Forrest Bice, Rose DeMaio, Spencer Florence, Feng-Yun Mimi Lin,
Scott Lindeman, Nicole Nusshaum, Eric Peterson, Ryan Plessner

David Van Horn | Conrad Barski, MD
Matthias Felleisen

REALM OF
RACKET

Learn to Program,
One Game at a Time!

(list

Forrest Bice

Rose DeMaio
Spencer Florence
Feng-Yun Mimi Lin
Scott Lindeman
Nicole Nussbaum
Eric Peterson
Ryan Plessner

David Van Horn
Matthias Felleisen

Conrad Barski, MD)

no starch
press

San Francisco

REALM OF RACKET. Copyright © 2013 by Matthias Felleisen, David Van Horn, Conrad Barski, MD, Forrest Bice,
Rose DeMaio, Spencer Florence, Feng-Yun Mimi Lin, Scott Lindeman, Nicole Nussbaum, Eric Peterson, Ryan Plessner.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior writ-
ten permission of the copyright owner and the publisher.

Printed in USA
First printing

1716 15 14 13 123456789

ISBN-10: 1-59327-491-2
ISBN-13: 978-1-59327-491-7

Publisher: William Pollock

Production Editor: Alison Law

Cover Illustration: Eric Peterson

[llustrations: Feng-Yun Mimi Lin and Eric Peterson

Interior Design and Composition: Rose DeMaio and Nicole Nussbaum
Developmental Editors: Keith Fancher and William Pollock
Copyeditor: Marilyn Smith

Proofreader: Paula L. Fleming

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
38 Ringold Street, San Francisco, CA 94103
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; www.nostarch.com

Library of Congress Cataloging-in-Publication Data:

Felleisen, Matthias.

Realm of Racket : learn to program, one game at a time! / by Matthias Felleisen, Conrad
Barski, Forrest Bice, Rose DeMaio, Spencer Florence, Feng-yun Mimi Lin, Scott Lindeman,
Nicole Nussbaum, Eric Peterson, Ryan Plessner, and David Van Horn.

pages cm

Includes index.

ISBN-13: 978-1-59327-491-7

ISBN-10: 1-59327-491-2

1. Racket (Computer program language) 2. LISP (Computer program language) 3. Computer
programming. I. Title.

QAT6.73.R33F45 2013
5 ~23

2013002308

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other product and com-
pany names mentioned herein may be the trademarks of their respective owners. Rather than use a rrademark symbol
with every occurrence of a trademarked name, we are using the names only in an editorial fashion and to the benefit of
the trademark owner, with no intention of infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been taken
in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any person or entity
with respect to any loss or damage caused or alleged to be caused directly or indirectly by the information contained in it.

BRIEF CONTENTS

Acknowledgments e e e e e XV
Preface: Hello World e xvii
Introduction: Open Paren e e 1
Chapter 1: Getting Started e 19
Chapter 2: A First Racket Program e 27
Chapter 3: Basics of Racket 35
Chapter 4: Conditions and Decisions i e e e e 51
Chapter 4%: define define 'define. i e 71
Chapter 5: big-bang. e e e 79
Chapter 6: Recursion Is Easyot et et e e e e e 95
Chapter 7: Land of Lambda e 111
Chapter 8: Mutant Structs e 127
Chapter 9: The Values of Loops i e e 153
Chapter 10: Dice of Doomottt e e e e 165
Chapter 11: Power to the Lazy e 193
Chapter 12: Artificial Intelligence e 203
Chapter 13: The World Is Not Enough e 213
Chapter 14: Hungry Henryo e e e e e 231

Good-Bye: Close Paren. e e e 265

Copyrighted material

CONTENTS IN DETAIL

ACKNOWLEDGMENTS XV
PREFACE
HELLO WORLD xvii
Why Would | Want to Learn About Racket?. xvii
Who Should Read This Book? Xviii
What Teaching Approach Is Used?. i e e e e e s xviii
Can | SKip Chaplers? . .. o e e et s e e e e e s Xviii
Anything Else | Should Know?. e XViii
INTRODUCTION
OPEN PAREN 1
(.1 What Makes Lisp So Cooland Unusual? 2
(.2 Where Did Lisp Come From? e e 2
(.3 What Does Lisp Look Like? e e 5
(.4 Where Does Racket Come From? 7
(.5 What Is This Book About? 9
Halt—Chapter Checkpoint e 10
1
GETTING STARTED 19
1.1 Readying Racket e 19
1.2 Interacting with Racket. 21
Raise—Chapter Checkpoint e 23
2
A FIRST RACKET PROGRAM 27
2.1 The Guess My Number Game. i e e 27
2.2 Defining Variables. e 29
2.3 Basic Racket Etiquette e 30
2.4 Defining Functionsin Racket. e 30
A Function for GUESSING o ittt e e e 31
Functions for Closing Ino e e 32
The Main Function 33
Resume—Chapter Checkpoint e 34
3
BASICS OF RACKET 35
3.1 Syntax and Semantics. e 35

3.2 The Building Blocks of Racket Syntax. 36

3.3 The Building Blocks of Racket Semantics. 38

Booleans e 38
SYMBOIS .. e e e e e e 39
NUMDEIS . . . e 39
SHINgS .« o e e 40
3.4 Listsin Racket. i e e e 41
CONS Cells . .ot e e e e e e 42
Functions for CONS Cells i e 42
Lists and List Functions 43
The CONS Function e e e 43
The LIST Function e e e e e 45
The FIRST and REST Functions. i 45
Nested Lists. e 16
3.5 Structures in Racket. 47
Structure Basics.o e e 47
Nesting Structures e e 49
Structure Transparencyt e 50
Interrupt—Chapter Checkpoint 50
4
CONDITIONS AND DECISIONS 51
4.1 How to ASK . . .o e e 51
4.2 The Conditionals: IFand Beyond 56
One Thingata Timewith IF. 56
The Special Form that Does It AIlL COND 58
A First Taste of Recursion 59
4.3 Cool Tricks with Conditionals i 61
Using the Stealth Conditionals ANDand OR 6l
Using Functions that Return More than Justthe Truth 63
4.4 Equality Predicates, Once More 64
4.5 Comparingand Testing e 68
Writing a Test e 68
What s NotaTest i 69
Testing in the Real World 69
More Testing Facilities i e e 70
Call-with-current-continuation—Chapter Checkpoint.................. 70
4>
DEFINE DEFINE 'DEFINE 71
4% .1 Module-Level Definitions. i e e 71
Variable Definitions. e 71
Function Definitions 73
Ao 2 Local Definitions e 73
abort—Chapter Checkpoint e 75

Contents in Detail

5

BIG-BANG
5.1 Graphical User Interface
5.2 LlandingaUFO. i,
5.3 Using big-bang: Syntax and Semantics.
5.4 GuessingGooeY
TheData..........
The Main Function
Key-Events.
Rendering i
TimetoStop i
Exit—Chapter Checkpoint
Chapter Challenges
6
RECURSION IS EASY
6.1 RobotSnake
6.2 A Data Representation for the Snake Game
6.3 TheMainFunction.........
6.4 ClockTicks
Eating and Growing.
Slithering.
RottingGoo i
6.5 Key-Events........
6.6 Rendering
6.7 EndGame
6.8 Auxiliary Functions.
Return—Chapter Checkpoint
Chapter Challenges
7
LAND OF LAMBDA
7.1 FunctionsasValues
7.2 Lambda........
7.3 Higher-Order Fun i
7.4 Two More Higher-Order Functions.
7.5 DeriveThisl
7.6 apply. ...
Break—Chapter Checkpoint
8
MUTANT STRUCTS
8.1 Chad'sFirstBattle
82 OrcBattle
8.3 Setting Up the World, a First Step

Contents in Detail

Xi

xii

8.4 Action: How Structs Really Worko i i
8.5 More Actions, Setting Up the World for Good i it
8.6 Ready, Set, big-bang e
8.7 Initializing the Orc World e
8.8 Renderingthe Orc World e
89 TheEndoftheWorld e
8.10 Actions, A Final Look e e
Throw—Chapter Checkpoint e
Chapter Challenges o e e e e e e e s

9
THE VALUES OF LOOPS

9.1 FOR LoOPS. - o i e
9.2 Multiple Values
9.3 Backto FOR/FOLD o e e
9.4 MOre on LOOPS . o v ittt e e e e e e
Waitpid—Chapter Checkpoint

10
DICE OF DOOM

10.1 TheGame Tree.o e e e e e e e e e e
10.2 Dice of Doom, The Game. e e e e e e
10.3 Designing Dice of Doom: Take One. i
Fillinginthe Blanks e
Simplifyingthe Rules
Endof Game e e
Controllingthe Game i e
10.4 How Game Trees Work. oo i e e e e e e
10.5 Game States and Game Trees for Diceof Doom
10.6 Rollthe Dice i e
10.7 Rendering the Dice World e
10.8 Input Handling. oo
10.9 Creatinga Game Treettt e e e
The Game Tree. . . o oot e e e e e e
Neighbors . .. e e e e
AHaCKS . . e e
1010 The End Game oottt e e e e e e e
Kill—Chapter Checkpoint e
Chapter Challenges e e e e e

11
POWER TO THE LAZY

11,1 Doomsday . . vvv i e e e e
11.2 Lazy Evaluation e e
11.3 Memoized Computations. e
11.4 RacketCan Be Lazy e
Delay—Chapter Checkpoint e e

Contents in Detail

153

153
155
156
157
160

165

165
166
166
167
167
167
168
168
171
174
176
179
181
182
184
187
189
190
190

12
ARTIFICIAL INTELLIGENCE

12.1 An Intelligent Life-form.
12.2 Lazy Games i
12.3 Adding Artificial Intelligence,
Stop-when—Chapter Checkpoint
Chapter Challenges i

13
THE WORLD IS NOT ENOUGH

13.1 What Is a Distributed Game?
13.2 TheData
MESSagES. . o i e
Previously Fabricated Structures
Packages.
Bundles.

iworld Structures
13.3 The Network Postal Service
13.4 Organizing Your Universe.
13.5 Distributed Guess.

