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Preface to the Second Edition T

with a %. These can be omitted on first reading without creating problems later on. Some
exercises are also marked with a x to indicate that they are more advanced and not
essential to understanding the basic material of the chapter.

Most chapters end with a section entitled “Bibliographical and Historical Remarks,”
wherein we credit the sources of the ideas presented in that chapter, provide pointers to
further reading and ongoing research, and describe relevant historical background. Despite
our attempts to make these sections authoritative and complete, we have undoubtedly lett
out some important prior work. For that we again apologize, and we welcome corrections
and extensions for incorporation into the electronic version of the book.

Like the first edition, this edition of the book is dedicated to the memory of A. Harry
Klopf. It was Harry who introduced us to each other, and it was his ideas about the brain
and artificial intelligence that launched our long excursion into reinforcement learning.
Trained in neurophysiology and long interested in machine intelligence, Harry was a
senior scientist affiliated with the Avionics Directorate of the Air Force Office of Scientific
Research (AFOSR) at Wright-Patterson Air Force Base, Ohio. He was dissatisfied with
the great importance attributed to equilibrinm-seeking processes, including homeostasis
and error-correcting pattern classification methods, in explaining natural intelligence
and in providing a basis for machine intelligence. He noted that systems that try to
maximize something (whatever that might be) are qualitatively different from equilibrium-
seeking systems, and he argued that maximizing systems hold the key to understanding
important aspects of natural intelligence and for building artificial intelligences. Harry was
instrumental in obtaining funding from AFOSR for a project to assess the scientific merit
of these and related ideas. This project was conducted in the late 1970s at the University
of Massachusetts Amherst (UMass Amherst), initially under the direction of Michael
Arbib, William Kilmer, and Nico Spinelli, professors in the Department of Computer
and Information Science at UMass Amherst. and founding members of the Cybernetics
Center for Systems Neuroscience at the University, a farsighted group focusing on the
intersection of neuroscience and artificial intelligence. Barto, a recent Ph.D. from the
University of Michigan, was hired as post doctoral researcher on the project. Meanwhile,
Sutton, an undergraduate studying computer science and psychology at Stanford, had
been corresponding with Harry regarding their mutual interest in the role of stimulus
timing in classical conditioning. Harry suggested to the UMass group that Sutton would
be a great addition to the project. Thus, Sutton became a UMass graduate student,
whose Ph.D. was directed by Barto, who had become an Associate Professor. The study
of reinforcement learning as presented in this book is rightfully an outcome of that
project instigated by Harry and inspired by his ideas. Further, Harry was responsible
for bringing us, the authors, together in what has been a long and enjoyable interaction.
By dedicating this book to Harry we honor his essential contributions, not only to the
field of reinforcement learning, but also to our collaboration. We also thank Professors
Arbib, Kilmer, and Spinelli for the opportunity they provided to us to begin exploring
these ideas. Finally, we thank AFOSR for generous support over the early years of our
research, and the NSI for its generous support over many of the following years.

We have very many people to thank for their inspiration and help with this second
edition. Everyone we acknowledged for their inspiration and help with the first edition
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deserve our deepest gratitude for this edition as well, which would not exist were it not
for their contributions to edition number one. To that long list we must add many others
who contributed specifically to the second edition. Our students over the many years that
we have taught this material contributed in countless ways: exposing errors, offering fixes,
and-—mnot the least—being confused in places where we could have explained things better.
We especially thank Martha Steenstrup for reading and providing detailed comments
throughout. The chapters on psychology and neuroscience could not have been written
without the help of many experts in those fields. We thank John Moore for his patient
tutoring over many many years on animal learning experiments, theory, and neuroscience,
and for his careful reading of multiple drafts of Chapters 14 and 15. We also thank Matt
Botvinick, Nathaniel Daw, Peter Dayan, and Yael Niv for their penetrating comments on
drafts of these chapter, their essential guidance through the massive literature, and their
interception of many of our errors in early drafts. Of course, the remaining errors in these
chapters—and there must still be some—are totally our own. We thank Phil Thomas for
helping us make these chapters accessible to non-psychologists and non-neuroscientists,
and we thank Peter Sterling for helping us improve the exposition. We are grateful to Jim
Houk for introducing us to the subject of information processing in the basal ganglia and
for alerting us to other relevant aspects of neuroscience. José Martinez, Terry Sejnowski,
David Silver, Gerry Tesauro, Georgios Theocharous, and Phil Thomas generously helped
us understand details of their reinforcement learning applications for inclusion in the
case-studies chapter, and they provided helpful comments on drafts of these sections.
Special thanks are owed to David Silver for helping us better understand Monte Carlo
Tree Search and the DeepMind Go-playing programs. We thank George Konidaris for his
help with the section on the Fourier basis. Emilio Cartoni, Thomas Cederborg, Stefan
Dernbach, Clemens Rosenbaum, Patrick Taylor, Thomas Colin, and Pierre-Luc Bacon
helped us in a number important ways for which we are most grateful.

Sutton would also like to thank the members of the Reinforcement Learning and
Artificial Intelligence laboratory at the University of Alberta for contributions to the
second edition. He owes a particular debt to Rupam Mahmood for essential contributions
to the treatment of off-policy Monte Carlo methods in Chapter 5, to Hamid Maei for
helping develop the perspective on off-policy learning presented in Chapter 11, to Eric
Graves for conducting the experiments in Chapter 13, to Shangtong Zhang for replicating
and thus verifying almost all the experimental results, to Kris De Asis for improving
the new technical content of Chapters 7 and 12, and to Harm van Seijen for insights
that led to the separation of n-step methods from eligibility traces and (along with Hado
van Hasselt) for the ideas involving exact equivalence of forward and backward views of
eligibility traces presented in Chapter 12. Sutton also gratefully acknowledges the support
and freedom he was granted by the Government of Alberta and the National Science and
Engineering Research Council of Canada throughout the period during which the second
edition was conceived and written. In particular, he would like to thank Randy Goebel
for creating a supportive and far-sighted environment for research in Alberta. He would

also like to thank DeepMind their support in the last six months of writing the book.

Finally, we owe thanks to the many careful readers of drafts of the second edition that
we posted on the internet. They found many errors that we had missed and alerted us to
potential points of confusion.
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We first came to focus on what is now known as reinforcement learning in late 1979. We
were both at the University of Massachusetts, working on one of the earliest projects to
revive the idea that networks of neuronlike adaptive elements might prove to be a promising
approach to artificial adaptive intelligence. The project explored the “heterostatic theory
of adaptive systems” developed by A. Harry Klopf. Harry’s work was a rich source of
ideas, and we were permitted to explore them critically and compare them with the long
history of prior work in adaptive systems. Our task became one of teasing the ideas apart
and understanding their relationships and relative importance. This continues today,
but in 1979 we came to realize that perhaps the simplest of the ideas, which had long
been taken for granted. had received surprisingly little attention from a computational
perspective. This was simply the idea of a learning system that wants something, that
adapts its behavior in order to maximize a special signal from its environment. This
was the idea of a “hedonistic” learning system, or, as we would say now, the idea of
reinforcement learning.

Like others, we had a sense that reinforcement learning had been thoroughly explored
in the early days of cybernetics and artificial intelligence. On closer inspection, though,
we found that it had been explored only slightly. While reinforcement learning had clearly
motivated some of the earliest computational studies of learning, most of these researchers
had gone on to other things, such as pattern classification, supervised learning, and
adaptive control, or they had abandoned the study of learning altogether. As a result, the
special issues involved in learning how to get something from the environment received
relatively little attention. In retrospect, focusing on this idea was the critical step that
set this branch of research in motion. Little progress could be made in the computational
study of reinforcement learning until it was recognized that such a fundamental idea had
not yet been thoroughly explored.

The field has come a long way since then. evolving and maturing in several directions.
Reinforcement learning has gradually become one of the most active research areas in ma-
chine learning, artificial intelligence, and neural network research. The field has developed
strong mathematical foundations and impressive applications. The computational study
of reinforcement learning is now a large field, with hundreds of active researchers around
the world in diverse disciplines such as psychology, control theory, artificial intelligence,
and neuroscience. Particularly important have been the contributions establishing and
developing the relationships to the theory of optimal control and dynamic programming.
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The overall problem of learning from interaction to achieve goals is still far from being
solved, but our understanding of it has improved significantly. We can now place compo-
nent ideas, such as temporal-difference learning, dynamic programming, and function
approximation, within a coherent perspective with respect to the overall problem:.

Our goal in writing this book was to provide a clear and simple account of the key
ideas and algorithms of reinforcement learning. We wanted our treatment to be accessible
to readers in all of the related disciplines, but we could not cover all of these perspectives
in detail. For the most part, our treatment takes the point of view of artificial intelligence
and engineering. Coverage of connections to other fields we leave to others or to another
time. We also chose not to produce a rigorous formal treatment of reinforcement learning.
We did not reach for the highest possible level of mathematical abstraction and did not
rely on a theorem—proof format. We tried to choose a level of mathematical detail that
points the mathematically inclined in the right directions without distracting from the
simplicity and potential generality of the underlying ideas.

In some sense we have been working toward this book for thirty vears, and we have lots
of people to thank. First, we thank those who have personally helped us develop the overall
view presented in this book: Harry Klopf, for helping us recognize that reinforcement
learning needed to be revived; Chris Watkins, Dimitri Bertsekas, John Tsitsiklis, and
Paul Werbos, for helping us see the value of the relationships to dynamic programming;
John Moore and Jim Kehoe, for insights and inspirations from animal learning theory;
Oliver Selfridge, for emphasizing the breadth and importance of adaptation; and, more
cenerally, our colleagues and students who have contributed in countless ways: Ron
Williams, Charles Anderson, Satinder Singh, Sridhar Mahadevan, Steve Bradtke, Bob
Crites, Peter Dayan, and Leemon Baird. Our view of reinforcement learning has been
significantly enriched by discussions with Paul Cohen, Paul Utgoff, Martha Steenstrup,
Gerry Tesauro, Mike Jordan, Leslie Kaelbling, Andrew Moore, Chris Atkeson, Tom
Mitchell, Nils Nilsson, Stuart Russell, Tom Dietterich, Tom Dean. and Bob Narendra.
We thank Michael Littman, Gerry Tesauro, Bob Crites, Satinder Singh, and Wei Zhang
for providing specifics of Sections 4.7, 15.1, 15.4, 15.5, and 15.6 respectively. We thank
the Air Force Office of Scientific Research, the National Science Foundation, and GTE
Laboratories for their long and farsighted support.

We also wish to thank the many people who have read drafts of this book and
provided valuable comments, including Tom Kalt, John Tsitsiklis, Pawel Cichosz, Olle
Gallmo, Chuck Anderson, Stuart Russell, Ben Van Roy, Paul Steenstrup, Paul Cohen,
Sridhar Mahadevan, Jette Randlov, Brian Sheppard, Thomas O’'Connell, Richard Coggins,
Cristina Versino, John H. Hiett, Andreas Badelt, Jay Ponte, Joe Beck, Justus Piater,
Martha Steenstrup, Satinder Singh, Tommi Jaakkola, Dimitri Bertsekas, Torbjorn Ekman.
Christina Bjorkman, Jakob Carlstrom, and Olle Palmgren. Finally, we thank Gwyn
Mitchell for helping in many ways. and Harry Stanton and Bob Prior for being our
champions at MI'T Press.



Summary of Notation

Capital letters are used for random variables, whereas lower case letters are used for
the values of random variables and for scalar functions. Quantities that are required to
be real-valued vectors are written in bold and in lower case (even if random variables).
Matrices are bold capitals.

x

Pr{X =ux}

X ~p

E[X]
argmax, f(a)
Inx

E‘-:If

IR

f: X =Y
—

(a,b

1)

., 3

A

Jl;:r?‘edz'f:r:nte

equality relationship that is true by definition

approximately equal

proportional to

probability that a random variable X takes on the value x
random variable X selected from distribution p(x) = Pr{X =z}
expectation of a random variable X, i.e., E[X]| =) p(z)z

a value of a at which f(a) takes its maximal value

natural logarithm of «

the base of the natural logarithm, e ~ 2.71828, carried to power x; e

set of real numbers

function f from elements of set X to elements of set Y
assignment

the real interval between a and b including b but not including a

probability of taking a random action in an e-greedy policy
step-size parameters

discount-rate parameter

decay-rate parameter for eligibility traces

indicator function (1 ,,egicate = 1 if the predicate is true, else 0)

In a multi-arm bandit problem:

k

l

g+ (a)
Q:(a)
Ni(a)
H;(a)
Wf(ﬂ-)

Ry

number of actions (arms)

discrete time step or play number

true value (expected reward) of action a

estimate at time ¢ of q.(a)

number of times action a has been selected up prior to time ¢
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I1 projection operator for value functions (page 268)
B Bellman operator for value functions (Section 11.4)
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b d-dimensional vector b = E|R; | 1X¢]
WD TD fixed point wtp = A~ 'b (a d-vector, Section 9.4)
I identity matrix
P S| x |8 matrix of state-transition probabilities under 7
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X S| X d matrix with the x(s) as its rows
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VE(w) mean square value error VE(w) = |low, — vz}, (Section 9.2)
Ow (S) Bellman error (expected TD error) for vy, at state s (Section 11.4)
dw. BE Bellman error vector, with components dy,(s)
. . . . . - :_E
BE(w) mean square Bellman error BE(w) = |0 )
3 : DO : T2
PBE(w mean square projected Bellman error PBE(w) = Hllf?w J
TDE(w) mean square temporal-difference error TDE(w) = I£,[p;67| (Section 11.5)
RE(w) mean square return error (Section 11.6)



Chapter 1

Introduction

The idea that we learn by interacting with our environment is probably the first to occur
to us when we think about the nature of learning. When an infant plays, waves its arms,
or looks about, it has no explicit teacher, but it does have a direct sensorimotor connection
to its environment. Exercising this connection produces a wealth of information about
cause and effect, about the consequences of actions. and about what to do in order to
achieve goals. Throughout our lives, such interactions are undoubtedly a major source
of knowledge about our environment and ourselves. Whether we are learning to drive
a car or to hold a conversation, we are acutely aware of how our environment responds
to what we do, and we seek to influence what happens through our behavior. Learning
from interaction is a foundational idea underlying nearly all theories of learning and
intelligence.

