and retrieve them. Each time we can retrieve the last
one we have put. The stack works like a stack of trays in a restaurant, piled
on top of each other. We can only take the top tray, and we can only add trays
on top of the pile. Because the last tray to be added to the stack is the first
one to be removed, we call a stack a Last In First Out (LIFO) structure. You
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Algorithm 1.2: Stack Stock Span algorithm.

StackStockSpan(quotes) — spans
Input: quotes, an array with n stock price quotes

Output: spans, an array with n stock price spans

-

spans «— CreateArray(n)

2 spans[0] « 1
3 S « CreateStack()
4 Push(Ss,0)
s forie ltondo
6 while not IsStackEmpty(S) and quotes|Top(S)| < quotes|i| do
7 Pop(S)
8 if IsStackEmpty(S) then
9 spans|i| « i+ 1
10 else
1 spans|i] « i —= Top(S)
12 Push(S, i)
13 return spans
Table 1.2
Boolean short circuit evaluation.
operator a b result
T T T
and T F F
F F
T T
F T
F F

There is a detail in line 6 of the algorithm that merits our attention. It is
an error to evaluate Top(S) if § is empty. This will not happen, thanks to an
important property about how conditions are evaluated, called short circuit
evaluation, The property means that when we evaluate an expression involv-
ing logical boolean operators, the evaluation of the expression stops as soon
as we know its final result, without bothering to evaluate any remaining parts
of the expression. Take for example the expression if x > 0 and y > 0. If we
know that x < 0, then the whole expression is false, regardless of the value of
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y; we do not need to evaluate the second part of the expression at all. Simi-
larly, in the expression if x > 0 or y > 0, if we know that x > 0, then we do not
need to evaluate the second part of expression, the one involving y, because
we already know that the whole expression is true having established that
the first part is true. Table 1.2 shows the general situation for any two-part
boolean expression with an and or an or operator. The shaded rows indicate
that the result of the expression does not depend on the second part and there-
fore the evaluation can stop as soon as we know the value of the first part.
With short circuit evaluation, when IsStackEmpty(S) returns TRUE, which
means that not IsStackEmpty(S) is FALSE, we will not try to evaluate the
right hand of and containing Top(S), thereby avoiding an error.

You can see how the algorithm works and the line-of-sight metaphor in
figure 1.6. At each panel of the figure we show, on the right, the stack at
the start of each loop iteration; we also indicate the days in the stack with
filled bars, whereas the days we have not handled yet are in dashed bars. The
current day we are handling is in the black circle below the panel.

In the first panel we have i = 1, and we have to check the value of the
current day with the values of the other days in the stack, which is just day
zero. Day one has a higher price than day zero. That means that from now
on there is no need to compare with the days before day one; our line-of-
sight will stop there; so in the next iteration, with i = 2, the stack contains
the number 1. Day two has a lower price than day one. That means that any
span starting from day three may end on day two, if the value on day three
is lower than the value on day two, or it may end on day one, if the value on
day three is no less than the value on day two. There is no way it can end on
day zero, though, as the price on day zero is less than on day one. A similar
situation occurs with i = 3 and i = 4. But when we arrive at i = 5, we realize
that we no longer need to compare with days two, three, and four in the future.
These days lie in the shadow, as it where, of day five. Or, with the line-of-sight
metaphor, our view is unobstructed way back until day one. Everything in-
between can be popped from the stack and the stack will contain 5 and 1, so
that at i = 6 we only need to compare at most with these two days. If a day
has a value greater than or equal to that of day five, it will certainly surpass
the values of days four, three, and two; what we cannot be certain about is
whether it reaches the value of day one. When we are done with day six, the
stack will contain the numbers 6 and 1.

Is this better than before? In algorithm 1.2 the loop starting in line 5 is
executed n — 1 times. For each one of these times, say at the ith iteration,
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Lines-of-sight of stock spans.

the Pop operation in the inner loop that starts in line 6 is executed p; times.
That means that in total the Pop operation will be executed p; + p + «+ + pp-1
times, p; times for each iteration of the outer loop. We do not know what the
number p; is. But if you pay close attention to the algorithm, you will see
that each day is pushed on the stack only once, the first day at line 3 and the
subsequent days at line 11. Therefore each day can be popped from the stack
in line 7 at most once. So, throughout the whole execution of the algorithm, in
all iterations of the outer loop, we cannot execute line 6 more than n times. In
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other words, p, + p2 + «++ + p,_; = n, which means that the whole algorithm
is O(n); line 7 is the operation that will be executed most times because it is
in an inner loop, whereas the rest of the code in lines 5-12 is not.

We can also proceed in our analysis and see that, in contrast to algo-
rithm 1.1, where we could only arrive at a worst-case estimate, here our esti-
mate is also a lower bound on the algorithm’s performance—there is no way
the algorithm can complete with less than n steps because we need to go
through n days. So the computational complexity of the algorithm is also Q(n),
and so it follows that it is ©(n).

Stacks, like all the other data structures we will encounter, have many uses.
A LIFO behavior is common in computers, so you will find stacks from low-
level programs written in machine language, to the biggest problems running
in supercomputers. That is why data structures in general exist in the first
place. They are nothing but the essence of years of experience with problem
solving with computers. It turns out, time and again, that algorithms use sim-
ilar ways to organize the data they process. People have codified these ways
so that, when looking our way around a problem, we reach to them, availing
ourselves of their functionality to develop algorithms.

The definitive text on algorithms is the multi-volume work by Donald
Knuth [112, 113, 114, 115]. The work is 50 years in the making and some vol-
umes are yet to be written, which the existing books do not cover all areas of
algorithms, but what they cover they treat with rigor and unsurpassed style.
These books are not for the faint-hearted, vet they reward their reader many
times over.

A thorough, classic introduction to algorithms is the book by Cormen, Leis-
erson, Rivest, and Stein [42]. Thomas Cormen has also written another popu-
lar book [41] that gives a shorter and gentler introduction to important algo-
rithms. A lay person’s introduction to algorithms is MacCormick’s book [130].
Other popular introductions to algorithms include the books by Kleinberg
and Tardos [107], Dasgupta, Papadimitriou, and Vazirani [47], Harel and Feld-
man [86], and Levitin [129].

There are also many fine books that deal with algorithms and their imple-
mentation in a particular programming language [180, 176, 178, 177, 179, 188,
82].
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Stacks are about as old as computers. According to Knuth [112, pp. 229 and
459], Alan M. Turing proposed it in a design for an Automatic Computing
Engine (ACE) written in 1945 and presented in 1946; the stack operations
were called BURY and UNBURY instead of “push”™ and “pop™ [205, pp. 11-12
and 30].