The State of the Client and the State of the Server

The Server.
TheClient
RunningtheGame
Error—Chapter Checkpoint
Chapter Challenges i

14
HUNGRY HENRY

14.1 KingHenrythe Hungry
14.2 Hungry Henry, the Game
14.3 Two United States.
14.4 Henry's Universe
Message Data and Structures.
Complex Numbers Are Good Positions
A Dayinthe LifeofaServer
A Day in the LifeofaClient.
14,5 Stateofthe Union i
Stateof Henry
Stateof the House
14.6 Main, Take Client
The Appetizer State
The Entree State
14.7 Main, Take Server. e
The Join State and Network Events
The Join Stateand Tick Events

Contents in Detail

xiii

xiv

The Play State and Network Events 251

The Play Stateand Tick Events 253
14.8 See Henry RUN ... i e e e e e e 257
On-disconnect—Chapter Checkpoint. 258
Chapter Challenges e e e e e 258
GOOD-BYE
CLOSE PAREN 265
).1 Run Racket Run. e 265
).2 Racket Is a Programming Languageo 266
).3 Racket Is a Metaprogramming Language.« 270
).4 Racket Is a Programming-Language Programming Language. 274
S0 LN . ot e e e 281

Contents in Detail

Acknowledgments

We gratefully acknowledge the generous support of Brian Wenzinger, an alumnus of
Northeastern University’s College of Computer and Information Science.

The College’s dean, Larry Finkelstein, and his staff—especially Kirsten Anderson,
Doreen Hodgkin, and Jennifer Wong—provided great help along the way. Thank you.

Without Matthew Flatt (Utah), Robby Findler (Northwestern), and the rest of the
PLT folks, there would be no Racket, no DrRacket, and no Realm of Racket.

Along the way we got a lot of support from various people at NoStarch Press:
Alison Law cheerfully assisted with various aspects of the manuscript production;
Marilyn Smith meticulously copyedited our draft; Serena Yang patiently worked with
us on the cover design; and Jessica Miller got the marketing going. A big thank you
also goes to Keith Fancher, our acquisitions editor, and Bill Pollock, the publisher, who
trusted a team of eight freshman students to produce a full-fledged book, cover to cover
and on time. Thank you for your trust.

Finally, cheers to our co-author, Conrad Barski, for getting us launched on this
adventure through Racket land. We also owe thanks to Eric Chin, Pranav Gandhi,
James Grammatikos, Cole Levi, Jack Noble, Alex Schwartz, and Brendan Wilson, who
participated in the initial explorations for this project. In addition, Forrest would like
to acknowledge and express his humble gratitude for the diverse and unwavering sup-
port his mom and dad, Sarah and Steve, have lovingly provided and continue to provide.
Rose would like to thank her family and friends for being incredibly supportive of the
project and for understanding when “the book™ was the only explanation given for her
frequent absences from activities in the past few months. She also wishes to thank all
her co-authors for three semesters of forever quotable Thursday evenings. Mimi would
like to thank her parents for giving her learning opportunities that exceeded their own.
Furthermore, she is grateful to Matthias and David for opening up this rare educational

experience. Scott says thank you to his little brother Steve, as retribution for constantly
giving him a hard time. Nicole thanks her parents for always supporting her. She also
thanks her co-authors for giving her Thursday nights purpose and joy. Thanks to MF and
DVH, who could make her laugh even after fourteen straight hours of edits. Eric would
like to thank his friends and family for always being so supportive of his doodles, and also
David and Matthias for giving him the opportunity to use his doodles for good. David
would like to thank Marisa, for everything, Matthias acknowledges his wife, Helga, for
patiently waiting many Thursday evenings and his advisor, Dan Friedman, for teaching
him Lisp and English.

xVi Acknowledgments

:» Preface
(Hello World)

#]

Step into Realm of Racket, a book that takes vyvou on a unique
journey into the land of computer programming. In the style

of Conrad Barski’'s Land of Lisp, this book teaches you how to
program in Racket by creating a series of games. Racket is a
friendly mutation of Lisp that’s perfect for all, from those who
want to launch their education in computer science tc those look-
ing to expand their knowledge and experience in programming.

I

Why Would | Want to Learn About Racket?

You've certainly heard of JavaScript, Perl, Python, and Ruby. But what about Racket? Just
because it’s not the most mainstream programming language doesn’'t mean you should
discount its capabilities. Racket allows functional programming and other different para-
digms that even hard-core programmers have never seen before. Get ready for the excur-
sion. Even after you get through Realm of Racket, there is a lot to explore.

xviii

Who Should Read This Book?

Our mantra is “by freshmen, for freshmen,” but that doesn’t mean you should drop this
book if you are a sophomore or an industry professional. True, we were freshmen when
we started writing this book, but our mantra means only that this book was written for
you by peers who have a special interest in programming and want to explore it in a new,
fun way. So you see why our mantra is what it is—it would have been a bit of a mouthful
to say, “By people who have a special interest in programming and want to explore it in a
new, fun way, for people who have a special interest in programming and want to explore
it in a new, fun way.” And our recent expedition into the realm of Racket has enabled us
to write this book with genuine empathy for a novice learner.

Regardless of your programming background, many of the topics in this book will
be new to you, and much of what you've learned before will appear in a new light. This
book is written for those who are truly inquisitive and interested in exploring a unique
world of programming, so really we are all “freshmen” in this context.

What Teaching Approach Is Used?

It won't take you long to realize that this is not your typical programming textbook. We
decided to present the material in a way that is engaging and really sticks—with games
and comics.

In this book, we will teach you various topics through coding games, including a
text-based game, some old-school games like Snake, and others that we invented our-
selves. Along the way, you will need to use your programming skills to help a character
named Chad navigate the dungeons of DrRacket.

Can | Skip Chapters?

You might think you can skip ahead and save Chad right away, but we highly recom-
mend that you read this book from front to back. Each chapter depends on the knowl-
edge you learned from the previous one, and we don’t want you to miss out on any of
Chad’s adventures.

Anything Else | Should Know?

The source code of our games is available with the code base of Racket. Once you down-
load Racket, navigate to the Racket installation and look for the collects/realm/ folder. All
the game code is there for you to explore, modify, and experiment with.

Finally, the book comes with its own website. Visit realmofracket.comand keep
visiting—you never know what you'll find there. Onward!

Preface

;; Introduction
(Open Paren)

#]

So you think vou know how to program because you took an intro-
ductory course or two. Or perhaps you read a book that taught you
programming in 13 days. And then you picked up this book, which
is full of parentheses and comics. Doesn’t it look different from
what vou have seen in the past?

The programs you see here look like those that we encountered
in our first programming courses. You might be wondering why any-
one would teach such a weird-locking programming language and why
we find it so exciting that we would write a whole book about it.

Or maybe you’ve heard others rave about the Lisp language and
thought, "Boy, Lisp sure looks different from other languages that
people talk about. Maybe I should pick up a Lisp book.” Either way,
you’'re now holding a book about a programming language in the Lisp
family. And that whole family is very cool and unusual and fun.
You won't regret it.
|#

2

(1

(.2

What Makes Lisp So Cool and Unusual?

Lisp is a highly expressive language. With Lisp, you take the most complicated problems
and express their solutions in a clear and appropriate way. If Lisp doesn’t have the means
to do so, you change Lisp.

Lisp will change your mind, too. Eric Raymond, a well-known “hacker”™—in the
original, positive sense of the word—once wrote that “Lisp is worth learning for a differ-
ent reason—the profound enlightenment experience you will have when you finally get
it. That experience will make you a better programmer for the rest of your days, even if
you never actually use Lisp itself a lot.”

Here is what we did with Lisp in the very first class of our very first course: we
launched a rocket. Well, we didn’t launch a real rocket, but the animation looked cool,
and it was just a few lines of code. After a couple of weeks into the course, we wrote our
first interactive graphical game. Yes, our program used mouse clicks, clock ticks, and
keyboard events to control a nifty little Snake game. Then we wrote an interpreter for
the language that we used in the course. Did you get to write an interpreter for your lan-
guage in your course? And before we knew it, we wrote distributed games. In case you
don’t know what “distributed” means, our games ran on many computers, and at each
computer, some person interacted with the game or some program played the game, and
all these computers exchanged messages to make everything work together. And can you
believe that some of us had never programmed before?

