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1 Rational Agents

The world we inhabit is full of agents. We encounter them every day, as we
go about our lives. By the term “agent,” I mean an entity that acts upon the
environment it inhabits. Agents are not merely observers of their environment,
nor are they the passive recipients of actions performed by other entities.

Rather, agents are the active, purposeful originators of action. These actions
are performed in order to modify and shape the environment inhabited by the
agent. People like you and I are the most obvious examples of agents in the
real world, but there are many others, such as legal entities like governments,
companies, and corporations.

In our dealings with the world, we often make a distinction between agents

that are rational and those that are not, in the following sense. An agent is said
to be rational if it chooses to perform actions that are in its own best 1nterests,

given the beliefs it has about the world. For example, if I have a goal of staying
dry, and I believe it is raining, then it is rational of me to take an umbrella
when I leave my house. Taking the umbrella will enable me to satisfy my goal
of staying dry, and in this sense, it is in my best interest. You would still be
inclined to refer to my behavior as rational even if I was mistaken in my belief
that it was raining: the point is that I made a decision that, if my beliefs were
correct, would have achieved one of my goals.

In one sense, human agents are notoriously irrational when they make
decisions. From time to time, we all make decisions that, with the benefit
of hindsight, are self-evidently poor. When evaluated against strict metrics of
rationality, humans rarely perform well. But this paints a misleading picture.
The fact is that, overall, humans are very good decision makers. We inhabit a
continuously changing physical world of extraordinary richness, complexity,
and diversity. Our plans are constantly thwarted, both by random quirks of
nature and, occasionally, by the deliberately malicious intervention of our
peers. We are forced to make decisions for which we are ill prepared, both
in terms of prior experience and in terms of the information upon which to
base decisions. And yet, despite all this, we prosper. As decision makers, we
seem to be quite robust to the vagaries of our environment. We successfully
interact with our peers even when they are in conflict with us, and we cope
with uncertainty about the world, failed actions and plans, and the complexity
of our environment.
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One goal of the artificial intelligence (AI) community is to engineer com-
puter programs that can act as autonomous, rational agents. We wish to build
computer programs that can independently make good decisions about what
actions to perform. But it is not enough to have programs that think of a good
action to perform — we wish to have them actually execute these actions. In
other words, we want to create rational agents that are embodied in some envi-
ronment — that inhabit and act upon some environment in the same way that
we inhabit and act upon ours.

Ideally, we would like to engineer agents that are as good at making
decisions and acting upon them as we are. Of course, this goal is a long way
from being achieved. Unfortunately, like so many other problems encountered
throughout the history of Al, it has proven extraordinarily difficult to engineer
agents that can select and execute good decisions for moderately complex
environments. Nor is the problem likely to be solved in any meaningful sense
for some time yet.

1.1 Properties of Rational Agents

In order to understand why it is hard to engineer a rational agent, let us
consider what sorts of properties we expect a rational agent to exhibit. First, it
is important to understand that we usually consider agents to be systems that
are situated or embodied in some environment — agents are not disembodied
systems. By this, I mean that agents are capable of sensing their environment
and have a repertoire of possible actions that they can perform in order to
modify the environment. This leads to the view of an agent as shown in
Figure 1.1. The requirement that agents must be embodied implies that many
of the systems that have been developed to date within Al do not count as
agents. Examples include most theorem provers and expert systems.

The environment that an agent occupies may be physical (in the case of
robots inhabiting the physical world) or a software environment (in the case of
a software agent inhabiting a computer operating system or network). In the
case of a physically embodied agent, actions will be physical, such as moving
objects around. The sensor input received by the agent will be comprised
of video feeds and the like. In the case of a software agent, actions will be
software commands (such as the UNIX rm command, which removes a file),
and sensor input will be obtained by performing commands such as 1s (which

obtains a directory listing) [53].
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Agents and their environments. The agent takes sensory input from the environment, and
produces as output actions that affect it.

Note that in almost all realistic applications, agents have at best partial
control over their environment. Thus, while they can perform actions that
change their environment, they cannot in general completely control it. It
therefore makes sense to divide the environment, conceptually at least, into
those parts that the agent controls, those parts it partially controls, and those
parts over which it has no control. (If we regard an agent’s internal state as
being part of the environment, then this would be controlled by the agent.)

Apart from being situated in an environment, what other properties do we
expect a rational agent to have? Wooldridge and Jennings [249] argue that

agents should have the following properties:

e autonomy;
e proactiveness;
e reactivity; and

e social ability.

At its simplest, autonomy means nothing more than being able to operate in-
dependently. Thus, at the very least, an autonomous agent makes independent
decisions — its decisions (and hence its actions) are under its own control,
and are not driven by others. Autonomous agents are therefore the loci of de-
cision making. However, autonomy is usually taken to have a slightly stronger
meaning than this. We generally assume that an autonomous agent is one that
has its own beliefs, desires, and intentions, which are not subservient to those
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of other agents. This is not to say that these beliefs, desires, and intentions are
necessarily represented within an agent — the point is that we regard a rational
agent as “having its own agenda,” which may or may not concur with that of

other agents.

Proactiveness means being able to exhibit goal-directed behavior. If an
agent has a particular goal or intention, then we expect the agent to try to
achieve this intention. For example, if I have an intention to write a book,
then it is rational of me to actually act rowards this intention, by eventually
putting pen to paper. Moreover, proactiveness means exploiting serendipity.
For example, if I have a desire to become rich, and an opportunity to make a
fortune arises, then it is only rational of me to try to exploit this opportunity,
perhaps by generating a new goal. Proactiveness rules out entirely passive
agents, who never try to do anything.