Algorithms are much older than computers, hailing at least since ancient

Babylonian times [110].

1. A stack is a simple data structure to implement. A straightforward implementa-
tion is using an array; go ahead and write an array-based stack implementation.
In the text we mentioned that in practice a stack has more operations than the
five we mentioned: operations returning its size and checking whether it is full.
Make sure you also implement them.

2. We showed two solutions for the Stock Span Problem, one using a stack and
one without a stack. We argued that the solution with the stack is faster. Check
that it is indeed so by implementing the two algorithms in your programming
language of choice and timing how long it takes for each approach to solve the
problem. Note that to time a program’s execution, you must feed it with enough
data so that it does take a reasonable amount of time to finish; then, because
lots of things happen to a computer at once and each run may be affected by
different factors, you need to to run it repeatedly to get a stable measurement.
So this is a good opportunity to look around and read on how programs are
benchmarked.

3. Stacks are used for implementing arithmetic calculations written in Reverse
Polish Notation (RPN), also known as postfix notation. In RPN every operator
follows all its operands, in contrast to the usual infix notation where the oper-
ator is placed between its operands. So, instead of writing 1 + 2, we write 1 2+.
“Polish” refers to the nationality of Jan Lukasiewicz who invented the Polish
or prefix notation in 1924 and in which we write +1 2. The advantage of RPN
is that there is no need for parentheses: 1+ (2 x 3) in infix notation becomes
1 2 3+ + in postfix notation. To evaluate it, we read it from left to right. We
push numbers on a stack. When we encounter an operator, we pop from the
stack as many items as it needs as operands, we perform the operation, and we
push the result in the stack. At the end we get the result at the top (and only
element of the stack). For example, when evaluating 1 23 = + 2 ~ the stack,
written horizontally in brackets, becomes | |, [1], [1 2], [1 2 3], [1 6], [7] |7 2],
[5]. Write a calculator that evaluates arithmetic expressions given by the user
in RPN.

C.opvrighted material
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Exploring the Labyrinth

Finding your way in a labyrinth is an ancient problem. The story goes that
king Minos of Crete had forced Athens to send to him seven youths and
seven maidens every seven years. They would be thrown into the dungeons
of Minos's palace, where the Minotaur lived, a monster with the body of a
man and the head of a bull. The dungeons formed a maze, and the hapless
sacrificial offerings would be devoured by the Minotaur. The third time that
this tribute was due, Theseus volunteered to be among the youths to be sac-
rificed. When he got to Crete, he charmed the daughter of Minos, Ariadne,
who gave him a ball of thread. He unwound the thread as he went along in
the maze, found the Minotaur, slaughtered him, and then used the thread to
find his way to the exit, instead of getting lost and perishing,

Maze exploration is not of interest just because it appears in an ancient
myth or because it gives us amusement in beautifully landscaped parks. A
maze is not different from any situation where we have to explore a set of
spaces connected with specific paths. A road network is an obvious exam-
ple: but the problem becomes more interesting if we realize that there are
cases when we want to explore more abstract things. We may have a net-
work of computers, connected to each other, and want to find out whether
one computer is connected to some other computer. We may have a network
of acquaintances, that is, people somehow connected to each other, and want
to find out whether we can get from one person to another.

The myth suggests that to find our way in a maze, we must somehow know
where we have already been. Otherwise a maze exploration strategy will fail.
Let’s take an example maze and think of a strategy. Figure 2.1 shows a maze,
where we depict rooms as circles and the corridors between them as lines
connecting the circles.

In figure 2.2 you can see what happens when we explore the maze system-
atically, following a specific strategy called "hand on the wall” We indicate
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Figure 2.1
The maze.

XXX
XX

Keep the hand on the wall strategy: it works!

the current room as gray and the visited rooms as black. It is a simple strat-
egy. You place your hand on a wall and you never lift your hand from the
wall. As you proceed from one room to another, you take care to keep the
hand touching the wall as you go. Apparently, the strategy works. But then
see the maze in figure 2.3. By following the strategy, you will visit the rooms
on the periphery of the maze, and you will miss the room on the interior, as
you can verify in figure 2.4.
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Figure 2.3
Another maze.

Y

Figure 2.4

Keep the hand on the wall strategy: it fails...

Graphs

Before we proceed on how we can solve the problem, we have to deal with
how we are going to represent mazes in general. The way we have described
them, mazes consist of rooms and corridors among them. We hinted that they
become more interesting when we realize that they are similar to other struc-
tures; in fact they are similar to anything consisting of objects and connec-
tions among these objects. This is a fundamental data structure, perhaps the
most fundamental of all, because many things in the real world can be repre-
sented as objects and connections among objects. Such structures are called
graphs. A succinct definition is that a graph is a set of nodes and links among
them. Alternatively, we may speak of vertices, in singular vertex, and edges.
An edge connects exactly two vertices. A series of edges, in which every two
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Figure 2.5
Directed and undirected graphs.

edges share a node in common, is called a path. So, in figure 2.2 there is a
path connecting nodes 0 and 2 passing through node 1. The number of edges
in a path is called its length. An edge is a path with length 1. If a path exists
between two nodes, then we say that the two nodes are connected. In certain
graphs we may want the edges to be directed; these graphs are directed graphs,
or digraphs for short. Otherwise, we deal with undirected graphs. Figure 2.5
shows an undirected graph on the left and a directed graph on the right. As
you can see, there may be a number of different edges starting or ending on
a single node. The number of edges adjacent to a node is called its degree. In
directed graphs we have the in-degree, for incoming edges, and the out-degree,
for outgoing edges. In figure 2.5a it so happens that all edges have degree 3.
In figure 2.5b the rightmost node has in-degree 2 and out-degree 1.

The applications of graphs can fill whole volumes: it is amazing how many
things can be represented as graphs, how many problems can be rendered in
graph terms, and how many algorithms exist for solving graph-related prob-
lems. This is because many things consist of objects and connections among
them, as we just observed; this deserves some further attention.

Perhaps the most obvious graph application, at which we already hinted,
is in representing networks. Points in a network are nodes in the graph, and
links are edges between them. There are many different kinds of networks; we
have computer networks, of course, with computers connected to each other,
but there are transport networks as well, with cities linked by roads, airplane
routes, or railway lines. In computer networks, the Internet is the biggest
example of all, and the web is also a network with pages as nodes connected
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by hyperlinks between them. The Wikipedia is an especially large network,
a subset of the web network. In the domain of electronics, circuit boards con-
sist of electrical components, such as transistors, connected via circuits. In
biology we encounter metabolic networks that contain, among other things,
metabolic pathways: chemicals are connected through chemical reactions.
Social networks are modeled as graphs, with people as nodes and the rela-
tionships among them as edges. Scheduling of jobs and tasks among people
or machines can also be modeled via graphs, with the tasks as nodes and the
dependencies among them, such as which task should precede which other
tasks, represented by the edges.

