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POSSIBLE m-DIAGRAMS OF MODELS OF ARITHMETIC

ANDREW ARANAT

Abstract. In this paper we investigate the complexity of m-diagrams of models of various com-
pletions of first-order Peano Arithmetic (PA). We obtain characterizations that extend Solovay’s
results for open diagrams of models of completions of PA. We first characterize the m-diagrams of
models of True Arithmetic by showing that the degrees of m-diagrams of nonstandard models A
of TA are the same for all m > 0. Next, we obtain a more complicated characterization for arbi-
trary completions of PA. We then provide examples showing that some of the extra complication
is needed. Lastly, we characterize sequences of Turing degrees that occur as (deg(T N Z,))new.
where T is a completion of PA.

§1. Introduction. We use P(w) to denote the class of all subsets of @. Let
Lpa be the usual language of PA: relations +, -, S, and <: and constants 0
and 1. We abbreviate True Arithmetic, the theory of the standard model of
PA., by the initials TA. We use $”(0) to denote the numeral for ».

We continue with some preliminary definitions and results. A B, formula
is a boolean combination of X, formulas. A complete B, type is the set of
all B, formulas true of some tuple in some structure. The open diagram of a
structure A, denoted D (A), is the collection of open sentences, with constants
from A. that are true in A. Similarly, the m-diagram of 4. denoted D,,(A). is
the collection of B, sentences, with constants from A. that are true in A.

Behind most of what we know about models and completions of PA is the
notion of a Scott set:

DEFINITION 1.1. A Scott set is a nonempty family of sets S € P(w) such
that
l.if XYeSandY <7y X,then Y € S,
2.ifX.YeS thenX Y €S,
3. if T C 2<% is an infinite tree in S, then T has a path in S. Equivalently.
if A i1s a consistent set of sentences in S, then some complete extension
of Aisin S.
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2 ANDREW ARANA

The family of arithmetical sets forms a Scott set. Scott sets are the w-models
of the axiom system WKL as studied in reverse mathematics (and where the
model is identified with the power set part of the structure, as in [14]). For a
nonstandard model A |= PA. let SS(A) = {d, : a € A}. where

d‘,={n6w:A\=pn|a}

where (py)icq is the sequence of primes.
THEOREM 1.2 (Scott). Foranonstandardmodel A=PA, SS(A) isa Scott set.

We thus call SS(.A) the Scott set of the model A.
The following well-known lemma is a sort of weak saturation property for
bounded types in a Scott set:

Lemma 1.3. Let A be a nonstandard model of PA. Let T'(. x) be a complete
B, type, with @ € A a tuple that can be substituted for W in . Then I'(@. x)
is realized by some ¢ € A if and only if T(a@, x) U D,,.1(A) is consistent and
C(u.x) e SS(A).

Scott was originally interested in Scott sets because they are closely tied to
the notion of “representability”. He wanted to characterize the families of
sets representable with respect to completions of PA.

DerNITION 1.4. For a theory 7T in the language of PA, aset X C w is
representable by T if there is a formula ¢ such that forn € X, T + (5 (0)).
andforn & X. T F —p(S™(0)).

We denote the collection of sets representable by a theory T by Rep(T).
Scott [12] showed the following fact relating Scott sets and Rep(T'):

THEOREM 1.5 (Scott). For a countable collection S C P(w). S is a Scott set
if and only if there exists a completion T of PA such that Rep(T) = S.
Feferman [3] noted the following fact about nonstandard models of TA:

THEOREM 1.6 (Feferman). Let A be a nonstandard model of TA. Then
SS(A) contains the arithmetical sets.

Feferman gave the result only for TA. However, for essentially the same
reasons we also get the following result, for any model of PA:

TueoreM 1.7, Let A be a nonstandard model of PA. Then SS(A) contains
Rep(T). Equivalently, SS(A) contains T, = T N Z,. for all n.

Theorem 1.7 implies Theorem 1.6. because for T = TA, T, =r 0™ for
all n. Theorem 1.7 suggests the following definition:

DeriNiTION 1.8. A Scott set S is appropriate for a theory T if T, € S for
all n. Equivalently, S is appropriate for T if Rep(T) € S.
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Using this definition, we can restate Theorem 1.7 as:

THEOREM 1.9. Let A be a nonstandard model of PA. Then SS(A) is appro-
priate for T.

A notion we shall use in connection with Scott sets is that of an “enumera-
tion”.

DErFINITION 1.10. An enumeration of a set S C P(w) is a binary relation R
such that S = {R, : n € w}, where

R, ={k:(n k) e R}.
An R-index for X is some k € @ such that R, = X
DeriniTION 1.11. For a nonstandard model .4 of PA with universe .,
R ={(a.n): A pyla}
is called the canonical enumeration of SS(A).

We have the well-known fact:

PrOPOSITION 1.12. Let A be any nonstandard model of PA with universe w
and let R be the canonical enumeration of SS(.A). Then R <t D(A).

This follows from the fact that the open diagram D(A) witnesses true
instances of the division algorithm. The following corollary follows from the
fact that D(A) <7 D,,(A), form > 0:

CorOLLARY 1.13. For A a nonstandard model of PA with universe . if R is
the canonical enumeration of SS(A). then R <7 D,,(A). for m > 0.

Solovay defined the notion of an “effective enumeration™

DeriNiTION 1.14. For a countable Scott set S, an effective enumeration is an
enumeration R, with associated functions /', g, and » witnessing that S is a
Scott set. These functions have the following properties:

1. if @& = yx.then f(i.e) is an R-index for X

2. g(i. j) is an R-index for R; & R;.

3. if R; is an infinite tree T C 2<“, then /(i) is an R-index for a set X such

that yy is a path through T.

We say that an effective enumeration is computable in a set X if the enumer-
ation and the three functions are all computable in X. Effective enumerations
are available to us in light of the following result [7]:

THEOREM 1.15 (Marker). Let S be a countable Scott set. If S has an enu-
meration computable in X | then it also has an effective enumeration computable
inX.

Solovay gave a characterization of the degrees (of open diagrams) of non-
standard models of TA in terms of effective enumerations [15]. Marker simpli-
fied Solovay’s result by applying Theorem 1.15 [7]. The result is the following
characterization:
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THEOREM 1.16 (Solovay/Marker). The degrees of nonstandard models of TA
are the degrees of enumerations of Scott sets containing the arithmetical sets.

Solovay also characterized the degrees of (open diagrams of ) nonstandard
models of other completions of PA. The result is more difficult to state than
the result for TA. To see why, let us highlight the difference between TA and
arbitrary completions of PA. For a nonstandard model A of TA, A" yields
the theory (and indices for the X, fragments). For an arbitrary completion of
PA this may not be so. as we will illustrate in Section 4.

Solovay found the general relationship between jumps of the model and
indices for fragments of the theory. The result is the following characterization:

THEOREM 1.17 (Solovay). Suppose T is a completion of PA. The degrees of
nonstandard models of T are the degrees of sets X such that:

(a) There is an enumeration R <y X of a Scott set S appropriate for T; and

(b) There are functions t, for n > 1. AY(X) uniformly in n, such that
lim,_, o t,(s) is an index for T, and for all s, t,(s) is an R-index for
a subset of T,,.

Solovay did not publish these results we are attributing to him. In [6], Julia
Knight has given proofs of Theorems 1.16 and 1.17. Our proofs in Sections 2
and 3 follow those of [6], extending Solovay’s results. In Section 2, we extend
Solovay and Marker’s characterization to include mi-diagrams of nonstandard
models of TA. In Section 3, we extend Solovay’s characterization for arbitrary
completions of PA to include m-diagrams. In Section 4. we will develop a class
of theories T(X) illustrating why the extra conditions in the more general
characterization for arbitrary completions of PA given in Section 3 cannot
simply be dropped. As part of doing this, we give a proof of Harrington’s
result that there exists a nonstandard model .4 = PA such that A <7 0’ and
Th(.A) is not arithmetical [3]. Lastly, in Section 5, we examine the relationship
between sequences of Turing degrees and completions of PA.

§2. True Arithmetic. In this section we characterize the degrees of m-
diagrams of nonstandard models of TA as the degrees of enumerations of
Scott sets containing the arithmetical sets. We first show that for a nonstan-
dard model of TA, we can find an enumeration below the m-diagram (in terms
of Turing reducibility). We then show that for a suitable enumeration, we can
find the m-diagram of a nonstandard model of TA below it. The second step
requires more work. We use the fact that if R is an enumeration of a Scott
set containing the arithmetical sets, then computably in R"” we can compute
a sequence (i,),e, of indices such that R;, = TA N Z; for each k. The fact
holds because we can use R” to list (" and find its index in R; we may then use
R tolist (")’ find its index in R, and so on. Using this fact, we can construct
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Next, suppose S is a Scott set containing the arithmetical sets and that R is
an enumeration of §. We may use Marker’s result again and take R to be an
effective enumeration. To apply Theorem 2.3 and conclude the proof, we use
a A(R) function 7(n) giving an R-index for 7, = TANX,. Let 1(n) be the
least R-index of TANZ,,.

We show how to compute #(n) using AJ(R). Note first that TANE, <7
TANZE,1and TANZ, 1 <r (TANZ,) uniformly in n. Note also that the
relation

J(i.j)={li.j):Vx [x €eR; & x € (R)]}
is AJ(R). Beginning with 7(r). an index for TA N Z,, we use J to get an
index for (TANZX.). Since TANZ, ;1 <r (TANZ,). we use our effective
enumeration to get an index for TA N X, ;. This index is #(r + 1).

We have thus shown (n) to be A}(R). We may now apply Theorem 2.3 to
get a nonstandard model A of TA such that SS(A) = Sand D,,(A) <7 R. H

As a corollary to the previous result, we have the following:

COROLLARY 2.7. The degrees of m-diagrams of nonstandard models A of TA
are the same for allm = ().

§3. Other completions of PA. In this section we give a characterization
of the m-degrees of nonstandard models of other completions of PA. This
new characterization (Theorem 3.4) will be like the characterization for TA
(Theorem 2.6) in that it involves enumerations of an appropriate Scott set.
It differs from the earlier characterization in that it additionally involves a
sequence of approximating functions.