Being reactive means being responsive to changes in the environment.
As I noted above, in everyday life, our plans rarely run smoothly. They are
frequently thwarted, both by the vagaries of nature and by other agents fouling
them up. When we become aware that our plans have gone awry, we do not
ignore this fact. We respond, by choosing an alternative course of action.
Responses may be of the “stimulus — response” style, or they may involve
further deliberation. For example, if I am driving my car and I realize I am
about to crash into something, I will swerve to avoid it. It is unlikely that this
kind of response involves much deliberation on my part; the behavior seems
to be “hardwired.” In contrast, if [ am traveling to Heathrow Airport for a 9.30
AM flight, and I discover that the train I was about to catch is not running, I
will actively deliberate in order to fix upon a course of action that will still
enable me to catch my flight. This deliberation typically involves at least some
reasoning about the alternatives available (catching a taxi or bus, for example).
Crucially, however, I fix upon an alternative sufficiently quickly that it will
deliver me to the airport in time — I will not deliberate for so long that it
becomes impossible to catch the flight.

Designing a purely reactive system, which simply responds to environ-
mental stimuli, is not hard. We can implement such a system as a lookup table,
which simply maps environment states directly to actions. Similarly, devel-
oping a purely goal-driven system is not hard. (After all, this is ultimately
what conventional computer programs are.) However, implementing a system
that achieves an effective balance between goal-directed and reactive behavior
turns out to be very hard. We elaborate on this problem in the next chapter.
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Finally, let us say something about social ability. In one sense, social
ability is trivial. After all, every day, millions of computers across the world
routinely exchange information with both humans and other computers. But
the ability to exchange bit streams is not really social ability. Consider that,
in the human world, comparatively few of our goals can be achieved without
interaction with other people and organizations, who cannot be assumed to
share our goals. These agents are themselves autonomous, with their own
agendas to pursue. To achieve our goals in such situations, we must negotiate
and cooperate with-these agents. We may be required to understand and reason
about their beliefs and goals, and to perform actions (such as paying them
money) that we would not otherwise choose to perform, in order to get them
to cooperate with us, and achieve our goals. This type of social ability —

the ability to interact (through negotiation and cooperation) with other self-
interested agents — 1s much more complex and much less understood than

simply the ability to exchange bit streams. In the later chapters of this book, I
focus on such interactions in detail.

1.2 A Software Engineering Perspective

It is important to understand that the engineering of rational agents is not
simply an abstract intellectual pursuit. It arises as a result of problems faced
by software engineers across the world at the start of the new millennium,

Originally, software engineering concerned itself primarily with what are
known as “functional” systems. A functional system is one that simply takes
some input, performs some computation over this input, and eventually pro-
duces some output. Such systems may formally be viewed as functions f :
I — O from a set I of inputs to a set O of outputs. The classic example of
such a system is a compiler, which can be viewed as a mapping from a set / of
legal source programs to a set O of corresponding object or machine code pro-
grams. Although the internal complexity of a functional system may be great
(e.g., in the case of a compiler for a complex programming language such as
ADA), functional programs are, in general, comparatively simple to engineer
correctly and efficiently. Unfortunately, many of the computer systems that
we desire to build are not functional in the sense we describe here. Rather than
simply computing a function of some input and then terminating, such systems
are reactive, in the following sense:!

1 There are at least three current usages of the term “reactive system” in computer science. The
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constrains decision-making in the manner described, seems attractive.

The BDI model has been implemented several times. Originally, it was re-
alized in IRMA, the Intelligent Resource-bounded Machine Architecture [22].
IRMA was intended as a more or less direct realization of Bratman’s theory of
practical reasoning. However, the best-known implementation is the Procedu-
ral Reasoning System (PRS) [78] and its many descendants [61, 183, 46, 100].
In the PRS, an agent has data structures that explicitly correspond to beliefs,
desires, and intentions. A PRS agent’s beliefs are directly represented in the
form of PROLOG-like facts [34, p.3]. Desires and intentions in PRS are real-
ized through the use of a plan library.? A plan library, as its name suggests,
is a collection of plans. Each plan is a recipe that can be used by the agent to
achieve some particular state of affairs. A plan in the PRS is characterized by
a body and an invocation condition. The body of a plan is a course of action
that can be used by the agent to achieve some particular state of affairs. The
invocation condition of a plan defines the circumstances under which the agent
should “consider” the plan. Control in the PRS proceeds by the agent contin-
ually updating its internal beliefs, and then looking to see which plans have
invocation conditions that correspond to these beliefs. The set of plans made
active in this way correspond to the desires of the agent. Each desire defines a
possible course of action that the agent may follow. On each control cycle, the

PRS picks one of these desires, and pushes it onto an execution stack, for sub-
sequent execution. The execution stack contains desires that have been chosen

by the agent, and thus corresponds to the agent’s intentions.
The third and final component of the BDI model is the logical component.

This logical component provides a family of tools that allow us to reason about
BDI agents.

1.4 Reasoning about Belief-Desire-Intention Agents

Computer science is, as much as it is about anything, about developing theories
and formalisms that allow us to reason about the behavior of computational
systems. The theory of a system can be understood as the semantics of that
system. An obvious question, therefore, is: What sort of theory can we use to
give a semantics to BDI systems? The answer presented by this book is to use

BDI logics to axiomatize properties of agents.

2 In this description of the PRS, I have modified the original terminology somewhat, to be more
in line with contemporary usage; I have also simplified the control cycle of the PRS slightly.
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A fundamental problem in developing such a theory of rational agency is to
give an account of the relationships that exist between an agent’s mental states.
In particular, a complete agent theory would explain how an agent’s mental
states lead it to select and perform rational actions, thus realizing the mapping
from perception to action illustrated in Figure 1.1. To give a flavor of the issues
involved in developing such a theory, consider the relationship between belief
and intention. Suppose I intend to bring about some state of affairs ¢. What
does the fact that I intend ¢ imply about my beliefs with respect to ¢©? Well,
clearly, it would make no sense for me to intend ¢ if I believe that ¢ is already
true. If my book is written, then there is no point in me intending to write it.
This property — that intending ¢ implies you do not already believe ¢ — is
a constraint that should be satisfied by a rational agent. We can capture this

constraint in a formula schema of LOR A, the logic I use throughout this book
to represent the properties of agents.