For all the above applications, and more, there exist different kinds of
graphs that are suitable for representing varied situations. If there is a path
from any node to any other node in a graph, the graph is called connected.
Otherwise it is called disconnected. Figure 2.6 shows a connected and a discon-
nected graph, both undirected. Note that in a directed graph we have to take
into account the direction of the edges to determine whether it is connected.
A directed graph in which there is a directed path between any two nodes is
called strongly connected. If we somehow forget about directions and we are
interested in whether it is an undirected path between any two nodes, then
the graph is called weakly connected. If a directed graph is not strongly con-
nected nor weakly connected, then it is simply disconnected. Figure 2.7 shows
the possibilities. The question of graph connectivity arises whenever we want
to determine whether something, which is modeled as a graph, represents
a whole entity, or is composed from separate sub-entities. Connected sub-
entities in undirected graphs and strongly connected sub-entities in directed
graphs are called connected components. Therefore, a graph is connected, or
strongly connected if it is a directed graph, when it consists of a single con-
nected component. A related question is that of reachability, which is whether
it is possible to reach some node from some other node.

In a directed graph, or digraph, it may be possible to start from a node,
jump from edge to edge, and come back to the node we started from. When
this happens, we have traveled in a circle, and the path we have made is a cycle.
In an undirected graph, we may always return to where we started from by
going backward, so we say that we travel in a circle if we can get back to the
node we started without going backward on an edge. Graphs with cycles are
called cyclic; graphs without cycles are called acyclic. Figure 2.8 shows two
directed graphs with several cycles. Note that the graph on the right has some
edges that start and end on the same node. These are cycles of length one, and
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(b) The same graph.

Figure 2.10
A bipartite graph.

edges. For n nodes, because every node is connected to all other n = 1 nodes,
we have n(n —1)/2 edges. In general we may say that a graph with n nodes
is dense if it has close to n° number of edges, and sparse if it has about n
edges. This leaves a fuzzy area between n and n?, but usually we know from
the context of an application if we are dealing with a sparse or dense graph;
most of the applications use sparse graphs in fact. For example, imagine that
we have a graph representing friendship relationships between people. We
take the graph to contain 7 billion nodes, or n = 7 x 10”, assuming that pretty
much everybody on this planet is in it. We also assume that everybody is
connected to 1,000 friends, which is probably impossible. Then the number of
edges is 7 x 10'*, or 7 trillion. The number n(n — 1)/2 for n = 7 x 10” is about
2.5 % 10%, or 7 septillion. That is much bigger than 7 trillion. The graph would
have a very large number of edges, but would still be sparse.

Copyrighted materia
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Figure 2.11
Complete and sparse graphs.

2.2 Graph Representation

Before we can do any work with graphs in computers, we need to see how
graphs are represented in computer programs. But before that, a brief excur-
sion into how graphs are actually defined in mathematics is necessary. Usu-
ally we call the set of vertices V and the set of edges E. A graph G is then
G = (V,E). In undirected graphs, the set E is a set consisting of two element
sets {x,y} for each edge between two nodes x and y of the graph. We usu-
ally write (x,y) instead of {x,y}. In both cases, the order of x and y does not
matter. The graph in figure 2.5a is then defined as:

V ={0,1,2,3}
E = {{0!1}1 {052}‘# {0'3}!‘{1#2}' {15‘3}‘ {2?3}}
= {(0,1).(0,2),(0,3),(1,2),(1,3).(2,3)}

In directed graphs the set E is a set consisting of two element tuples (x, y) for
each edge between two nodes x and y of the graph. This time the order of x
and y is important and corresponds to the order of the edge it represents. The
graph in figure 2.5b is then defined as:

V =10,1,2,3}
E = {(0,1),(0,2),(0,3),(1,0),(1,2),(1,3),(2,0),(3,2)}
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Table 2.1
Adjacency matrix for the graph in figure 2.3.
0 1 2 3 1 5
0 0 1 0 1 0 0
1 1 0 | 0 0 1
2 0 1 0 1 1 0
3 1 0 1 0 1 0
4 0 0 l | 0 1
5 0 1 0 0 1 0

The mathematical definition of a graph shows that to represent it we need
somehow to represent the vertices and the edges. A straightforward way to
represent G is with a matrix. This matrix, called an adjacency matrix, is a
square matrix with a row and a column for each vertex. The contents of the
matrix are 0 or 1. If the vertex represented by the ith row is connected to the
vertex connected by the jth row, then the (i,j) element of the matrix will be
1, otherwise it will be 0. In an adjacency matrix, vertices are represented by
row and column indices, and vertices are represented by the contents of the
matrix.

Following these rules, the adjacency matrix for the graph in figure 2.2 is
shown in table 2.1. You can check that the adjacency matrix is symmetric.
Also, the diagonal will be all zero, except if there are loops in the graph. If we
call the matrix A, then A;; = Aj; for any two nodes i and j. This is true for all
undirected graphs, but it is not true for all directed graphs (unless for every
edge from node i to node j there exists an edge from node j to node i). You
can also see that many of the values in the matrix are zero. This is typical of
sparse graphs.

Even if a graph is not sparse, we may be wary of the space wasted for all
those 0 entries in the adjacency matrix. To get over it, there is an alternative
representation for graphs that uses less space. Because real-world graphs can
have millions of edges, most of the times we use the alternative representation
to save what we can. In this representation, we use an array to represent the
vertices of the graph. Each element of the array stands for one vertex and
is the start of a list that contains the vertices that are neighbors of a given
vertex. This list is called the adjacency list of the vertex in the graph.

Now what exactly is a list? A list is a data structure that contains elements.
Each element in the list, called a node, has two parts. The first part contains
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Figure 2.12
A linked list.

some data that describe the element. The second part contains a link to the
next element in the list. The second part is usually a pointer, as it points to the
next element. A pointer in computers is something that points to a location in
the computer’'s memory:; it is also called a reference, as it refers to that location.
So the second part of a list element is usually a pointer holding an address
where the next node in the list is located. A list has a head, its first element.
We follow the elements in the list as if following the links in a chain. When
an element has no next element, we say that it points to nowhere, or null; we
use the term null to refer to nothingness in computers; because it is a special
value, we'll denote it by NULL in text and pseudocode. A list constructed this
way is more accurately called a linked list, and you can see one in figure 2.12.
We use a crossed square to show NULL in the figure.
The basic operations that we need to be able to perform with lists are:

« CreatelList(), creates and returns a new, empty list,

« InsertListNode(L,p, n),adds node n after node p in list L. If p is NULL, then
we insert n as the new head of the list. The function returns a pointer to n.
We assume that the node n has already been created with some data that we
want to add in the list. We will not get into the details on how nodes are
actually created. Briefly, some memory must be allocated and initialized,
so that the node contains the data we want and a pointer. InsertListNode
then needs only change pointers. It must make the pointer of n point to the
next node, or to NULL, if p was the last node of the list. It must also change
the pointer of p to point to n, if p is not NULL.