So Lisp is different. And the Lisp we use is Racket, with which even children can
quickly feel at home. Once you have experienced this kind of programming, it will
become a part of you, and you will dream about it. You will always strive to mimic this
style in the languages you must use to earn a living. You'll say to yourself, “That’s kind
of how I'd do it in Lisp.” That’s the power only Lisp can give you.

Where Did Lisp Come From?

At this point, you may start wondering why your instructor didn't tell you about Lisp.
You may think that it may be something new that he hadn’t heard of yet. Sadly though,
it's the opposite. The idea of Lisp is truly ancient, and yet, in some ways, most existing
flavors of Lisp are more advanced than any other kind of language. But Lisp’s history is
very different from that of other languages, and that could be why people overlook it.
Here is what we know from the anecdotes our professors told us. Way back in the
1930s, the first True Wonk of Programming walked the Earth. His name was Al—though
his birth certificate said Alonzo Church—and he invented a new kind of calculus: lambda
calculus. In this calculus, everything was a function, and every function that counted
was something. Allin all, it was functional and it functioned, although all this program-
ming happened with paper and pencil because people had just figured out electricity.
Soon enough, the Earth was aflame in a great war with serious consequences on
the world of programming. Governments sponsored science projects, and several of
these projects created real computers. All computers, and especially the very first ones,

Introduction

are plain, dumb pieces of electrical hardware. As a matter of fact, the early computers
with names such as ENIAC and Zuse’s Z3—were so primitive that “programming” them
involved flipping switches or patching cables to physically encode each operation. Those
dark days saw a lot of experimentation with different computer architectures and an
explosion of different ways of “programming” them.

Naturally, people invented the idea of a programming language because it is the only
way to make dumb computers truly useful. However, “language” meant nothing but a
fairly thin veil over the underlying hardware. With these languages, programmers gave
machines instructions. It made programming easier than flipping switches and patching
cables, but it didn't make it easy. Programmers had to think about the machine when
they programmed, and their programs remained tied to specific computers.

Programming languages needed to evolve to survive beyond the confines of a spe-
cific machine. Thus, the 1950s saw the arrival of new types of software, including the
most important: compilers and interpreters. A compiler can take something that looks
like plain arithmetic and convert it automatically into a format that the computer can
execute. An interpreter is similar, although it performs the actions described in a human-
written program directly; there is no intermediate step that converts it all the way down
to a computer format. Best of all, compilers and interpreters are software. This means
that a competent programmer can change an existing compiler or interpreter a bit to

make it work on a different computer, without changing the language that programmers

Open Paren

4

use to interact with the compiler or interpreter. As a result, computer programmers
could suddenly write programs in a notation that was mostly independent of a specific
computer.

Nevertheless, programming remained a task of giving machines instructions. Take
FORTRAN, the earliest language with a compiler. Its designers created it to help scien-
tists program, and scientists still use FORTRAN today. Just typing a FORTRAN program
makes you shuffle bits and bytes in the machine, and once you're finished, you can barely
see the mathematical problem you wanted to solve.

Another early language in the same mold as FORTRAN is ALGOL 60. While
FORTRAN was made in America, ALGOL emerged in Europe, designed by a commit-
tee of computer scientists from all over the world. Together, FORTRAN and ALGOL
spawned a long series of programming languages, called the ALGOL family. All mem-
bers of this family are made from more or less the same material and for the same kind
of programmers—those who love the machine more than the problem. You may have
heard of some of these languages, such as C, Pascal, C++, and Java. To this day, most
college courses use the ALGOL family to teach the first course on programming. Your
instructors may even have told you that all languages are so similar that once you have
seen one of them, you have seen all of them. Although this statement might be true
for the ALGOL family of languages, it isn’t true for Lisp, a language nearly as old as
FORTRAN and ALGOL.

Lisp’s beginnings are quite humble. Also in the late 1950s, John McCarthy—a com-
puter scientist who worked at MIT, the best college in East Cambridge—came across
Al’s old papers on lambda calculus. The papers were difficult to read because they had
been written in the days before people had real computers. They sent John daydreaming.
When he woke up, he knew that he was sick of programming computers in the dumb
ways of machine language or FORTRAN. He wanted an intelligent way to go about it.
So one day he gathered together his researchers and challenged them to build a program-
ming language that wasn’t about the bits and bytes in a computer. Instead, he wanted to
create a language that would help programmers solve problems without forcing them to
think about the elements of a machine.

John's first example was about lists: lists of ideas, lists of tasks, lists of insights, and
even lists of programs. To deal with lists, a program should provide lists and functions for
processing lists—never mind how the computer really deals with all of this inside. Better
still, a language should be able to “talk™ about itself and about programming, In short, he
wanted Lisp, a language so elegant and powerful that even writing an interpreter for Lisp
in Lisp itself would take only about 50 lines of computer code.

Before John knew it, his people made Lisp real. The language was indeed small,
and it was really possible to write a Lisp interpreter in Lisp in a few dozen lines of code.
Because it was so easy to write a Lisp interpreter, many people wrote one. As it turned
out, everyone tinkered with the original small Lisp interpreter. Soon enough, there
wasn't just one Lisp but a lot of Lisps. Fortunately, all these Lisps shared the essential
traits of John’s original ideas so that Lisp programmers could easily exchange ideas.
That’s why Lisp is a family of programming languages, not just a single programming
language.

Introduction

(.3 What Does Lisp Look Like?

Now you know that Lisp is cool, old, and an entire family of languages. You also know
that we are totally excited about one member of this family: Racket. Before you become
impatient with us, let us show you some Lisp code so that this introduction doesn’t
become all talk and no action.

Atsome level, Lisp code isn't as different as it may seem at first. Here are some valid
Lisp expressions, and we're sure you can guess what they compute:

(* 1 1)
(- 8 (* 2 3))
(sgrt 9)

If you answered 1, 2, and 3, then you've already figured out how to read Lisp code.
It looks like arithmetic, except that the functions—addition, subtraction, multiplica-
tion, and square root—come before their operands, and expressions are surrounded by
parentheses.

You may wonder why in the world Lisp breaks with the centuries-old tradition of
infix notation, but take a look at this:

(+ 1234567829 0)

For many functions, it makes a lot of sense to supply a lot of arguments at once, and with
prefix notation, doing so is easy. But programming is also about defining your own opera-
tors and writing expressions that use these and the ones that come with the language. So
in C++ programs, you may see things like this:

(foo<bar>) *g++.baz (| &qux::zip->ding()) ;

Can you explain the order in which the subexpressions of this complex beast are evalu-
ated? No one can. Everyone must dissect the expression first to understand it. Dissecting
means putting in more parentheses, either in your head or on paper, after looking up
which operators have the highest precedence. Do you recall your struggles with prece-
dence in grade school? When you read Lisp code, this confusion never happens:

(sart (+ (sqr 3) (sar 4)))

Here, you see a deeply nested expression, and yet the parentheses immediately tell you
in which order things are evaluated. The parentheses also tell you that the operators—
sqrt, +, and sqr—are involved, because you know that every left parenthesis—called
“open” when Lispers speak—is followed by an operator. And guess what the right paren-
theses are called in Lisp-speak? You gotit: “close.” That’s how easy it is to read Lisp. Once
you're used to it, which may take a day or two, you will see its advantages.

Open Paren

6

However, Lisp isn’t just about numbers or arithmetic; it’s also about list processing.
So you should be curious about what lists look like in Lisp. Here are some examples:

(list 1 23 456 7 8 9 0)
(list (list 1 3 5 7 9) (list 2 4 6 8 0))
(list (list 'hello 'world)

(list (list 'it 'is) 2063)

(list 'and 'we 'love 'Racket))

The first list consists of 10 digits; the second one groups these digits into two lists, which
then become the elements of another list; and the third example shows that while lists
can be deeply nested, Lisp comes with symbolic values, too.

Of course, a language that is about lists has even better ways to write lists:

'(L23 456789 0)
({1357 9) (2 462820))
'((hello world)

((it is) 2063)

(and we love Racket))

These first three examples should look familiar; they are abbreviations for the preceding
list examples. See how little you need to write for a list of lists with symbolic information
inside? One last example should inspire some awe:

'(sgrt (+ (sqgr 3) (sqgr 4)))

By adding a quote to the left of a piece of Lisp code, we turn it into a piece of data.
Because the two expressions are equivalent, we could have written this:

(list 'sgrt
(list '+
(list 'sar 3)
(list 'sqgr 4)))

Both create lists that contain a list, which contains a symbolic representation of addi-
tion and two more lists. The quoted expression creates a piece of data that captures all the
structure that isin the program expression itself: its nesting structure, its numbers, and
its symbols. If you had used string quotes to turn the expression into a piece of data, all
you would have is a string. Before you could recover the expression’s structure and orga-
nization, you would need to complete your entire computer science undergraduate major.

In Lisp, all it takes is one keystroke on your keyboard—one character on the screen.
You cannot do anything like this without a Lisp. Now that's cool. And it's powerful.

Introduction

(.4 Where Does Racket Come From?

Now back to 1972. Object-oriented programming had made an appearance. What we call
the Smalltalk and Simula programming languages were up and running, and they sug-
gested the object-oriented way of programming. People at John’s old place began to study
these ideas. Guy Steele and Gerry Sussman were two of these programmers. Here is how
it all went down when they took this topic into their own hands:

What's an object?