In this book we explore a computational approach to learning from interaction. Rather
than directly theorizing about how people or animals learn, we primarily explore idealized
learning situations and evaluate the effectiveness of various learning methods.! That
is, we adopt the perspective of an artificial intelligence researcher or engineer. We
explore designs for machines that are effective in solving learning problems of scientific or
economic interest, evaluating the designs through mathematical analysis or computational
experiments. The approach we explore, called reinforcement learning, is much more
focused on goal-directed learning from interaction than are other approaches to machine
learning.

1.1 Reinforcement Learning

Reinforcement learning is learning what to do—how to map situations to actions—so
as to maximize a numerical reward signal. The learner is not told which actions to
take, but instead must discover which actions yield the most reward by trying them. In
the most interesting and challenging cases, actions may affect not only the immediate

'The relationships to psychology and neuroscience are summarized in Chapters 14 and 15.
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reward but also the next situation and, through that, all subsequent rewards. These two
characteristics—trial-and-error search and delayed reward—are the two most important
distinguishing features of reinforcement learning.

Reinforcement learning, like many topics whose names end with “ing,” such as machine
learning and mountaineering, is simultaneously a problem, a class of solution methods
that work well on the problem, and the field that studies this problem and its solution
methods. It is convenient to use a single name for all three things, but at the same time
essential to keep the three conceptually separate. In particular, the distinction between
problems and solution methods is very important in reinforcement learning; failing to
make this distinction is the source of many confusions.

We formalize the problem of reinforcement learning using ideas from dynamical sys-
tems theory, specifically, as the optimal control of incompletely-known Markov decision
processes. The details of this formalization must wait until Chapter 3, but the basic idea
is simply to capture the most important aspects of the real problem facing a learning
agent interacting over time with its environment to achieve a goal. A learning agent
must be able to sense the state of its environment to some extent and must be able to
take actions that affect the state. The agent also must have a goal or goals relating to
the state of the environment. Markov decision processes are intended to include just
these three aspects—sensation, action, and goal—in their simplest possible forms without
trivializing any of them. Any method that is well suited to solving such problems we
consider to be a reinforcement learning method.

Reinforcement learning is different from supervised learning, the kind of learning studied
in most current research in the field of machine learning. Supervised learning is learning
from a training set of labeled examples provided by a knowledgable external supervisor.
FEach example is a description of a situation together with a specification—the label—of
the correct action the system should take to that situation, which is often to identify a
category to which the situation belongs. The object of this kind of learning is for the
system to extrapolate, or generalize, its responses so that it acts correctly in situations

not present in the training set. T'his is an important kind ol learning, but alone it is not
adequate for learning from interaction. In interactive problems it is often impractical to
obtain examples of desired behavior that are both correct and representative of all the
situations in which the agent has to act. In uncharted territory—where one would expect
learning to be most beneficial-—an agent must be able to learn from its own experience.
Reinforcement learning is also different from what machine learning researchers call
unsupervised learning, which is typically about finding structure hidden in collections of
unlabeled data. The terms supervised learning and unsupervised learning would seem
to exhaustively classify machine learning paradigms, but they do not. Although one
might be tempted to think of reinforcement learning as a kind of unsupervised learning
because it does not rely on examples of correct behavior, reinforcement learning is trying
to maximize a reward signal instead of trying to find hidden structure. Uncovering
structure in an agent’s experience can certainly be useful in reinforcement learning, but by
itself does not address the reinforcement learning problem of maximizing a reward signal.
We therefore consider reinforcement learning to be a third machine learning paradigm,
alongside supervised learning and unsupervised learning and perhaps other paradigms.
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One of the challenges that arise in reinforcement learning, and not in other kinds
of learning, is the trade-off between exploration and exploitation. To obtain a lot of
reward, a reinforcement learning agent must prefer actions that it has tried in the past
and found to be eflective in producing reward. But to discover such actions, it has to
try actions that it has not selected before. The agent has to exploit what it has already
experienced in order to obtain reward, but it also has to exzplore in order to make better
action selections in the future. The dilemma is that neither exploration nor exploitation
can be pursued exclusively without failing at the task. The agent must try a variety of
actions and progressively favor those that appear to be best. On a stochastic task, each
action must be tried many times to gain a reliable estimate of its expected reward. The
exploration—exploitation dilemma has been intensively studied by mathematicians for
many decades, vet remains unresolved. For now, we simplyv note that the entire issue of
balancing exploration and exploitation does not even arise in supervised and unsupervised
learning, at least in the purest forms of these paradigms.

Another key feature of reinforcement learning is that it explicitly considers the whole
problem of a goal-directed agent interacting with an uncertain environment. This is in
contrast to many approaches that consider subproblems without addressing how they
might fit into a larger picture. For example, we have mentioned that much of machine
learning research is concerned with supervised learning without explicitly specifying how
such an ability would finally be useful. Other researchers have developed theories of
planning with general goals, but without considering planning’s role in real-time decision
making, or the question of where the predictive models necessary for planning would
come from. Although these approaches have yielded many useful results, their focus on
isolated subproblems is a significant limitation.

Reinforcement learning takes the opposite tack, starting with a complete, interactive,
goal-seeking agent. All reinforcement learning agents have explicit goals, can sense
aspects of their environments, and can choose actions to influence their environments.
Moreover, it is usually assumed from the beginning that the agent has to operate despite
significant uncertainty about the environment it faces. When reinforcement learning
involves planning, it has to address the interplay between planning and real-time action
selection, as well as the question of how environment models are acquired and improved.
When reinforcement learning involves supervised learning, it does so for specific reasons
that determine which capabilities are critical and which are not. For learning research to
make progress, important subproblems have to be isolated and studied, but they should
be subproblems that play clear roles in complete, interactive, goal-seeking agents, even it
all the details of the complete agent cannot yet be filled in.

By a complete, interactive, goal-secking agent we do not always mean something like
a complete organism or robot. These are clearly examples, but a complete, interactive,
goal-seeking agent can also be a component of a larger behaving system. In this case,
the agent directly interacts with the rest of the larger system and indirectly interacts
with the larger system’s environment. A simple example is an agent that monitors the
charge level of robot’s battery and sends commands to the robot’s control architecture.
This agent’s environment is the rest of the robot together with the robot’s environment.



S .

Chapter 1: Introduction

One must look beyond the most obvious examples of agents and their environments to
appreciate the generality of the reinforcement learning framework.

One of the most exciting aspects of modern reinforcement learning is its substantive
and fruitful interactions with other engineering and scientific disciplines. Reinforcement
learning is part of a decades-long trend within artificial intelligence and machine learning
toward greater integration with statistics, optimization, and other mathematical subjects.
For example, the ability of some reinforcement learning methods to learn with parameter-
ized approximators addresses the classical “curse of dimensionality” in operations research
and control theory. More distinctively, reinforcement learning has also interacted strongly
with psychology and neuroscience, with substantial benefits going both ways. Of all the
forms of machine learning, reinforcement learning is the closest to the kind of learning
that humans and other animals do, and many of the core algorithms of reinforcement
learning were originally inspired by biological learning systems. Reinforcement learning
has also given back, both through a psychological model of animal learning that better
matches some of the empirical data, and through an influential model of parts of the
brain’s reward system. The body of this book develops the ideas of reinforcement learning
that pertain to engineering and artificial intelligence, with connections to psychology and
neuroscience summarized in Chapters 14 and 15.

Finally, reinforcement learning is also part of a larger trend in artificial intelligence
back toward simple general principles. Since the late 1960°s, many artificial intelligence re-
searchers presumed that there are no general principles to be discovered, that intelligence is
instead due to the possession of a vast number of special purpose tricks, procedures, and
heuristics. It was sometimes said that if we could just get enough relevant facts into a
machine, say one million, or one billion, then 1t would become intelligent. Methods based
on general principles, such as search or learning, were characterized as “weak methods,”
whereas those based on specific knowledge were called “strong methods.” This view is
still common today, but not dominant. From our point of view, it was simply premature:
too little effort had been put into the search for general principles to conclude that there
were none. Modern artificial intelligence now includes much research looking for general
principles of learning, search, and decision making. It is not clear how far back the
pendulum will swing, but reinforcement learning research is certainly part of the swing
back toward simpler and fewer general principles of artificial intelligence.

1.2 Examples

A good way to understand reinforcement learning is to consider some of the examples
and possible applications that have guided its development.

e A master chess player makes a move. The choice is informed both by planning—
anticipating possible replies and counterreplies—and by immediate, intuitive judg-
ments of the desirability of particular positions and moves.

e An adaptive controller adjusts parameters of a petroleum refinery’s operation in
real time. The controller optimizes the yield/cost/quality trade-off on the basis
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the sequences of observations an agent makes over its entire lifetime. In fact, the most
important component of almost all reinforcement learning algorithms we consider is a
method for efficiently estimating values. The central role of value estimation is arguably
the most important thing that has been learned about reinforcement learning over the
last six decades.

The fourth and final element of some reinforcement learning systems is a model of
the environment. This is something that mimics the behavior of the environment, or
more generally, that allows inferences to be made about how the environment will behave.
For example, given a state and action, the model might predict the resultant next state
and next reward. Models are used for planning, by which we mean any way of deciding
on a course of action by considering possible future situations before they are actually
experienced. Methods for solving reinforcement learning problems that use models and
planning are called model-based methods, as opposed to simpler model-free methods that
are explicitly trial-and-error learners—viewed as almost the opposite ol planning. In
Chapter 8 we explore reinforcement learning systems that simultancously learn by trial
and error, learn a model of the environment, and use the model for planning. Modern
reinforcement learning spans the spectrum from low-level, trial-and-error learning to
high-level, deliberative planning.

1.4 Limitations and Scope

Reinforcement learning relies heavily on the concept of state—as input to the policy and
value function, and as both input to and output from the model. Informally, we can
think of the state as a signal conveying to the agent some sense of “how the environment
is” at a particular time. The formal definition of state as we use it here is given by
the framework of Markov decision processes presented in Chapter 3. More generally,
however, we encourage the reader to follow the informal meaning and think of the state
as whatever information is available to the agent about its environment. In effect, we
assume that the state signal 1s produced by some preprocessing system that i1s nominally
part of the agent’s environment. We do not address the issues of constructing, changing,
or learning the state signal in this book (other than briefly in Section 17.3). We take this
approach not because we consider state representation to be unimportant, but in order
to focus fully on the decision-making issues. In other words, our concern in this book is
not with designing the state signal, but with deciding what action to take as a function
of whatever state signal is available.

Most of the reinforcement learning methods we consider in this book are structured
around estimating value functions, but it is not strictly necessary to do this to solve
reinforcement learning problems. For example, solution methods such as genetic algo-
rithms, genetic programming, simulated annealing, and other optimization methods never
estimate value functions. These methods apply multiple static policies each interacting
over an extended period of time with a separate instance of the environment. The policies
that obtain the most reward, and random variations of them, are carried over to the
next generation of policies, and the process repeats. We call these evolutionary methods
because their operation is analogous to the way biological evolution produces organisms
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with skilled behavior even if they do not learn during their individual lifetimes. If the
space of policies is sufliciently small, or can be structured so that good policies are
common or easy to find—or if a lot of time is available for the search—then evolutionary
methods can be effective. In addition, evolutionary methods have advantages on problems
in which the learning agent cannot sense the complete state of its environment.

Our focus is on reinforcement learning methods that learn while interacting with the
environment, which evolutionary methods do not do. Methods able to take advantage
of the details of individual behavioral interactions can be much more efficient than
evolutionary methods in many cases. Evolutionary methods ignore much of the useful
structure of the reinforcement learning problem: they do not use the fact that the policy
they are searching for is a function from states to actions; they do not notice which states
an individual passes through during its lifetime, or which actions it selects. In some cases
this information can be misleading (e.g., when states are misperceived), but more often it
should enable more eflicient search. Although evolution and learning share many features
and naturally work together, we do not consider evolutionary methods by themselves to
be especially well suited to reinforcement learning problems and, accordingly, we do not
cover them in this book.