« InsertInList(L, p, d), adds a node containing d after node p in list L. If
p is NULL, then we insert the new node as the new head of the list. The
function returns a pointer to the newly inserted node. The difference with
InsertListNode is that InsertInList creates the node that will contain
d, whereas InsertListNode takes an already created node and inserts it
in the list. InsertListNode inserts nodes, whereas InsertInList inserts
data contained in nodes it creates. That means that InsertInList can use
InsertListNode to insert in the list the node it creates.
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+ RemoveListNode(L, p, r), removes node r from the list and returns that
node; p points to the node preceding r in the list, or NULL if r is the head.
We will see that we need to know p in order to remove the item pointed by
r efficiently. If r is not in the list, it returns NULL.

« RemoveFromList(L, d), removes the first node containing d from the list
and returns the node. The difference with RemovelListNode is that it will
search the list for the node containing d, find it, and remove it; d does not
point to the node itself; it is the data contained inside the node. If there is
no node containing d in the list, RemoveFromList returns NULL.

+ GetNextListNode(L, p), returns the node following p in list L. If p is the
last node in the list, then it returns NULL. If p is NULL, then it returns the
first node of L, the head. The returned node is not removed from the list.

« SearchInList(L, d), searches the list L for the first node containing 4. It
returns the node, or NuLL if no such node exists; the node is not removed
from the list.

To create a representation of graph using adjacency lists, only Createlist
and InsertInList are essential. To go through the elements of a list L, we
need to call n « GetNextListNode(L, NuLL) to get the first element; then,
as long as n # NULL, we call repeatedly n «~ GetNextListNode(L, n). Note
that we need a way to access the data inside a node, for example, a function
GetData(n) that returns the data d stored inside the node n.

To see how insertion works, suppose we have an empty list and we insert
into it three nodes, each one of which contains a number. When we write a
list in the text, we will enumerate its elements inside brackets, like this [3, 1,
4, 1,5, 9]. An empty list will be simply [ ]. If the numbers are 3, 1, and 0 and
we insert them in this order in the beginning of the list, then the list will grow
as in figure 2.13 from [ ] to [0, 1, 3]. Insertion at the front of the list works by
passing NuLL repeatedly as the second argument to InsertInList.

Alternatively, if we want to append a series of nodes at the end of the list,
we make a series of calls to InsertInList passing as second argument the
return value of the previous call; you can see the pattern in figure 2.14.

Removal of a node from the list entails taking the node out and making the
previous node, if it exists, point to the node following the node to be removed.
If we remove the head of the list, then there is no previous node, and the next
node becomes the new head of the list. Figure 2.15 shows what happens when
we remove the nodes with data 3, 0, 1 from the list we created in figure 2.13.
If we do not know the previous node, we have to start from the head of the
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I he adjacency list representation ot a grapn.

If the array is A, then item A[i] of the array points to the head of the adjacency
list of node i of the graph. If node i has no neighbors, Ali] will point to NULL.

The adjacency list representation of the graph of figure 2.4 is in figure 2.18.
For convenience a minimized version of the graph is on the upper right corner
of figure 2.18. The figure shows on the left the array that contains the heads
of the adjacency lists of the graph; each item of the array corresponds to one
vertex. The adjacency lists contain the edges of the vertex in their head. So the
third element of the array contains the head of the adjacency list for node 2
of the graph. Each adjacency list was constructed by taking the neighbors of
each node in their numerical order. For example, to create the adjacency list of
node 1, we called Insert three times, for nodes 0, 2, and 5, in this order. This
explains why the nodes appear in reverse order in this and in every other
adjacency list in the figure: nodes are inserted in the head of each list, so
inserting them in the order 0, 2, 5 will result in the list (5, 2, 0].

It is straightforward to compare the space requirements of the adjacency
matrix and the adjacency list representation of a graph G = (V,E). If | V| is the
number of vertices in a graph, the adjacency matrix will have |V|* elements.
Similarly, if |E| is the number of edges in the graph, then the adjacency list
representation of it will contain an array of size |V| and then |V| lists that
all of them will contain |E| edges. So the adjacency list representation will
require |V| + |E| items, much less than |V|%, except if the graph is dense and
many vertices are connected to each other.
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You may think then that there is no reason to bother with adjacency matri-
ces at all. There are two reasons. First, adjacency matrices are simpler. You
only need to know about matrices and nothing else; no bother with lists.
Second, adjacency matrices are faster. We take for granted that accessing
an element in a matrix is an operation that takes constant time, that is, we
can retrieve every edge, or element, as fast as any other—it does not matter
whether it is near, say, the upper left corner of the matrix or the bottom right
one. When we use adjacency lists, we have to access the right element on the
array of vertices on the left side of figure 2.18 and find the required edge by
traversing the list headed by the vertex. So, to see whether nodes 4 and 5 are
connected, we need to go first at node 4 on the vertices matrix and then jump
to 2, 3, and finally 5. To see whether nodes 4 and 0 are connected, we need to
go through all the list headed by 4 until its end and then report that we have
not found 0, so they are not connected by link. You may counter that it would
be faster if we had searched the list headed by 0 because it is shorter, but we
had no way of knowing that.

Using big-Oh notation, determining whether a vertex is connected to
another vertex takes constant time, so the complexity is ©(1) if we use an
adjacency matrix. The same operation using adjacency lists takes O(|V]) time
because it is possible that in a graph a vertex is connected to all other vertices,
and we may have to search the whole of its adjacency list for a neighbor. As
vou know, there is no such thing as a free lunch. In computers this translates
to trade-offs: we exchange space for speed. This is something we do often,
and it even has a name: space-time tradeoff .

2.3 Depth-first Graph Traversal

Now back to maze exploration. To explore a maze fully we need two things:
some way to keep track of where we have been, and some systematic way to
visit all unvisited rooms. Suppose that the rooms are somehow ordered. In the
graphs we have seen, we can assume that the order is numeric. Then to visit
all rooms we can go to the first room and mark it as visited. We then go to the
first of the rooms connected to it. We mark it as visited. We go again to the
first unvisited room connected to it, and we repeat the procedure: we mark
it as visited, and we go to the first unvisited room connected to the room we
are. If there are no unvisited rooms connected to a room, then we go back to
where we came from, and we try to see whether any unvisited rooms remain
there. If yes, we visit the first unvisited room there, and so on. If no, then we
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Figure 2.19
Maze to be explored depth-first.

go retrace our steps back another room. We do that until we come back to the
room we started in and find that we have visited all rooms connected to it.