(Intip) = —(Beliyp) (1.1

Here, (Int i ) is a construction that means “agent i intends .” It is not hard
to guess that (Bel i ) means “agent i believes ¢.” A “complete” theory of
rational agency would be comprised of a number of formula schemas such as
(1.1), which would together axiomatize the properties of rational agency.

Unfortunately, giving anything like a complete account of the relationships
between an agent’s mental states is extremely difficult. Part of the problem
is that the objects of study — beliefs, desires, and the like — are rather
different to phenomena that we observe in the physical world. In attempting
to develop formal theories of such notions, we are forced to rely very much on
our intuitions about them. As a consequence, such theories are hard to validate
(or invalidate) in the way that good scientific theories should be. Fortunately,
we have powerful tools available to help in our investigation. Mathematical
logic allows us to represent our theories in a transparent, readable form, and
examine (through the medium of formal proof) the predictions that our theories
make, in order to see whether or not their consequences make sense.

LORA stands for “Logic Of Rational Agents.” LOR.A is a BDI logic:
originally developed by Anand Rao and Michael Georgeff [187, 186, 188,
189, 184, 185], BDI logics allow us to represent the beliefs, desires, and
intentions of agents. In addition to the BDI component, LOR.A contains a
temporal component, which allows us to represent the dynamics of agents and
their environments — how they change over time. Finally, LOR A contains
an action component, which allows us to represent the actions that agents
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perform, and the effects that these actions have.

1.5 Frequently Asked Questions (FAQ)

Certain questions are frequently asked about the work presented in this book,
and so it seems only appropriate that I should include a FAQ.

Why Not Decision Theory?

Decision theory is a mathematical theory of rational decision making. Decision
theory defines a rational agent as one that maximizes expected utility. The basic

ideas of decision theory are very simple. Assume we have some agent, and that
Ac is the set of all possible actions available to it. The performance of an action

by the agent may result in a number of possible outcomes, where the set of all
outcomes is ) = {w,w’,...}. Let the probability of outcome w € (2 given that

the agent performs action a € Ac be denoted by P(w | @), and finally, let the

utility of an outcome w € 2 for the agent be given by a function U : ! — R.
If U(w) > U(w'), then the agent prefers outcome w over outcome w’.

The expected utility of an action a € Ac is denoted EU(a). Thus EU(«)
represents the utility that an agent could expect to obtain by performing action
Q.

EU(a) = »  U(w)P(w | a) (1.2)

well

A rational agent is then one that chooses to perform an action « that maximizes
EU(...). It is straightforward to define the behavior of such an agent. Let
the function f,,, take as input a set of possible actions, a set of outcomes,
a probability distribution over possible outcomes given the performance of
actions, and a utility function, and let this function return an action. Then we
can define the desired behavior of f,,, as follows.

Jopt(Ac, 2, P,U) = arg max Z Uw)P(w | a) (1.3)
wenN
As Russell and Norvig point out, equations (1.2) and (1.3) could be seen in one
sense as defining the whole of artificial intelligence [198, p.472]. It seems that
in order to build a rational agent, all we need to do is implement the function
fope. But while decision theory is a normative theory of rational action (it tells us
what an agent should in principle do) it has nothing to say about how we might
efficiently implement the function f,,,. The problem is that f,,, seems to require
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an unconstrained search over the space of all actions and their outcomes. Such
a search 1s prohibitively expensive, particularly in the case where an agent
needs to consider sequences of actions (i.e., plans).

Another problem is that it is hard in practice to obtain the probability
distribution P or utility function U. If we consider a domain defined by m
attributes, each of which may take n values, then the set {2 will contain
m”" different outcomes. Simply enumerating these outcomes is likely to be
impractical in many circumstances. Even if it is possible to enumerate the
outcomes, actually obtaining the required probabilities and utilities for them
1s notoriously hard [198, pp.475-480]. See the “Notes and Further Reading”
section at the end of this chapter for references to how decision theory is
currently being used in artificial intelligence.

Why Not Game Theory?

Game theory 1s a close relative of decision theory, which studies interactions
between agents where each agent is accorded a utility function as described
above [14]. The tools and techniques of game theory have found many applica-
tions in computational multiagent systems research, particularly when applied
to such problems as negotiation [195, 199]. Game theory shares with decision
theory many concepts, in particular the concept of a rational agent as one that
acts to maximize expected utility. However, game theory also shares many of
the problems of decision theory. While it tells us what a rational agent should
do in principle, it does not give us many clues as to how to implement such
decision makers efficiently. In addition, like decision theory, game theory is
quantitative in nature.

It is important to note that all this should not be taken to imply that game
theory is in any sense wrong, or that it is of no use. On the contrary, game
theory is an extremely powerful analytic tool, which will certainly be applied
more widely in years to come. But it does have limitations.

Why Logic?

There are some in the Al research community who believe that logic is (to put
it crudely) the work of the devil, and that the effort devoted to such problems
as logical knowledge representation and theorem proving over the years has
been, at best, a waste of time. At least a brief justification for the use of logic
therefore seems necessary.
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First, by fixing on a structured, well-defined artificial language (as opposed
to unstructured, ill-defined natural language), it is possible to investigate the
question of what can be expressed in a rigorous, mathematical way (see, for
example, Emerson and Halpern [50], where the expressive power of a number
of temporal logics are compared formally). Another major advantage is that
any ambiguity can be removed (see, e.g., proofs of the unique readability of
propositional logic and first-order predicate logic [52, pp.39—43]).