To prove this characterization, we need to use the sequence of oracles
(A?(X));ce to prove a more general version of Theorem 2.1. To prove this
result, Theorem 3.1, we use a infinitely nested priority construction. The
result for m = 1 is Theorem 2.3 in [6]. Again. the proof for arbitrary m is
essentially the same, so we omit details and give only a sketch.

As with the TA case, we can break the characterization into two parts.
The model-construction part, Theorem 3.2, can itself again be separated into
two separate priority constructions. The first priority construction for TA,
Theorem 2.1, used AY(X) to approximate a AJ(X) function. In the case
of arbitrary completions of PA. we need to approximate not a single Ag(X )
function, but rather a sequence of functions ¢, ,, AE(X ) uniformly in #,
approximating I" N X, for each n relative to X. We thus need to prove a more
general version of Theorem 2.1. Here we use an infinitely nested priority
construction,

Infinitely nested priority constructions are difficult to do in general. How-
ever, there is a metatheorem giving conditions under which some may be done.
Solovay’s theorem and our generalization follow from the metatheorem 4.1
in [6].
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Aswith TA. our plan is to build a nonstandard model B such that D,,(B) <r
X' and such that the set

O = {(i.@) : R; is the complete B, type of @}

is Zg(X ). The metatheorem shows that under certain conditions such a con-
struction can be effected.
The result of this construction is the following:

THEOREM 3.1. Let T be a completion of PA and let m > 0. Suppose R <1 X
is an enumeration of a Scott set S. with functions t,,., for n > 2. A’(X)
uniformly in n, such that im,_ . tyen(s) is an index for Ty, and for all s.
tiin(8) is an index for a subset of Ty n. Then T has a model A such that
SS(A) =S and Q = {(i.@) : R; is the complete B, type of @} is Z)(X).

We may now reuse Theorem 2.2, using A?(X) to approximate B, building
an isomorphic copy A such that D,,(A4) <¢ X. These constructions can then
be combined into one result:

THEOREM 3.2. Let T be a complete theory andlet m > 0. Suppose R < X is
an enumeration of a Scott set S, with functions t,.i, forn > 2, AY(X) uniformly
in n, such that im,_. .. t,,4,(s) is an index for Ty,., and for all 5. t,,,(s) is an
index for a subset of Tyyyn. Then T has a model A with SS(A) = S such that
Dm (A) ST X.

To show the enumeration half of the main theorem, we need a modified
version of Solovay’s Approximation Lemma for m-diagrams. The original
version for m = | appears in [6] along with a proof. We omit the details here,
as the proof for arbitrary m is essentially the same.

Lemma 3.3. Let A be a nonstandard model of PA with universe e, and let R
be the canonical enumeration of SS(A). Then for any m > 0, there are functions
tmins AY(Dy, (A)) uniformly in n, such that img ... ty ,(s) is an R-index for
Tyin(A). Furthermore. for r < s. R, 1) € R,y

We can now give the main result giving the characterization for an arbitrary
completion of PA:

THEOREM 3.4. Suppose T is a completion of PA. For any m > 0, the degrees
of m-diagrams of nonstandard models of T are the degrees of sets X such that:

(a) There is an enumeration R <7 X of a Scott set S appropriate for T'; and

(b) There are functions ty.n for n > 1. AY(X) uniformly in n. such that
lim;_, oo tin(s) is an index for Ty and for all s, t(s) is an R-index
for a subset of Ty4n.

Proor. Suppose first that R <r X is an enumeration S satisfying condition
(b) above. Using Theorem 3.2, we get a model A |= T with S§(A) = S such
that D,,(B) <7 R. Next, suppose we start with A = T with SS(A) = S
such that D,,(B) <r X. Using the canonical enumeration R of SS(A). we
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get that R <7 D,,(A). Then by Lemma 3.3. functions satisfying (b) exist
as needed. .

84. Examples. In this section, we present examples illustrating aspects of
Solovay’s results. First, we give a theory 7" with enumeration R of Rep(T') such
that there is no model of T computable in R. Next, we present Harrington’s
result that there is a model A of PA that is computable in 0/, but Th(A) is
not arithmetical. Hence, Th(A) <7 A" for any n. Thus. Solovay’s results in
general require an infinite sequence of approximating functions. In this sense
especially, arbitrary completions of PA differ from TA.

We provide a general procedure for constructing the theories we use in
these examples in Theorem 4.4. The construction uses the Godel-Rosser
Incompleteness Theorem, as well as Scott’s modification of this theorem. We
will review the Godel-Rosser and Scott results before giving our results.

Independence was first explored by Gdédel in his landmark 1931 paper [4].
Rosser tightened the result by modifying the sentence shown to be independent
[11]. We state a variant of the Godel-Rosser Theorem that we will make use
of later:

LemMaA 4.1 (Godel-Rosser). There is a computable sequence of sentences
(@n)new such that o, is I, and for any set T of B, sentences consistent
with PA, @, is independent over PAUT.

Note that we may also extend the axioms of PA by any computable set and
preserve the result.

We continue with Scott’s results. In arriving at his results regarding Scott
sets, Scott investigated the notion of independence for formulas.

DEFINITION 4.2, For a set of sentences I' and a formula ¢(x), ¢ (x) is inde-
pendent over I if for all X' C w, the set

TU{p(S™(0):neX}u{-¢(s"(0):n¢gx}
is consistent.

By varying the Godel-Rosser independent sentence, Scott was able to show
the following result [12]:

LeEmMA 4.3 (Scott). There is a computable sequence of formulas (0, (x))nece
such that ¢y is I, 12 and if T is a set of B, sentences such that PA U T is
consistent. then , is independent over PA U T .

Let’s consider briefly the construction of these independent formulas. Fix n.
We sketch the construction of the formula ¢, (x) in two steps. The first step is
to define a sequence of I, | sentences (., )se2<». which we think of as being
on a binary-branching tree . We describe the first few levels of 7. At level
0 of 7. let the root be a variant of the Godel-Rosser sentence that says “for
any proof of me from PA and true B, sentences, there is a smaller proof of
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my negation from the same axioms™: call this sentence y y). The root w
branches left to a sentence y gy that says, “for any proof of me from PA, true
B, sentences, and w p) . there is a smaller proof of my negation from the same
axioms”. Similarly, y g, branches right to y ;. which says. “for any proof
of me from PA. true B, sentences, and — . there is a smaller proof of my
negation from the same axioms”. Both y gy and y;, are at level 1 of 7. We
may continue and define the level 2 sentences of 7 similarly: y ) branches to
the left to a sentence gy that says “for any proof of me from PA, true B,
sentences, yg). and . there is a smaller proof of my negation from the
same axioms”, while o) branches to the right to a sentence y gy that says
“for any proof of me from PA. true B, sentences, y (y). and -y g, there is
a smaller proof of my negation from the same axioms”. Accordingly. y )
branches to sentences w19y and w ;. For each ¢ € 2<%, the sentence y/,
is defined as above. using ¢ to determine which axioms y, mentions. Each
sentence y, is independent over PA, I', and the axioms + that , mentions.

Using this sequence (i, ),e2<e of I, sentences, we specify another se-
quence of sentences (u, )nen. Each sentence u; expresses the disjunction of all
paths of length i + 1 through 7 that branch to the left at level i. We illustrate
this by giving the first three sentences of this sequence. First, let

Mo = Y (p)-
Next, let
w= (v Awo) vV v Ava)-
Continuing, let
o= (o) Ayoy Awion) V(W) A v Avn) V

(v Avay Awae) vV (Bwe) A vy Avan).
Continue this way for all levels i. Since these sentences u, are boolean
combinations of IL, | sentences, each u, may be taken to be B, ;.

We are now finally ready to describe the formula ¢, (x) described in the
lemma. Let ¢,(x) = Satp,_,(u,). We may take Satg, (x) to be both I,
and Zn+2<

We will use Lemmas 4.1 and 4.3 for our examples, by way of the following
construction. We remark that Marker proved essentially the same result in his

Ph.D. thesis [9]. using essentially the same proof. The result appears there as
Theorem 1.27.

THEOREM 4.4. Let R be an enumeration of a Scott set S. For any set X, there
is a completion T (X, R) of PA with Rep(T (X, R)) = Sand T(X, R)N B3, <7
(X Nn) @ R, uniformly in n.

ProoF. We may suppose R is an effective enumeration, by Marker’s The-
orem 1.15. We construct the appropriate theory T(X). We start with a
computable sequence (@, (x))sce of independent formulas as in Lemma 4.3,
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where @, (x) is T1,12. We also start with a computable sequence (), c0 of
independent sentences as in Lemma 4.1, where ¢ is I1,.;. Let T be any
completion of PA. We build T (X, R) using the following list of requirements:

Codey: Take the II; sentence ; from the sequence given by Lemma 4.1.
where ¢ is independent over PA.

If 0 € X, let 7} = a completion of PAU {¢;}in S.

If0 ¢ X, let T = a completion of PA U {—¢;} in S.

We may do this because ¢f and —p; are both consistent with PAU(7 N By).
In either case we can effectively find the index | of the completion.

Let T} = T} N B). We can find its index i; effectively as well. Informally,
T “codes” whether ornot0 € X.

Code: Take the IT; formula ¢;(x) from the sequence given by Scott’s
Lemma 4.3, where ¢ (x) is independent over PA U T,. For k € Ry, put
@1(8%(0)) into Ty. For k & Ry. put ~;(S®(0)) into T5.

Next. we find the index for a completion of PA U 77 U {1 (S%)(0)) : k €
Ro}U{~¢1(S%(0)) : k & Ry}. Then let T be the B; part of this completion.
again finding its index /3. Informally, T3 codes that Ry is in Rep(T').

Codes,: Take the I3, sentence ¢3,. where ¢}, is independent over PA U
Tsn.

If n € X, let T3,,, =a completion of PA U (T3, N B3,) U {p3,} inS.

Ifn ¢ X, let T3, ., =acompletion of PA U (T3, N Bs,) U{—g;}in 8.

Once again. we can effectively find the index i35, | of 75 ;. Let T3,4 =
T3, N B3y, We can find its index 73,41 effectively as well.

Codes, 1 1: Take the I3, ; formula 3, 1(x) of our sequence, where 3, 1(x)
is independent over PA U T3,.,. For k € R,. put ¢3,.1(S%)(0)) into T35
For k & R,. put 3,11 (S%(0)) into T3, 5.