It is easier to see that in practice. The procedure is called depth-first search,
or DFS for short, because we are exploring the maze in depth rather than
in breadth. An example maze is in figure 2.19, along with its adjacency list
representation on the right. Note that again we inserted nodes in the list in
reverse order. For example, in the adjacency list for node 0, we inserted the
neighboring nodes in order 3, 2, 1, so the list is [0, 1, 2, 3].

Tracing depth-first search in figure 2.20, we start at node, or room, 0. We
indicate with gray the current node and with black the nodes we have already
visited. A double indicate shows a virtual thread that we are holding in our
hand during our exploration. Much like Theseus, we use the thread to go back
and retrace our steps when we cannot or should not go any farther.

The first unvisited room there is room 1, so we go to room 1. The first
unvisited room from room 1 is 4. Then the first unvisited room from 4 is 5. In
the same way we get from 5 to 3. At that point we find no unvisited room, so
we go back by picking up the thread. We go back to 5. There we find room
6 that is still unvisited. We visit it, and we return to 5. Room 6 still has one
unvisited room, 7. We visit that room, and we go back to 5 again. Now 5 has
no unvisited rooms next to it, so we go back to room 4. In turn, 4 has no
unvisited rooms next to it, so we trace our steps back once more to 1, and
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Figure 2.20
Depth-first maze exploration.

then for the same reason we return to 0. There we see that 2 is unvisited; we
visit it, and we go back to 0. Now that 1, 2, and 3 are visited, we are done. If you
have followed the path we described, you may have verified that we are going
deep rather than wide. When in room 0, we went to 1 and then 4, instead of
going to 2 and 3. Room 2, although it was next to us when we started, was
the last room we visited. So indeed we go as deep as we can before we have
to consider any alternatives.

Algorithm 2.1 implements depth-first search. The algorithm takes as input
a graph G and a node from where it will start exploring the graph. It also
uses an array visited that indicates for each node whether it has been visited.
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Algorithm 2.1: Recursive graph depth-first search.

DFS(G, node)
Input: G = (V,E), a graph
node, a node in G
Data: visited, an array of size |V|

Result: visited|i| is TRUE if we have visited node i, FALSE otherwise

1 visited|node| « TRUE
2 foreach v in AdjacencyList (G, node) do
3 if not visited|v| then

1 DFS(G, v)

In the beginning we have visited no node, so visited is all rFaLsg. Although
visited is required by the algorithm, we do not include it in its inputs, as it is
not something that we pass to the algorithm when we call it; it is an array,
created and initialized outside the algorithm, which the algorithm can access,
read, and modify. Because visited is modified by the algorithm it is really its
output, even if we do not really say so. We do not specify any output for the
algorithm, because it does not return any; yet, it communicates its results to
its environment through the visited array, so the changes in visited are the
algorithm’s results. You can think of visited as a newly cleaned blackboard to
which the algorithm writes its progress.

Algorithm DFS(G, node) is recursive. Recursive algorithms are algorithms
that call themselves. DFS(G, node) marks the current vertex as visited, in
line 1, and then calls itself for every unvisited vertex linked to it by walking
down the adjacency list; we assume we have a function AdjacencylList (G,
node) that given a graph and a node returns its adjacency list. In line 2 we go
through the nodes in the adjacency list; that is easy to do because from any
node we can go directly to the next one, by the definition of a list, because
each node in a list is linked to the next. If we have not visited that neighboring
node (line 3), then we call DFS(G, v) for the neighboring node v.

The tricky part in understanding the algorithm is understanding the recur-
sion it performs. Let’s take a trivial graph, consisting of four nodes, shown in
figure 2.21a. We start with node 0. If the graph is called G, then we call DFS (G,
0). The function gets the adjacency list of node 0, which is [1, 3]. The loop
in lines 2-4 will be executed twice: the first time for node 1 and the second
time for node 3. In the first execution of the loop, as node 1 is not visited,
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Factorial(5)
return 5 - Factorial(4)
L Factorial(4) \
return 4 - Factorial(3)
| Factorial(3) \
return 3 - Factorial(2)
| Factorial(2) .\
return 2 - Factorial (1)
L Factorial(1) ‘\

return 1 - Factorial(0)
I_ Factorial(0)
return 1

Figure 2,22
Factorial call trace.

recursive calls for that node; it's time to go back. This is very important. For-
getting to specify when to end a recursion is a recipe for disaster. A recursive
function without a stopping condition will go on calling itself, and do so ad
infinitum. Programmers who forget that are in for nasty bugs. The computer
will keep calling and calling the function, until it runs out of memory and
the program crashes. You are left with a message that talks about a “stack
overflow™ or something similar, for reasons we’ll explain in a little bit.

Hoping that recursion is clear now (if it is not, give it another go), note
that the depth-first search algorithm works from whatever node we start. We
used node 0 in our example simply because it is on the top. We can start the
algorithm from node 7, or node 3, as you can see in figure 2.23, where we
put the order we visit a node next to it. The order that we visit the nodes is
different, but we still explore the graph fully.

This would not happen if the graph were undirected and disconnected, or
if it were directed and not strongly connected. In such graphs, we must call
algorithm 2.1 for each node in turn if it has not been visited. In this way, even
nodes that are unreachable from one node will have their turn as start nodes.

How does recursion work in a computer? How is all this housekeeping
done, putting functions on hold, calling other functions, and then knowing



2.3  Depth-first Graph Traversal 47

(a) Depth-first search starting from node 7.  (b) Depth-first search starting from node 3.