An object computes something if you send it different kinds of messages.

Do we really need to understand how objects work with many different messages?

No way. A scientist just needs to know how objects deal with one message, and that
shows how all messages work.

So what are objects that understand one kind of message?

Functions! Objects that understand only one message— "run your code on the fol-
lowing arguments”—are functions.

How about all these loops?

Al already knew in the 1930s that loops are just abbreviations for recursive functions.
You mean loops are like frosting on the cake when an object can send a message to itself?
Absolutely, loops are like adding sugar to soda.

Are conditionals fundamental?

Nope, not even they are. Al showed that such things are just functions and composi-
tions of functions.

Guy and Gerry went back and forth for a while in this fashion. When they were done,
they had extended Al's programming language of functions with just two ideas: assign-
ment statements and jumps in control flow. Everything else was syntactic sugar, that
is, shorthand for a combination of concepts from this tiny core language. The language
drew its power from Guy and Gerry’s efforts to make everything simple and regular.

The two also understood that this collection of ideas was close to John's idea of Lisp
and that Lisp was really good for prototyping new languages. And so they prototyped
their language in Lisp and called it Scheme. Because of that, people started thinking of
Scheme as just another form of Lisp.

Open Paren

8

From Guy and Gerry’s MIT Al Lab, Scheme quickly spread to several other places.
Dan Friedman and Mitch Wand picked it up at Indiana University, and their research
group built a version called Scheme84. They used Scheme to conduct programming lan-
guage research. Because Scheme is so small and regular, it is easy to study the effects of
adding one more idea or whether a new idea is just syntactic sugar for Scheme. A team of
Yale researchers, under Paul Hudak’s leadership, created another flavor, dubbed T. They
looked at T as a compiler project, figuring out how to compile an expressive language
into fast machine code. On top of that, individuals all over the world constructed their
own variants of Scheme. Soon enough, dozens of Scheme implementations existed, all
with their own small mixins and little extensions and tiny add-ons.

One of these Scheme implementations emerged at Rice University in Houston,
Texas. Matthias Felleisen, Robby Findler, Matthew Flatt, and Shriram Krishnamurthi
wanted to use Scheme to teach children math in a creative way. Children in middle
school and high school could write computer games in plain arithmetic and algebra,
which is easily expressed in a Scheme-like language. The four researchers also wanted
to build all the necessary software in Scheme, and then they quickly realized that Scheme
was too small to build real systems. They added structures, a class system, exceptions,
fancy loops like you've never seen before, modules, custodians, eventspaces, libraries for
building graphical-user interfaces, and many other things. Yes, some of these additions
can be understood as syntactic sugar, but others introduced fundamentally new ideas into
the world of programming languages.

Eventually, Matthias and Robby and Matthew and Shriram and everyone else who
used this flavor of Scheme decided that their language was quite different from the origi-
nal Scheme. After a lot of loud and wild arguing, they decided to give it a new name.
This is where Racket comes from.

Introduction

But don’t worry—just because Racket is a large, useful language doesn’t mean it is
difficult to learn. Remember that Matthias, Robby, Matthew, and Shriram had middle
school students in mind when they launched the Racket project. Because of this, learning

Racket is like walking up a gentle slope; you should never feel like you have to climb a
straight wall-—unlike in your class, perhaps.

(I

[

0,

(.5 What Is This Book About?

So this book is for freshmen and it is written by freshmen, with a little help from some
sophomores and professors. We assume that you have programmed somewhere, some-
how—most likely in a freshman course at college. Our goal is to show you our own
world of programming, one game at a time. We hope that this will open your mind
about programming and that it will get you in touch with your inner Racketeer. If you
like it, this book is a platform from which you can easily work your way into the rest of
Racker and a whole new world of understanding programs.

Open Paren

Halt—Chapter Checkpoint

This introduction acquainted you with some historic background about programming
and the Lisp family of programming languages:

» Computers are dumb pieces of hardware.

« Programmers use programming languages to turn computers into useful and enter-
taining gadgets.

« One of the oldest high-level languages is Lisp, which is more than 50 years old.

¢ There are many related flavors of Lisp, and we call Lisp a family of languages.

« To this day, Lisp offers programmers a way to experience programming as poetry.

e Racketis our chosen flavor of Lisp. Racket is relatively new, and it is especially well
suited for novice programmers who want to ramp up gradually.

10 Introduction

Copyrighted material

THIS IS CHAD.
Chad looks sad.

Maybe that's because he
feels lost.

After Wis first year in
college, he still feels
vnsure about his future.

He has not declared o
major yYet and didnt
find any of his {irst-year
courses exciting,

His good (riends, Matt
ond Dave, suggested that
he should check out
progromming, but Chad
can’t understand why,

Chad s going o do some
vesearch.
How exciting con
progromming veally be?

& Chad s ot his computer.

He is using this thing called
@ He was given instructions to downlood the

ﬁ progamming language called "Racket”
>

D'awww, T've been
tropped *s0d [oce™®

o W
2O

e

N7 —

Me?
OPEN PARENTHESIS!

define me

"L om DrRacket! Now that you have entered my
dungeons, you shall be my minion!

The only way you can escape is by using your
mind Yo defeat my traps and puzzles Your life now
depends on Your thinking and creativity,

neverming,
L¥'s going to be veally difficult from now on!
MUAHARARARAY

CLOSE PARENTHESIS

Copyrighted material

1.1

;; Chapter 1
(Getting Started)

#]

You need a Racket before you can launch a rocket, so the first
thing you need to learn is how to download and install DrRacket.
Once you have it on your computer, yvou will learn how to experi-
ment. Racket is all about experimenting with expressions and
creating your programs from these experiments. After some guick
demonstrations, you'll be ready to write a game!

I

Readying Racket

Racket is a programming language. In principle, the Racket compiler is all you need to
write Racket programs. You could—and die-hard Lispers would—Ilaunch the Racket com-
piler in an interactive mode, type in the program, and voila, you'd have a running pro-
gram. Or you’'d get an error message saying that something isn't quite right, and you'd
have to retype a part of your program. After a while, this gets bothersome. Just as you
need a comfortable seat to work, you need a convenient “software seat” to develop your
programs, to experiment with pieces, to run your test suites, and to explore the partially
finished game. We call this place a program development environment (PDE); others
refer to it as an interactive development environment (IDE),

DrRacket—pronounced “Doctor Racket”—is the PDE for Racket, and it is bundled
with the Racket programming language. The original Racketeers—the people who
created and use DrRacket—wanted to have a PDE where everyone—young children,
old Lispers, and regular programmers-—could quickly feel comfortable. Therefore,
DrRacket is designed in such a way that you can immediately experiment with expres-
sions and program fragments. You can edit programs and run them. You can write tests
for your program and check them. And using DrRacket is quite easy.

So let’s get DrRacket. Point your browser to racket-lang.org, and near the top-
right area of the page, you will see a download icon. Click the icon, choose your platform,
and download Racket from any of the sites that show up.

Racker can run on Windows, Mac, and *nix systems. For Windows and Macs, a
software installer takes care of everything that needs to happen. If you're on a *nix box,
you are already a hero and don’t need instructions. In the end, you will have a folder with
several applications. Launch DrRacket as appropriate for your platform: by clicking, from
a shell, or whatever.

#|

NOTE: In this folder, you can see another folder called collects and
within that folder, you can find realm. There, you can access all

the source code for all the games in this book. We encourage you
to open these files in DrRacket and to experiment with the code.

#

Unfifed - DeRacket
Unttied® (defne)W Creck Syntox JOlagP Debug @ B Macro Srepper 22 B Run b Stoofll

#lang racket T

Welcowe to DeRacket
Language: racket;
>

Determine language from source P 3:2 l‘-»“l.SEMBD % .

20 Chapter 1

1.2

Among other things, Racket is a programming language for making programming
languages. Because of that, Racket comes in many flavors. Some flavors are for beginners;
they are called teaching languages. Others are for writing small shell scripts or large
applications. A third kind is for old people who wish to program in long-gone languages.
And there are many more flavors beyond this short list. As far as this book is concerned,
however, we will show you just one flavor: plain Racket.

You choose which Racket flavor you want to use with these four steps:

¢ Select the “Language” menu of DrRacket.
» Select the “Choose Language...” menu.

» Enable the option “The Racket Language.”

Click "OK” and then click “Run,” the little green go icon.
Now take a closer look at DrRacket. You should see these primary pieces:

» Some buttons, including “Run” and “Stop”

» A definitions panel where you see the text #lang racket, which means you are using
the Racket programming language

* An interactions panel labeled "Welcome to DrRacket” with another line of text that
says your chosen language is “racket” and a third line with just one symbol: *>”

Interacting with Racket

DrRacket displays the “>" prompt in the interactions panel. The prompt signals
that DrRacket expects you to enter an expression, say (+ 1 1). DrRacket reads this
expression, evaluates it, prints the result, and then displays its prompt again. Old Lispers
call this mechanism a read-eval-print loop, but we are sticking with the Racketeer term
interactions panel.