Transparency is another advantage:

By expressing the properties of agents, and multiagent systems as logical axioms
and theorems in a language with clear semantics, the focal points of [the theory] are
explicit. The theory is transparent; properties, interrelationships, and inferences are
open to examination. This contrasts with the use of computer code, which requires
implementational and control aspects within which the issues to be tested can often

- become confused. [68, p.88]

Finally, by adopting a logic-based approach, one makes available all the results
and techniques of what is arguably the oldest, richest, most fundamental, and

best-established branch of mathematics.
The final chapter in the main text of this book, chapter 9, considers in detail

the role of logic in the theory and practice of multiagent systems.

Why Not First-Order Logic?

Those active in the area of logic for AI can be divided broadly into two
camps: those who make use of classical (usually first-order) logic, and those

who use non-classical logics (in particular, modal and temporal logics of the
kind used in this book) of some sort. This book makes use of a logic called
LOR.A. From a technical point of view, LOR A is a first-order branching time
logic, containing modal connectives for representing the beliefs, desires, and
intentions of agents, as well as a dynamic logic-style apparatus for representing

and reasoning about the actions that agents perform.
Strong opinions are held in both camps on the relative merits of classical

versus non-classical logics. Those in favor of classical logic point to a number
of general arguments against modal logics:

1. First-order logic is sufficiently expressive that it can be used to encode
almost any form of knowledge required.
2. While the satisfiability problem for first-order logic is only semi-decidable

(see, e.g., [73, p.58]) the corresponding problem for modal and temporal logics
tends to be even worse. Some multimodal logics are undecidable even in the
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science will cover these prerequisites. If you have such a background, then
you should be able to read the book and gain an understanding of the main
ideas without delving into the formal details. Ultimately, all you need to know
to understand most of the book is how to read formulae of LOR.A. Chapter 3
explains how to read formulae of LOR.A without going into the details of the
logic at all. If you prefer not to read the mathematically oriented sections of
the book, then you should avoid chapter 4 completely, and all sections marked
with an asterisk (“*”) in the section header. The appendices survey the logical

preliminaries required to understand the book.

Do I Need to Read the Proofs?

I do not enjoy reading proofs, or indeed writing them, but they are “a necessary
evil” in the words of my editor at MIT Press. If you feel the same as I feel,

then my advice is as follows. If you simply want to become familiar with the
techniques used and the results in the book, then there is no reason to read any
of the proofs at all. However, if you want to use LOR.A yourself, to build on
any of the results presented in this book, or to gain a really deep understanding
of the book, then you will simply have to bite the bullet. In fact, most of
the proofs rely on a relatively small set of techniques, which will already be
familiar to readers with a grounding in modal, temporal, and first-order logic.

How Do I Implement This Book?

LORA is not an executable logic, and there is currently no simple way of au-
tomating LOR.A so that it can be used directly as a knowledge representation
formalism or a programming language. The possible roles that logics such as
LOR.A might play in the engineering of agent systems are explored in detail

in chapter 9.

Where Can I Find Out More?

I have done my best to make the material in this book as self-contained as
possible, in that while it presupposes some basic knowledge of discrete maths
and logic, all definitions and such are included in their entirety. There should
therefore be no need to refer directly to other texts in order to understand the

book. However, to help the reader find out more, every chapter (including this
one) concludes with a section entitled “Notes and Further Reading,” which

gives historical notes, pointers to further reading, and open problems. The
appendices also contain background material.
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1.6 The Structure of This Book

The remainder of this book can be broadly divided into three parts:

e The first part (chapters 2 and 3) is background material. This part sets the
scene, by introducing the basic concepts and formalism used throughout the

book.

e The second part (chapters 4 and 5) develops the formal model that is used
throughout the book, and shows how this framework can be used to capture

some properties of individual rational agents.

e The third part (chapters 6, 7, and 8) shows how agents can be used to capture
properties of multiagent, social systems.

In more detail:

e Chapter 2 (“The Belief-Desire-Intention Model™) gives a detailed introduc-
tion to the BDI model. It begins by introducing Bratman'’s intention-based the-
ory of practical reasoning, the foundation upon which the BDI model rests. Af-
ter introducing this theory, I turn to the question of how BDI agents might be
implemented. I consider a number of pseudo-code agent control loops, and dis-
cuss the extent to which they can be considered as capturing our pre-theoretic
intuitions about beliefs, desires, and intentions.

e Chapter 3 (“An Introduction to LOR.A”) informally introduces LORA.
This chapter is intended for readers who do not have a strong background
in logic. After this chapter, readers should be able to understand formulae of

LORA.

e Chapter 4 (“LOR.A Defined”) gives a complete definition of the syntax
and semantics of LOR.A, and investigates some of its properties. This chapter
presupposes some familiarity with quantified modal, temporal, and dynamic
logics, but is otherwise entirely self-contained.

e Chapter 5 (“Properties of Rational Agents”) investigates how LOR.A can
be used to capture properties of rational agents. Examples of such properties
include the possible interrelationships among beliefs, desires, and intentions,
and degrees of realism. This chapter focuses in particular on the properties of
individual agents.

e Chapter 6 (“Collective Mental States”) changes the focus of the book from

individual agents to groups of agents. It shows how LOR.A can be used to for-
malize collective mental states such as mutual beliefs, desires, and intentions,
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but in addition, such notions as joint commitment.

e Chapter 7 (“Communication”) shows how LORA can be used to define
communicative (speech) acts between agents. Following a discussion of the

history of speech acts in multiagent systems, I show how “request” and “in-
form” actions can be defined in LOR.A, building on the prior work of Cohen

and Levesque [36]. Roughly speaking, an inform action takes place when one
agent attempts to get another agent to believe something; a request action takes
place when one agent gets another agent to intend something. Using these two
speech acts as primitives, I show how a range of other speech acts may be
defined using LORA.

e Chapter 8 (“Cooperation”) shows how LOR.A can be used to define a model
of cooperative problem solving. This model is an adaptation of the theory
of cooperation introduced in [247, 248, 250]. It treats cooperative problem
solving as a four-stage process, beginning when one agent recognizes the
potential for cooperation with respect to one of its actions, which is followed
by the agent attempting to solicit assistance from a team of agents, which then
attempt to agree to a plan of (joint) action to achieve the goal, which finally is

executed by the group.

e Chapter 9 (“Logic and Agent Theory”) attempts to put the book into per-
spective. It discusses the role that logical theories of agency can or should
play in the development of agent systems. Adopting a software engineering
perspective, where such theories are treated as specifications that an idealized
agent would satisfy, it investigates the extent to which they can be used in the

implementation or verification of practical agent systems.