1.5 An Extended Example: Tic-Tac-Toe

To illustrate the general idea ol reinforcement learning and contrast it with other ap-
proaches, we next consider a single example in more detail.

Consider the familiar child’s game of tic-tac-toe. T'wo players
take turns playing on a three-by-three board. One player plays
Xs and the other Os until one player wins by placing three marks
in a row, horizontally, vertically, or diagonally, as the X player
has in the game shown to the right. If the board fills up with
neither player getting three in a row, then the game is a draw.

Because a skilled player can play so as never to lose, let us assume

that we are playing against an imperfect player, one whose play

is sometimes incorrect and allows us to win. For the moment, in

fact, let us consider draws and losses to be equally bad for us. How might we construct a
player that will find the imperfections in its opponent’s play and learn to maximize its
chances of winning?

Although this is a simple problem, it cannot readily be solved in a satisfactory way
through classical techniques. For example, the classical “minimax” solution from game
theory is not correct here because it assumes a particular way of playing by the opponent.
For example, a minimax player would never reach a game state from which it could
lose, even if in fact it always won from that state because of incorrect play by the
opponent. Classical optimization methods for sequential decision problems, such as
dynamic programming, can compute an optimal solution for any opponent, but require
as input a complete specification of that opponent, including the probabilities with which
the opponent makes each move in each board state. Let us assume that this information
is not available a priori for this problem, as it is not for the vast majority of problems of
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practical interest. On the other hand, such information can be estimated from experience,
in this case by playing many games against the opponent. About the best one can do
on this problem is first to learn a model of the opponent’s behavior, up to some level of
confidence, and then apply dynamic programming to compute an optimal solution given
the approximate opponent model. In the end, this is not that different from some of the
reinforcement learning methods we examine later in this book.

An evolutionary method applied to this problem would directly search the space
of possible policies for one with a high probability of winning against the opponent.
Here, a policy is a rule that tells the player what move to make for every state of the
game—every possible configuration of Xs and Os on the three-by-three board. For each
policy considered, an estimate of its winning probability would be obtained by playing
some number of games against the opponent. This evaluation would then direct which
policy or policies were considered next. A typical evolutionary method would hill-climb
in policy space, successively generating and evaluating policies in an attempt to obtain
incremental improvements. Or, perhaps, a genetic-style algorithm could be used that
would maintain and evaluate a population of policies. Literally hundreds of different
optimization methods could be applied.

Here is how the tic-tac-toe problem would be approached with a method making use
of a value function. First we would set up a table of numbers, one for each possible state
of the game. Each number will be the latest estimate of the probability of our winning
from that state. We treat this estimmate as the state’s value, and the whole table is the
learned value function. State A has higher value than state B, or is considered “better”
than state B, if the current estimate of the probability of our winning from A is higher
than it is from B. Assuming we always play Xs, then for all states with three Xs in a row
the probability of winning is 1, because we have already won. Similarly, for all states
with three Os in a row, or that are filled up, the correct probability is 0, as we cannot
win from them. We set the initial values of all the other states to 0.5, representing ¢
guess that we have a 50% chance of winning.

We then play many games against the opponent. To select our moves we examine the
states that would result from each of our possible moves (one for each blank space on the
board) and look up their current values in the table. Most of the time we move greedily,
selecting the move that leads to the state with greatest value, that is, with the highest
estimated probability of winning. Occasionally, however, we select randomly from among
the other moves instead. These are called ezploratory moves because they cause us to
experience states that we might otherwise never see. A sequence of moves made and
considered during a game can be diagrammed as in Figure 1.1.

While we are playing, we change the values of the states in which we find ourselves
during the game. We attempt to make them more accurate estimates of the probabilities
of winning. To do this, we *back up” the value of the state after each greedy move to
the state before the move, as suggested by the arrows in Figure 1.1. More precisely, the
current value of the earlier state is updated to be closer to the value of the later state.
This can be done by moving the earlier state’s value a fraction of the way toward the
value of the later state. If we let S; denote the state before the greedy move, and 5;1,
the state after the move, then the update to the estimated value of S, denoted V (.5;).
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Figure 1.1: A sequence of tic-tac-toe moves. The solid black lines represent the moves taken
during a game; the dashed lines represent moves that we (our reinforcement learning player)
considered but did not make. Our second move was an exploratory move, meaning that it was
taken even though another sibling move, the one leading to e, was ranked higher. Exploratory
moves do not result in any learning, but each of our other moves does, causing updates as
suggested by the red arrows in which estimated values are moved up the tree from later nodes
to earlier nodes as detailed in the text.

can be written as
V(S,) « V(S;) +a [V(SH-_L) - V(St)],

where « is a small positive fraction called the step-size parameter, which influences
the rate of learning. This update rule is an example of a temporal-difference learning
method, so called because its changes are based on a difference, V' (S;11) —V(5;), between
estimates at two successive times.

The method described above performs quite well on this task. For example, if the
step-size parameter is reduced properly over time, then this method converges, for any
fixed opponent, to the true probabilities of winning tfrom each state given optimal play
by our player. Furthermore, the moves then taken (except on exploratory moves) are in
fact the optimal moves against this (imperfect) opponent. In other words, the method
converges to an optimal policy for playing the game against this opponent. If the step-size
parameter 1s not reduced all the way to zero over time, then this player also plays well
against opponents that slowly change their way of playing.
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This example illustrates the differences between evolutionary methods and methods
that learn value functions. To evaluate a policy an evolutionary method holds the policy
fixed and plays many games against the opponent, or simulates many games using a model
of the opponent. The frequency of wins gives an unbiased estimate of the probability
of winning with that policy, and can be used to direct the next policy selection. But
each policy change is made only after many games, and only the final outcome of each
game 1s used: what happens during the games is ignored. For example, if the player wins,
then all of its behavior in the game is given credit, independently of how specific moves
might have been critical to the win. Credit is even given to moves that never occurred!
Value function methods, in contrast, allow individual states to be evaluated. In the end,
evolutionary and value function methods both search the space of policies, but learning a
value function takes advantage of information available during the course of play.

This simple example illustrates some of the key features of reinforcement learning
methods. First, there is the emphasis on learning while interacting with an environment,
in this case with an opponent player. Second. there is a clear goal, and correct behavior
requires planning or foresight that takes into account delayed eflects of one’s choices. For
example, the simple reinforcement learning player would learn to set up multi-move traps
for a shortsighted opponent. It is a striking feature of the reinforcement learning solution
that it can achieve the effects of planning and lookahead without using a model of the
opponent and without conducting an explicit search over possible sequences of future
states and actions.

While this example illustrates some of the key teatures of reinforcement learning, it is
so simple that it might give the impression that reinforcement learning is more limited
than it really is. Although tic-tac-toe is a two-person game, reinforcement learning
also applies in the case in which there is no external adversary, that is, in the case of
a “game against nature.” Reinforcement learning also is not restricted to problems in
which behavior breaks down into separate episodes, like the separate games of tic-tac-toe,
with reward only at the end of each episode. It is just as applicable when behavior
continues indefinitely and when rewards of various magnitudes can be received at any
time. Reinforcement learning is also applicable to problems that do not even break down
into discrete time steps like the plays of tic-tac-toe. The general principles apply to
continuous-time problems as well, although the theory gets more complicated and we
omit it from this introductory treatment.

Tic-tac-toe has a relatively small, finite state set, whereas reinforcement learning can
be used when the state set is very large, or even infinite. For example, Gerry Tesauro
(1992, 1995) combined the algorithm described above with an artificial neural network
to learn to play backgammon, which has approximately 10%° states. With this many
states it 1s impossible ever to experience more than a small fraction of them. Tesauro’s
program learned to play far better than any previous program and eventually better
than the world’s best human players (see (Section 16.1)). The artificial neural network
provides the program with the ability to generalize from its experience, so that in new
states it selects moves based on information saved from similar states faced in the past,
as determined by the network. How well a reinforcement learning system can work
in problems with such large state sets is intimately tied to how appropriately it can



14 Chapter 1: Introduction

third, less distinct thread concerning temporal-difference methods such as that used in
the tic-tac-toe example in this chapter. All three threads came together in the late 1980s
to produce the modern field of reinforcement learning as we present it in this book.

The thread focusing on trial-and-error learning is the one with which we are most
familiar and about which we have the most to say in this brief history. Before doing that,
however, we briefly discuss the optimal control thread.

The term “optimal control” came into use in the late 1950s to describe the problem of
designing a controller to minimize or maximize a measure of a dynamical system’s behavior
over time. One of the approaches to this problem was developed in the mid-1950s by
Richard Bellman and others through extending a nineteenth century theory of Hamilton
and Jacobi. This approach uses the concepts of a dynamical system’s state and of a
value function, or “optimal return function,” to define a functional equation, now often
alled the Bellman equation. The class of methods for solving optimal control problems
by solving this equation came to be known as dynamic programming (Bellman, 1957a).
Bellman (1957b) also introduced the discrete stochastic version of the optimal control
problem known as Markov decision processes (MDPs). Ronald Howard (1960) devised
the policy iteration method for MDPs. All of these are essential elements underlying the
theory and algorithms of modern reinforcement learning.

Dynamic programming is widely considered the only feasible way of solving general
stochastic optimal control problems. It suffers from what Bellman called “the curse of
dimensionality,” meaning that its computational requirements grow exponentially with the
number of state variables, but it is still far more efficient and more widely applicable than
any other general method. Dynamic programming has been extensively developed since
the late 1950s, including extensions to partially observable MDPs (surveyed by Lovejoy,
1991), many applications (surveyed by White, 1985, 1988, 1993), approximation methods
(surveyed by Rust, 1996), and asynchronous methods (Bertsekas, 1982, 1983). Many
excellent modern treatments of dynamic programming are available (e.g., Bertsekas, 2005,
2012; Puterman, 1994; Ross. 1983; and Whittle, 1982, 1983). Bryson (1996) provides an
authoritative history of optimal control.

Connections between optimal control and dynamic programming, on the one hand,
and learning, on the other, were slow to be recognized. We cannot be sure about what
accounted for this separation, but its main cause was likely the separation between
the disciplines involved and their different goals. Also contributing may have been the
prevalent view of dynamic programming as an off-line computation depending essentially
on accurate system models and analytic solutions to the Bellman equation. Further.
the simplest form of dynamic programming is a computation that proceeds backwards
in time, making it difficult to see how it could be involved in a learning process that
must proceed in a forward direction. Some of the earliest work in dynamic programming,
such as that by Bellman and Dreyfus (1959), might now be classified as following
a learning approach. Witten’s (1977) work (discussed below) certainly qualifies as a
combination of learning and dynamic-programming ideas. Werbos (1987) argued explicitly
for greater interrelation of dynamic programming and learning methods and for dynamic
programming’s relevance to understanding neural and cognitive mechanisms. For us the
full integration of dynamic programming methods with online learning did not occur
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until the work of Chris Watkins in 1989, whose treatment of reinforcement learning using
the MDP formalism has been widely adopted. Since then these relationships have been
extensively developed by many researchers, most particularly by Dimitri Bertsekas and
John Tsitsiklis (1996), who coined the term “neurodynamic programming” to refer to
the combination of dynamic programming and artificial neural networks. Another term
currently in use is “approximate dynamic programming.” These various approaches
emphasize different aspects of the subject, but they all share with reinforcement learning
an interest in circumventing the classical shortcomings of dynamic programming.

We consider all of the work in optimal control also to be, in a sense, work in reinforce-
ment learning. We define a reinforcement learning method as any effective way of solving
reinforcement learning problems, and it is now clear that these problems are closely
related to optimal control problems, particularly stochastic optimal control problems
such as those formulated as MDPs. Accordingly, we must consider the solution methods
of optimal control, such as dynamic programming, also to be reinforcement learning
methods. Because almost all of the conventional methods require complete knowledge
of the system to be controlled, it feels a little unnatural to say that they are part of
reinforcement learning. On the other hand, many dynamic programming algorithms are
incremental and iterative. Like learning methods, they gradually reach the correct answer
through successive approximations. As we show in the rest of this book, these similarities
are far more than superficial. The theories and solution methods for the cases of complete
and incomplete knowledge are so closely related that we feel they must be considered
together as part of the same subject matter.