Next, we find an index for a completion of

PAU T3rr+l U {903n+l (S(k)(o)) ke Rn} U {_‘(P3n+l (S(M(O)) k € Rn}

Then let 73,3 be the By, 3 part of this completion, finding its index i3, 3.
This ends our inductive definition of 7(X, R). By our construction. it is
clear that Rep(T(X, R)) = S. —

Note that our construction also gives that X <7 T'(X. R). To determine if
n € X.we may ask T(X.R) which of £} € T(X.R). If p;, € T(X.R).
thenn € X:if —~p;, € T(X.R), thenn ¢ X

We can use this construction to build the following theory, demonstrating
that the extra conditions requiring approximating functions for the fragments
of the theory in Theorems 1.17 and 3.4 cannot be dropped:

CoROLLARY 4.5, For any enumeration R of a Scott set S, there is a completion
T of PA such that Rep(T) = S and there is no model A = T such that A <r R.

PROOF. Let X be a set such that X €7 R@). Let T be a completion given
by the construction of Theorem 4.4. We show thatif A = T, then A €7 R. If
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denoted 7,, as an infinite binary-branching tree as follows. A node ¢ € 2<%
is in 7, iff there is no proof of a contradiction of length less than len(a) from
the set .

PAUT, U{g :alk) =1} U {~¢ :a(k) =0}.
Each path through 7, corresponds to a completion of PA + T,,. since paths
decide every sentence from (¢ ) o, consistently.

Fix n > 0. Note that t, <7y T,,. By Lemmas 5.3 and 5.4, there is a path
T* through 7, computable in 7,,,;. Note that we have that T, = T,* and
T <y T*. Then. since Rep(T*) is a Scott set, we have that 77 € Rep(T™).
Hence T, € Rep(T*). =

Next, we prove Lemmas 5.3 and 5.4. First, we prove Lemma 5.3:

PrOOF. Fix n. Since t <7 T, there is some e such that y.(x) = ¢!"(x).
It is well-known that there are I1; and X; formulas wr(e. x, y,z,a) and
wx(e. x, y.z,0) representing that y is a computation of ¢, on input x us-
ing oracle ¢ with output y. To represent the oracle T,,, we make use of the
formula Sat, (x). defining truth for Z,, sentences. It is well-known that Sat, (x)
is ¥,. Using Sat,(x), we give a £, | formula for representing ¢ (x):

dx(x) =3y Jo |wsle.x.y.1.0)
AV < len(a) [(a(r) =1 — Sat,(r))
Ao (1) = 0 — =Sat,(1))]].
We also give a I, representing formula:
on =Vy Vo [ys(e.x.y.0.0)
— 3t < len(o) [{a(r) = 1A —=Sat,(1))
V(a(r) =0 A Sat,(1))]]. o
We now prove Lemma 5.4:

ProOF. There are two cases to consider. In Case 1, we assume that T proves
that 7 has an infinite path. In Case 2, we assume that T proves that  does not
have an infinite path. In both cases, we show how to find {, a path through 7,

CasE 1: T proves that  has an infinite path.

We first present a IT,.; formula infinite-left(z) that holds iff a node o € 7
has an infinite extension in 7 to its left:

infinite-left(o) := Vs > len(s) Iy
< pls+1)[(en(y) =5+ 1)
A(e A0) C y) Adu(y)].

Suppose we have determined an initial segment ; of our path { through t,
where &; has length i. Here is how we decide whether to branch to the
left or right at the ith level in our path. We update our path to a; A 0 if
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infinite-left(s;) € T,.;. We update our path to &; A 1 if —infinite-left(c;) €
T,+1. We do this forevery i > 0. Let

C = U a;.
icw
Since we use T, as an oracle, we get that { <7 T,41.

CasE 2: T does not prove that t has an infinite path.

In this case, T proves that there is some level past which no node in the tree
can be consistently extended. We extend an initial segment to this maximum
level, and take this initial segment to be our {. Since we will use 7, as an
oracle, we will have { <y Ty,41.

Suppose we have determined an initial segment a; of our path { through r,
where g; has length /. Here is how we decide whether to branch to the left
or right at the ith level in our path. Since we are in Case 2, T witnesses that
7 is finite. Thus T proves that there is some first level sy to the left of o; and
some first level s, to the right of ¢;, beyond which no path can be consistently
extended. We extend to g; A 0 if sg > 51. while we extend to a; A 1 1f 51 > sp.

To decide whether sy > s1 or 51 > 59, We use two X, | formulas, wo(n) and
w1(n). The formula yo(n) holds if there is a level s such that there is some
node extending the node = to the left that is contained in t; while at the same
time, there is no node at level s extending 7 to the right that is contained in 7.
The formula  is similar but considers extensions to the right. Here are the
formulas:

wo(m) :=3dsdo < p(s + 1) (len(g) = 5 + 1)
N A0) C ) Adx(a)
AVA < p(s+1) [(len(d) = s + 1)
A A1) € 2) — —on(4)]
and
wi(n) =35 3o < p(s + 1) [[(len(s) = s + 1)
A(m A1) Ca) Ads(a)]
AVA < p(s+1) [(len(i) = s + 1)
ANz A 0) C 4)
— =on(4)]].

If wo(t,) € Tyyr. then sp > s1. Iy (1,) € T,u1. then 51 > 50. If neither is
in T, for some level i *, then we have reached the maximum extendible level
of 7, according to 7}, . Let

= U agj.

i<i*

Since we use T}, as an oracle, we get that T* <y T,,1. -
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This completes the proof of the (1) = (2) direction of Theorem 5.1. Next.
we give the (2) = (1) direction, with proof:
THEOREM 5.5. Suppose (d,)nce is a sequence of Turing degrees such that
I=dy<di<dy;y < .
Then there exists a completion T of PA such that for all n, d, = deg(T,).

Proor. We build the completion T inductively by determining each of its
fragments 7;. Let Tp = PA N Xy. For our inductive step, suppose we have
specified T, ;. We build T, so that 7, =r D, for D, a fixed representative
from d,. After we show how to construct 7). we will show that T,, =7 D, by
how we have constructed T,.

By assumption, there is a completion 7* such that 7% <r D, and T, | €
Rep(T*). Let @i be a computable list of the X, sentences of Lpa. We break
our construction into attempts to meet the following requirements, for k > 0:

Ry: Put one of @y or ~py into T,,.

R4 1: Code whether k € D, into T,,.

To meet these requirements, we define sets 4; such that

U4 =1.

i€w
First, let Ao = PAU T,,—1. Suppose we have already defined 4;. There are
two cases to consider:

Cask 1: j is even.

Then j = 2k, for some k > 0. We define 4y, . in an attempt to meet
requirement R,,. To decide whether to add ¢, or -y, to 7,, we use the
following notion. We say that 4., U{y } is more inconsistent than A, U{—¢y }.
according to T*, iff T* proves that there is a smaller proof of an inconsistency
from Ay U {@r} than there is from 42 U {—@i}. Let 71 be the sentence in
Lpa expressing that A, U {¢y } is more inconsistent than Az, U { -y }.

Cram 1: If y, € T*. then Ay, U {—¢y } is consistent.

If we are in this case, then we put —py into T),. Let Ay, == Ay U { ¢y }.

Cram 2: If ;. & T*, then Ay U {1} is consistent.

If we are in this case. then we put ¢ into 7),. Let A = Ay U {@r }.

To finish describing how to meet the even requirements, we need to prove
Claims 1 and 2. We leave those proofs until the end.

Casg 2: j is odd.

Then j = 2k + 1. for some & > 0. We build 4y,.,, in an attempt to meet
requirement Ry, Use Lemma 4.1, the variant of the Godel-Rosser Theorem,
to get a I1,, sentence ;. independent over Ay ;.

If k € D,. put ~wyy into T),. Let Aogo = Ao U {—N//k}.

If k Q D,,. put wi into T),. Let Asyn = Aoy U {l,llk}.

This ends our description of the construction. No injury ever threatens

these requirements, so in the limit they will all be met. Let | J; codi = Th.
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To show that T,, =7 D,,. we must show boththat D, <7 T,and T,, <7 D,,.
First, we show that D, <+ T,. To do this, we need to decode if k € D,,
computably in 7}, by following the construction through requirement Ry ..
We reuse the computable list (py)ree Of E, sentences of Lpa. To begin
decoding, ask T, if ¢y € T,,. Using the answer, update the set 4;. Using A,
we may use Lemma 4.1 to compute the IT, sentence o that is independent
over A;. Using T,,. we check whether £wy € T,,. If wy € T,,. then we know
that 0 ¢ D, by construction. If -y € T, then we know 0 € D,. In either
case, we have decoded whether or not 0 € D,. Use this answer to update A,.

At step 2k, ask T, if +¢y is in T, as described above for step 0. Update
Aaey1. Do step 2k + 1, deciding if . in T}, as above for step 1, and hence
decoding whether k& € D,,.

Next, we show that 7,, <r D,. For a B, sentence o, we want to determine
whether « € T,,. By assumption, we have that there is a completion 7 such
that 7* <7 D,. We may follow through the steps of the construction given
above, computably in D,. At each even step 2k, building A, 1, we check if
a = £pyp. If it is, by following through the steps in Case 1, we determine
whether or not we put & € Ay . If it is not, we follow through the steps of
Cases 1 and 2, reaching the next even step. Since our computable list (¢;)ice
contains every X; sentence in Lpy, we will eventually reach an even step 2k
where o = L.

Finally, we give the proofs of Claims 1 and 2.

ProOOF OF CLAIM 1: Suppose y, € T*. Let p witness y; in 7. Then pisa
proof of L from A, U{w,}in T*, and forall ¢ < p, ¢ is nota proof of L from
Az U{—py }in T*. If pis standard, then there is no standard proof of L from
Aop U {—pr }. 50 Az U {—y } is consistent. If p is nonstandard, then since
there is no smaller proof of L from Aa U {—x}, in particular there can be
no standard proof of L from Ay U {—p,}. Again, Ay U {—yy } is consistent.