In addition, the book contains two appendices:

e Appendix A contains a summary of the notation used in the main text of the
book.

e Appendix B contains a short, self-contained introduction to modal and
temporal logics, for readers unfamiliar with this material.

1.7 Notes and Further Reading

There are now many introductions to intelligent agents and multiagent sys-
tems. Ferber [56] is an undergraduate textbook, although as its name suggests,
this volume focussed on multiagent aspects rather than on the theory and prac-
tice of individual agents. A first-rate collection of articles introducing agent
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and multiagent systems is Weill [233]; in particular, chapters 1, 2, 3, and 8
would provide an excellent introduction to the current volume. Three collec-
tions of research articles provide a comprehensive introduction to the field of
autonomous rational agents and multiagent systems: Bond and Gasser’s 1988
collection, Readings in Distributed Artificial Intelligence, introduces almost
all the basic problems in the multiagent systems field, and although some of
the papers it contains are now rather dated, it remains essential reading [18];
the Readings in Planning collection, from Allen, Hendler, and Tate may not
appear to be the most obvious place to start for an introduction to agents, but
the basic issue it addresses — deciding what action to perform — is central to
the study of agents [2]; finally, Huhns and Singh’s more recent collection sets
itself the ambitious goal of providing a survey of the whole of the agent field,
and succeeds in this respect very well [102]. For a general introduction to the
theory and practice of intelligent agents, see Wooldridge and Jennings [249],
which focuses primarily on the theory of agents, but also contains an extensive
review of agent architectures and programming languages. For a collection of
articles on the applications of agent technology, see [109]. A comprehensive
roadmap of agent technology was published as [108].

Some authors view the whole of the artificial intelligence endeavor as one
of constructing rational agents: Russell and Norvig’s enormously successful,

encyclopedic introductory Al textbook is the best-known example [198].
This question of “what is an agent” is one that continues to generate some
debate, particularly on unmoderated email lists and news forums. Unfortu-

nately, much of the debate is not as informed as one might wish. For an in-
teresting collection of answers to the question, see [164]. The notion of a soft-
ware agent, which inhabits a software environment, was introduced by Oren
Etzioni [53]. Another good discussion can be found in Kaelbling [112].

The relevance of decision theory and game or economic theory to artificial
intelligence was recognized in the very earliest days of the discipline; the work
of Herb Simon is perhaps best known in this regard (see, e.g., [208]). Decision
theoretic approaches to the planning problem are currently the focus of con-
siderable attention within the artificial intelligence community — see [16] for
an overview. Rao and Georgeff, who developed the basic BDI logic framework
upon which LORA is based, investigated the relationship between the BDI
model and classical decision theory in [185, pp.297-200]. They showed how
the “choice and chance” trees employed in decision theory could be mapped
into semantic models for their BDI logics.
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Following the seminal work of Jeffrey Rosenschein and colleagues on
the application of game-theoretic techniques to negotiation [195], game the-
ory 1s now widely applied in multiagent systems research. A comprehensive
overview is provided in [199].

Finally, logic has been widely used in artificial intelligence since John
McCarthy’s early work on the “advice taker” system [149]; see [73, 198] for
detailed introductions to the use of logic in artificial intelligence, and see [103]
for a general discussion on the role of logic in artificial intelligence. See
also [167] and Birnbaum’s response to this for some more strident views [15].
For discussions on the relative merits of first-order logic versus the alternatives
(modal or temporal logics), see [191] or [70].

Although he is a strong advocate of logic in artificial intelligence, John
McCarthy has reservations about the utility of modal logic; a position paper on
the topic, entitled Modality, Si! Modal Logic, No! appeared as [150]. Joseph
Halpern responded to McCarthy’s statement in the online journal Electronic
Transactions on Artificial Intelligence in late 1999, at the time of writing, the

online debate was continuing.
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of deciding which career to aim for is deliberation. Once one has fixed upon a
career, there are further choices to be made; in particular, how to bring about
this career. Suppose that after deliberation, you choose to pursue a career as an
academic. The next step i1s to decide how to achieve this state of affairs. This
process is means-ends reasoning. The end result of means-ends reasoning is a
plan or recipe of some kind for achieving the chosen state of affairs. For the
career example, a plan might involve first applying to an appropriate university
for a Ph.D. place, and so on. After obtaining a plan, an agent will typically then
attempt to carry out (or execute) the plan, in order to bring about the chosen
state of affairs. If all goes well (the plan is sound, and the agent’s environment
cooperates sufficiently), then after the plan has been executed, the chosen state
of affairs will be achieved.