Let us return now to the other major thread leading to the modern field of reinforcement
learning, the thread centered on the idea of trial-and-error learning. We only touch on
the major points of contact here, taking up this topic in more detail in Section 14.3.
According to American psychologist R. S. Woodworth (1938) the idea of trial-and-error
learning goes as far back as the 1850s to Alexander Bain’s discussion of learning by
“groping and experiment” and more explicitly to the British ethologist and psychologist
Conway Lloyd Morgan’s 1894 use of the term to describe his observations of animal
behavior. Perhaps the first to succinctly express the essence of trial-and-error learning as
a principle of learning was Edward Thorndike:

Of several responses made to the same situation, those which are accompanied
or closely followed by satisfaction to the animal will, other things being
equal, be more firmly connected with the situation, so that, when it recurs,
they will be more likely to recur; those which are accompanied or closely
followed by discomfort to the animal will, other things being equal, have their
connections with that situation weakened, so that, when it recurs, they will
be less likely to occur. The greater the satislaction or discomfort, the greater
the strengthening or weakening of the bond. (Thorndike, 1911, p. 244)

Thorndike called this the “Law of Effect” because it describes the eflect of reinforcing
events on the tendency to select actions. Thorndike later modified the law to better
account, for subsequent data on animal learning (such as differences between the effects
of reward and punishment), and the law in its various forms has generated considerable
controversy among learning theorists (e.g., see Gallistel, 2005; Herrnstein, 1970; Kimble,
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1961, 1967; Mazur, 1994). Despite this, the Law of Effect—in one form or another—is
widely regarded as a basic principle underlying much behavior (e.g., Hilgard and Bower,
1975; Dennett, 1978; Campbell, 1960; Cziko, 1995). It is the basis of the influential
learning theories of Clark Hull (1943, 1952) and the influential experimental methods of
B. F. Skinner (1938).

The term “reinforcement” in the context of animal learning came into use well after
Thorndike’s expression of the Law of Effect, first appearing in this context (to the best of
our knowledge) in the 1927 English translation of Pavlov’s monograph on conditioned
reflexes. Pavlov described reinforcement as the strengthening of a pattern of behavior due
to an animal receiving a stimulus—a reinforcer—in an appropriate temporal relationship
with another stimulus or with a response. Some psychologists extended the idea of
reinforcement to include weakening as well as strengthening of behavior, and extended
the idea of a reinforcer to include possibly the omission or termination of stimulus. To
be considered reinforcer, the strengthening or weakening must persist after the reinforcer
1s withdrawn; a stimulus that merely attracts an animal’s attention or that energizes its
behavior without producing lasting changes would not be considered a reinforcer.

The idea of implementing trial-and-error learning in a computer appeared among the
earliest thoughts about the possibility of artificial intelligence. In a 1948 report, Alan
Turing described a design for a “pleasure-pain system” that worked along the lines of the
Law of Effect:

When a configuration is reached for which the action is undetermined, a
random choice for the missing data is made and the appropriate entry is made
in the description, tentatively, and is applied. When a pain stimulus occurs
all tentative entries are cancelled, and when a pleasure stimulus occurs they
are all made permanent. (Turing, 1948)

Many ingenious electro-mechanical machines were constructed that demonstrated trial-
and-error learning. The earliest may have been a machine built by Thomas Ross (1933)
that was able to find its way through a simple maze and remember the path through
the settings of switches. In 1951 W. Grey Walter built a version of his “mechanical
tortoise” (Walter, 1950) capable of a simple form of learning. In 1952 Claude Shannon
demonstrated a maze-running mouse named Theseus that used trial and error to find
its way through a maze, with the maze itself remembering the successtul directions
via magnets and relays under its floor (see also Shannon, 1951). J. A. Deutsch (1954)
described a maze-solving machine based on his behavior theory (Deutsch, 1953) that
has some properties in common with model-based reinforcement learning (Chapter 8).
In his Ph.D. dissertation, Marvin Minsky (1954) discussed computational models of
reinforcement learning and described his construction of an analog machine composed of
components he called SNARCs (Stochastic Neural-Analog Reinforcement Calculators)
meant to resemble modifiable synaptic connections in the brain (Chapter 15). The
web site cyberneticzoo.com contains a wealth of information on these and many other
electro-mechanical learning machines.

Building electro-mechanical learning machines gave way to programming digital com-
puters to perform various tvpes of learning, some of which implemented trial-and-error
learning. Farley and Clark (1954) described a digital simulation of a neural-network
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learning machine that learned by trial and error. But their interests soon shifted from
trial-and-error learning to generalization and pattern recognition, that is, from reinforce-
ment learning to supervised learning (Clark and Farley, 1955). This began a pattern
of confusion about the relationship between these types of learning. Many researchers
seemed to believe that they were studying reinforcement learning when they were actually
studying supervised learning. For example, artificial neural network pioneers such as
Rosenblatt (1962) and Widrow and Hoft (1960) were clearly motivated by reinforcement
learning—they used the language of rewards and punishments—but the systems they
studied were supervised learning systems suitable for pattern recognition and perceptual
learning. Even today, some researchers and textbooks minimize or blur the distinction
between these types of learning. For example, some artificial neural network textbooks
have used the term “trial-and-error” to describe networks that learn from training exam-
ples. This is an understandable confusion because these networks use error information
to update connection weights, but this misses the essential character of trial-and-error
learning as selecting actions on the basis of evaluative feedback that does not rely on
knowledge of what the correct action should be.

Partly as a result of these confusions, research into genuine trial-and-error learning
became rare in the 1960s and 1970s, although there were notable exceptions. In the 1960s
the terms “reinforcement” and “reinforcement learning” were used in the engineering
literature for the first time to describe engineering uses of trial-and-error learning (e.g.,
Waltz and Fu, 1965; Mendel, 1966; Fu, 1970; Mendel and McClaren, 1970). Particularly
influential was Minsky’s paper “Steps Toward Artificial Intelligence” (Minsky, 1961),
which discussed several issues relevant to trial-and-error learning, including prediction,
expectation, and what he called the basic credit-assignment problem for complex rein-
forcement learning systems: How do vou distribute credit for success among the many
decisions that may have been involved in producing it? All of the methods we discuss in
this book are, in a sense, directed toward solving this problem. Minsky’s paper is well
worth reading today.

In the next few paragraphs we discuss some of the other exceptions and partial
exceptions to the relative neglect of computational and theoretical study of genuine
trial-and-error learning in the 1960s and 1970s.

One exception was the work of the New Zealand researcher John Andreae., who
developed a system called STeLLA that learned by trial and error in interaction with
its environment. This system included an internal model of the world and, later, an
“internal monologue” to deal with problems of hidden state (Andreae, 1963, 1969a,b).
Andreae’s later work (1977) placed more emphasis on learning from a teacher, but still
included learning by trial and error, with the generation of novel events being one of
the system’s goals. A feature of this work was a “leakback process,” elaborated more
fully in Andreae (1998), that implemented a credit-assignment mechanism similar to the
backing-up update operations that we describe. Unfortunately, his pioneering research
was not well known and did not greatly impact subsequent reinforcement learning research.
Recent summaries are available (Andreae, 2017a,b).

More influential was the work of Donald Michie. In 1961 and 1963 he described a
simple trial-and-error learning system for learning how to play tic-tac-toe (or naughts
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and crosses) called MENACE (for Matchbox Educable Naughts and Crosses Engine). It
consisted of a matchbox for each possible game position, each matchbox containing a
number of colored beads, a different color for each possible move from that position. By
drawing a bead at random from the matchbox corresponding to the current game position,
one could determine MENACE’s move. When a game was over, beads were added to
or removed from the boxes used during play to reward or punish MENACE’s decisions.
Michie and Chambers (1968) described another tic-tac-toe reinforcement learner called
GLEE (Game Learning Expectimaxing Engine) and a reinforcement learning controller
called BOXES. They applied BOXES to the task of learning to balance a pole hinged to
a movable cart on the basis of a failure signal occurring only when the pole fell or the
cart reached the end of a track. This task was adapted from the earlier work of Widrow
and Smith (1964), who used supervised learning methods, assuming instruction from a
teacher already able to balance the pole. Michie and Chambers’s version of pole-balancing
is one of the best early examples of a reinforcement learning task under conditions of
incomplete knowledge. It influenced much later work in reinforcement learning, beginning
with some of our own studies (Barto, Sutton, and Anderson, 1983; Sutton, 1984). Michie
consistently emphasized the role of trial and error and learning as essential aspects of
artificial intelligence (Michie, 1974).

Widrow, Gupta, and Maitra (1973) modified the Least-Mean-Square (LMS) algorithm
of Widrow and Hoff (1960) to produce a reinforcement learning rule that could learn
from success and failure signals instead of from training examples. They called this form
of learning “selective bootstrap adaptation” and described it as “learning with a critic”
instead of “learning with a teacher.” They analyzed this rule and showed how it could
learn to play blackjack. This was an isolated foray into reinforcement learning by Widrow,
whose contributions to supervised learning were much more influential. Our use of the
term “critic” is derived from Widrow, Gupta, and Maitra’s paper. Buchanan, Mitchell,
Smith, and Johnson (1978) independently used the term critic in the context of machine
learning (see also Dietterich and Buchanan, 1984), but for them a critic is an expert
system able to do more than evaluate performance.

Research on learning automata had a more direct influence on the trial-and-error
thread leading to modern reinforcement learning research. These are methods for solving
a nonassociative, purely selectional learning problem known as the k-armed bandit by
analogy to a slot machine, or “one-armed bandit,” except with & levers (see Chapter 2).
Learning automata are simple, low-memory machines for improving the probability
of reward in these problems. Learning automata originated with work in the 1960s
of the Russian mathematician and physicist M. L. Tsetlin and colleagues (published
posthumously in Tsetlin, 1973) and has been extensively developed since then within
engineering (see Narendra and Thathachar, 1974, 1989). These developments included the
study of stochastic learning automata, which are methods for updating action probabilities
on the basis of reward signals. Although not developed in the tradition of stochastic
learning automata, Harth and Tzanakou’s (1974) Alopex algorithm (for Algorithm of
pattern extraction) is a stochastic method for detecting correlations between actions and
reinforcement that influenced some of our early research (Barto, Sutton, and Brouwer,
1981). Stochastic learning automata were foreshadowed by earlier work in psychology.,
beginning with William Estes” (1950) effort toward a statistical theory of learning and
further developed by others (e.g., Bush and Mosteller, 1955; Sternberg, 1963).
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1986; Sutton and Barto, 1987, 1990). Some neuroscience models developed at this time
are well interpreted in terms of temporal-difference learning (Hawkins and Kandel, 1984:
Byrne, Gingrich, and Baxter, 1990; Gelperin, Hopfield, and Tank, 1985; Tesauro, 1986;
Friston et al., 1994), although in most cases there was no historical connection.

Our early work on temporal-diflerence learning was strongly influenced by animal
learning theories and by Klopf’s work. Relationships to Minsky’s “Steps” paper and to
Samuel’s checkers players were recognized only afterward. By 1981, however, we were
fully aware of all the prior work mentioned above as part of the temporal-difference and
trial-and-error threads. At this time we developed a method for using temporal-difference
learning combined with trial-and-error learning, known as the actor—critic architecture,
and applied this method to Michie and Chambers’s pole-balancing problem (Barto, Sutton,
and Anderson., 1983). This method was extensively studied in Sutton’s (1984) Ph.D.
dissertation and extended to use backpropagation neural networks in Anderson’s (1986)
Ph.D. dissertation. Around this time, Holland (1986) incorporated temporal-difference
ideas explicitly into his classifier systems in the form of his bucket-brigade algorithm.
A key step was taken by Sutton (1988) by separating temporal-difference learning from
control, treating it as a general prediction method. That paper also introduced the TD(A)
algorithm and proved some of its convergence properties.

As we were finalizing our work on the actor—critic architecture in 1981, we discovered
a paper by lan Witten (1977, 1976a) which appears to be the earliest publication of a
temporal-difference learning rule. He proposed the method that we now call tabular TD(0)
for use as part of an adaptive controller for solving MDPs. This work was first submitted
for journal publication in 1974 and also appeared in Witten’s 1976 PhD dissertation.
Witten’s work was a descendant of Andreae’s early experiments with STeLLA and other
trial-and-error learning systems. Thus, Witten’s 1977 paper spanned both major threads
of reinforcement learning research—trial-and-error learning and optimal control-—while
making a distinct early contribution to temporal-difference learning.

The temporal-difference and optimal control threads were fully brought together
in 1989 with Chris Watkins's development of Q-learning. This work extended and
integrated prior work in all three threads of reinforcement learning research. Paul Werbos
(1987) contributed to this integration by arguing for the convergence of trial-and-error
learning and dynamic programming since 1977. By the time of Watkins’s work there had
been tremendous growth in reinforcement learning research, primarily in the machine
learning subfield of artificial intelligence, but also in artificial neural networks and artificial
intelligence more broadly. In 1992, the remarkable success of Gerry Tesauro’s backgammon
playing program, TD-Gammon, brought additional attention to the field.

In the time since publication of the first edition of this book, a flourishing subfield of
neuroscience developed that focuses on the relationship between reinforcement learning
algorithms and reinforcement learning in the nervous system. Most responsible for this is
an uncanny similarity between the behavior of temporal-difference algorithms and the
activity of dopamine producing neurons in the brain, as pointed out by a number of
researchers (Friston et al., 1994; Barto, 1995a; Houk, Adams, and Barto, 1995; Montague,
Dayan, and Sejnowski, 1996; and Schultz, Dayan, and Montague, 1997). Chapter 15
provides an introduction to this exciting aspect of reinforcement learning. Other important



22 Chapter 1: Introduction

contributions made in the recent history of reinforcement learning are too numerous to
mention in this brief account; we cite many of these at the end of the individual chapters
in which they arise.