Proor ofF Cramm 2: Suppose y, &€ T*. If there is no proof of L from
Ao U{er }. then we are finished. Suppose p is a proof of L from Ay U {¢; }.
If p is standard, then there is a proof ¢ < p of L from Ay U {—¢r}. We
then have that Ay F —(@x V =k ). or equivalently, Ax - ¢r A —~x. This
contradicts the fact that we have built 4,; to be consistent. Thus p cannot be
standard, so Ay U {y } is consistent. -
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The set of primitive recursive functions is the smallest set of functions of
various arities from the natural numbers to the natural numbers, containing
the constant zero, projections. and the successor function. and closed under
composition and primitive recursion. The language of PRA has a symbol for
each primitive recursive function, and the axioms of PRA consist of quantifier-
free defining equations for these functions and a schema of induction for
quantifier-free formulae.

Identifying relations with their characteristic functions, one can use prim-
itive recursion to define the relation x < y; or. equivalently, one can add a
relation symbol to the language of PRA with appropriate defining equations.
The schema of induction is equivalent to

Vx (p(0) AVYy < x (p(y) = oy +1)) = ¢(x))

where ¢ is quantifier-free. possibly with parameters other than the one shown.
Since the primitive recursive relations are closed under boolean operations
and bounded quantification, the formula above is equivalent, in PRA. to a
universal one. This fact can be used to show that PRA has a universal set
of axioms. By Herbrand’s theorem, it does not matter whether one takes the
underlying logic to be first-order logic, or just the quantifier-free fragment:
if the first-order version of PRA proves Vx 3y o(x. y) for ¢ quantifier-free.
then there is a function symbol f and a propositional proof of ¢(x. f(x))
from substitution instances of the universal axioms and axioms of equality.
The finite types are generated inductively as follows: N is a finite type (de-
noting the natural numbers, in the intended interpretation); and if ¢ and ¢
are types, so are ¢ x T and ¢ — 7 (denoting the cross product of ¢ and t
and the set of functions from & to 7. respectively. in the full set-theoretic in-
terpretation). I will take the simply-typed lambda calculus to have variables
of all finite types, and constants denoting pairing functions, (x, y), and pro-
jections, (z)o and (z);. at all types. The set of lambda terms is further closed
under lambda abstraction. denoted Ax ¢, and application. denoted £(s). I will
identify terms that differ up to a renaming of their free variables., If # and s
are terms and x is a variable of the appropriate type. then 7[s/x] denotes the
result of substituting s for x in ¢, renaming bound variables if necessary. If I
introduce a term as £[x], then [s] abbreviates ¢[s/x]. I will write ¢(s;...., )
for ((¢(s1))(s2)) ... (sx), and o,7 — pinstead of ¢ — (z — p). Nis sometimes
called type 0, and a function of type N, ..., N — N is said to be of type 1.
One obtains a higher-type extension of primitive recursive arithmetic as
follows. Start with a many sorted version of first-order predicate logic with
a sort for each finite type. and an equality relation = at type N only. The
terms are the terms of the simply-typed lambda calculus with the extra con-
stants described below. The theory includes equality axioms corresponding
to fi-reduction; since we only have type N equality, these have to be expressed
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as schemata:

o r[(x. 1)(s)] = rlr[s/x]]

o r[({x.))o] = r[x]

o r[({x.y)h]=rly].
where in each case r[z]isa term of type N, with z is a variable of the appropriate
type. Add a constant 0 of type N and a constant S of type N — N, with
axioms

L] ﬁS(X) =0

e S(x) = S() —x =y,
Then add a constant symbol R of type N, (N,N — N), N — N. The idea
is that R(a, /) is the function defined by primitive recursion from « and /"
hence we have the defining axioms

e Rla. f,.0)=ua

e R(a. f.8(x)) = f(x.R(a. f.x)).
For each type ¢ add a constant Cond,; : N, a. ¢ — ¢ with defining axioms

e r[Cond(0,x.y)] = r[x]

o r[Cond(S(z).x.y)] = r[y]
for type N terms r[z] with z of type ¢. Finally, add a schema of quantifier-free
induction, similar to the one for PRA. Call the resulting theory PRA®.

Using the recursor, R, one can define all the primitive recursive functions.
If we identify function symbols of PRA with their definitions in PRA, PRA
is included in PRA®. Conversely, we have the following:

THEOREM 2.1. PRA® is a conservative extension of PRA.

A proof is sketched in [6, Section 5.1]; a similar proof, in the context of
polynomial-time computable arithmetic, is found in [15].

I will now describe a nonstandard version of PRA®, which I will denote
NPRA®. First, add a new predicate symbol s¢(x) to the language. with argu-
ment ranging over the natural numbers, and a new constant @ of type N. The
predicate st is intended to denote the “standard” natural numbers, while  is
intended to denote a nonstandard natural number. Quantifiers ranging over
the standard numbers are obtained by defining ¥*'x ¢ to be Vx (st(x) — )
and Ix ¢ to be Ix (st(x) A ). A formula ¢ is said to be internal if it does
not involve s¢, and external otherwise.

To obtain NPRA®. add the following axioms to PRA“:

o —st(w)
o si(x) Ay <x— st(y)
o st(xy)A---Ast{xy) — st f(x1.....x,)). for each type 1 term / with no

free variables and no occurence of w.

In particular, the last axiom schema implies that the standard part of the
universe is closed under the primitive recursive functions. In addition, add
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the following schema of V-transfer without parameters:

o VX p(¥X) — V¥ (%)
where i is a quantifier-free internal formula that does not involve @, in which
the only free variables are the type N variables shown.

THEOREM 2.2. Suppose NPRA® proves¥V*'x Ay ©(x. v). where @ is quantifier-
[free in the language of PRA with the free variables shown. Then PRA® proves
¥x Jy @(x, v). and hence PRA proves it as well.

Since V¥ x 3y @ (x. y) isimplied by bothVx 3y ¢(x. ¥) and ¥ x 37y (x. ).
we have:

COROLLARY 2.3. NPRA® is a I1> conservative extension of PRA. Also, if ¢
is quantifier-free in the language of PRA and NPRA® proves VW x Iy o(x, y).
then PRA proves ¥x 3y ¢(x.,y).

The second part of the corollary indicates a general pattern of reasoning
in nonstandard arithmetic, whereby one uses nonstandard numbers to prove
theorems about the standard ones.

Let NPRA be PRA together with the restriction of the axioms above to the
smaller language. Since NPRA is included in NPRA®, we have the following:

COROLLARY 2.4. NPRA is conservative over PRA. in the sense of Theo-
rem 2.2,

Corollary 2.4 has an easy model-theoretic proof, as follows. Suppose PRA
does not prove Vx Iy (x,y). Let L be the language of PRA, and let c,
d. and o be new constants. Let T be the set of sentences containing all the
following:

The axioms of PRA

Yy —pl(c. y)

d>c¢

37 w(¥) — 37 < d w(§), for cach quantifier-free formula y of L with
only the free variables shown

e o >t foreach closed term ¢t of L 4 d.

Every finite subset of T is consistent, since in any model of PRA satisfying
{3x ¥y —p(x. y)} wecan choose an interpretation of ¢ satisfyingVy —p(c, v).
an interpretation of d greater than finitely many witnesses for formulae of L
of the form 37 w(#), and an interpretation of @ greater than the denotation
of finitely many terms ¢ involving only d. By compactness, let M be a model
of T. Let S be the set of elements of the universe of M bounded by a closed

term involving only the constant d, i.e.
S = {a € |M| | for some closed term ¢ of L + d., a < t™}.

The reader can check that MM becomes a model of NPRA satisfying s¢(c¢) and
¥y —p(c. y) when one uses S to interpret the predicate sz.
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A straightforward modification of this argument provides a proof of The-
orem 2.2. And, in fact, the argument is much more general, since it relies on
very few of the specific features of PRA. In the next section, I will present an-
other proof of Theorem 2.2, by giving an interpretation of NPRA® in PRA®.
Such an interpretation is interesting in its own right, since it yields an explicit
translation, with a polynomial bound on the increase in proof length. In
addition, it tells us that Theorem 2.2 can be proved in weak fragments of
arithmetic. We will see in Section 4 that the interpretation is almost as general
as the model-theoretic argument, and so both are widely applicable.

In comparison with other nonstandard theories, the nonstandard axioms
above are fairly weak. I will discuss strengthenings briefly in Sections 4 and 6.
But Section 5 suggests that the axioms above are already sufficient to formalize
an interesting portion of real analysis.

§3. The interpretation. The interpretation of NPRA® in PRA® uses a forc-
ing argument, described entirely in the language of PRA“. For similar forcing
arguments, see [2, 3. 5,7, 9].

Let L denote the (typed) language of PRA®. and L* denote the language
of NPRA®, i.e. L together with an extra constant, w, and a new predicate,
st(x). Our first step is to translate terms of L* to terms of L. Choose a type
N variable, m, in the language of L, corresponding to the constant. @, of L,
Also, assign to each variable x of type ¢ in L* a variable ¥ of type N — &
in L. Finally, if #[xy,..., xx]is a term of L with the free variables shown, let 7’
denote the term ¢[%(@). ..., % ()] of L, where the constant & of L* is also
replaced by the corresponding variable of L.

The idea is that we are taking elements of the universe of L* to be named
by terms of L that depend on a “generic” element. . It is not hard to check
that the axioms of f-reduction are preserved by the translation.

Conditions of the forcing relation are ternary relations, considered as el-
ements of type N,N,N — N. Intuitively, a condition p is supposed to
represent the assertion V¥'u Vv p(u, v, ), where @ is the generic nonstan-
dard element. If p and ¢ are conditions. define p < ¢ to be the formula
YVu, v, (plu,v,w) — q(u.v,w)). read “p is stronger than (or equivalent to)
g.” Note thatif p and ¢ are conditions, then their conjunction. p A ¢q. satisfies
p/Ag = pand pAg = g. Sometimes, if p is a condition and A is another
ternary relation. I will write p A V'u ¥v A(u.v. @) instead of p A A. This
is nothing more than a useful convention that will keep us mindful of the
informal interpretation of the conditions.

We are now ready to define a relation p IF ¢ between conditions p and
formulae ¢ of L*. It will be convenient to take the logical connectives to be
Vv, A, —, L. With this choice of connectives, —¢ abbreviates ¢ — L, Ix ¢
abbreviates —=Vx —¢, and ¢ V y abbreviates —=(—¢ A ). The forcing relation



WEAK THEORIES OF NONSTANDARD ARITHMETIC 25

is defined inductively, as follows:

1. plb L =3z Vo ~Vu < z Vv plu,v,m).
plFty=t=3zYo Vu<z¥ pluv.w) — 1 =
plFty<th=3zVo (Vu<zV pluv.w) =1 <
plst(t) =3z Vo (Vu <z Vo plu.v.w) -1 < z).
Pl —y=VYg=plglo—qly).
plroAw=(plko)A(plky).