Go ahead. Enter an expression. Use (+ 1 1) if you can't think of anything better.
Here is what happens:

> (+ 1 1)
2

As soon as you hit the “Enter” key, DrRacket becomes active and prints the result. Let’s
try another expression:

> (+ 3 (* 2 4))
11

Getting Started

21

The interactions panel works! Hooray! You type expressions and Racket evaluates
them. Experiment some more—that’s what the interactions panel is for. You could, for
example, play with expressions like these:

> (sgrt 9)
3

> (sgrt -9)
0+31

Yes, Racket knows about complex numbers. How about this:

> (+ 123 456789 0)
45

Calling + on many numbers actually works. And so do nested expressions:

> (sgrt (+ (sqgr 3) (sgr 4)))
5

Lists are a pleasure, too:

> '((1 3579) (2 46820))
({1 357 9) (2 46280))

They come back out just as you put them in, because there is nothing to evaluate
with lists.
How about expressions as nested lists?

> '(sgrt (+ (sgr 3) (sgr 4)))
'(sgrt (+ (sqr 3) (sar 4)))

Okay, enough of that. We need to move on to the definitions panel.

Take alook at the sketch below. We entered (+ 3 (* 2 4)) into the definitions
panel, hit “Enter,” and nothing happened. While the interactions panel is for experiment-
ing with expressions, the definitions panel is where you record your code.

Unfitled - DrRocket
Unttled W (define) Creck Syntax SO Debug @ | Macro Stepper 22' Bl Run B Stop
+3(*2 4))

22 Chapter 1

To make something happen, click the “Run” button. DrRacket will evaluate the
expression and then print the result 11 in the interactions panel. You could also enter
this in the definitions panel:

'(hello world)

Click “Run,” and you'll see '(hello world) in the interactions panel. DrRacket
does all the printing for you; there’s no need for you to specify such mundane things.
Also, note that your cursor is back in the interactions panel. You can now enter expres-
sions there again and experiment some more.

Before we forget, click the “Save” button—the one with the disk icon. DrRacket will
ask you to select a file name and folder on your computer where it will save the current
contents of the definitions panel. Racketeers use file names that end in .rkt and you should
do so, too:

my-first-program.rkt

You could run the program in this file in stand-alone mode now, or you could open the
file in DrRacket and run things there.

Say you closed DrRacket and, before you know it, panic strikes. You just discovered
that your first program wasn't supposed to add 3 to the product of 2 and 4. It was sup-
posed to say '(hello world) and nothing else. Launch DrRacket again. Use the “File”
menu and choose “Open Recent” from the available options. When you mouse-over this
option, you can see my-first-program.rkt, and you should click it. The program is back in the
definitions panel, and you are now free to change it to '(hello world). And that’'s why
we place everything we wish to keep in the definitions panel.

Any questions? Oh yes, it's called the definitions panel because you actually write
down definitions for variables and functions. But the best way to show you how to do this
is by writing our first simple game together. Ready?

Raise—Chapter Checkpoint
In this chapter, you learned a few basics about Racket and DrRacket:

« DrRacket is the PDE for Racket. It runs on most computing platforms. Both Racket and
DrRacket are available for free online at racket-lang.org as one package.

* You can enter expressions and evaluate them in the interactions panel.

* You can edit programs in the definitions panel and run them, and the interactions panel
shows what they compute.

Getting Started

23

1 “NOMeER
4 ;'J E'
Erjder

_
—=3]

T didn’t do 3+\q

On.OK, but o \M ‘lgj
can guess the number that
I'm ’f\nkg(
((_ngo help me?
7

5l

——F‘\

[oos

How did
you know?

L

|

Alright, alright,

Il let you out

Copyrighted material

2.1

;; Chapter 2
(A First Racket Program)

#]

You’ve installed DrRacket, learned that programs go into the
definitions panel, and experimented with Racket in the interac-
tions panel. You are now ready to write your first real program,
a simple game for guessing numbers.

|#

The Guess My Number Game

The first game we will write is one of the simplest and oldest games around. It’s the clas-
sic Guess My Number game. In this game, the player thinks of a number between 1 and
100. Our program will then figure out that number by repeatedly making guesses and
asking the player if her number is bigger or smaller than the current guess.

28

The following piece shows what a game might look like in the interactions panel if
the player chose 18:

> (guess)
50

> (smaller)
25

> (smaller)
12

> (bigger)
18

The above interactions involve three different kinds of expressions: (guess),
(smaller), and (bigger). You can probably imagine what they mean. The first one
tells the program to start guessing; the second one says that the guess is too high, so a
smaller number needs to be guessed; and the third one commands the program to look
for a bigger number.

Okay, ma'om. is this the man
who broke into your ho-

Pkl

Swaller.

® ®
~
¥ What? @ N - A
5 $

Smaller.
T ™

Everything to the immediate right of “(” is a function, which means that we are

dealing with three functions here: guess, smaller, and bigger. All you need to do is

Chapter 2

2.2

define these functions, and you have programmed yourself a first game. The player calls
these functions in the interactions panel, starting with the guess function.

Now, let’s think about the strategy behind this simple game. The basic steps are as
follows:

* Determine or set the upper and lower limits of the player’s number.
¢ Guess a number halfway between those two numbers.
¢ Ifthe player says the number is smaller, lower the upper limit.

» Ifthe player says the number is bigger, raise the lower limit.

By cutting the range of possible numbers in half with every guess, the program can
quickly home in on the player’s number. Cutting the number of possibilities in half at
each step is called a binary search. As you may know, binary search is frequently used
in programming because it is remarkably effective at finding answers quickly. Even if we
played the game with numbers between 1 and 1,000,000, a binary strategy could guess
the right number in about 10 guesses.

At this point, you know almost everything there is to know about the game. We just
need to introduce a few more Racket mechanics, and you will have Guess My Number

going.

Defining Variables

As the player calls the functions that make up our game, the program will need to update
the lower and upper limits at each call. One way to do so is to store the limits in variables
and to change the values of the variables during the game. For Guess My Number, we’ll
need to create two new variables called lower and upper.

The way to create a new variable is with define:

(define lower 1)
lower

(define upper 100)

upper
00

= VY e Vv

We weren’t completely honest with you. In addition to functions, it is also possible that
“(" is followed by a keyword, such as define. Expressions that start with a keyword
work in their own special way, depending on the particular keyword. You'll just need
to remember the rules for each keyword. Fortunately, there is only a very small number
of them.

The detine keyword is quite important for understanding Racket programs, as it is
used to define variables and functions. Here we are using it to define variables. The first

A First Racket Program

29

30

2.3

24

part of the define expression is the name of the variable, and the second is an expression
that produces the value we want the variable to have.

What may surprise you is that a definition does not evaluate to anything. Don't
worry. We will explain. Oh, and do place those two definitions where they belong—in
the definitions panel.

Basic Racket Etiquette

Racket ignores spaces and line breaks when it reads code. This means you could format
your code in any crazy way but still get the same result:

> | define
lower 1)

> lower

1

Because Racket code can be formatted in such flexible ways, Racketeers have conventions
for formatting programs, including when to use multiple lines and indentation. We’ll fol-
low common conventions when writing examples in this book, and you're better off mim-
icking them. However, we're more interested in writing games than discussing source
code indentation rules, so we won't spend too much time on coding style in this book.

#|

NOTE: Pressing the “Tab” key in DrRacket automatically indents your
code to follow common convention. You can auto-indent a chunk of code
by highlighting it and then pressing the “"Tab” key. You can auto-
indent an entire Racket program just by pressing Command+i on a Mac
or Ctrl+i on Windows and *nix.

|2

Defining Functions in Racket

Our Guess My Number program defines guess to start the game and responds to

requests for either smaller or bigger guesses. In addition to these three functions, we

also define a function called start that starts the game for a different range of numbers.
Like variables, functions are defined with define:

(define (function-name argument-name ...)
function-body-expression
function-body-expression

o)

Chapter 2

First, we specify the name of the function and the names of its arguments and put all of
them in a pair of parentheses. Second, we follow it up with the expressions that comprise
the function’s logic.

The dots mean that the preceding entity occurs an arbitrary number of times: zero
times, one time, two times, and so on. It is thus possible that a function may have zero
arguments, but it must have at least one expression in its body.

A Function for Guessing

The first function we’ll define is guess. This function uses the values of the lower and
upper variables to generate a guess of the player’s number. In our definitions panel, its
definition looks like this:

(define (guess)

(quotient (+ lower upper) 2))

To indicate that the function does not take any arguments, we place a closing parenthesis
directly after the function name guess.

#|

NOTE: Although vou don’t need to worry about indentation or line
breaks when entering code snippets, you must be sure to place paren-
theses correctly. If you forget a parenthesis or put one in the wrong
place, vou’ll most likely get an error; if you don’t, you’re in trou-
ble. But there’'s no need to worry: as you have probably noticed by
now, DrRacket helps you with this task.

|#

Guess what this function does. As discussed earlier, the computer’s best guess in this
game is a number halfway between the two limits. To accomplish this, we choose the
average of the two limits. If the average number ends up being a fraction, we choose the
nearest whole number.

We implement this in the guess function by first adding the numbers that represent
the upper and lower limits. The expression (+ lower upper) adds together the value of
those two variables. We then use the quotient function to divide the sum in halfto get
an integer.