Bibliographical Remarks

For additional general coverage of reinforcement learning, we refer the reader to the
books by Szepesvari (2010), Bertsekas and Tsitsiklis (1996). Kaelbling (1993a), and
Sugiyama, Hachiya, and Morimura (2013). Books that take a control or operations research
perspective include those of Si, Barto, Powell, and Wunsch (2004), Powell (2011), Lewis
and Liu (2012), and Bertsekas (2012). Cao’s (2009) review places reinforcement learning
in the context of other approaches to learning and optimization of stochastic dynamic
systems. Three special issues of the journal Machine Learning focus on reinforcement
learning: Sutton (1992a), Kaelbling (1996), and Singh (2002). Useful surveys are provided
by Barto (1995b); Kaelbling, Littman, and Moore (1996); and Keerthi and Ravindran
(1997). The volume edited by Weiring and van Otterlo (2012) provides an excellent
overview of recent developments.

1.2 The example of Phil’s breakfast in this chapter was inspired by Agre (1988).

1.5 The temporal-difference method used in the tic-tac-toe example is developed in
Chapter 6.



Part I: Tabular Solution Methods

In this part of the book we describe almost all the core ideas of reinforcement learning
algorithms in their simplest forms: that in which the state and action spaces are small
enough for the approximate value functions to be represented as arrays, or tables. In
this case, the methods can often find exact solutions, that is, they can often find exactly
the optimal value function and the optimal policy. This contrasts with the approximate
methods described in the next part of the book, which only find approximate solutions,
but which in return can be applied effectively to much larger problems.

The first chapter of this part of the book describes solution methods for the special
case of the reinforcement learning problem in which there is only a single state, called
bandit problems. The second chapter describes the general problem formulation that we
treat throughout the rest of the book—finite Markov decision processes—and its main
ideas including Bellman equations and value functions.

The next three chapters describe three fundamental classes of methods for solving finite
Markov decision problems: dynamic programming, Monte Carlo methods, and temporal-
difference learning. Each class of methods has its strengths and weaknesses. Dynamic
programming methods are well developed mathematically, but require a complete and
accurate model of the environment. Monte Carlo methods don’t require a model and are
conceptually simple, but are not well suited for step-by-step incremental computation.
Finally, temporal-difference methods require no model and are fully incremental, but are
more complex to analyze. The methods also differ in several ways with respect to their
efficiency and speed of convergence.

The remaining two chapters describe how these three classes of methods can be
combined to obtain the best features of each of them. In one chapter we describe how
the strengths of Monte Carlo methods can be combined with the strengths of temporal-
difference methods via multi-step bootstrapping methods. In the final chapter of this part
of the book we show how temporal-difference learning methods can be combined with
model learning and planning methods (such as dynamic programming) for a complete
and unified solution to the tabular reinforcement learning problem.
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Chapter 2

Multi-armed Bandits

The most important feature distinguishing reinforcement learning from other types of
learning is that it uses training information that ewvaluates the actions taken rather
than instructs by giving correct actions. This is what creates the need for active
exploration, for an explicit search for good behavior. Purely evaluative feedback indicates
how good the action taken was, but not whether it was the best or the worst action
possible. Purely instructive feedback, on the other hand, indicates the correct action to
take, independently of the action actually taken. This kind of feedback is the basis of
supervised learning, which includes large parts of pattern classification, artificial neural
networks, and system identification. In their pure forms, these two kinds of feedback
are quite distinct: evaluative feedback depends entirely on the action taken, whereas
instructive feedback is independent of the action taken.

In this chapter we study the evaluative aspect of reinforcement learning in a simplified
setting, one that does not involve learning to act in more than one situation. This
nonassociative setting is the one in which most prior work involving evaluative feedback
has been done, and it avoids much of the complexity of the full reinforcement learning
problem. Studying this case enables us to see most clearly how evaluative feedback differs
from, and yet can be combined with, instructive feedback.

The particular nonassociative, evaluative teedback problem that we explore is a simple
version of the k-armed bandit problem. We use this problem to introduce a number
of basic learning methods which we extend in later chapters to apply to the full rein-
forcement learning problem. At the end of this chapter, we take a step closer to the tull
reinforcement learning problem by discussing what happens when the bandit problem
becomes associative, that 1s, when actions are taken in more than one situation.

2.1 A k-armed Bandit Problem

Consider the following learning problem. You are faced repeatedly with a choice among
k different options, or actions. After each choice you receive a numerical reward chosen
from a stationary probability distribution that depends on the action you selected. Your
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select randomly from among all the actions with equal probability, independently of
the action-value estimates. We call methods using this near-greedy action selection rule
e-greedy methods. An advantage of these methods is that, in the limit as the number of
steps increases, every action will be sampled an infinite number of times, thus ensuring
that all the (Q¢(a) converge to ¢.(a). This of course implies that the probability of selecting
the optimal action converges to greater than 1 — £, that is, to near certainty. These are
just asymptotic guarantees, however, and say little about the practical effectiveness of
the methods.

Frxercise 2.1 In e-greedy action selection, for the case of two actions and € = 0.5, what is
the probability that the greedy action is selected? []

2.3 The 10-armed Testbed

To roughly assess the relative effectiveness of the greedy and e-greedy action-value
methods, we compared them numerically on a suite of test problems. This was a set
of 2000 randomly generated k-armed bandit problems with £ = 10. For each bandit
problem, such as the one shown in Figure 2.1, the action values, g.(a), a = 1,...,10,

Reward
distribution

1 e I “+ J o f Q o (A

Action

Figure 2.1: An example bandit problem from the 10-armed testbed. The true value q.(a) of
each of the ten actions was selected according to a normal distribution with mean zero and unit
variance, and then the actual rewards were selected according to a mean ¢.(a) unit variance
normal distribution, as suggested by these gray distributions.
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were selected according to a normal (Gaussian) distribution with mean 0 and variance 1.
Then, when a learning method applied to that problem selected action A; at time step ¢,
the actual reward, R;, was selected from a normal distribution with mean ¢, (A;) and
variance 1. These distributions are shown in gray in Figure 2.1. We call this suite of test
tasks the 10-armed testbed. For any learning method, we can measure its performance
and behavior as it improves with experience over 1000 time steps when applied to one of
the bandit problems. This makes up one run. Repeating this for 2000 independent runs,
each with a different bandit problem, we obtained measures of the learning algorithm’s
average behavior.

Figure 2.2 compares a greedy method with two s-greedy methods (¢ =0.01 and £e=0.1),
as described above, on the 10-armed testbed. All the methods formed their action-value
estimates using the sample-average technique. The upper graph shows the increase in
expected reward with experience. The greedy method improved slightly faster than the
other methods at the very beginning, but then leveled off at a lower level. It achieved a
reward-per-step of only about 1, compared with the best possible of about 1.55 on this
testbed. The greedy method performed significantly worse in the long run because it
often got stuck performing suboptimal actions. The lower graph shows that the greedy
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Figure 2.2: Average performance of e-greedy action-value methods on the 10-armed testbed.
These data are averages over 2000 runs with different bandit problems. All methods used sample
averages as their action-value estimates.
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method found the optimal action in only approximately one-third of the tasks. In the
other two-thirds, its initial samples of the optimal action were disappointing, and it never
returned to it. The s-greedy methods eventually performed better because they continued
to explore and to improve their chances of recognizing the optimal action. The £ = 0.1
method explored more, and usually found the optimal action earlier, but it never selected
that action more than 91% of the time. The € = 0.01 method improved more slowly, but
eventually would perform better than the £ = 0.1 method on both performance measures
shown in the figure. It is also possible to reduce £ over time to try to get the best of both
high and low values.

The advantage of s-greedy over greedy methods depends on the task. For example,
suppose the reward variance had been larger, say 10 instead of 1. With noisier rewards
it takes more exploration to find the optimal action, and e-greedy methods should fare
even better relative to the greedy method. On the other hand, if the reward variances
were zero, then the greedy method would know the true value of each action after trying
it once. In this case the greedy method might actually perform best because it would
soon find the optimal action and then never explore. But even in the deterministic case
there is a large advantage to exploring if we weaken some of the other assumptions. For
example, suppose the bandit task were nonstationary, that is, the true values of the
actions changed over time. In this case exploration is needed even in the deterministic
case to make sure one of the nongreedy actions has not changed to become better than
the greedy one. As we shall see in the next few chapters, nonstationarity is the case
most commonly encountered in reinforcement learning. Even if the underlying task is
stationary and deterministic, the learner faces a set of banditlike decision tasks each of
which changes over time as learning proceeds and the agent’s decision-making policy
changes. Reinforcement learning requires a balance between exploration and exploitation.

Fxercise 2.2: Bandit example Consider a k-armed bandit problem with £ = 4 actions,
denoted 1, 2, 3, and 4. Consider applying to this problem a bandit algorithm using
e-greedy action selection, sample-average action-value estimates, and initial estimates
of )1(a) = 0, for all a. Suppose the initial sequence of actions and rewards is Ay = 1,
f?.-| = l._ f-lig — 2. 1?,3 = l._, 1*’-13 = 2, Rg — 2! A.;_L — 23 Ir'i)_l = 2._ 1115 = 3, Rg = (). On some
of these time steps the € case may have occurred, causing an action to be selected at
random. On which time steps did this definitely occur? On which time steps could this
possibly have occurred? []

FEzxercise 2.3 In the comparison shown in Figure 2.2, which method will perform best in
the long run in terms of cumulative reward and probability of selecting the best action?
How much better will it be? Express your answer quantitatively. []

2.4 Incremental Implementation

The action-value methods we have discussed so far all estimate action values as sample
averages of observed rewards. We now turn to the question of how these averages can be
computed in a computationally eflicient manner, in particular, with constant memory
and constant per-time-step computation.
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To simplify notation we concentrate on a single action. Let R; now denote the reward
received after the 7th selection of this action, and let (,, denote the estimate of its action
value after it has been selected n — 1 times, which we can now write simply as

) R] ‘I_}?E _|_ ‘I‘R're.—l
QT-!-: -

n—1

The obvious implementation would be to maintain a record of all the rewards and then
perform this computation whenever the estimated value was needed. However, if this is
done, then the memory and computational requirements would grow over time as more
rewards are seen. Each additional reward would require additional memory to store it
and additional computation to compute the sum in the numerator.

As you might suspect, this is not really necessary. It is easy to devise incremental
formulas for updating averages with small, constant computation required to process
each new reward. Given (),, and the nth reward, R,,, the new average of all n rewards
can be computed by

ﬁ‘?n—l—l — % Z Ri

n n—1 —
1
= (Rn + (n — I)Qn)
1
— H (Rn + nly an)
1
— QT?.- —+ E |iRﬂ — Qn} , (2.3)

which holds even for n = 1, obtaining (Jo = R, for arbitrary (). This implementation
requires memory only for (),, and n, and only the small computation (2.3) for each new
reward.

This update rule (2.3) is of a form that occurs frequently throughout this book. The
general form is

NewListimate <— OldEstimate + StepSize [T;.i.rg'ﬂt — OIdEﬁtimatﬂ] (2.4)

The expression ["I arget — Old Estfma.te} is an error in the estimate. It is reduced by taking
a step toward the “Target.” The target 1s presumed to indicate a desirable direction in
which to move, though it may be noisy. In the case above, for example, the target is the
nth reward.

Note that the step-size parameter (StepSize) used in the incremental method (2.3)
changes from time step to time step. In processing the nth reward for action a, the
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method uses the step-size parameter r—l? In this book we denote the step-size parameter
by « or, more generally, by a;(a).

Pseudocode for a complete bandit algorithm using incrementally computed sample
averages and e-greedy action selection is shown in the box below. The function bandit(a)
Is assumed to take an action and return a corresponding reward.

2.5 Tracking a Nonstationary Problem

The averaging methods discussed so far are appropriate for stationary bandit problems.
that is, for bandit problems in which the reward probabilities do not change over time.
As noted earlier, we often encounter reinforcement learning problems that are effectively
nonstationary. In such cases it makes sense to give more weight to recent rewards than
to long-past rewards. One of the most popular ways of doing this is to use a constant
step-size parameter. For example, the incremental update rule (2.3) for updating an
average (),, of the n — 1 past rewards is modified to be

Quit = Qu+a|Ry = Qul. (2.5)

where the step-size parameter o € (0, 1] is constant. This results in @), 1 being a weighted
average of past rewards and the initial estimate ):

Qny1 = @Qn+a [R?z — Qn]
= aR,+(1—-a)Q,
= aR,+(1—a)laR, 1+ (1 —a)Q, 1]
= aR,+ (1 —a)aR,—1 + (1 — a)’Q,_1
= aR,+ (1 —a)aR,_1 + (1 —a)’aR,_2+
(1 —a)" TaR 4+ (1 —a)"Q

= (1 — g)""’Ql + Z(}:(l — ri?l:')-”' .E.R*,rf_- (2-6)

=1
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temporary. If the task changes, creating a renewed need for exploration, this method
cannot help. Indeed, any method that focuses on the initial conditions in any special way
is unlikely to help with the general nonstationary case. The beginning of time occurs
only once, and thus we should not focus on it too much. This criticism applies as well to
the sample-average methods, which also treat the beginning of time as a special event,
averaging all subsequent rewards with equal weights. Nevertheless, all of these methods
are very simple, and one of them-—or some simple combination of them-——is often adequate
in practice. In the rest of this book we make frequent use of several of these simple
exploration techniques.