7. plEVx @ = VX (p - @)

If ¢ is a formula in the language L* with free variables xy, .. .. x;. then p |- ¢
is a formula in the language L with free variables w, X1, ..., X, as well as p.
Notice that we are allowing that some conditions force L. In the definition of
p Ik ¢ — w, the quantifier V¢ < p ranges over conditions. It is not difficult
to show that p I ¢ —  is equivalent to Vg (g IF ¢ — p A g I- w): I will use
both formulations of p I ¢ — y below. Define I ¢ to be Vp (p IF ¢). read
“p is forced.”

The following informal considerations may help explain the motivation
behind the definition of forcing at the atomic clauses. Think of a condition p
as representing an infinite set of sentences,

Vv p(0,v.@).Vv p(l.v.w).Vv pQ2.v.m)....}.

If we call this set S, then clause 2, for example, asserts that p forces 1, = #; if
and only if 7, = 7 is a consequence of a finite subset of S,,.

The proofs of the next five lemmata are routine and standard. (See, for
example, [3, 9] for a little more detail.)

LEMMA 3.1. Suppose t and s are terms of L', r[z] is a type N term of PRA®,
and z has the same type as t. Then PRA® proves

r[7 e /5]] = r[il5/3]).
PrOOF. By induction on . Informally, in the base case where ¢ is x, we have
7o §/%] = (o) [io 5/%] = (o §)(@) = § = s/x].

The other cases are easy. -

).
).

t:*)tu)

ISANA el

LEMMA 3.2 (substitution). For each formula ¢ and term s in the language of
L, PRA® proves p |- @[s/x] < (p IF ©)[iw 5/X].

Proor. By induction on ¢. Lemma 3.1 takes care of the base cases. -

LemMA 3.3 (monotonicity). For each formula ¢ of L*', PRA® proves p |-
pANg=2p—ql-e.

ProoOF. Induction on ¢. -

LeMMA 3.4. For each formula ¢ in the language of L*', PRA® proves|F (L —
@)

ProOF. Induction on ¢. B
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and hence
Jz Vo (Vu < z Vo glu.v, @) — 7).
By the inductive hypothesis, this is equivalent to ¢ I 7. -

Lemma 3.10. If @ is an axiom of PRA", then PRA® proves |- .

PrOOF. All the axioms of PRA® are universal, which is to say, they are of
the form Vxi,...,x; @(x1,....x;). where ¢ is quantifier-free and internal.
By Lemma 3.9, I VX ¢ is equivalent to VX, ... & Vo ¢(F(@)..... % (@)).
The axioms corresponding to f-reduction are easy to verify, and otherwise, the
translation of each axiom follows immediately from the untranslated version.

‘1

LemMa 3.11. For each constant term f of type N* — N of L* not involving
@, PRA® proves |- Vxy, ..., x; (st(x1) A+ Ast{xg) — fx1, ... x0)).

ProoF. The key point is that if f is as in the hypothesis, it does not
depend on @. Argue in PRA“. Suppose p IF (st(x1) A ... A st(xg)), ie
3z Vo (Vu < = Vv plu.v.ow) — (X1(w) < z A ... A (o) < z)). Let-
ting z’ = maxg<. f(vy..... ve), we have 3z, 2" Yo (Vu < z Vo plu,v.m) —
f/'\(,%l(a)). ... % (w)) < z'). which implies p I s¢(f (x1.....x¢)). -

LEMMA 3.12. PRA® proves|FVx,y (st(x) Ay < x — st(y)).

PrOOF. Argue in PRA”. Suppose p I st(x) and p I y < x. Then
Iz Voo Vu < z Vv p(u.v.@) — %(w) < z) and 3z Yo (Vu < z Vo plu.v, o)
— 7(w) < *(w)). Picking z to be the maximum of any two witnesses to these
statements, we have 3z Vo (Vu < z Yo p(u.v.@) — #(w) < z). which is
pIFst(y). 4

We have dealt with all the axioms except for V-transfer and —st(w). The
next lemma deals with the former.

LemMa 3.13. If ©(X) is any quantifier-free formula of L with only the type N
variables shown. PRA® proves |- V' % p(¥) — VX o(¥).

ProoF. For notational simplicity, let us assume that &' is a single variable.
Argue in PRA®. Suppose p I ¥"x @(x). By Lemma 3.6, we have Vw ((p IF
(x))[Aw w/X]). Since p(x)[iw w/X] is equivalent to ¢(w). by Lemma 3.9
we have

Yw 3z Vo (Vu < z Vo plu.v. o) — @(w)).
Since ¢ does not depend on  or z. this is equivalent to
3z Voo (Vu < z Vv plu,v,0) — Yw p(w)),
which in turn implies
VX 3z Vo (Vu <z Vv plu.v. o) — o(F(w))).

But the last formula is equivalent to p I- ¥x @(x), which is what we want. -
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LemMa 3.14. Suppose @ is any formula of L*. and NPRA® proves p. Then
PRA? proves V*'u (w < u) I+ .

ProoF. By Lemma 3.6, we have V*'u (@ « u) I+ —st(w), and we have shown
that all the other axioms of NPRA® are forced. -

We are now only one lemma away from the proof of the main theorem.

LEMMA 3.15. Suppose w(y.x1,....xx) is a quantifier-free internal formula
of L*" with the free variables shown, and y is of type N. Then PRA® proves
Yo (v, X1 (@), ... X (w)) Iy oy x1. ... X ).

Proor. Unwinding the definition and using Lemma 3.9, we see that we need
to show that PRA“ proves
Vi 3z Yo (Vv (v X (@)..... & (0)) = ¢(F (o). fi()..... %(w)).
But this is immediate. =

ProoF OF THEOREM 2.2, Suppose NPRA® proves V'x Jy ¢(x, y) with ¢
quantifier-free in the language of L. and argue in PRA”. By Lemma 3.14, we
have

VW (w < u) IFY"x y o(x, ¥).
Let w be arbitrary. Since (p IF st(x))[Aw w/X]. we have
(Vu (o £ u) IF Iy o(x. y))[Ao w/X].
Keep in mind that 3y @(x.y) abbreviates ¥y —@(x,y). By the previous
lemma, Vv —p(X (@), v) IF ¥y —p(x, y), so we have
(Vu (w ¢ u) ANV —p(X(w),v) IF L)[io w/X].
which expands to
Iz Voo (Vu < 2 Vo (0 £ 1 AV ~@(w.v)) — L).
This is classically equivalent to
Iz Ve (Fu <z (o< u)vIve(wv)).
Given a z witnessing this statement, choose w = z. ThenwehaveVu < z (o ¢

u). and hence Jv ¢(w,v). Since w was arbitrary, we have Yw Jv @(w,v),
as desired. 4

84. Weak theories of nonstandard arithmetic. In this section, I will discuss
variations of Theorem 2.2, and some applications. To start with, there are a
number of features of Theorem 2.2 and its proofs that are worth noting.

The first has to do with the treatment of equality. The theories PRA“ and
NPRA” were presented with only equality at type N as a basic relation. Of
course, one can define equality at higher types extensionally: for example, if f
and g are of type N — N one can take / = g tobe Vx (f(x) = g(x)). Doing
so does not guarantee that the usual equality axioms. ' = g — () = ¢(g).
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follow. But, using a method due to Luckhardt. one can interpret a fully ex-
tensional version of NPRA® in our intensional version, by relativizing all
quantifiers and variables to the “hereditarily extensional objects.” This in-
terpretation preserves Il formulae (as well as V¥ 3% formulae. etc.). So
Theorem 2.2 extends to extensional versions of NPRA® as well. For a dis-
cussion of some of the issues related to various treatments of equality, see
[6, Section 3.1], [45, Section 3.1], and [15, Section 7].

Second, most of the higher types were not used by the intepretation in an
essential way. It suffices to have a theory in which the types are closed under
the operation ¢ — (N — &), so, for example. the interpretation works just as
well for second-order versions of NPRA and PRA, associating k-ary function
variables of the first theory to (k + 1)-ary function variables of the second.

Finally. very little reference was made to the specifics of PRA® itself. In the
interpretation. only the following features came into play:

1. PRA” proves that < is transitive and anti-reflexive, and satisfies the
sentence Vx,y 3z (x <z Ay < z).

2. PRA" has a universal set of axioms.

3. If p(x.y.z) is a quantifier-free formula, possibly with free variables
shown, PRA® proves

AR ¥x, y.z (p(x.y,z) < R(x.y.z2)),

where R ranges over a suitable representation of ternary relations.

4. PRA" proves that the ternary relations are closed under conjunction.

5. If f is a closed type 1 term, then PRA® proves Vz Jw V¥ < z (f(X) <
w). (This was used in the proof of Lemma 3.11.)

In fact. most of the proofs in the previous section required only the intuition-
istic fragment of PRA®. The proof of Lemma 3.13, which showed that the
V-transfer schema without parameters is forced. used classical logic. But if
one is willing to give up transfer, then only the final proof of Theorem 2.2
requires an inference that is not strictly intuitionistic, in the form of Markov’s
principle for quantifier-free formulae; and a slight rewriting of the forcing
relation, along the lines of [3]. can be used to render the argument entirely in-
tuitionistic. On the other hand, if one has no qualms about the use of classical
logic, the presentation of the forcing relation can be simplified: see Appendix
B below.

In sum. both the model-theoretic argument sketched at the end of Section 2
and the syntactic interpretation of Section 3 generalize considerably. For
example. let PV be Cook’s theory of polynomial-time computable functions,
and let PV® be a corresponding higher-type generalization (i.c. the theory
called PV® in [15], but with induction restricted to quantifier-free formulae:
see also [6, Section 5.2]). Let NPV be the nonstandard version obtained by
adding the nonstandard axioms of Section 2. Then we have
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THeOREM 4.1. NPV® is conservative over PV® and PV, in the sense of
Theorem 2.2.