Thus described, practical reasoning seems a straightforward process, and
in an ideal world, it would be. But there are several complications. The first is
that deliberation and means-ends reasoning are computational processes. In all
real agents (and in particular, artificial agents), such computational processes
will take place under resource bounds. By this I mean that an agent will only
have a fixed amount of memory and a fixed processor available to carry out
its computations. Together, these resource bounds impose a limit on the size
of computations that can be carried out in any given amount of time. No real
agent will be able to carry out arbitrarily large computations in a finite amount
of time. Since almost any real environment will also operate in the presence
of time constraints of some kind, this means that means-ends reasoning and
deliberation must be carried out in a fixed, finite number of processor cycles,
with a fixed, finite amount of memory space. From this discussion, we can see

that resource bounds have two important implications:

e Computation is a valuable resource for agents situated in real-time envi-
ronments. The ability to perform well will be determined at least in part by
the ability to make efficient use of available computational resources. In other
words, an agent must control its reasoning effectively if it is to perform well.

e Agents cannot deliberate indefinitely. They must clearly stop deliberating at
some point, having chosen some state of affairs, and commit to achieving this
state of affairs. It may well be that the state of affairs it has fixed upon is not
optimal — further deliberation may have led it to fix upon an another state of

affairs.
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We refer to the states of affairs that an agent has chosen and committed to

as its intentions. The BDI model of agency is ultimately one that recognizes
the primacy of intentions in practical reasoning, and it is therefore worth

discussing the roles that they play in more detail.

2.2 Intentions in Practical Reasoning

First, notice that it is possible to distinguish several different types of intention.
In ordinary speech, we use the term “intention” to characterize both actions

and states of mind. To adapt an example from Bratman [20, p.1], I might
intentionally push someone under a train, and push them with the intention
of killing them. Intention is here used to characterize an action — the action
of pushing someone under a train. Alternatively, I might have the intention
this morning of pushing someone under a train this afternoon. Here, intention
is used to characterize my state of mind. In this book, when I talk about
intentions, I mean intentions as states of mind. In particular, I mean future-
directed intentions — intentions that an agent has towards some future state of
affairs.

The most obvious role of intentions is that they are pro-attitudes [21, p.23].
By this, I mean that they tend to lead to action. Suppose I have an intention to
write a book. If I truly have such an intention, then you would expect me to
make a reasonable attempt to achieve it. This would usually involve, at the
very least, me initiating some plan of action that I believed would satisfy the
intention. In this sense, intentions tend to play a primary role in the production
of action. As time passes, and my intention about the future becomes my
intention about the present, then it plays a direct role in the production of
action. Of course, having an intention does not necessarily lead to action. For
example, I can have an intention now to attend a conference later in the year. 1
can be utterly sincere in this intention, and yet if I learn of some event that must
take precedence over the conference, I may never even get as far as considering
travel arrangements.

Bratman notes that intentions play a much stronger role in influencing
action than other pro-attitudes, such as mere desires:

My desire to play basketball this afternoon is merely a potential influencer of my
conduct this afternoon. It must vie with my other relevant desires [...] before it is
settled what I will do. In contrast, once I intend to play basketball this afternoon, the
matter is settled: I normally need not continue to weigh the pros and cons. When the
afternoon arrives, I will normally just proceed to execute my intentions. [21, p.22]
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The second main property of intentions is that they persist. If 1 adopt an
intention to become an academic, then I should persist with this intention and
attempt to achieve it. For if I immediately drop my intentions without devoting
any resources to achieving them, then I will not be acting rationally. Indeed,
you might be inclined to say that I never really had intentions in the first place.

Of course, I should not persist with my intention for too long — if it
becomes clear to me that I will never become an academic, then it is only
rational to drop my intention to do so. Similarly, if the reason for having an
intention goes away, then it would be rational for me to drop the intention. For
example, if I adopted the intention to become an academic because I believed it
would be an easy life, but then discover that this is not the case (e.g., I might be
expected to actually teach!), then the justification for the intention is no longer
present, and I should drop the intention.

If I initially fail to achieve an intention, then you would expect me to try
again — you would not expect me to simply give up. For example, if my first
application for a Ph.D. program is rejected, then you might expect me to apply
to alternative universities.

The third main property of intentions is that once I have adopted an inten-

tion, the very fact of having this intention will constrain my future practical
reasoning. For example, while I hold some particular intention, I will not sub-
sequently entertain options that are inconsistent with that intention. Intending
to write a book, for example, would preclude the option of partying every night:
the two are mutually exclusive. This is in fact a highly desirable property from
the point of view of implementing rational agents, because in providing a “fil-
ter of admissibility,” intentions can be seen to constrain the space of possible
intentions that an agent needs to consider.

Finally, intentions are closely related to beliefs about the future. For ex-
ample, if I intend to become an academic, then I should believe that, assuming
some certain background conditions are satisfied, I will indeed become an aca-
demic. For if I truly believe that I will never be an academic, it would be non-
sensical of me to have an intention to become one. Thus if I intend to become
an academic, I should at least believe that there is a good chance I will indeed
become one. However, there is what appears at first sight to be a paradox here.
While I might believe that I will indeed succeed in achieving my intention, if
I am rational, then I must also recognize the possibility that I can fail to bring
it about — that there is some circumstance under which my intention is not

satisfied.
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From this discussion, we can identify the following closely related situa-
tions:

e Having an intention to bring about ¢, while believing that you will not
bring about ¢ is called intention-belief inconsistency, and is not rational (see,

e.g., [20, pp.37-38)).

e Having an intention to achieve ¢ without believing that ¢ will be the case
is intention-belief incompleteness, and is an acceptable property of rational
agents (see, e.g., [20, p.38]).

The distinction between these two cases is known as the asymmetry thesis [20,
pp.3741].

Summarizing, we can see that intentions play the following important roles
in practical reasoning:

e Intentions drive means-ends reasoning.

If T have formed an intention, then I will attempt to achieve the intention, which
involves, among other things, deciding how to achieve it. Moreover, if one
particular course of action fails to achieve an intention, then I will typically

attempt others.

e [ntentions persist.