Let’s see what happens when we call our new function after clicking “Run:

> (guess)
50

Since this is the program’s first guess, the output we see when calling this function tells

us that everything is working as planned. The program picked the number 50, right in
between 1 and 100.

A First Racket Program

31

When programming in Racket, you'll almost always write functions that won'’t
explicitly print values on the screen. Instead, they’ll simply return the value calcu-
lated in the body of the function, and DrRacket prints it for you. For instance, let’s say
we wanted a function that just returns the number 5. Here’s how we could write the
return-£five function:

(define (return-five)
5)

Because the value calculated in the body of the function evaluates to 5, calling
(return-five) in the interactions panel returns 5, and DrRacket prints that:

> (return-five)

5

This is how guess is designed; we see this calculated result on the screen not because the
function displayed the number, but because this is a feature of DrRacket’s interactions
panel.

#|

NOTE: If vou've used other programming languages before, you may
remember needing to write something like “return” to cause a value
to be returned. This is not necessary in Racket. The final value
calculated in the body of the function is returned automatically.
|#

Functions for Closing In

Now we'll write our smaller and bigger functions, which update the upper and lower
variables when necessary. Like guess, these functions are defined with the define form.
Let’s start with smaller:

(define (smaller)
(set! upper (max lower (subl (guess))))

(guess))

First, we use define to start the definition of any new function. Because smaller takes
no parameters, the parentheses are wrapped tightly around smaller. Second, the func-
tion body consists of two expressions, one per line.

Third, the function uses a set! expression to change the value of a variable. In gen-
eral, a set! expression has the following shape:

(set! variable expression)

32 Chapter 2

The purpose of set!, pronounced “set bang,” is to evaluate the expression and set the
variable to the resulting value. With this in mind, we can see that the set! expres-
sion in the definition of smaller first computes the new maximum number, and then it
assigns that number to upper, giving us the new upper bound.

Since we know the maximum number must be smaller than the last guess, the big-
gest it can be is one less than that guess. The code (subl (guess)) calculates this value.
It calls our guess function to get the most recent guess, and then it uses the function
subl to subtract 1 from the result. By taking the max of lower and (subl (guess)), we
ensure that bigger is never smaller than lower.

Finally, we want our smaller function to show the player a new guess. We do so by
putting a call to guess as the final expression in the function body. This time, guess cal-
culates the new guess using the updated value of upper.

The bigger function works in the same manner as smaller, except that it raises the
lower value instead:

(define (bigger)
(set! lower (min upper (addl (guess))))
(guess))

After all, if the player calls the bigger function, she is saying that her number is big-
ger than the previous guess, so the smallest it can now be is one more than the previous
guess. The function addl simply adds 1 to the value returned by guess.

Here we see our functions in action, with the number 56 as the player’s number:

> (guess)
50

> (bigger)
75

> (smaller)
62

> (smaller)
56

The Main Function

It is practical to have one main function that starts—or restarts—the whole application.
Placing the definition of the main function at the top of the definitions panel also helps
readers understand the purpose of the program.

For Guess My Number, this is a simple feat:

(define (start n m)
(set! lower (min n m))
(set! upper (max n m))

(guess))

A First Racket Program

33

Asyou understand by now, start takes two arguments, which are the numbers we want
to sct as the lower and upper bounds. By using the max and min functions, we cut down
on the instructions that we need to give any player. It suffices for a player to put in any
two numbers in any order, and the function can determine the lower and upper bounds.
For example, you could start the game using a small range of numbers, like this:

> (start 1 30)
15

#|
NOTE: As we continue to more challenging games, you will see how
a main function makes ocur games much more user friendly.

|#
The other functions continue to work as advertised:
> (bigger)
23
> (smaller)

19

Now go ahead and do some guessing yourself.

Resume—~Chapter Checkpoint

In this chapter, we discussed some basic Racket forms. Along the way, you learned how
to do the following:

* Use define to define a variable or function.
» Use set! to change the value of a variable.
» Use the interactions panel for experimentation.

* Copy and paste successful experiments to the definitions panel.

34 Chapter 2

31

;; Chapter 3
(Basics of Racket)

#]
You’'ve written your first program. It consisted of a few functions
that dealt with numbers. You've seen the basics of expressions
and definitions. You know there are a lot of parentheses.

Now it’s time to bring some order to chaos. In this chapter,
we’ll show you other kinds of data, as well as the general struc-
ture and meaning of Racket procgrams.

E:

Syntax and Semantics

To understand any language—Dbe it a human language or a language for programming—
requires two concepts from the field of linguistics. Computer scientists refer to them as
“syntax” and “semantics.” You should know that these are just fancy words for “gram-
mar” and “meaning.”

Here is a typical sentence in the English language:

My dog ate my homework.

36

3.2

This sentence uses correct English syntax. Syntax is the collection of rules that a phrase
must follow to qualify as a valid sentence. Here are some of the rules of sentences in the
English language that this text obeys: the sentence ends in a punctuation mark, contains
a subject and a verb, and is made up of letters in the English alphabet.

However, there is more to a sentence than just its syntax. We also care about what the
sentence actually means. For instance, here are three sentences that, roughly, have the same

semantics:

My dog ate my homework.

The canine, which T possess, has consumed my school assignment.

KT IREOREMRE

The first two are just different ways of saying the same thing in English. The third sen-
tence is in Chinese, but it still has the same meaning as the first two.

The same distinction between syntax and semantics exists in programming lan-
guages. For instance, here is a valid line of code written in C++:

((foo<bar>) * (g++)) .baz (| &qux::zip->ding()) ;

This line of code obeys the rules of C++ syntax. To make the point, we put in a lot of
syntax that is unique to C++. If you were to place this line of code in a Python program,
it would cause a syntax error.

Of course, if we were to put this line of code in a C++ program in the proper con-
text, it would cause the computer to do something. The actions that a computer performs
in response to a program make up its semantics, It is usually possible to express the same
semantics with distinct programs written in different programming languages; that is,
the programs will perform the same actions independent of the chosen language.

Most programming languages have similar semantic powers. In fact, this is some-
thing that Al and his student Alan Turing first discovered in the 1930s. On the other
hand, syntax differs among languages. Racket has a very simple syntax compared to
other programming languages. Having a simple syntax is a defining feature of the Lisp
family of languages, including Racket.

The Building Blocks of Racket Syntax

From the crazy line of C++ code in the previous section, you can get the hint that C++
has a lot of weird syntax—for indicating namespaces, dereferencing pointers, performing
casts, referencing member functions, performing Boolean operations, and so on.

Chapter 3

If you were to write a C++ compiler, you would need to do a lot of hard work so that
the compiler could read this code and check the many C++ syntax rules.

Writing a Racket compiler or interpreter is much easier as far as syntax is concerned.
The part of a Racket compiler that reads in the code, which Racketeers call the reader, is
simpler than the equivalent part for a C++ compiler or the compiler for any other major
programming language. Take a random piece of Racket code:

(define (square n)

(* n n))

This function definition, which creates a function that squares a number, consists of
nothing more than parentheses and “words.” In fact, you can view it as just a bunch of
nested lists.

So keep in mind that Racket has only one way of organizing bits of code: parentheses.
The organization of a program is made completely clear only from the parentheses it
uses. And that’s all.

A FORM TN RACKET

{function

-
S
3

In addition to parentheses, Racket programmers also use square brackets [] and
curly brackets {}. To keep things simple, we refer to all of these as “parentheses.” Aslong
as you match each kind of closing parenthesis to its kind of opening parenthesis, Racket

will read the code. And as you may have noticed already, DrRacket is extremely helpful
with matching parentheses.

The interchangeability of parentheses comes in handy for making portions of your
code stand out for readers. For example, brackets are often used to group conditionals,
while function applications always use parentheses. In fact, Racketeers have a number of
conventions for where and when to use the various kinds of parentheses. Just read our
code carefully, and you'll infer these conventions on your own. And if you prefer differ-
ent conventions, go ahead, adopt them, be happy. But do stay consistent.

Basics of Racket

37

38

3.3

#|

NOTE: Code alone doesn’t make readers happy, and therefore Racketeers
write comments. Racket has three kinds of comments. The first one is
called a line comment. Wherever Racket sees a semicolon (;), it con-
siders the rest of the line a comment, which is useful for people and
utterly meaningless for the machine. For emphasis, Racketeers use two
semicolons when they start a line comment at the beginning of a line.
The second kind of comment is a block comment. These comments are
useful for large blocks of commentary, say at the beginning of the
file. They start with #| and end with |#. While you may recognize the
first two kinds of comments from other languages, the third kind is
special to Racket and other parenthetical languages. An S-expression
comment starts with #; and it tells Racket to ignore the next paren-
thesized expression. In other words, with two keystrokes you can tem-
porarily delete or enable a large, possibly nested piece of code. Did
we mention that parentheses are great?

#

The Building Blocks of Racket Semantics

Meaning matters most. In English, nouns and verbs are the basic building blocks of
meaning. A noun such as “dog” evokes a certain image in our mind, and a verb such
as “ate” connects our image to another in a moving sequence.