Fxercise 2.6: Mysterious Spikes 'The results shown in Figure 2.3 should be quite reliable
because they are averages over 2000 individual, randomly chosen 10-armed bandit tasks.
Why, then, are there oscillations and spikes in the early part of the curve for the optimistic
method? In other words, what might make this method perform particularly better or
worse, on average, on particular early steps? []
Fxercise 2.7: Unbiased Constant-Step-Size Trick In most of this chapter we have used
sample averages to estimate action values because sample averages do not produce the
initial bias that constant step sizes do (see the analysis in (2.6)). However, sample
averages are not a completely satisfactory solution because they may perform poorly
on nonstationary problems. Is it possible to avoid the bias of constant step sizes while
retaining their advantages on nonstationary problems? One way is to use a step size of

.-Bn = ./ Opn, (28)

to process the nth reward for a particular action, where o« > 0 is a conventional constant
step size, and o,, is a trace of one that starts at 0:

O0p = 0,1 +a(l —0,_1), forn>0, with oy = 0. (2.9)

Carry out an analysis like that in (2.6) to show that @),, is an exponential recency-weighted
average without initial bias. []

2.7 Upper-Confidence-Bound Action Selection

Exploration is needed because there is always uncertainty about the accuracy of the
action-value estimates. The greedy actions are those that look best at present, but some of
the other actions may actually be better. e-greedy action selection forces the non-greedy
actions to be tried, but indiscriminately, with no preference for those that are nearly
egreedy or particularly uncertain. It would be better to select among the non-greedy
actions according to their potential for actually being optimal, taking into account both
how close their estimates are to being maximal and the uncertainties in those estimates.
One effective way of doing this is to select actions according to

A; = argmax [Qy(a) + : (2.10)

L

h—

where Int denotes the natural logarithm of ¢ (the number that e ~ 2.71828 would have
to be raised to in order to equal t), N;(a) denotes the number of times that action a has
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been selected prior to time ¢t (the denominator in (2.1)), and the number ¢ > 0 controls
the degree of exploration. If N;(a) = 0, then a is considered to be a maximizing action.

The idea of this upper confidence bound (UCB) action selection is that the square-root
term is a measure of the uncertainty or variance in the estimate of a’s value. The quantity
being max’ed over is thus a sort of upper bound on the possible true value of action a, with
¢ determining the confidence level. Each time a is selected the uncertainty is presumably
reduced: Ni(a) increments, and, as it appears in the denominator, the uncertainty term
decreases. On the other hand. each time an action other than a is selected, £ increases but
Ni(a) does not; because t appears in the numerator, the uncertainty estimate increases.
The use of the natural logarithm means that the increases get smaller over time, but are
unbounded; all actions will eventually be selected, but actions with lower value estimates,
or that have already been selected frequently, will be selected with decreasing frequency
over time.

Results with UCB on the 10-armed testbed are shown in Figure 2.4. UCB often
performs well, as shown here, but is more diflicult than e-greedy to extend beyond bandits
to the more general reinforcement learning settings considered in the rest of this book.
One difficulty is in dealing with nonstationary problems; methods more complex than
those presented in Section 2.5 would be needed. Another difficulty is dealing with large
state spaces, particularly when using function approximation as developed in Part Il of
this book. In these more advanced settings the idea of UCB action selection is usually
not practical.

Average
reward

Steps

Figure 2.4: Average performance of UCB action selection on the 10-armed testbed. As shown,
UCB generally performs better than s-greedy action selection, except in the first k steps, when
it selects randomly among the as-yet-untried actions.

Erxercise 2.8: UCB Spikes In Figure 2.4 the UCB algorithm shows a distinct spike
in performance on the 11th step. Why is this? Note that for your answer to be fully
satisfactory it must explain both why the reward increases on the 11th step and why it
decreases on the subsequent steps. Hint: if ¢ = 1, then the spike is less prominent. [



2.8. Gradient Bandil Algorithms 37

2.8 Gradient Bandit Algorithms

So far in this chapter we have considered methods that estimate action values and use
those estimates to select actions. This is often a good approach, but it is not the only
one possible. In this section we consider learning a numerical preference for each action
a, which we denote Hy(a). The larger the preference, the more often that action is taken,
but the preference has no interpretation in terms of reward. Only the relative preference
of one action over another is important; if we add 1000 to all the action preferences there
is no effect on the action probabilities, which are determined according to a soft-max
distribution (i.e., Gibbs or Boltzmann distribution) as follows:

| ﬁHf(a} ' L
PI‘{ﬂLt:ﬂ-} — A — ﬁt(ﬂ)? (2].1)

where here we have also introduced a useful new notation, 7;(a), for the probability of
taking action a at time t. Initially all action preferences are the same (e.g., Hi(a) = 0,
for all @) so that all actions have an equal probability of being selected.

Fzxercise 2.9 Show that in the case of two actions, the soft-max distribution is the same
as that given by the logistic, or sigmoid, function often used in statistics and artificial
neural networks. []

There is a natural learning algorithm for this setting based on the idea of stochastic
eradient ascent. On each step, after selecting action A; and receiving the reward R;, the
action preferences are updated by:

Hii1(Ay) = Hi(Ar) + (R — Ry) (1 — m(Ay)),  and

_ _ (2.12)
Hiiq(a) = Hi(a) — (}:(Rt — Rt)ﬂt(ﬂ.L for all a #£ Ay,

where a > 0 is a step-size parameter, and R; € R is the average of all the rewards up
through and including time ¢, which can be computed incrementally as described in
Section 2.4 (or Section 2.5 if the problem is nonstationary). The R; term serves as a
baseline with which the reward is compared. If the reward is higher than the baseline,
then the probability of taking A, in the future is increased, and if the reward is below
baseline, then probability is decreased. The non-selected actions move in the opposite
direction.

Figure 2.5 shows results with the gradient bandit algorithm on a variant of the 10-
armed testbed in which the true expected rewards were selected according to a normal
distribution with a mean of +4 instead of zero (and with unit variance as before). This
shifting up of all the rewards has absolutely no effect on the gradient bandit algorithm
because of the reward baseline term, which instantaneously adapts to the new level. But

if the baseline were omitted (that is, if R; was taken to be constant zero in (2.12)), then
performance would be significantly degraded, as shown in the figure.
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Figure 2.5: Average performance of the gradient bandit algorithm with and without a reward
baseline on the 10-armed testbed when the g.(a) are chosen to be near +4 rather than near zero.
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steps. First we take a closer look at the exact performance gradient:

= =

OER:] 0
OH,(a)  9Hy(a) 2 mi(#)ae(2)

where By, called the baseline , can be any scalar that does not depend on z. We can
include a baseline here without changing the equality because the gradient sums

F " T 3 N aﬂt :jl"l — = -'1 & - - q e . '1"‘
to zero over all the actions, ) 57 . (a) — O—as Hy(a) is changed, some actions
probabilities go up and some go down, but the sum of the changes must be zero
because the sum of the probabilities is always one.

Next we multiply each term of the sum by m (z) /7 (2):

ﬁE[Hf f‘-}ﬂ.'t(i) o
OH, (a ZT“ (42 _Bt)&)ﬂt(a)/ Te():

The equation is now in the form of an expectation, summing over all possible values
x of the random variable A;, then multiplying by the probability of taking those
values. Thus:

=E|(q.(A) - Bt)f;’?;fét)) /m(,qt)}
::E}Rf R”%;SEU“”“ﬂ?

where here we have chosen the baseline By = R; and substituted R; for q.(A;),
which is permitted because E|R;|A;| = q.(A;). Shortly we will establish that
3;&3 = ?Tt(;E)(]la:I — ?Tf_(ﬂ,)), where 1,_, is defined to be 1 if a = z, else 0.
Assuming that for now, we have

=K [(Ri — Rt)m(ﬂt)(]la:m — ﬂt(ﬂ))/ﬂt(ﬂt)]
CE[(Re - B) (Luc, — mi(a))].

Recall that our plan has been to write the performance gradient as an expectation
of something that we can sample on each step, as we have just done, and then
update on each step proportional to the sample. Substituting a sample of the
expectation above for the performance gradient in (2.13) yields:

Hyp1(a) = He(a) + a(Ry — Ry) (La=a, — m(a)), for all a,

which you may recognize as being equivalent to our original algorithm (2.12).
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2.10 Summary

We have presented in this chapter several simple ways of balancing exploration and
exploitation. The s-greedy methods choose randomly a small fraction of the time, whereas
UCB methods choose deterministically but achieve exploration by subtly favoring at each
step the actions that have so far received fewer samples. Gradient bandit algorithms
estimate not action values, but action preferences, and favor the more preferred actions
in a graded, probabilistic manner using a soft-max distribution. The simple expedient of
initializing estimates optimistically causes even greedy methods to explore significantly.

It is natural to ask which of these methods is best. Although this is a dificult question
to answer in general, we can certainly run them all on the 10-armed testbed that we
have used throughout this chapter and compare their performances. A complication is
that they all have a parameter; to get a meaningful comparison we have to consider
their performance as a function of their parameter. Our graphs so far have shown the
course of learning over time for each algorithm and parameter setting, to produce a
learning curve for that algorithm and parameter setting. If we plotted learning curves
for all algorithms and all parameter settings, then the graph would be too complex and
crowded to make clear comparisons. Instead we summarize a complete learning curve
by its average value over the 1000 steps; this value is proportional to the area under the
learning curve. Figure 2.6 shows this measure for the various bandit algorithms from
this chapter, each as a function of its own parameter shown on a single scale on the
x-axis. This kind of graph is called a parameter study. Note that the parameter values
are varied by factors of two and presented on a log scale. Note also the characteristic
inverted-U shapes of each algorithm’s performance; all the algorithms perform best at
an intermediate value of their parameter, neither too large nor too small. In assessing
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Figure 2.6: A parameter study of the various bandit algorithms presented in this chapter.
Fach point is the average reward obtained over 1000 steps with a particular algorithm at a
particular setting of its parameter.
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a method, we should attend not just to how well it does at its best parameter setting,
but also to how sensitive it is to its parameter value. All of these algorithms are fairly
insensitive, performing well over a range of parameter values varving by about an order
of magnitude. Overall, on this problem, UCB seems to perform best.

Despite their simplicity, in our opinion the methods presented in this chapter can
fairly be considered the state of the art. There are more sophisticated methods, but their
complexity and assumptions make them impractical for the full reinforcement learning
problem that is our real focus. Starting in Chapter 5 we present learning methods for
solving the full reinforcement learning problem that use in part the simple methods
explored in this chapter.

Although the simple methods explored in this chapter may be the best we can do
at present, they are far from a fully satisfactory solution to the problem of balancing
exploration and exploitation.

One well-studied approach to balancing exploration and exploitation in k-armed bandit
problems is to compute a special kind of action value called a Gittins index. In certain
important special cases, this computation is tractable and leads directly to optimal
solutions, although it does require complete knowledge of the prior distribution of possible
problems, which we generally assume is not available. In addition, neither the theory
nor the computational tractability of this approach appear to generalize to the full
reinforcement learning problem that we consider in the rest of the book.

The Gittins-index approach is an instance of Bayesian methods, which assume a known
initial distribution over the action values and then update the distribution exactly after
each step (assuming that the true action values are stationary). In general, the update
computations can be very complex, but for certain special distributions (called conjugate
priors) they are easy. One possibility is to then select actions at each step according
to their posterior probability of being the best action. This method, sometimes called
posterior sampling or Thompson sampling, often performs similarly to the best of the
distribution-free methods we have presented in this chapter.