Figure 2.23
Depth-first exploration from different starting nodes.

where to return? The way a computer knows where to return from a function
is by using an internal stack, called call stack. The stack holds the current
function on top. Below it there is the function which called it with all the
information to resume execution where we left it. Below that, the function
that called that function, if any, and so on. That’s why a recursion gone awry
will cause a crash: we cannot have an infinite stack. You can see snapshots of
the stack when running algorithm 2.1 in figure 2.24. We show the contents of
a stack when the algorithm visits a node, painted gray below the stack. When
it hits a dead end, which is a node with no unvisited neighbors to visit, the
function returns, or backtracks to its caller; the process of retracing our steps
is called backtracking. We call popping the top of the call stack unwinding
(although in the case of maze exploration, this corresponds to winding our
thread). So from node 3 we go to node 5, painted black to show that we have
already visited it. A series of unwinding actions happens in the second row
of the figure, when we go from node 7 all the way to node 0 to visit node 2.
All this stack activity happens automatically. However, there is no rea-
son that you cannot do the same magic yourself. Instead of using recursion
to perform depth-first search, which uses a stack implicitly, you can use a
stack explicitly, in which case you do away with recursion altogether. The
idea is that at every node we add the unvisited nodes in the stack, and when
we search for nodes to visit, we simply pop elements from the stack. Algo-
rithm 2.3 shows the stack-based implementation of depth-first search. You

Copyrighted materia
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DFS(G, 3) DFS(G, 6)
0FS(G.5) | |0FS(G,5)| |OFS(G,5) | |oFs(G.5)]| [oFs(G, 5)
0Fs(G. 4) | |oFscG. 4y | |ofscG. &) | [oFscG. )| |oFscG. 4] [oFs(G, 4)
oFs(G. 1) |oFscG. 13| |oFscG. 1) | |oFscG. 1] [oFscG. 1| [oFscG, 1] |oFs¢G, 1)
DFS(G.0) | [OFS(G,0)| |0Fs(G. 03| |oFS(G.0) | [0FSCG. 0| [OFS(G. 03| [oFS(G, 0)] |0Fs(G, o)
DFS(G. 7)
DFS(G, 5) | [DFS(G. 5)
DFS(G.4) | |DFS(G, 4)| | DFS(G. 4)
0FsS(G, 1) | [oFstG. 1) ] |ofstG, 13| |oFstG. 1) OFS(G, 2)
DFS(G.0) | |DFS(G,0)| |DFS(G,0)| |DFS(G.0) | |DFS(G.0)| [DFS(G.0)| |DFS(G, 0)
Figure 2.24

Stack evolution in depth-first search for figure 2.20.

can see the contents of the stack in figure 2.25b; we only show snapshots of
the stack upon visiting a node, not when backtracking on it, in the interests
of space and ink.

The algorithm works in the same way as algorithm 2.1 but uses an explicit
stack instead of relying on recursion. We create the stack in line 1. This time
we do not rely on an externally provided array to record our progress, creating
the array visited ourselves in line 2; we then initialize it to all rFALSE values in
lines 3-4.

To emulate recursion, we push on the stack the nodes that we have yet to
visit, and when we are looking for a node to visit, we go to the one at the
top of the stack. To get things in motion, we push on the stack the starting
node, in line 5. Then as long as there is something on the stack (line 6), we
pop it (line 7), mark it as visited (line 8), and push on the stack every node in
its adjacency list that we have not already visited (lines 9-11). When we are
done, we return the array visited so that we report which nodes we were able
to reach.

Because of the order nodes are put on the stack, graph traversal is depth-
first but goes from higher-numbered nodes to lower-numbered ones. Whereas
the recursive algorithm goes counterclockwise in our maze, this one goes
clockwise.

You may notice from figure 2.25b, in the third column from the right, that
node 1 is added to the stack twice. This does not make the algorithm incorrect,
but we can fix it anyway. We need a no-duplicates stack, in which an item is

Copyrighted materia
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Algorithm 2.3: Graph depth-first search with a stack.

StackDFS(G, node) — visited
Input: G = (V,E), a graph
node, the starting vertex in G
Output: visited, an array of size |V| such that visited|i] is TRUE if we
have visited node i, FALSE otherwise

S « CreateStack()
visited « CreateArray(|V|)
fori « 0to|V|do

visited|i] + FALSE

Push (S, node)
while not IsStackEmpty(S) do
¢ « Pop(s)
visited|c| <~ TRUE
foreach v in AdjacencylList(G, ¢) do
10 if not visited|v] then
11 Push(S, v)
12 return visited

- ed P
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added only if it is not already in the stack. To do this we use an additional
array. An element of that array will be true if that element is currently in the
stack and false otherwise. Algorithm 2.4 is the result. The algorithm is pretty
much the same as algorithm 2.4 but uses the additional array instack, where
we record those nodes that are in the stack. You can see what is happening in
the stack in figure 2.25c,

You may wonder why, given that we already had algorithm 2.1, we went
on to develop algorithm 2.4, Apart from it being instructive, to show how
recursion really works, implicit recursion requires that the computer puts all
the necessary memory state of the function on the stack at each recursive
call. So it will transfer more things on the stack in figure 2.24 (where we only
show the function calls) instead of simple numbers as in figure 2.25. An algo-
rithm implemented with an explicit stack may be more economical than an
equivalent recursive one.

To finish depth-first exploration, let's go back to algorithm 2.1 and examine
its complexity. The complexity of algorithms 2.3 and 2.4 will be the same
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Figure 2.25
Walkthrough and stack contents of algorithms 2.3 and 2.4.

as that of algorithm 2.1 because only the implementation of the recursive
mechanism changes, not the overall exploration strategy. Line 2 is executed
|V| times, once per each vertex. Then DFS(G, node) is called exactly once per
edge, in line 4, that is, |E| times. All in all, the complexity of depth-first search
1s O(|V| + |E|). We can explore the graph in time proportional to its size, which
makes sense.

2.4 Breadth-first Search

As we saw, the graph exploration in depth-first search goes deep rather than
wide. Suppose we would like to explore the maze in a different way, so that
when we start at node 0 we visit nodes 1, 2, and 3 before we go on to visit
node 4. That means that we would be casting our net wide, instead of deep.
Such a search strategy is called, not surprisingly, breadth-first search, or BFS
for short.

In breadth-first search, we can no longer rely on a thread (implicit or real)
to carry us through. There is no physical means by which we can get directly
from node 3 to node 4 because they are not directly connected, so the analogy
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413 8/4[1|3 841/
Figure 2.27

Addition and removal in a queue.

node we record its three neighbors, nodes 1, 2, and 3. We visit them in that
order. When we visit node 1, we record its unvisited neighbor, node 4; that
means we know we have to visit nodes 2, 3. and 4. We visit node 2, which
has no unvisited neighbors, and then we go to node 3, where we record that
we will have to visit node 5. The known unvisited nodes now are 4 and 5. We
visit 4, then 5. When we are at node 5, we record that we need to visit nodes 6
and 7. We then visit them in that order and we are done.