I will not usually give up on my intentions without good reason — they will
persist, typically until I believe I have successfully achieved them, I believe
[ cannot achieve them, or I believe the reason for the intention is no longer

present.

e Intentions constrain future deliberation.
I will not entertain options that are inconsistent with my current intentions.

e Intentions influence beliefs upon which future practical reasoning is based.
If I adopt an intention, then I can plan for the future on the assumption that I
will achieve the intention. For if I intend to achieve some state of affairs while

simultaneously believing that I will not achieve it, then I am being irrational.

Notice from this discussion that intentions interact with an agent’s beliefs and
other mental states. For example, having an intention to ¢ implies that I do not
believe ¢ is impossible, and moreover that I believe given the right circum-
stances, ¢ will be achieved. However, satisfactorily capturing the interaction
between intention and belief turns out to be surprisingly hard: the way in which
intentions interact with other mental states 1s considered in chapter 5.
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Algorithm: Agent Control Loop Version 1

1 while true

2 observe the world;

3. update internal world model; h
4. deliberate about what intention to achieve next;
5

6

7

use means-ends reasoning to get a plan for the intention;

execute the plan
end while

Figure 2.1
A basic agent control loop.

2.3 Implementing Rational Agents

Based on the discussion above, let us consider how we might go about building

a BDI agent. The strategy I use is to introduce progressively more complex
" agent designs, and for each of these designs, to investigate the type of behavior
that such an agent would exhibit, compared to the desired behavior of a rational
agent as discussed above. This then motivates the introduction of a refined
agent design, and so on.

The first agent design is shown in Figure 2.1. The agent continually exe-

cutes a cycle of observing the world, deciding what intention to achieve next,
determining a plan of some kind to achieve this intention, and then executing

this plan.

The first point to note about this loop is that we will not be concerned with
stages (2) or (3). Observing the world and updating an internal model of it are
important processes, worthy of study in their own right; but they lie outside the
scope of this volume. Instead, we are concerned primarily with stages (4) to (6).
Readers interested in understanding the processes of observing and updating
can find some key references in the “further reading” section at the end of this
chapter.

One of the most important issues raised by this simple agent control loop
follows from the fact that the deliberation and means-ends reasoning processes
are not instantaneous. They have a time cost associated with them. Suppose
that the agent starts deliberating at time 7y, begins means-ends reasoning at ¢,
and subsequently begins executing the newly formed plan at time #,. The time

taken to deliberate is thus

Ldeliberate = 11 — Ip



The Belief-Desire-Intention Model 29

planning are a major research topic in their own right — see {2] for a detailed
survey. For our purposes, a simple model of plans will suffice. A plan is viewed
as a tuple consisting of:

e a pre-condition, which defines the circumstances under which a plan is
applicable — for example, one of the pre-conditions of the plan to catch a
taxi to the airport is that I have sufficient funds to pay for it;

e a post-condition, which defines what states of affairs the plan achieves —
for example, post-conditions of my plan to catch a taxi to the airport include
me having less money, and me now being located at the airport;

e a body, which is the actual “recipe” part of the plan — for our purposes, the
body is simply a sequence of actions.

We will use w (with decorations: 7', my,...) to denote plans, and let Plan be
the set of all plans (over some set of actions Ac). We will make use of a number
of auxiliary definitions for manipulating plans (some of these will not actually

be required until later in this chapter):

e if 7 is a plan, then we write pre(w) to denote the pre-condition of =, post()
to denote the post-condition of 7, and body(w) to denote the body of =;

e if 7w is plan, then we write empty(mw) to mean that plan 7 is the empty
sequence (thus empty(. ..) is a boolean-valued function);

e execurte(...) is a procedure that takes as input a single plan and executes it
without stopping — executing a plan simply means executing each action in
the plan body in turn;

e if 7 is a plan then by hd(7) we mean the plan made up of the first action in
the plan body of ; for example, if the body of 7 is ay,. .., a,, then the body
of hd(~) contains only the action a;;

e if 7 is a plan then by tail(w) we mean the plan made up of all but the first
action in the plan body of 7; for example, if the body of 7 is a;, as,...,a,,
then the body of tail(7) contains actions as, ..., Q,;

o if 7 is a plan, I C Int is a set of intentions, and B C Bel is a set of beliefs,
then we write sound(m,1,B) to mean that 7 is a sound plan for achieving /
given beliefs B. (We will not discuss or attempt to define what makes a plan
sound here — the classic paper on the subject is Lifschitz [136].)

We can now define the components of an agent’s control loop. An agent’s belief
update process 1s formally modeled as a belief revision function. Such a belief
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revision function has the following signature.
brf : p(Bel) x Per = gp(Bel)

In other words, on the basis of the current beliefs and current percept, the belief
revision function determines a new set of beliefs. (As noted above, in this book
we are not concerned with how belief revision might work; see [71].)

The agent’s deliberation process is given by a function

deliberate : p(Bel) — p(Int)

which takes a set of beliefs and returns a set of intentions — those selected by
the agent to achieve, on the basis of its beliefs.
An agent’s means-ends reasoning is represented by a function

plan : p(Bel) x p(Int) — Plan

which on the basis of an agent’s current beliefs and current intentions, deter-
mines a plan to achieve the intention. Note that there is nothing in the definition
of the plan(. . .) function which requires an agent to engage in plan generation
— constructing a plan from scratch [2]. In most BDI systems, the plan(. . .)
function is implemented by giving the agent a plan library [78). A plan li-
brary is a pre-assembled collection of plans, which an agent designer gives to
an agent. Finding a plan to achieve an intention then simply involves a sin-
gle pass through the plan library to find a plan that, when executed, will have
the intention as a post-condition, and will be sound given the agent’s current
beliefs. In implemented BDI agents, pre- and post-conditions are often rep-
resented as (lists of) atoms of first-order logic, and beliefs and intentions as
ground atoms of first-order logic. Finding a plan to achieve an intention then
reduces to finding a plan whose pre-condition unifies with the agent’s beliefs,
and whose post-condition unifies with the intention.