In Racket, pieces of data are the basic building blocks of meaning. We know what
5 means and we know that 'hello is a symbol that represents a certain English word.
‘What other sorts of data are there in Racket? There are many, including symbols, num-
bers, strings, and lists. Here, we'll show you the basic building blocks, or data types, that
you'll use in Racket.

Booleans

Booleans are one of Racket’s simple data forms. They represent answers to yes/no ques-
tions. So when we ask if a number is zero using the zero? function, we will see Boolean
results:

> (zero? 1)

#£

> (zero? (subl 1))
#t

When we ask if 1 is zero, the answer is #£, meaning false or no. If we subtract 1 from 1
and ask if that value is zero, we get #t, meaning true or yes.

Chapter 3

Symbols

Symbols are another common type of data in Racket. A symbol in Racket is a stand-alone
word preceded by a single quote or “tick” mark ('). Racket symbols are typically made up
of letters, numbers, and characters such as + - / * = <> ? 1 _~ Some examples of valid
Racket symbols are 'foo, 'ice9, 'my-killer-app27, and even '--<<==>>--,

Symbols in Racket are case sensitive, but most Racketeers use uppercase sparingly.
To illustrate this case sensitivity, we can use a function called symbol=7? to determine if
two symbols are identical:

> (symbol=? 'foo 'Fo0)
#f

Asyou can see, the result is #£, which tells us that Racket considers these two symbols to
be different.

Numbers

Racket supports both floating-point numbers and integers. As a matter of fact, it also
has rationals, complex numbers, and a lot more. When you write a number, the pres-
ence of a decimal point determines whether your number is seen as a floating-point num-
ber or an integer. Thus, the exact number 1 and the floating-point number 1.0 are two
different entities in Racket.

Racket can perform some amazing feats with numbers, especially when compared to
most other languages. For instance, here we're using the function expt to calculate the
53" power of 53:

> (expt 53 53)
243568481650227121324776065201047255185334531286856408445051308795767
20609150223301256150373

Isn't that cool? Most languages would choke on such a large integer.
You have also seen complex numbers. Consider this example:

> (sgrt -1)

0+11

> (* (sgrt -1) (sgrt -1)
-1

Racket returns the imaginary number 0+11 for (sgqrt -1), and when it multiplies this
imaginary number by itself, it produces an exact -1.
Finally, something rational happens when you divide two integers:

> (/ 4 6)
2/3

Basics of Racket

39

40

The / function is dividing four by six. Mathematically speaking, this is just two over
three. But chances are that if you've programmed in another language, you would expect
this to produce a number like 0.66666...7. Of course, that’s just an approximation of the
real answer, which is the rational number two over three. Numbers in Racket behave
more like numbers that you are used to from math class and less like the junk other lan-
guages try to pass off as numbers. So Racket returns a rational number, which is written
as two integers with a division symbol between them. It is the mathematically ideal way
to encode a fraction, and that is often what you want, too.

You will get a different answer if your calculation involves an inexact number:

> (/ 4.0 6)
0.6666666666666666

Compared with the previous example, this one uses 4.0 in place of 4. You might think
4.0 and 4 are the same number, but in Racket, the decimal notation indicates an inexact
number; 4.0 really means some number that is close to four. Consequently, when you
divide a number that is close to four by six, you'll get back a number that is close to %,
namely 0.6666666666566566.

Inexact numbers, like 4.0, are called floating-point numbers, and basically they don’t
behave like any kind of number you've seen in a math class. But the important thing to
remember is that if you never use decimal notation, you won't need to worry about how
these kinds of numbers behave. Exact numbers in Racket are honest numbers like the
ones you learned about in grade school.

#|

NOTE: People invented floating-point numbers because computer pro-
grams that use ordinary (also called “precise”) numbers can sometimes
be too slow for scientists and engineers. For us, precise numbers are
usually fine, and when they are not, we’ll dive into floating-point
numbers.

|#

Strings

Another basic building block is the string. Although strings aren’t really that fundamen-
tal to Racket, any program that communicates with a human may need strings, because
humans like to communicate with text. This book uses strings because you are probably
used to them.

Chapter 3

3.4

A string is written as a sequence of characters surrounded with double quotes. For
example, "tutti frutti® isastring. When you ask DrRacket to evaluate a string, the
result is just that string itself, as with any plain value:

> "tutti frutti"
"tutti frutti"

Like numbers, strings also come with operations. For example, you can add two strings
together using the string-append function:

> (string-append "tutti" "frutti")
"tuttifrutti"

The string-append function, like the + function, is generalized to take an arbitrary
number of arguments:

> (string-append "tutti" " " "frutti")
"tutti frutti®

There are other string operations like substring, string-ref, string=?, and more, all
of which you can read about in Help Desk.

#|

NOTE: An easy way to look up something in Help Desk is to move your
cursor over a name and press “Fl1.”

|#

Lists in Racket

Lists are a crucial form of data in Racket. Racket data is like a big toolbox, and you can
make amazing things if you know how to utilize your tools. You can’t do anything with-
out a trusty hammer, an ever-helpful screwdriver, and some needle-nose pliers. These
basics are symbols, numbers, and strings in Racket. Then you have all the power tools—
chain saws, drills, planers, and routers—that take everything to the next level, just like
Rackert lists and structures. Well, you really can’t make anything in Racket without the
basic cons cell, which is actually one of the most powerful tools Racket offers.

Basics of Racket

41

42

CONS Cells

Lists in Racket are held together with cons cells. Understanding the relationship between
cons cells and lists will give you a better idea of how complex data in Racket works.

A cons cell is made of two little connected boxes, each of which can point to any
other piece of data, such as a string or a number. Indeed, a cons cell can even point to
another cons cell. By being able to point to different things, it’s possible to link cons cells
together into all kinds of data, including lists. In fact, lists in Racket are just an illusion—
all of them are actually composed of cons cells.

For instance, suppose we create (list 1 2
3).It’s created using three cons cells. Each cell
points to a number, as well as the next cons cell
for the list. The final cons cell then points to
empty to terminate the list, such as (cons 1
(cons 2 (cons 3 empty))).Ifyou've ever
used a linked list in another programming lan-
guage, this is the same basic idea. You can think
of this arrangement as similar to a calling chain
for your friends. “When I know about a party
this weekend, I'll call Bob, and then Bob will
call Lisa, who will call . . " Each person in a call-
ing chain is responsible for only one phone call,
which activates the next call in the list. In the
Realm of Racket, we also like to think of them
as nesting dolls that shed layers until the last
doll, which is rock solid.

Functions for CONS Cells

In this day and age, it is rare for a Racket programmer to manipulate cons cells as dotted
pairs. Most of the time, these cells are used to build lists and nested lists, and there are
great functions for dealing with all kinds of lists.

On some rare occasions, you may want to play with plain cons cells. So here is how
you create a raw cons cell:

> (cons 1 2)
(1. 2)

Asyou can see, the result is a list with a dot. You can give a cons cell a name with
define:

> (define cell (cons 'a 'b))

Chapter 3

And you can extract the pieces of data that you stuck into a cons cell:

> (car cell)
'a
> (edr cell)
'b

That is, if x is the name for a cons cell, car extracts the left piece of data from x and edr
extracts the right one.

Now you may wonder how anyone can be so crazy as to come up with names like
car and e¢dr. We do, too. Therefore we focus on cons cells as the building blocks of lists
and move on.

Lists and List Functions

Manipulating lists, not nested cons cells, is important in Racket programming. There are
three basic functions for manipulating lists in Racket: cons, first, and rest. But to get
started, you want to know that empty, '(), and (1ist) are all ways to say “empty list.”

A LTIST IN RACKET

element element
e __ ° " __ °

The CONS Function

If you want to link any two pieces of data in your Racket program, regardless of type, one
common way to do that is with the cons function. When you call cons, Racket allocates
a small chunk of memory, the cons cell, to hold references to the objects being linked.
Here is a simple example where we cons the symbol chicken to the empty list:

> (cons 'chicken empty)

' (chicken)

Basics of Racket

43

44

Notice that the empty list is not printed in the output of our cons call. There’s a simple
reason for this: empty is a special value that is used to terminate a list in Racket. That
said, the interactions panel is taking a shortcut and using the quote notation to describe
a list with one element: 'chicken.

The lesson here is that Racket will always go out of its way to hide the cons cells
from you. The previous example can also be written like this:

> (cons 'chicken '())

' (chicken)

The empty list, ' (), can be used interchangeably with empty in Racket. Thinking of
empty as the terminator of a list makes sense. What do you get when you add a chicken
to an empty list? Just a list with a chicken in it. Of course, cons can add items to the
front of the list. For example, to add 'pork to the front of '(beef chicken), use cons
like this:

> (cons 'pork '(beef chicken))
' (pork beef chicken)

When Racketeers talk about using cons, they say they are consing something, In this
example, we consed 'pork on to a list containing 'beef and ‘chicken. Since all lists are
made of cons cells, our '(beef chicken) list must have been created from its own two
cons cells:

> (cons 'beef (cons 'chicken '()))
' (beef chicken)

Combining the previous two examples, we can see what all the lists look like when
viewed as conses. This is what is really happening:

> (cons 'pork (cons 'beef (cons 'chicken '())))
' (pork beef chicken)

Basically, this is telling us that when we cons together three items, we get a list of three
items.