To implement breadth-first search we need to use a new data structure
called a queue, which gives us the functionality we need to keep track of the
unvisited nodes below each snapshot of the graph exploration in 2.26. A queue
is a sequence of things. We add things on the back of the sequence, and we
remove things from its front; it works like a queue in real life, where the first
one in is the first one out (unless somebody is jumping the queue). To make
this clear we talk about First In First Out (FIFO) queues. We call the back of the
queue its tail and the front of the queue its head (so both lists and queues have
heads). You can see how addition and removal works in a queue in figure 2.27.
It follows that the basic operations on a queue are:

« CreateQueue(), creates an empty queue,
« Enqueue(Q, i) adds item i to the tail of the queue Q.

« Dequeue(Q) removes an item from the front of the queue. In essence, it
removes the head and makes the element following it the new head. If the
queue is empty, then the operation is not allowed (we get an error).

+ IsQueueEmpty(Q) returns TRUE if the queue Q is empty, FALSE otherwise.

With these operations at hand, we can write algorithm 2.5, which imple-
ments breadth-first search in a graph. Because the queue is filled at the tail and
emptied from the head, we visit the nodes it contains by reading its contents
from the right to the left, as in figure 2.26.

The algorithm is similar to algorithm 2.4, It returns an array visited, which
indicates the nodes that we were able to reach. It uses an array inqueue that
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Algorithm 2.5: Graph breadth-first search.
BFS(G, node) — visited
Input: G = (V,E), a graph
node, the starting vertex in G
Output: visited, an array of size |V| such that visited|i] is TRUE if we
have visited node i, FALSE otherwise

Q « CreateQueue()
visited «— CreateArray(|V])
inqueue «— CreateArray(|V|)
fori« 0to|V]|do
visited|i| « FALSE
inqueue|i| « FALSE

Enqueue(Q, node)

s inqueue|node| + TRUE

9 while not IsQueueEmpty(Q) do
10 ¢ « Dequeue(Q)

& W o W B e

|

1 inqueue|c| «— FALSE

12 visited|c| & TRUE

13 foreach v in AdjacencylList(G, ¢) do

14 if not visited|v| and not inqueue|v| then
15 Enqueue(Q, v)

16 inqueue|v| <= TRUE

17 return visited

keeps track of which nodes are currently in the queue. In the beginning of
the algorithm, we initialize the queue we will be using (line 1), then we create
and initialize visited and inqueue (lines 2-6).

The queue will always contain the nodes we know exist but we have not
visited yet. In the beginning we only node the starting node, so we add it to
the queue (line 7) and we keep track of that in inqueue. Then as long as the
queue is not empty (lines 9-16), we take off the element at the head of the
queue (line 10), record the fact (line 11), and mark it as visited (line 12). Then
for every node in its adjacency list (lines 13-16) that is neither visited nor in
the queue (line 14), we put it in the queue (line 15) and record that the node
entered the queue (line 16). In this way it will come off the queue in some
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Figure 2.28
Walkthrough and queue contents of algorithm 2.5.

future iteration of the main loop of the algorithm. Figure 2.28 is a condensed
version of figure 2.26.

Examining the algorithm’s complexity, line 9 will be executed |V| times.
Then the loop starting at line 13 will be executed once for every edge of the
graph, or |E| times. So the complexity of breadth-first search is ©(|V| + |E|),
the same with depth-first search. That is quite pleasant; it means that we have
two algorithms for graph search at our disposal, with the same complexity, but
each one of them will explore the graph with a different, yet correct strategy.
We can choose and pick which one fits better a particular problem we have
to solve.

The foundations of graph theory were laid down by Leonhard Euler in 1736,
when he presented a paper examining whether it would be possible to cross
the seven bridges of Konigsberg once and only once (back then Koénigsberg
was in Prussia, today it is called Kaliningrad and it is in Russia, and only five
bridges remain). The answer was negative [56]; because the original paper
is in Latin, which may not be your forte, you can check the book by Biggs,
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Lloyd, and Wilson [19], which contains a translation, along with lots of other
interesting historical material on graph theory.

For an easy approach to graph theory, you can read the introductory book
by Benjamin, Chartrand, and Zhang [15]. If you want to go deeper, vou can
check the book by Bondy and Murty [25]. In recent years, offshoots of graph
theory treat many different aspects of all kinds of networks; see for example
the books by Barabasi [10], Newman [150], David and Kleinberg [48], and
Watts [214]. The study of graphs in networks (of different kinds), the web,
and the Internet can be seen as three different disciplines [203], where graphs
are applied to explain different phenomena arising from large interconnected
structures.

Depth-first search has a long provenance; a 19th-century French mathe-
matician, Charles Pierre Trémaux, published a version of it; for a compre-
hensive account of this and other aspects of graph theory, see the book by
Even [57]. Hopcroft and Tarjan presented depth-first search in computers
and argued for representing graphs using adjacency lists [197, 96]; see also
the short, classic text by Tarjan on data structures and graphs [199].

Maze exploration lay behind breadth-first search, published in the 1950s by
E. F. Moore [145]. It was also discovered independently as an algorithm for
routing wires on circuit boards by C. Y. Lee [126].

1. There are good quality implementations of lists in all popular programming
languages, but it is instructive, and not difficult, to implement your own. The
basic ideas are in figures 2.13 and 2.15. An empty list is a pointer to NuLL. When
you insert an element in the list’s head, you need to adjust the list to point to
the new head and make the newly inserted head point to where the list was
pointing before its insertion—that is, the previous head or NuLL. To insert an
element after an existing element, you need to adjust the previous element’s
link to point to the newly inserted element and make the newly inserted ele-
ment point to where the previous element was pointing before the insertion.
To search for an item in the list, you need to start from the head and check each
item, following the links, until you find the one vou are looking for or NuLL. To
remove an item, you have to look for it first; once you find it, you need to make
the pointer pointing to it point to the next item, or NuLL if you are removing

the last item.
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2. A queue can be implemented using an array, in which you keep track of the
index of the head, h, and the tail, t, of the queue. Initially both the head and the
tail are equal to 0:

e 1 2 3 4 5 6 7 B 9

When you insert an item in the queue, vou increase the index of the head;
similarly, when you remove an item from the queue, you increase the index of
the tail. After inserting 5, 6, 2, and 9 and removing 5, the array will be:

hit

6o 1 2 3 4 5 6 7 8 9

T[> [ |

h 4

If the array can hold n items, when the head or the tail reach the (n - 1)th item
they wrap around to position 0. So, after several more insertions and removals
the queue may look like this:

Implement a queue with this idea. The queue will be empty when the head
reaches the tail and full when the tail is about to trample the head.

3. Implement depth-first search (either recursively or not) and breadth-first search
using the adjacency matrix representation instead of the adjacency list one that
we have used.