Similarly, let ERA denote elementary recursive arithmetic, obtained by
adding +, x, and x* to PRA but restricting the recursions to those that can
be bounded by a term (see e.g. [4, 39, 40]). ERA is a conservative extension of
the theory alternatively known as EFA, for “elementary function arithmetic”,
or I Ag(exp) (see [23]). Let ERA® be the natural higher-type version of ERA
(similar to the theory G3A4® of [28, Section 2.2], but without the additional
universal sentences in clause 9), and let NERA® be the nonstandard version
of ERA®. Then we have

THEOREM 4.2. NERA® is conservative over ERA” and ERA. in the sense of
Theorem 2.2.

Similar versions of Theorem 2.2 hold, for example, for the theory denoted
T + () in [6]. and for the theories G, A® of [28].

The nonstandard axioms can have interesting consequences for the standard
numbers. Recall that a formula is bounded, or Ay, if all its quantifiers are
bounded, and Z; if it is of the form 3% ¢, where ¢ is bounded. Consider the
collection principle, BZ;:

Vx<zdyp(xy) = JwVx<z3Iy<wop(x.y)

where ¢ is £;. Let BZ'}" denote the relativization of BZ, to the standard
numbers, where z is assumed to be standard. The following proposition still
holds even if ¢ has additional parameters that are not necessarily standard.

PROPOSITION 4.3. NERA® and NPRA® prove BEY'.

PrOOF. By pairing existential quantifiers, we may assume ¢ is Ag. Argue in
NERA® or NPRA®. Suppose z is standard and Vx < z 3y ¢(x. y). Then
for any nonstandard number w, we have Vx < z 3y < w ¢(x, y). Since, in
NERA™ and NPRA®, every bounded formula is equivalent to a quantifier-free
(even atomic) one, by induction there is a least w such that this last formula
is satisfied. Since the nonstandard numbers are closed under predecessor, this
least w is standard. -

Another interesting fact is that we can interpret the theory WKL} of Simp-
son and Smith [37, 38]. This theory is equivalent to a second-order version
of ERA with set variables, together with a recursive comprehension axiom,
(RCA). and a weak version of Konig’s lemma, (WKL), which asserts that
every infinite tree on {0, 1} has an infinite path. For details. see [37, 38].

THEOREM 4.4. WKL}, is conservative over ERA for I, formulae.

PrROOF. One can interpret WKLj in NERA. interpreting the first-order uni-
verse as the standard numbers of NERA, and interpreting the second-order

universe as the standard parts of nonstandard finite sets of NERA. Here we
are using the fact that in NERA, one can code finite sets as natural numbers;
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note that if M is a model of NERA and S is a set coded in M, then the
intersection of S with the standard numbers of M may be unbounded.

Lemma 1V.4.4 of [37] shows that (WKL) and (RCA) follow from a single
schema of ¥, separation:

Vx =3y ¢(x. p) A3z w(x. z))
—3SVx (Fy plx.y) = x € S)A(Fz w(x,z) = x €9)).

where @ and y are Ag. To see that this holds in the interpretation, argue in
NERA. Suppose for every standard x we have =(3"y (x, y) A 3z w(x. z)).
Let S be the finite set

S={x<o|Iy<wlpxy) AVz<y-w(xz))}.
It is not hard check that for each standard x, we have
(Fyox.y) = x e SIAFzp(x.z) = x €8),
as required. a

The results of [38] are more general; for example. the first-order conse-
quences of WKL} are exactly those of ERA + BX;.

In Section 6. we will see that, at least for the case of ERA®, the transfer
principles and induction in the system are close to optimal. When it comes
to PRA. however, it seems worth mentioning another conservation result
that can be obtained by the entirely different methods. Let (/Z¥) denote the
relativization of the schema of Z; induction to the standard numbers. (Here
too it does not hurt if we allow nonstandard parameters.) Let NPRA' consist
of NPRA without the V-transfer axiom., together with (/Z}'). Then we have
the following:

THEOREM 4.5. If NPRA' proves ¥'x 3y @(x.y) with ¢ quantifier-free in
the language of PRA. then PRA proves Vx 3y o(x. y).

PrROOF. The corresponding theorem for an intuitionistic version of NPRA’
is proved in [7, Theorem 4.4]. By [7, Lemma 5.1]. this intuitionstic theory
proves that Markov’s principle for primitive recursive relations holds on the
standard numbers. Our NPRA' can therefore be interpreted in the intuition-
istic version, using a double-negation translation. -

Section 6 raises the question as to whether or not there is a common refine-
ment of Theorems 2.2 and 4.5. Nonetheless, Theorem 4.5 is strong enough to
yield the following celebrated result of Friedman. Here WKL, is essentially
WKL, together with the schema of X, induction.

THEOREM 4.6. WKLy is conservative over PRA for I, sentences.

PROOF. As in the proof of Theorem 4.4, WKL, is interpreted in NPRA'. -

A further connection between Weak Konig’s lemma and nonstandard anal-
ysis is discussed in [42].
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The usual field operations on @* lift to make R an ordered field. Under this
lifting, division by 0 can have unusual properties; for example, if p is 1/w and
¢ is 2/w, then, as real numbers, p = ¢ = 0, but p/g = 1/2.

Let us pause for a moment to compare this to common developments of
nonstandard analysis (as in, say. [22]). In such developments, one typically
defines the nonstandard reals, R*, in which one can embed the standard ones;
and any standard function f from R to R has a nonstandard extension f*
from R* to R*. In our setup. nonstandard reals would have to be developed
as type 1 objects, e.g. as Cauchy sequences of nonstandard rationals; general
functions from R* — R* would then be type 2. Here I propose to ignore the
nonstandard reals entirely. We will see below that though this approach has
some quirks, it suffices for the development of parts of real analysis, and it
has the advantage that real numbers are represented by type 0 objects.

The following lemma says that one can bound the size of the numerator and
denominator in the nonstandard representation of a real number.

LemMA 5.1. Let x be an element of R. Then there are a € Z* and b € N*
such that |a| < 0, b < @, and x =g a/b.

Proor. If x =g~ 0. take @ = 0. b = 1. Otherwise. we can assume x >g- 0
if x <g+ 0. apply the argument to —x.

Since x € R, x is bounded by a standard natural number ¢ = [x] > 0. So
ifwelet b = [(w — 1)/c]. b is nonstandard as well. We want to find a such
that

a a+1

E SQ" x <g- b
soleta = |bx]. Thenb < w and a <g- bx < [(w — 1)/c]c € w -1 < w.
Since x — a/b <g+ 1/b, we have x =g a/b. as needed. =

The proof shows moreover that suitable values of @ and b can be computed
from x by a type 1 term of ERA®. The advantage bestowed by Lemma 5.1 is
that certain quantifiers over the real numbers become equivalent to bounded
ones. For example, suppose ¢(x) is a formula which respects equality of reals.
Then Vx® o(x) is equivalent to Va® < w. b < w (b # 0 A st([a/b]) —
w(Ea/b)). This last formula is external, since it involves st. But if ¢ is
internal and one wants to quantify over a bounded range of real numbers,
one can replace st([a/b]) by an explicit bound. in which case the result is an
internal formula. So, for example. if R(x. y) is a relation (i.e. a type 1 term)
in NERA® that respects equality on the real numbers and r and s are reals,
then Vx € [r. 5] R(x. ) is also equivalent to a relation in NERA®.

A function f from R to R is continuous if it satisfies the usual -0 definition
of continuity:

VxR e > 038 > 0vy® (|x —y[ <d — |f(x) — f(¥)] <e).
In NERA® we have the following surprising fact:
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ProPoSITION 5.2. Every function f € R — R is continuous.

PrROOF. Suppose we are given / € R — R. x € R, and e € R withe > 0.
It suffices to find ad € R such that

(2) VAR () <6 — |f(x +h) — f(x)] <€)

Since f respects equality on R, we know that for each nonstandard natural
number 1,

(3)
va® € (~w.0) Vb < w (|la/b| <g- 1/m — |f(x + a/b) — f(x)| <q- €/2).

If (3) holds for all m > 1 let m = 0, and otherwise, by induction, let m be the
greatest number less than @ such that (3) fails. Letd = 1/(m + 1). Since m
is standard. 0 >p 0.

I claim that this J satisfies (2). Suppose || < é. By Lemma 5.1, h =g a/b
forsome a € Z* and b € N* with |a|.b < @. Then |a/b| <g+ 1/(m + 1), and
so |f(x+a/b)— f(x)| <g- /2. Since f is a function on R and h =g a/b,
we have | f(x +h) — f(x)| <pe/2 <pe. 4

The proof above used induction on a bounded formula, and so does not go
through in NPV®. But in NPV® one can prove the converse, namely, that
every function f € Q" — Q* satisfying the continuity condition is in fact a
function f € R — R.

At first glance, Proposition 5.2 seems blatantly false. After all, what about
the function f € Q* — Q* defined by

) = {0 if x <g- 0

1 otherwise,

which is represented by a term of NERA®? The problem is that this is not a
function from R to R: for example. 1 /o =g 0 but f'(1/@) #r f(0). On the
other hand. the function g € Q* — Q* defined by

(Y) . 0 ifx SR 0
gY 1 otherwise

is not represented by a term of NERA®, since x <p 0 is external.

Thus, we have a development of analysis which, like Brouwer’s, has the
property that every well-defined function from R to R is continuous. This
feature may help illuminate the Brouwerian world-view. What is going on is
that in our framework, function variables f,g.... range over internal func-
tions; and. in essence, Proposition 5.2 tells us that any function from R — R
defined from an internal function from QQ* — Q* is continuous. If one is
loathe to give up functions like g above, one can extend our theories with
function variables ranging over external functions, which are not allowed to



WEAK THEORIES OF NONSTANDARD ARITHMETIC 37

appear in the induction axioms. Thus, in a sense, Proposition 5.2 is not in-
compatible with classical mathematics; it only underscores the fact that. in
the theory at hand. we have chosen to ignore the additional functions. For
many purposes this restriction poses no great loss: for example, the function
/ above is well-defined on any interval of R that does not contain 0.

The examples that follow provide evidence that our framework allows a
smooth development of elementary calculus.