The interactions panel echoed back to us our entered items as a list, *(pork beef
chicken), but it could just as easily, though a little less conveniently, have reported back
the items exactly as we entered them. Either response would have been perfectly correct.
In Racket, a chain of cons cells and a list are exactly the same thing.

Chapter 3

The LIST Function

For convenience, Racket has many functions built on top of the basic three—cons,
first, and rest. A useful one is the 1ist function, which does the dirty work of build-
ing our list all at once:

> (list 'pork 'beef 'chicken)
' (pork beef chicken)

Remember that there is no difference between a list created with the 1ist function,

one created by specifying individual cons cells, and one created with '. They're all the
same animal. But consider the following before you rush out and buy all available quotes.

(cons (cons (cons 957 empty))
o R 0 T
) o o> o

The FIRST and REST Functions

While cons constructs new cons cells and assembles them into lists, there are also opera-
tions for disassembling lists. The first function is used for getting the first element out
of a list:

> (first (cons 'pork (cons 'beef (consg 'chicken empty))))
'pork

The rest function is used to grab the list out of the second part of the cell:

> (rest (list 'pork 'beef 'chicken))
' (beef chicken)

Basics of Racket

45

46

You can also nest first and rest to specify further which piece of data you are
accessing:

> (first (rest ' (pork beef chicken)))
'beef

You know that rest will take away the first item in a list. If you then take that shortened
listand use first, you'll get the firstitem in the new list. Hence, using these two func-
tions together retrieves the second item in the original list,

Nested Lists

Lists can contain any kind of data, including other lists:

> (list 'ecat (list 'duck 'bat) 'ant)
'(cat (duck bat) ant)

This interaction shows a list containing three elements. The second element is ' (duck
bat), which is also a list.

However, under the hood, these nested lists are still just made out of cons cells. Let’s
look at an example where we pull items out of nested lists.

> (first '((peas carrots tomatoes) (pork beef chicken)))

' (peas carrots tomatoes)

> (rest '(peas carrots tomatoes))

' (carrots tomatoes)

> (rest (first '((peas carrots tomatoes) (pork beef chicken))))

'(carrots tomatoes)

The first function gives us the first item in the list, which is a list in this case. Next,
we use the rest function to chop off the first item from this inner list, leaving us with
'(carrots tomatoes). Using these functions together gives the same result.

As demonstrated in this example, cons cells allow us to create complex structures,
and we use them here to build a nested list. To prove that our nested list consists solely of
cons cells, here is how we could create the same nested list using only the cons function:

> (cons (cons 'peas (cons 'carrots (cons 'tomatoces '())))
(cons (cons 'pork (cons 'beef (cons 'chicken '()))) '()))
'((peas carrots tomatoes) (pork beef chicken))

Chapter 3

3.5

Since various combinations of first and rest are so common and useful, many are
given their own name:

> (second '((peas carrots tomatoes) (pork beef chicken) duck))
' (pork beef chicken)
> (third '((peas carrots tomatoes) (pork beef chicken) duck))
'duck
> (first (second '((peas carrots tomatoes)

(pork beef chicken)

duck)))
'pork

In fact, functions for accessing the first through tenth elements are built in. These
functions make it easy to manipulate lists in Racket, no matter how complicated they
might be. If you are ever curious about built-in list functions, look in Help Desk.

Structures in Racket

Structures, like lists, are yet another means of packaging multiple pieces of data together
in Racket. While lists are good for grouping an arbitrary number of items, structures

are good for combining a fixed number of items. Say, for example, we need to track the
name, student D number, and dorm room number of every student on campus. In this
case, we should use a structure to represent a student’s information because each student
has a fixed number of attributes: name, ID, and dorm. However, we would want to use a
list to represent all of the students, since the campus has an arbitrary number of students,
which may grow and shrink.

Structure Basics

Defining structures in Racket is simple and straightforward. If we wish to make the stu-
dent structure for our example, we write the following structure definition:

> (struct student (name id# dorm))

This definition doesn’t actually create any particular student, but instead it creates a
new kind of data, which is distinct from all other kinds of data. When we say “creates
anew kind of data,” we really mean the structure definition provides functions for con-
structing and taking apart student structure values. Within struct, the first word—in
this case, student—denotes the name of the structure and is also used as the name of

Basics of Racket

47

48

the constructor for student values. The parentheses following the name of the structure
enclose a series of names for the components of the structure, and the constructor takes
that many values.

Let’s create an instance of student:

> (define freshmanl (student 'Joe 1234 'NewHall))

Since the structure definition mentions three pieces, we apply the student constructor to
three values, thus creating a single value that contains them all. This value is an instance,
and it has three fields. Just as with any other kind of value, we can give names to struc-
tures for easy reference. If we ever need to retrieve information about our freshmanl
student, we just use the accessors for student structures:

> (student-name freshmanl)
'Joe

> (student-id# freshmanl)
1234

To access the information in a structure field, we call the appropriate accessor func-
tion. In this case, we want to pull the name from the student structure that we already
created, so we'll use student-name. As you can see, the interactions panel shows 'Joe,
which is the value in freshmanl’s name field. When you want to access a different field,
you use the function for that field instead, say student-id#. As you may have guessed by
now, the structure definition creates three such functions: student-name, student-id#,
and student-dorm. We sometimes call them field selectors or just selectors.

In Racket, it is common practice to store data as lists of structures. Say we wanted to
keep alist of all the freshman students in a computer science class. Since we could have
anywhere from a handful to hundreds or thousands of students in the class, we want to
use a list to represent it:

(define mimi (student 'Mimi 1234 'NewHall))
(define nicole (student 'Nicole 5678 'NewHall))
(define rose (student 'Rose 8765 'NewHall))
> (define eric (student 'Eric 4321 'NewHall))
(define in-class (list mimi nicole rose eric))
(student-id# (third in-class))
8765

Here, four students are listed and combined in a list called in-class. All of the list func-
tions we discussed in the previous section still apply, and we see that we can still access
the fields of the student structures.

Chapter 3

Nesting Structures

It can come in handy to have structures within structures and even within lists. For
instance, in our previous example, we could keep all the students in one central-
ized student-body structure for freshmen, sophomores, juniors, and seniors, where
each year stands for a list of student structures:

> (struct student-body (freshmen sophomocres juniors seniors))
> (define all-students
(student-body (list freshmanl (student 'Mary 0101 '0ldHall))
(list (student 'Jeff 5678 '0OldHall))
(list (student 'Bob 4321 'Apartment))
empty))

Here, we create the student-body structure with fields for the four different years.
Next, we give the name all-students to one specific instance of student-body. As
you can see, we expect lists of students in each of the four fields of a student-body
instance.

To retrieve the name of the first freshman in the list, we need to properly layer our
accessors:

> (student-name (first (student-body-freshmen all-students)))
'Joe

> (student-name (second (student-body-freshmen all-students)))
'Mary

> (student-name (first (student-body-juniors all-students)))
'Bob

We want the student-name of the first of the student-body-freshmen list. As we
can see, 'Joe is the name of the first freshman we created before. This also works to get
'Mary and 'Bok.

Hi honey.

Just for you, some..

(define macks (cookie lollipop cupcake chips))
(struct sandwich (bread-type cheese meat))
(struct lunchbox (fruit juice smacks sandwich))

Basics of Racket

49

50

Structures and lists are useful for many different cases, such as organizing data into
meaningful compartments that can be easily accessed. In this book, we will be using
structures and lists for almost all programs.

Structure Transparency

By default, Racket creates opaque structures. Among other things, this means that when
you create a specific structure and use it in the interactions panel, it does not print just
as you created it. Rather, you will see something strange:

> (struct example (x y z))
> (define exl (example 1 2 3))
> exl

#<example>

If you want to look inside structures, you must use the #:transparent option with your
structure definition. By some sort of magical process, you will then be able to see your
structures in the interactions panel:

> (struct example2 (p g r) #:transparent)
> (define ex2 (example2 9 8 7))
> ex2

(example2 9 8 7)

All of the structures in this book are supposed to be transparent, and therefore we don’t
bother to show the option when we define structures.

Interrupt—Chapter Checkpoint
In this chapter, you saw most of the building blocks of Racket’s syntax and semantics:

e There are many kinds of basic data, like Booleans, symbols, numbers, and strings.
+ You can make lists of data.
* You can make your own, new kinds of data with structures.

* You can mix it all up.

Chapter 3

4.1

;; Chapter 4
(Conditions and Decisions)

#]

You've now seen Racket’'s simple syntax and a bunch of different
kinds of data. But can you write a program that answers a gques-
tion about some plece of data? And can you write a program that
chooses different values depending on the answers to these gques-
tions? In this chapter, we’ll look at predicates and different
forms of conditicnal evaluation. Among them is an extremely ele-
gant multi-branch conditional that Racketeers use as their major
workhorse for many of their programming tasks.

|4

How to Ask

Racketeers think of a conditional as a form that asks questions about values and, depend-
ing on the answers, evaluates the appropriate expression. It is therefore natural that this
chapter shows you how to ask questions before it introduces conditionals.

A Racket program can ask many kinds of questions, but it always asks questions with
predicates. You may have heard of predicates in English class, but a Racket predicate is
just a function that returns either true or false, which are conventionally written as #t