In the Bayesian setting it is even conceivable to compute the optimal balance between
exploration and exploitation. One can compute for any possible action the probability
of each possible immediate reward and the resultant posterior distributions over action
values. This evolving distribution becomes the information state of the problem. Given
a horizon, say of 1000 steps, one can consider all possible actions, all possible resulting
rewards, all possible next actions, all next rewards, and so on for all 1000 steps. Given
the assumptions, the rewards and probabilities of each possible chain of events can be
determined, and one need only pick the best. But the tree of possibilities grows extremely
rapidly; even if there were only two actions and two rewards, the tree would have 22%%Y
leaves. It is generally not feasible to perform this immense computation exactly, but
perhaps it could be approximated efficiently. This approach would effectively turn the
bandit problem into an instance of the full reinforcement learning problem. In the end, we
may be able to use approximate reinforcement learning methods such as those presented
in Part II of this book to approach this optimal solution. But that is a topic for research
and beyond the scope of this introductory book.
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Exercise 2.11 (programming) Make a figure analogous to Figure 2.6 for the nonstationary

r‘

case outlined in Exercise 2.5. Include the constant-step-size s-greedy algorithm with
a=0.1. Use runs of 200,000 steps and, as a performance measure for each algorithm and
parameter setting, use the average reward over the last 100,000 steps. [ ]

Bibliographical and Historical Remarks

2.1

2.2
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2.6
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Bandit problems have been studied in statistics, engineering, and psychology. In
statistics, bandit problems fall under the heading “sequential design of experi-
ments,” introduced by Thompson (1933, 1934) and Robbins (1952), and studied
by Bellman (1956). Berry and Fristedt (1985) provide an extensive treatment of
bandit problems from the perspective of statistics. Narendra and Thathachar
(1989) treat bandit problems from the engineering perspective, providing a good
discussion of the various theoretical traditions that have focused on them. In
psychology, bandit problems have played roles in statistical learning theory (e.g..
Bush and Mosteller, 1955; Estes, 1950).

The term greedy is often used in the heuristic search literature (e.g., Pearl, 1984).
The conflict between exploration and exploitation is known in control engineering
as the conflict between identification (or estimation) and control (e.g., Witten,
1976b). Feldbaum (1965) called it the dual control problem, referring to the
need to solve the two problems of identification and control simultaneously when
trying to control a system under uncertainty. In discussing aspects of genetic
algorithms, Holland (1975) emphasized the importance of this conflict, referring
to it as the conflict between the need to exploit and the need for new information.

Action-value methods for our k-armed bandit problem were first proposed by
Thathachar and Sastry (1985). These are often called estimator algorithms in the
learning automata literature. The term action value is due to Watkins (1989).
The first to use e-greedy methods may also have been Watkins (1989, p. 187),
but the idea is so simple that some earlier use seems likely.

This material falls under the general heading of stochastic iterative algorithms,
which is well covered by Bertsekas and Tsitsiklis (1996).

Optimistic initialization was used in reinforcement learning by Sutton (1996).

Early work on using estimates of the upper confidence bound to select actions
was done by Lai and Robbins (1985), Kaelbling (1993b), and Agrawal (1995).
The UCDB algorithm we present here is called UCBI1 in the literature and was
first developed by Auer, Cesa-Bianchi and Fischer (2002).

Gradient bandit algorithms are a special case of the gradient-based reinforcement
learning algorithms introduced by Williams (1992), and that later developed into
the actor—critic and policy-gradient algorithms that we treat later in this book.
Our development here was influenced by that by Balaraman Ravindran (personal
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communication). Further discussion of the choice of baseline is provided there
and by Greensmith, Bartlett, and Baxter (2002, 2004) and Dick (2015). Early

systematic studies of algorithms like this were done by Sutton (1984).

The term soft-max for the action selection rule (2.11) is due to Bridle (1990).
This rule appears to have been first proposed by Luce (1959).

The term associative search and the corresponding problem were introduced by
Barto, Sutton, and Brouwer (1981). The term associative reinforcement learning
has also been used for associative search (Barto and Anandan, 1985), but we
prefer to reserve that term as a synonym for the full reinforcement learning
problem (as in Sutton, 1984). (And, as we noted, the modern literature also
“contextual bandits” for this problem.) We note that Thorndike’s
Law of Effect (quoted in Chapter 1) describes associative search by referring
to the formation of associative links between situations (states) and actions.
According to the terminology of operant, or instrumental, conditioning (e.g.,
Skinner, 1938), a discriminative stimulus is a stimulus that signals the presence
of a particular reinforcement contingency. In our terms, different discriminative
stimuli correspond to different states.

uses the term

Bellman (1956) was the first to show how dynamic programming could be used
to compute the optimal balance between exploration and exploitation within a
Bayesian formulation of the problem. The Gittins index approach is due to Gittins
and Jones (1974). Duff (1995) showed how it is possible to learn Gittins indices
for bandit problems through reinforcement learning. The survey by Kumar (1985)
provides a good discussion of Bayesian and non-Bayesian approaches to these
problems. The term information state comes from the literature on partially
observable MDPs; see, for example, Lovejoy (1991).

Other theoretical research focuses on the efficiency of exploration, usually ex-
pressed as how quickly an algorithm can approach an optimal decision-making
policy. One way to formalize exploration efficiency is by adapting to reinforcement
learning the notion of sample complexity for a supervised learning algorithm,
which is the number of training examples the algorithm needs to attain a desired
degree of accuracy in learning the target function. A definition of the sample
complexity of exploration for a reinforcement learning algorithm is the number of
time steps in which the algorithm does not select near-optimal actions (Kakade,
2003). Li (2012) discusses this and several other approaches in a survey of theo-
retical approaches to exploration efficiency in reinforcement learning. A thorough
modern treatment of Thompson sampling is provided by Russo et al. (2018).
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but here it just reminds us that p specifies a probability distribution for each choice of s
and a, that is, that

y: ?p(s‘r:ﬂﬂ,a) =1, for all s € §,a € A(s). (3.3)

s'esreR

In a Markov decision process, the probabilities given by p completely characterize the
environment’s dynamics. That is, the probability of each possible value for S; and R,
depends only on the immediately preceding state and action, S;_1 and A;_q, and. given
them, not at all on earlier states and actions. This is best viewed a restriction not on the
decision process, but on the state. The state must include information about all aspects
of the past agent—environment interaction that make a difference for the future. If it
does, then the state is said to have the Markov property. We will assume the Markov
property throughout this book, though starting in Part 11 we will consider approximation
methods that do not rely on it, and in Chapter 17 we consider how a Markov state can
be learned and constructed from non-Markov observations.

From the four-argument dynamics function, p, one can compute anything else one might
want to know about the environment, such as the state-transition probabilities (which we
denote, with a slight abuse of notation, as a three-argument function p : § x8 x A — [0, 1]),

p(‘ﬁf | o ﬂ*‘) = PI'{Sf — Sﬁ | St—1 — 5, Ai1 :'ﬂ'_} — Z p(’gfﬂ r | =F ﬂ-)- (31)
rek

We can also compute the expected rewards for state—action pairs as a two-argument
function r : 8 x A — R:

r(s,a) = E[R, | Si1=s, A 1=a|l = 7?* Sj-p(g"j-r S, a), (3.5)

recR s'ed

and the expected rewards for state—action—next-state triples as a three-argument function

r:oxAxo—R,

. p(s',r|s,a)

r(s,a,s") = E[R; L(q’

/ : !
;Sr;_]:S,A;;_]:{LjSLZS] — E

ER

(3.6)

s, a)

In this book, we usually use the four-argument p function (3.2), but each of these other
notations are also occasionally convenient.

The MDP framework is abstract and flexible and can be applied to many different
problems in many different ways. For example, the time steps need not refer to fixed
intervals of real time; they can refer to arbitrary successive stages of decision making
and acting. The actions can be low-level controls, such as the voltages applied to the
motors of a robot arm, or high-level decisions, such as whether or not to have lunch or
to go to graduate school. Similarly, the states can take a wide variety of forms. They
can be completely determined by low-level sensations, such as direct sensor readings, or
they can be more high-level and abstract, such as symbolic descriptions of objects in a
room. Some of what makes up a state could be based on memory of past sensations or
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even be entirely mental or subjective. For example, an agent could be in the state of not
being sure where an object is, or of having just been surprised in some clearly defined
sense. Similarly, some actions might be totally mental or computational. For example,
some actions might control what an agent chooses to think about, or where it focuses its
attention. In general, actions can be any decisions we want to learn how to make, and
the states can be anything we can know that might be useful in making them.

In particular, the boundary between agent and environment is typically not the same
as the physical boundary of robot’s or animal’s body. Usually, the boundary is drawn
closer to the agent than that. For example, the motors and mechanical linkages of a robot
and its sensing hardware should usually be considered parts of the environment rather
than parts of the agent. Similarly, if we apply the MDP framework to a person or animal,
the muscles, skeleton, and sensory organs should be considered part of the environment.
Rewards, too, presumably are computed inside the physical bodies of natural and artificial
learning systems, but are considered external to the agent.

The general rule we follow is that anything that cannot be changed arbitrarily by
the agent is considered to be outside of it and thus part of its environment. We do
not assume that everything in the environment is unknown to the agent. For example,
the agent often knows quite a bit about how its rewards are computed as a function of
its actions and the states in which they are taken. But we always consider the reward
computation to be external to the agent because it defines the task facing the agent and
thus must be beyond its ability to change arbitrarily. In fact, in some cases the agent may
know everything about how its environment works and still face a difficult reinforcement
learning task, just as we may know exactly how a puzzle like Rubik’s cube works, but
still be unable to solve it. The agent—environment boundary represents the limit of the
agent’s absolute control, not of its knowledge.

The agent-environment boundary can be located at different places for different
purposes. In a complicated robot, many diflerent agents may be operating at once, each
with its own boundary. For example, one agent may make high-level decisions which form
part of the states faced by a lower-level agent that implements the high-level decisions. In
practice, the agent—environment boundary is determined once one has selected particular
states, actions, and rewards, and thus has identified a specific decision making task of
interest.

The MDP framework is a considerable abstraction of the problem of goal-directed
learning from interaction. It proposes that whatever the details of the sensory, memory,
and control apparatus, and whatever objective one is trying to achieve, any problem of
learning goal-directed behavior can be reduced to three signals passing back and forth
between an agent and its environment: one signal to represent the choices made by the
agent (the actions), one signal to represent the basis on which the choices are made (the
states), and one signal to define the agent’s goal (the rewards). This framework may not
be sufficient to represent all decision-learning problems usefully, but it has proved to be
widely useful and applicable.

Of course, the particular states and actions vary greatly from task to task, and how
they are represented can strongly affect performance. In reinforcement learning, as in
other kinds of learning, such representational choices are at present more art than science.
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In this book we offer some advice and examples regarding good ways of representing
states and actions, but our primary focus is on general principles for learning how to
behave once the representations have been selected.

Example 3.1: Bioreactor Suppose reinforcement learning is being applied to determine
moment-by-moment temperatures and stirring rates for a bioreactor (a large vat of
nutrients and bacteria used to produce useful chemicals). The actions in such an
application might be target temperatures and target stirring rates that are passed to
lower-level control systems that, in turn, directly activate heating elements and motors to
attain the targets. The states are likely to be thermocouple and other sensory readings,
perhaps filtered and delayed, plus symbolic inputs representing the ingredients in the
vat and the target chemical. The rewards might be moment-by-moment measures of the
rate at which the useful chemical is produced by the bioreactor. Notice that here each
state is a list, or vector, of sensor readings and symbolic inputs., and each action is a
vector consisting of a target temperature and a stirring rate. It is typical of reinforcement
learning tasks to have states and actions with such structured representations. Rewards,
on the other hand, are always single numbers. H

Example 3.2: Pick-and-Place Robot Consider using reinforcement learning to
control the motion of a robot arm in a repetitive pick-and-place task. If we want to learn
movements that are fast and smooth, the learning agent will have to control the motors
directly and have low-latency information about the current positions and velocities of the
mechanical linkages. The actions in this case might be the voltages applied to each motor
at each joint, and the states might be the latest readings of joint angles and velocities.
The reward might be +1 for each object successtully picked up and placed. To encourage
smooth movements, on each time step a small, negative reward can be given as a function
of the moment-to-moment “jerkiness” of the motion. u

Fzercise 3.1 Devise three example tasks of your own that fit into the MDP framework,
identifying for each its states, actions, and rewards. Make the three examples as different
from each other as possible. The framework is abstract and flexible and can be applied in
many different ways. Stretch its limits in some way in at least one of your examples. [

Fxercise 3.2 Is the MDP framework adequate to usefully represent all goal-directed
learning tasks? Can you think of any clear exceptions? L]

Frercise 3.3 Consider the problem of driving. You could define the actions in terms of
the accelerator, steering wheel, and brake, that is, where your body meets the machine.
Or you could define them farther out—say, where the rubber meets the road, considering
your actions to be tire torques. Or you could define them farther in—say, where your
brain meets your body, the actions being muscle twitches to control your limbs. Or you
could go to a really high level and say that your actions are your choices of where to drive.
What is the right level, the right place to draw the line between agent and environment?
On what basis is one location of the line to be preferred over another? Is there any
fundamental reason for preferring one location over another, or is it a free choice? L[]




Chapter 3: Finite Markov Decision Processes




3.2, Goals and Rewards 55

Fzercise 5.4 Give a table analogous to that in Example 3.3, but for p(s’,7|s,a). It
should have columns for s, a, s, r, and p(s’,r|s,a), and a row for every 4-tuple for which
p(s',r|s,a) > 0. ]

3.2 Goals and Rewards

In reinforcement learning, the purpose or goal of the agent is formalized in terms of a
special signal, called the reward, passing from the environment to the agent. At each time
step, the reward is a simple number, R; € R. Informally, the agent’s goal is to maximize
the total amount of reward it receives. This means maximizing not immediate reward,
but cumulative reward in the long run. We can clearly state this informal idea as the
reward hypothesis:

That all of what we mean by goals and purposes can be well thought of as
the maximization of the expected value of the cumulative sum of a received
scalar signal (called reward).