TuaeorREM 5.3. If f € [0.1] — R. then f is uniformly continuous.
ProOOF. The proof is similar to that of Proposition 5.2 above. -

THEOREM 5.4 (Intermediate value theorem). Suppose f € [0.1] — R, f(0)
= —1,and f(1) = 1. Then there is an x € [0, 1] such that f(x) = 0.

Proor. Considering f as a function on Q~, let
j=max{i<w|f(i/w) <g 0}
and let x = j/w. Since j/w ~ (j + 1)/w. we have
fG+D)/w) = f(jlo) <e 0=z f((j+1)/0)

andso f(x) =g 0. -

THEOREM 5.5 (Extreme value theorem). If f € [0.1] — R, then f attains a
maximum value.

PrROOF. Again considering / as a function on Q*, let

y = nrélfagxwf (i/w).

let x = j/w satisfy f(x) =g~ y. That y is a maximum is guaranteed by the
fact that for any x’ € [0, 1], there is an i such that x" ~ i/w. -

Turning to differentiation. if f € R — Rand x,y € R, say f'(x) = y if
. B — flx
CEUEVCRNPRY

h

This is not the strongest condition one can imagine, since it says nothing about
the behavior of f at nonzero infinitesimals. For example, it is possible that
f7(0) = 0 while, as a function from Q* to Q*, f(x) oscillates between —x
and x on an infinitesimal neighborhood of 0. Say that f’(x) is strongly equal
to y if the formula above holds with #g replaced by #g.

PROPOSITION 5.6. Let [ € R — R, x,y € R. Then the following are
equivalent:

Vel > 036" > 0vat (om h| <6 —

1. f'(x) is strongly equal to y.
2. For every infinitesimal h #g~ 0, -&”}:M ~ Y.

If f'(x) is strongly equal to v, then ['(x) = y.
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ProoF. The last claim is obvious. For the implication 1 — 2, suppose f”/(x)
is strongly equal to y and let /2 be a nonzero infinitesimal element of Q*. Then
for every 6% > 0. || <g 6. So for every standard n. |(f (x +h) — f(x))/h —
y| < 1/n. This implies that (f (x + &) — f(x))/h — y is infinitesimal.

The proof that 2 — 1 is very similar to that of Proposition 5.2. -

COROLLARY 5.7. Suppose k is standard. and f(x) = x*. Then for every x.
f1(x) = kx*1,

PRrROOF. Suppose / is infinitesimal. Calculating, we have

g (’;) x’”h"?] :

Using the facts that k and [x] are standard, it is not hard to show that the
expression in brackets is standard, and so its product with /2 is infinitesimal.

(x +h)k — x*

- =kx*'4+h

One can continue, for example, by defining functions like ¢*, sin x, and
cos x using nonstandard finite segments of their Taylor series expansions,
and then deriving their basic properties. For another example, there is an
easy proof of the Cauchy-Peano theorem on the existence of solutions to
differential equations, as described in [42]. There does not seem to be any bar
to developing integral calculus in NERA® in a similar manner.

§6. Notes and questions. This paper is a modest contribution to the study of
weak theories of nonstandard arithmetic, and there are a number of questions
and issues that need to be further explored. The questions discussed in this
section fall into two groups: the first has to do with the metamathematical
properties of the formal theories under consideration, and the second has to
do with their utility with respect to the formal analysis of mathematics.

As far as the theories go. one would like to know the extent to which they are
optimal, and whether or not they can be strengthened with additional prin-
ciples of induction, transfer, and so on, while maintaining I'l; conservativity.
For example, we might want to strengthen the V-transfer axiom of Section 2
by allowing standard parameters: 7'y’ (V¥ o(X. ¥) — V¥ (X, 7). where ¢
is an internal Ay formula that does not involve . The following shows that
we cannot even add this mild strengthening to NERA4“ without violating IT,
conservativity:

PrROPOSITION 6.1. Over NERA®Y. V-transfer with parameters implies X, in-
duction relative to the standard numbers, i.e. the schema
VI (w (0. 7) AV (w(u. 7) — wlu+ L 7)) — VW y(u ).
Jor w(u, ¥) of the form 3 x @(u, x, 7). where ¢ is a A formula in the langauge
of ERA®.
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PrOOF. V-transfer with parameters implies that if ¢(u. x. 7) is as above
and u and 7 are assumed to be standard, then 3'x ¢(u, x, 7) is equivalent
to 3x < @ (u, x, 7). By induction for bounded formulae in NERA®, if
Ix < @ @(u, x. ¥) fails for some u, there is a least such u: and is least u has to
be nonstandard. -

This leaves open the question as to whether one can improve the con-
servation result for NPRA®, using either the methods presented here or in
[7]. How much transfer can one add? Can one add the unrelativized ver-
sion of ¥, induction for formulae in the original language? In trying to
strengthen the conservation result, one might make use of the fact that one
can add X; induction, and even II; collection, to PRA“ without destroy-
ing I, conservativity. Formalized or internalized versions of the various
model-theoretic constructions presented in [23, 24, 5] may also be useful in
this regard.

Similarly, one can extend P} with E’l’ induction, yielding, essentially, Buss’
theory S_%' (for various formulations, see [10, 12, 15, 19]). And one can extend
S with either a weak form of collection for arbitrary bounded formulae
(see [11]. or [20] for a simpler model-theoretic proof) or a stronger form
of collection for 2’2’ formulae (see [12]). Can either of these results or the
associated model-theoretic constructions be used to strengthen the theory
NPV®? In particular, can one obtain a strengthening of NPV that is strong
enough to interpret the second-order theories of [19. 18, 49]. which include a
form of weak Konig’s lemma?

The interpretation of Section 3 provides efficient translations between sec-
ond-order and higher-order systems; and the Dialectica interpretation [6, 15,
27. 45] can be used to interpret the higher type theories in their quantifier-free
counterparts. But the interpretation does not work at the first-order level. By
internalizing cut-elimination arguments, it seems that one should be able to
interpret NPRA and NERA efficiently in PRA and ERA. Is there an efficient
means of interpreting NPV in P¥? Or can one find specific counterexamples
to show that this is not the case?

Is there a better way to treat equality in the theories presented here?

Are there interesting nonstandard versions of Feferman’s theories of explicit
mathematics?

There are more general questions, having to do with the formalization of
mathematics in theories like the ones presented here. For example. what is
required to formalize various parts of analysis? See [14, 17, 26, 27. 29, 30. 35.
37, 39, 40] for various approaches to answering this question. Do nonstandard
theories provide a useful approach?

Cannonstandard theories like the ones presented here provide a perspicuous
means of extracting polynomial bounds from proofs of theorems in analysis,
as done by Kohlenbach [26, 27, 28, 29, 30]?
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context V*'u (# ¢ u). expressing that ¢ denotes a nonstandard element. We
can more frugally take conditions to be represented pairs of the form {(a, /),
where « is a predicate on N (represented by its characteristic function) and
f is a function from N to N. Define such a pair (e, /') to be a condition if it
satisfies

vz do (a(w) A f(w) > z)

expressing that the predicate a holds of values of «» making f arbitrarily large.
The relation (. g) < {«. f) is defined by

(B.g) = (o ) =V (flw) — alw) A glw) < [(w)),

and if (a, f) and (. g) are compatible conditions, then their greatest lower
bound is given by (a A . min(f. g)}. The forcing clauses for atomic formulae
are now as follows:

e plkty=tr=3:Vo (alw)A fw) >z -1 =1)

e plrty<tr=3zVo (alw)A flw)>z—1 <h)

o plkst(t) =3z Vo (alw) A flw) >z —1<2)
We then have (T.7) I+ —st(¢): in particular, if id is the identity function.
(T, id) forces that w is nonstandard. The reader can verify that the proof of
Theorem 2.2 still goes through, mutatis mutandis.

Finally. in the case of NPRA®, the translation can be simplified even further,
provided one allows | induction in the target theory. Conditions can be taken
to be unary predicates p on N that hold for infinitely many values of @,

Yz 3o >z plw),

corresponding to sets in the Fréchet filter. These are the forcing clauses for
atomic formulae:
e plkhh=t=3:zVo >z (plo) -1 =1)
e plrty<t=3zVo >z (plw) =1 <h)
e plFst(t) =3z Ve >z (plw) — 1 < 2)
In other words. p forces t; = t, if and only if 7| = 7, holds for all but finitely
many values of w satisfying p. Although the necessity of having Z; induction
in the interpreting theory weakens the result, it is perhaps surprising that such
a straightfoward translation can be used to interpret nonstandard reasoning.
¥, induction is required to verify that ——s¢(¢) — s¢(¢) is forced, as follows.

LemMA B.1. Over PRA®, X, induction is equivalent to the following principle:

Iz Vy (f(y) £2) = 3x ¥y (f(¥) < f(¥)).

This principle expresses the fact that every bounded function on N has a
least upper bound, and attains it. Only the forward direction of the lemma is
required below, though the equivalence seems interesting in its own right.
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Proor. The contrapositive of the principle is equivalent to

(4) Vx 3y (f(y) > f(x)) = vz 3y (f(») > 2).

We will show that X, induction is equivalent to (4), arguing in PRA®. For the
forward direction, suppose Vx Jy (f(y) > f(x)). By induction on z, it is
easy to show 3y (f(y) > z).

Conversely, suppose @{u. v) is a Ay formula satisfying the two hypotheses
of £; induction, Fv ¢(0,v) and Vu (3v ¢(u.v) — Fv p(u + 1,v)). We
need to show Yu Jv w(u,v). Define f(x) to be the greatest w < x such
that Vu < w Jv < x @(u.v). It is not hard to show that for every x.
dy (f(y) > F(x)); if f(x) is 0, this follows from the first hypothesis, and
otherwise it follows from the second. By (4), for every u there is a y such that
f(¥) > u: the definition of f implies Jv @ (u. v). =

Lemma B.2. Let t bhe any term. With the modified definition of forcing,
PRA™ + X, induction proves the following: let p be any condition and let q be
the predicate defined by

q(@) = p(w) AVu <o (plu) — 1(u) <i(w)).
Then if q is a condition, g |+ —st(t).

ProoF. The idea is that ¢ corresponds to a subset of p on which 7 is strictly
increasing as a function of w. Suppose ¢ is a condition, and let r be any
predicate satisfying r < ¢. It suffices to show that if r I s¢(¢), then r is not
a condition.

So. suppose r I- s¢(1). i.e.