4. Depth-first search can be used to create mazes, not just to explore them. We
start with a graph with n X n nodes that are arranged in a grid; for example, if
n = 10 and we name the nodes by their (x, y) position we have:

¥ i TP P e e e
C.opvrighted material
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0/1| (0/1| |0/1] |O/1] [(O/1| [O/1| |0/1

2 2 2 2 2 2 2
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2x2

2X2x2

2x2x2x2‘
2x2x2x2x2a
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IX2X2X2%X2%2%x2=2

Figure 3.1
Number of possible characters represented by 7 bits.

You can see the ASCII encoding in table 3.1. Each character corresponds
to a unique bit pattern, which in turn corresponds to a unique number, the
value of the pattern in the binary system. The table runs in 8 rows of 16
elements each; for convenience we use the hexadecimal number system for
the columns. There is nothing special about hexadecimal numbers. Instead of
using the nine digits 0, 1, ..., 9, we use the sixteen digits 0, 1,...,9, A, B, C, D,
E, F. The number A in hexadecimal is 10, the number B is 11, until the number
F, which is 15. Remember that in decimal numbers, the value of a number such
as 53is 5 % 10 + 3, and in general a number made up of digits D, D,,_, ... DD,
has value D, X 10" + D,,_y X 10" "' + ... 4+ D, x 10" + D, x 10°, In hexadeci-
mal the logic is exactly the same, but instead of 10 we use 16 as the base
of our calculations. The number H,H,,_, ... H;H, in hexadecimal has value
Hy, %X 16" + Hp_y X 16" ' 4+ -+ 4+ H,; X 16" + Hy x 16°. For example, the num-
ber 20 in hexadecimal has value 2 X 16 + 0 = 32 and the number 1B in hex-
adecimal has value 1 x 16 + 11 = 27. Usually we prefix hexadecimal numbers
by 0x to make clear we are using the hexadecimal number system and avoid
any confusions. So we write 0x20 to make clear that this is written in hex-
adecimal and not in decimal. We also write 0x1B, although it is clear that this
cannot be a number in decimal, just to keep things consistent.

By the way, the logic we described above works with other bases apart
from 10 and 16; the binary number system directly follows when we adopt the
number 2 as the base of our calculations. The value of a binary number made
up of bits B,B,_;...B;Byis B, x 2" + B,_; x 2" ' 4 ...+ B; x 2! + By x 2°.

Copyrighted materia
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All these are examples of positional number systems, that is, number sys-
tems where the value of a number is derived by the position of the digits in it
and the base of the number system. The general rule for finding the value is
in a base b system is:

XXt oo XiXo =Xy Xb" + Xy X" " 4o+ Xy xb' + Xy x b°

If you substitute 2, 10, or 16 for b, then you get the formulas we used above.
A generic notation to work with number in different number systems is (X),.
For example, (27),5 = (1B) 4.

You may wonder at this point why we go into all this trouble with hexadec-
imal numbers. Computers store data in memory in multiples of bytes, where
a byte contains 8 bits. If you go back to figure 3.1, you will see that four bits
make up 2 X 2 X 2 X 2 = 2 = 16 patterns. With a single hexadecimal digit, we
can represent all patterns made from four bits. Then by splitting a byte in two
components of four bits each, we can represent all possible bytes by splitting
them down in half and using just two hexadecimal characters, from 0x0 to
OxFF. Take, for instance, the byte 11100110. If we split it in half, we get 1110
and 0110. We treat each one of them as a binary number. The binary number
1010 has value 14, as it is 2° + 2% 4 2'. The binary number 0110 has value 6, as
it is 2° + 2'. The hexadecimal number with value 14 is 0xE and the hexadec-
imal number with value 6 is 0x6. Therefore, we can write byte 11100110 as
0xE6. That is more elegant than 230, which is the decimal representation of
the number; also, there is no easy way to derive 230 apart from doing the full
calculations 2’ + 2° 4+ 2° + 2° 4 2!, while from the hexadecimal equivalent we
have immediately E X 16 + 6 = 14 X 16 + 6.

If you are still not convinced of the usefulness of hexadecimal, note that
you can write down cool numbers such as 0xCAFEBABE. As it happens,
0xCAFEBABE is used to identify compiled files of programs written in the
Java programming language. Spelling English words using hexadecimal char-
acters is called Hexspeak, and if you search around you will find some
resourceful examples.

Back to ASCII, the first 33 characters and the 128th character are control
characters. These were originally intended to control devices, for instance,
printers, that use ASCIL. Most of them are not used anymore, apart from some
exceptions that are still relevant. So the character 32 (0x20, the 33rd character
since we start from 0) is the space character; character 127 (0x7F) stands for
delete; character 27 (0x1B) is the escape character, and characters 10 (0xA)
and 13 (0xD) stand for carriage return and line feed, respectively: these are
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Table 3.1
The ASCII encoding.
0 1 2 k| 4 5 (i 7 B 9 A B C D E F
O | NUL SOH STX ETx EOT ENQO ACK BEL BS HT LF ¥l FF CR S0 Sl
1| DLE DCY DCZ2 DC3 DC4 NaK SYN ETBE CAN EM SUB ESC FS GS RS Us
2| SP ! : # $ b 4 & ' ( ) * + . - . /
3| o 1 2 3 4 s 6 7 8 9 e = > 1
4 e A 8 C D E F G H 1 J K L M N 0
5 P Q R S T U v W X Y Fi [ \ ] - .
6 ’ a b € d e f g h i j 3 L m n o
7 p q r s t u v w X y z { | } ~  DEL
Table 3.2
ASCII encoding example.
1 a m s ¢ a
49 OxM) Oxb1 Oxel) 20 x73 Ox65 Ox61
1001001 100000 1 10000 | 1101101 100000 1110011 1100101 1100001
t e d i n a
0x74 065 Mxh4 Ox20 69 Ox6E Nx 20 Ox61
1110100 1100101 1100104 100000 1101001 1101110 100000 11000401
n 0 f f i C ¢
Ox6E 0240 Ox6F x66 (66 LAY x63 0x65
1101110 1 OO0 1101111 1100110 1100110 1101001 (LU 1100101

used to start a new line (depending on the operating system of the computer,
only carriage return or both of them are required). Other characters are more
exotic. For instance, character 7 was intended to ring a bell on teletypes.

By using table 3.1 you can find that the sentence “I am seated in an office”
corresponds to the ASCII sequences in hexadecimal and binary of table 3.2.
Because each character corresponds to a binary number with seven bits and
the sentence contains 24 characters, we need 24 X 7 = 168 bits.

3.1 Compression

Can we do better than that? If we can somehow find a way to represent text
in a more compact way, we could save many storage bits; and taking into
account the amount of textual digital information that we store every day,
the savings could turn out to be huge. Indeed, a lot of the information we
store is compressed in one way or another and decompressed when we want
to read it.
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