The agent control loop is now as shown in Figure 2.2. This algorithm high-
lights some limitations of this simple approach to agent control. In particu-
lar, steps (4) to (7) inclusive implicitly assume that the environment has not
changed since it was observed at stage (3). Assuming that the time taken to
actually execute the plan dominates the time taken to revise beliefs, deliberate,
or plan, then the crucial concern is that the environment might change while
the plan is being executed. The problem is that the agent remains committed to
the intention it forms at step (5) until it has executed the plan in step (7). If the
environment changes after step (3), then the assumptions upon which this plan
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Algorithm: Agent Control Loop Version 2

1 B := By; /* Bg are initial beliefs */
2 while true do

3 get next percept p;

4. B := brf(B, p);

5. I := deliberate(B) ;

6 w := plan(B, 1) ;

7 execute( )

8 end while
Figure 2.2

A first refinement of the agent control loop.

depends may well be invalid by the time the plan is actually executed.

2.4 The Deliberation Process

So far, we have glossed over the problem of exactly how an agent might go
about deliberating. In this section, we consider the process in more detail. It
is not hard to see that in real life, deliberation typically begins by trying to
understand what the options available to you are. Returning to the career choice
example introduced above, if you gain a good first degree, then one option is
that of becoming an academic; if you fail to obtain a good degree, this option is
not available to you. Another option is entering industry. After deciding what
the options are, you must choose between them, and commit to some. These
chosen options then become intentions.

From this discussion, we can see that the deliberate function as discussed
above can be decomposed into two distinct functional components:

e option generation — in which the agent generates a set of possible alterna-
tives; and

e filtering — in which the agent chooses between competing alternatives, and
commits to achieving them. |

We represent option generation via a function, options, which takes the agent’s
current beliefs and current intentions, and from them determines a set of
options that we will hereafter refer to as desires. The intuitive interpretation of
a desire is that, in an “ideal world,” an agent would like all its desires achieved.
In any moderately realistic scenario, however, an agent will not be able to
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Algorithm: Agent Control Loop Version 3

2. B:=By; /* Bgp are initial beliefs */
3 I :=1lp; /* lgp are initial intentions */
4 while true do
5. get next percept p;

| 6. B := brf(B, p):

7 D := options(B, I) ;
8. I := filter(B,D,I);

9, n := plan(B, I);

10. execute( )

11. end while

S — — —— ———

Figure 2.3
Refining the deliberation process into option generation and filtering.

achieve all its desires. This is because desires are often mutually exclusive. For
example, in the OASIS air-traffic control system, which was implemented using
a BDI architecture, an agent was tasked with the problem of finding the optimal
sequence in which to land aircraft at an airport [138]. The option generation
process in OASIS might generate the options of landing two different aircraft

on the same runway at the same time. Clearly, such options are mutually
exclusive: it would be undesirable to land both aircraft simultaneously.

Formally, the signature of the option generation function options is as
follows.

options : p(Bel) x p(Int) = p(Des)

In order to select between competing options, an agent uses a filter function.
Intuitively, the filter function must simply select the “best” option for the agent
to commit to. We represent the filter process through a function filter, with a

signature as follows.
filter : p(Bel) x p(Des) x p(Int) = p(Int)
The agent control loop incorporating explicit deliberation and means-ends

reasoning is shown in Figure 2.3. Notice that desires are an input to the filter
process, whereas intentions are an output from it.
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2.5 Commitment Strategies

When an option successfully passes through the filter function and is hence
chosen by the agent as an intention, we say that the agent has made a commit-
ment to that option. Commitment implies temporal persistence — an intention,
once adopted, should not immediately evaporate. A critical issue is just how
committed an agent should be to its intentions. That is, how long should an
intention persist? Under what circumstances should an intention vanish?

To motivate the discussion further, consider the following scenario:

Some time in the not-so-distant future, you are having trouble with your new household
robot. You say “Willie, bring me a beer.” The robot replies “OK boss.” Twenty minutes
later, you screech “Willie, why didn’t you bring me that beer?” It answers “Well, I
intended to get you the beer, but I decided to do something else.” Miffed, you send
the wise guy back to the manufacturer, complaining about a lack of commitment. After
retrofitting, Willie is returned, marked “Model C: The Committed Assistant.” Again,
you ask Willie to bring you a beer. Again, it accedes, replying “Sure thing.” Then you
ask: “What kind of beer did you buy?” It answers: “Genessee.” You say “Never mind.”
One minute later, Willie trundles over with a Genessee in its gripper. This time, you
angrily return Willie for overcommitment. After still more tinkering, the manufacturer
sends Willie back, promising no more problems with its commitments. So, being a
somewhat trusting customer, you accept the rascal back into your household, but as a
test, you ask it to bring you your last beer. Willie again accedes, saying “Yes, Sir.” (Its
attitude problem seems to have been fixed.) The robot gets the beer and starts towards
you. As it approaches, it lifts its arm, wheels around, deliberately smashes the bottle,
and trundles off. Back at the plant, when interrogated by customer service as to why it
had abandoned its commitments, the robot replies that according to its specifications,
it kept its commitments as long as required — commitments must be dropped when
fulfilled or impossible to achieve. By smashing the bottle, the commitment became

unachievable. [35, pp.213-214]

The mechanism an agent uses to determine when and how to drop inten-

tions is known as a commitment strategy. The following three commitment
strategies are commonly discussed in the literature of rational agents [187]:

e Blind commitment

A blindly committed agent will continue to maintain an intention until it
believes the intention has actually been achieved. Blind commitment is also
sometimes referred to as fanatical commitment.

e Single-minded commitment
A single-minded agent will continue to maintain an intention until it believes
that either the intention has been achieved, or else that it is no longer possible
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