The use of a reward signal to formalize the idea of a goal is one of the most distinctive
features of reinforcement learning.

Although formulating goals in terms of reward signals might at first appear limiting,
in practice it has proved to be flexible and widely applicable. The best way to see this is
to consider examples of how it has been, or could be, used. For example, to make a robot
learn to walk, researchers have provided reward on each time step proportional to the
robot’s forward motion. In making a robot learn how to escape from a maze, the reward
is often —1 for every time step that passes prior to escape; this encourages the agent to
escape as quickly as possible. To make a robot learn to find and collect empty soda cans
for recycling, one might give it a reward of zero most of the time, and then a reward of
+1 for each can collected. One might also want to give the robot negative rewards when
it bumps into things or when somebody vells at i1t. For an agent to learn to play checkers
or chess, the natural rewards are +1 for winning, —1 for losing, and 0 for drawing and
for all nonterminal positions.

You can see what is happening in all of these examples. The agent always learns to
maximize its reward. If we want it to do something for us, we must provide rewards
to 1t in such a way that in maximizing them the agent will also achieve our goals. It
is thus critical that the rewards we set up truly indicate what we want accomplished.
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Example 3.4: Pole-Balancing

The objective in this task is to apply

forces to a cart moving along a track

so as to keep a pole hinged to the cart

from falling over: A failure is said to

occur if the pole falls past a given angle

from vertical or if the cart runs off the

track. The pole is reset to vertical

after each failure. This task could be

treated as episodic, where the natural

episodes are the repeated attempts to balance the pole. The reward in this case could be
+1 for every time step on which failure did not occur, so that the return at each time
would be the number of steps until failure. In this case, successful balancing forever would
mean a return of infinity. Alternatively, we could treat pole-balancing as a continuing
task, using discounting. In this case the reward would be —1 on each failure and zero at
all other times. The return at each time would then be related to —v**, where K is the
number of time steps before failure. In either case, the return is maximized by keeping
the pole balanced for as long as possible. H

Erercise 5.6 Suppose you treated pole-balancing as an episodic task but also used
discounting, with all rewards zero except for —1 upon failure. What then would the
return be at each time? How does this return differ from that in the discounted, continuing
formulation of this task? (]

Fzxercise 3.7 Imagine that you are designing a robot to run a maze. You decide to give it a
reward of +1 for escaping from the maze and a reward of zero at all other times. The task
seems to break down naturally into episodes—the successive runs through the maze—so
you decide to treat it as an episodic task, where the goal is to maximize expected total
reward (3.7). After running the learning agent for a while, you find that it is showing
no improvement in escaping from the maze. What is going wrong? Have you effectively

communicated to the agent what you want it to achieve? []
FEzxercise 3.8 Suppose v = 0.5 and the following sequence of rewards is received Ry, = —1,
Ro =2, Ry =6, Ry = 3. and R; = 2, with T"' = 5. What are Gy, G4, ..., G57 Hint:
Work backwards. []
Fzercise 3.9 Suppose v = 0.9 and the reward sequence is B, = 2 followed by an infinite
sequence of 7s. What are G; and Gy? ]

Exercise 3.10 Prove the second inequality in (3.10). []
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3.4 Unified Notation for Episodic and Continuing
Tasks

In the preceding section we described two kinds of reinforcement learning tasks, one
in which the agent-environment interaction naturally breaks down into a sequence of
separate episodes (episodic tasks), and one in which it does not (continuing tasks). The
former case is mathematically easier because each action affects only the finite number of
rewards subsequently received during the episode. In this book we consider sometimes
one kind of problem and sometimes the other, but often both. It is therefore usetul to
establish one notation that enables us to talk precisely about both cases simultaneously.

To be precise about episodic tasks requires some additional notation. Rather than one
long sequence of time steps, we need to consider a series of episodes, each of which consists
of a finite sequence of time steps. We number the time steps of each episode starting
anew from zero. Therefore, we have to refer not just to 5;, the state representation at
time ¢, but to S;;, the state representation at time ¢ of episode ¢ (and similarly for A; ;,
Ry i, 74, T3, ete.). However, it turns out that when we discuss episodic tasks we almost
never have to distinguish between different episodes. We are almost always considering a
particular single episode, or stating something that is true for all episodes. Accordingly,
in practice we almost always abuse notation slightly by dropping the explicit reference to
episode number. That is, we write S; to refer to S;;, and so on.

We need one other convention to obtain a single notation that covers both episodic
and continuing tasks. We have defined the return as a sum over a finite number of terms
in one case (3.7) and as a sum over an infinite number of terms in the other (3.8). These
two can be unified by considering episode termination to be the entering of a special
absorbing state that transitions only to itself and that generates only rewards of zero. For
example, consider the state transition diagram:

R,=0
R = I H — I R-: I 4
@ [=+ ,@ 5=+ ,@ 3=+ .,.O R=0

Here the solid square represents the special absorbing state corresponding to the end of an
episode. Starting from Sy, we get the reward sequence +1,+41,+1,0,0,0,.... Summing
these, we get the same return whether we sum over the first T rewards (here T'= 3) or
over the full infinite sequence. This remains true even if we introduce discounting. Thus,
we can define the return, in general, according to (3.8), using the convention of omitting
episode numbers when they are not needed, and including the possibility that v = 1 if the

I

sum remains defined (e.g., because all episodes terminate). Alternatively, we can write

T

Ge= Y ARy, (3.11)
k=t+1

including the possibility that 7" = oo or v = 1 (but not both). We use these conventions

throughout the rest of the book to simplify notation and to express the close parallels
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between episodic and continuing tasks. (Later, in Chapter 10, we will introduce a
formulation that is both continuing and undiscounted.)

3.5 Policies and Value Functions

Almost all reinforcement learning algorithms involve estimating value functions—tunctions
of states (or of state—action pairs) that estimate how good it is for the agent to be in a
given state (or how good it is to perform a given action in a given state). The notion
of “how good” here is defined in terms of future rewards that can be expected. or, to
be precise, in terms of expected return. Of course the rewards the agent can expect to
receive in the future depend on what actions it will take. Accordingly, value functions
are defined with respect to particular ways of acting, called policies.

Formally, a policy is a mapping from states to probabilities of selecting each possible
action. If the agent is following policy 7 at time ¢, then m(als) is the probability that
Ay =a if 5y =s. Like p, m is an ordinary function; the in the middle of w(als)
merely reminds that it defines a probability distribution over a € A(s) for each s € 8.
Reinforcement learning methods specify how the agent’s policy is changed as a result of
1ts experience.

FExercise 3.11 If the current state is Sy, and actions are selected according to stochastic
policy m, then what is the expectation of R;,, in terms of 7 and the four-argument
function p (3.2)7 ]

The value function of a state s under a policy 7, denoted v (s), is the expected return
when starting in s and following 7 thereafter. For MDPs, we can define v, formally by

vr(s) = ExlGy | Si=s| = E; ZT’:&Rt-l—ﬁ:——l Si=s|, forall s €93, (3.12)
L k=0

where E|-| denotes the expected value of a random variable given that the agent follows
policy m, and t is any time step. Note that the value of the terminal state, if any, is
always zero. We call the function v, the state-value function for policy .

Similarly, we define the value of taking action a in state s under a policy 7, denoted
qr(s,a), as the expected return starting from s, taking the action a, and thereafter
following policy m:

. _
g=(s,a) = EAGy | Si=s,Ar=0a] = Ex|> Y*Rijnir | Se=s,Ar=a|. (3.13)
| k=0 -
We call ¢, the aclion-value function for policy .
Ezxercise 3.12 Give an equation for v, in terms of ¢, and . [ ]
Frercise 3.13 Give an equation for ¢, in terms of v; and the four-argument p. [ ]

The value functions v, and g, can be estimated from experience. For example, if an
agent follows policy m and maintains an average, for each state encountered, of the actual
returns that have followed that state, then the average will converge to the state’s value,
vx(5), as the number of times that state is encountered approaches infinity. If separate
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averages are kept for each action taken in each state, then these averages will similarly
converge to the action values, ¢, (s,a). We call estimation methods of this kind Monte
Clarlo methods because they involve averaging over many random samples of actual returns.
These kinds of methods are presented in Chapter 5. Of course, if there are very many
states, then it may not be practical to keep separate averages for each state individually.
Instead, the agent would have to maintain v, and ¢, as parameterized functions (with
fewer parameters than states) and adjust the parameters to better match the observed
returns. This can also produce accurate estimates, although much depends on the nature
of the parameterized function approximator. These possibilities are discussed in Part 11
of the book.

A fundamental property of value functions used throughout reinforcement learning and
dynamic programming is that they satisfy recursive relationships similar to that which
we have already established for the return (3.9). For any policy 7 and any state s, the
following consistency condition holds between the value of s and the value of its possible
successor states:

v(8) = E Gy | Sp=s]
— Eﬂ-[Rt_;_l + ’}’G!t_.'_l | St :S] (h"‘lﬁ' (39))

— Z m(als) Z Z p(s',r|s,a) {T’ + YE#Ge41]St41 :SI]}
a CLE

= Z m(als) Zp(s": rls,a) [u‘r‘ + *‘jwur(:a:’r)]j for all s € 8, (3.14)
a s’ .r

where it is implicit that the actions, a, are taken from the set A(s), that the next states,
s', are taken from the set 8§ (or from 8" in the case of an episodic problem), and that
the rewards, r, are taken from the set R. Note also how in the last equation we have
merged the two sums, one over all the values of s and the other over all the values of r,
into one sum over all the possible values of both. We use this kind of merged sum often
to simplify formulas. Note how the final expression can be read easily as an expected
ralue. It is really a sum over all values of the three variables, a, s’, and r. For each triple,
we compute its probability, w(a|s)p(s’, r|s,a), weight the quantity in brackets by that
probability, then sum over all possibilities to get an expected value.

Equation (3.14) is the Bellman equation for v,. It expresses
a relationship between the value of a state and the values of
its successor states. Think of looking ahead from a state to its
possible successor states, as suggested by the diagram to the
right. Each open circle represents a state and each solid circle
represents a state—action pair. Starting from state s, the root r
node at the top, the agent could take any of some set of actions
three are shown in the diagram—based on its policy m. From
each of these, the environment could respond with one of several next states, s’ (two are
shown in the figure), along with a reward, r, depending on its dynamics given by the
function p. The Bellman equation (3.14) averages over all the possibilities, weighting each
by its probability of occurring. It states that the value of the start state must equal the
(discounted) value of the expected next state, plus the reward expected along the way.

backup diagram tor v,
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The value function v, is the unique solution to its Bellman equation. We show in
subsequent chapters how this Bellman equation forms the basis of a number of ways to
compute, approximate, and learn v.. We call diagrams like that above backup diagrams
because they diagram relationships that form the basis of the update or backup operations
that are at the heart of reinforcement learning methods. These operations transfer
value information back to a state (or a state-action pair) from its successor states (or
state—action pairs). We use backup diagrams throughout the book to provide graphical
summaries of the algorithms we discuss. (Note that, unlike transition graphs, the state
nodes of backup diagrams do not necessarily represent distinct states; for example, a
state might be its own successor.)

Example 3.5: Gridworld Figure 3.2 (left) shows a rectangular gridworld representation
of a simple finite MDP. The cells of the grid correspond to the states of the environment. At
each cell, four actions are possible: north, south, east, and west, which deterministically
cause the agent to move one cell in the respective direction on the grid. Actions that
would take the agent off the grid leave its location unchanged, but also result in a reward
of —1. Other actions result in a reward of 0, except those that move the agent out of the
special states A and B. From state A, all four actions yield a reward of +10 and take the
agent to A’. From state B, all actions vield a reward of +5 and take the agent to B'.

ACTIONS

Figure 3.2: Gridworld example: exceptional reward dynamics (left) and state-value function
for the equiprobable random policy (right).

Suppose the agent selects all four actions with equal probability in all states. Figure 3.2
(right) shows the value function, v,, for this policy, for the discounted reward case with
v = 0.9. This value function was computed by solving the system of linear equations
(3.14). Notice the negative values near the lower edge; these are the result of the high
probability of hitting the edge of the grid there under the random policy. State A is the
best state to be in under this policy, but 1ts expected return is less than 10, 1ts immediate
reward, because from A the agent is taken to A’, from which it is likely to run into the
edge of the grid. State B, on the other hand, is valued more than 5, its immediate reward,
because from B the agent is taken to B’, which has a positive value. From B’ the expected
penalty (negative reward) for possibly running into an edge is more than compensated
for by the expected gain for possibly stumbling onto A or B. u

Ezercise 3.1/ The Bellman equation (3.14) must hold for each state for the value function
v shown in Figure 3.2 (right) of Example 3.5. Show numerically that this equation holds
for the center state, valued at +0.7, with respect to its four neighboring states, valued at
+2.3, 0.4, —0.4, and 40.7. (These numbers are accurate only to one decimal place.) [