(5) 3z Vo >z (rlw) — tlw) < z).
Since r < ¢ we know that 7 is increasing on r. that is.

(6) Vu,v (r(u) Ar(v) Au< v —1u) < 1v)).
Define f by

fv)= max t(u).
u<vAr(u)

By (5) we have that / is bounded by z. Using the principle of Lemma B.1,
there is a value u such that Vo (f (v) < f(u)). But then (6) implies

Y > u —wr(w),
so r 1s not a condition. -

LemMA B.3. PRA® + X, induction proves that ——st(t) — st(t) is forced.

ProOFE. Suppose p |- ——st(z). Then Vg < p (g | —st(z)). Define g as
in the statement of Lemma B.2. Then ¢ < p, and if ¢ is a condition then
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g I+ —st(1): so ¢ is not a condition. This means we have 3z Voo > z —¢q(w).
i.e. for some z we have

Vor 2 z (p(w) — 3u < o (p(u) Atlw) < 1w).

Since p is a condition, we can pick an @w > z satisfying p(w). and let v =
MAX, <4 p(,) [ (#). Then we have

Vo 2 z (plw) — (o) <v)

which implies p IF s#(z). 4

With the modified forcing definition, it is easy to show that —s#(w) is forced.
So. in the end, we can conclude that whenever NPRA® proves a formula ¢,
PRA" + Z; induction proves that ¢ is forced.
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follows from the statement of the theorem. together with the more usual proof
of the theorem from the same set of axioms provides the precise knowledge that
these axioms are in some sense necessary to prove a theorem of ordinary math-
ematics. In such a case we have a very complete answer to the Main Question.
In this paper we consider the axiomatic strength required to prove the
equivalence of three common notions of compactness for a complete separable
metric space:
i) total boundedness:;
ii) Heine-Borel compactness;
iii) sequential compactness.
In section two we present the definition of a complete separable metric space
and some relevant results and examples. The third section considers the basic
topological definitions of open and closed sets. This section also presents the
precise definitions of the three common notions of compactness and considers
the axiomatic strength required to prove their equivalence. In the fourth and
final section we present the Stone-Weierstrass theorem for compact complete
separable metric spaces.

§2. Metric spaces. Within RCA, we define a (code for a) complete separable
metric space to consist of a set A C N together with a functiond : A x 4 — R
such that forall a.b.c € A4:

i) d(a.a) =0;

i) 0<d(a.b)=d(b.a):

ii) d(a.c) <d(a.b)+d(b.c).
Now let (4,d) be a code for a complete separable metric space, as above.
We define. again within RCAy, a point in the completion A to be a function
f N — A such that

Ve Vi [d(f(n), f(n +i)) <27"].

The idea here is that (4. d) is a code for the complete separable metric space A
consisting of all such points. For example, R = @ under the usual psecudomet-
ric. Of course A does not formally exist within RCAg. A point / : N — A will
be denoted by x = {(a, : n € N} where a, = f(n) and we will sometimes use
the notation (x), for a,. Two points x = {a, :n € N)and y = (b, : n € N)
are said to be equal if Vn [d(a,. b,) < 277", A sequence of points of A is
a function f : N — 4 and is denoted by (x, : n € N) where x,, = f(n). We
extend the pseudometric d on A to a pseudometric donA by defining

cf((an :n €N). (b, :n €N)) = (cp, :n €N),
where

<Cn.k 1k e N) = d(anJrS- bn+3)'
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Where no confusion will result, d will be used to denote both d and d. We
embed A into A by identifying the element @ € A4 with the point x, € 4
defined by x, = {(a : n € N). Thus, under this embedding, A4 is a countable
dense subset of 4. We also note that A is complete. in the following sense:

LemMma 2.1 (RCAy). Given a sequence (x, : n € N) of points in A such that
Va Vi [d(xp. xpii) < 27", there exists a point x € A such that x = lim,_ - X,
ie lim,_ood(x, x,) = 0.

ProOOF. Forn € N, let x, = (a, : k € N), where each a,; € 4. Let x
{ani3nys s n € N). Itiseasy toshow thatx € A and that lim,, oo d (x. x,,) =

1L 2l

We will also need the following technical result:

Lemma 2.2 (RCAy). The following are equivalent:

1) ACA()Z

ii) If f : N — Nis total and one-to-one, then 3X ¥Yn [n € X « Im (f (m)

n)).

ProorF. See[11]. 4

Given a sequence of complete separable metric spaces, we can define their
product as follows: let (4, : n € N) be a sequence of codes for complete
separable metric spaces 4,. For each n € N, let ¢, be the least element (in the
usual ordering of N) of A,. Let P be the set of all finite sequences {ay. . ...a;)
with @y € A, 0 < k < i. For sequences (ay.....a;) and (bo.....b;) in P,
define

an bn)
d((ao,....a;).(bo.....b; ZZW Trdla 5

where k = max(i, j), an = ¢, forn > i and b, = ¢, for n > j. Then P codes
the complete separable metric space [1y 4, with

Z . xn }’n)
2n+l 1 +d(-xn ,Vn)

for x = (x,:ncN)and y = (y, : n € N) with x,.y, € 4,. Thus, within
RCA,. we have the Baire Space N" = [T N.

§3. The topology of complete separable metric spaces. Within RCA, we
define a code for an open ball in A, a complete separable metric space with
code (A4.d). to be an ordered pair (x.e) where x € 4 ande € R* (the positive
reals). We say that a point y € A is an element of the ball (x.e) ifd(x,y) < e
in which case we will write y € (x.g). An open ball is a basic open set if it is of
the form (a, r) wherea € 4 and r € Q* (the positive rationals). A code for an
open set U is a (possibly empty) sequence of basic open sets {(a,.r,) : n € N).
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We say that a point x € A belongs to U if there is a basic open set (a.r) € U
such that x is an element of (a, r), in which case we will write x € U. We have
the following basic results about open sets:

LEMMA 3.1 (RCAy). Let (U, : n € N) be a sequence of open sets in a com-
plete separable metric space A. Then U = Uy Un is an open set.

LemMa 3.2 (RCAy). Let (U; : 0 < i < n) be afinite sequence of open sets in
a complete separable metric space A. Then Mo Us is open.

The proofs may be found in [4]. For open balls (x.e) and (y.d) we will
write (x.e) < (y.0) tomean e < & — d(x,y) and (x.e) < (y.4) to mean
€ <6 —d(x.y). Thus (x,e) < (y,d) implies that the open ball (x.&) is
included in the open ball (y.d) while (x,&) < (,d) allows that this inclusion
may be proper.

There are two natural definitions of a closed set. The distinctions between
them form the basis of [4]. The first natural definition of a closed set is that it is
the complement of an open set. Thus we define a (code for a) closed set C to be
a (possibly empty) sequence of basic open sets {(a,,r,) : n € N), and say that
a point x in a complete separable metric space A belongs to C if d(a,.x) = r,
forall n € N. Note that a code for a closed set may also be regarded as a code
for the open set which is its complement. We then easily obtain:

LemMma 3.3 (RCAy). Let (C, : n € N) be a sequence of closed sets in a com-
plete separable metric space A. Then C = (| C, is also a closed set.

LemMma 3.4 (RCA). Let (C, : 0 < i < n) be a finite sequence of closed sub-
sets of A. Then C = ] C; is closed.

Since every closed subset of a complete separable metric space is itself a
complete separable metric space, a second natural definition of a closed set is
that it is the closure of a countable set of points. We therefore define a (code
for a) separably closed set S to consist of a sequence S = (x, : n € N) of points
from a complete separable metric space 4. We say a point x € A belongs to
Sifvr € Q" 3n [d(x.x,) < r]. We will occasionally write {x, : n € N} for
S. Note that the definition of a separably closed set is equivalent to that of a
closed subspace of A given in [5].

Two notions related to these definitions of closed set are investigated by
Giusto and Simpson in [9]. Specifically, in RCAy we define a closed or
separably closed subset C of a complete separable metric space A to be located
if there exists (a code for) the continuous distance function

f(x)=d(x.C)=inf{d(x.y) |y € C}.
We say that C is weakly located if the predicate
F¥>0[Bls.r+e)nC =10

is Z?.
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In the context of weak subsystems of second order arithmetic there is an
important distinction between the two definitions of closed set: relatively
strong axioms are required to prove their equivalence. Specifically we have the
following:

THEOREM 3.5 (RCAy). The following are equivalent:

1) ACA[);

ii) If S is a separably closed subset of a complete separable metric space then

S is a closed set.
ProoOE. See [4]. -

THEOREM 3.6 (RCAy). The following are equivalent:

i) T} -CAo:

ii) If C is a closed subset of a complete separable metric space, then C is a
separably closed set.

PrOOF. See [4]. A corrected proof due to Jeffrey L. Hirst of the statement
that any closed subset of a complete separable metric space is separably closed
implies ACA, is soon to appear. =

Thus we see that for an arbitrary complete separable metric space. the
equivalence of the two notions of closed set requires, and is equivalent to,
H{ -CAy. In the setting of compact spaces (as defined below) this equivalence
can be proved in the weaker system ACAy. as we note below. We also note
that the analogues of Lemmas 3.3 and 3.4 hold, in I1} -CA,, for separably
closed sets. We may also define a separably open set to be the complement of
a separably closed set, for details see [4].

Let A be a complete separable metric space. We say that A4 is compact if there
is a sequence ((x,; : i <i,) : n € N) of finite sequences of points in 4 such
that, forall x € 4 and n € N, thereisan i < i, withd (x. x,;) < 27". Thus 4
is compact if it is (effectively) totally bounded. We say that A is Heine-Borel
compact if, given any open cover (U, : n € N) of A, there is a k € N such
that (U, : n < k) also covers A. Finally. we say that A is sequentially compact
if. given any sequence (x, : n € N) of points in A. there is a subsequence
(xp, tk€N).np < np <+ < ng < ---.such that limg_ o, x,, exists. One
reason for choosing to define a totally bounded space to be compact is that
we can, for example, prove within RCA that the unit interval is (in this sense)
compact. For the other two notions of compactness we have the following:

Lemma 3.7 (RCAy). The following are equivalent:

i) WKL

i) [0.1]is Heine-Borel compact.

ProoE. See [11]. -

LemMMA 3.8 (RCAy). The following are equivalent:
1) ACA()I
i) [0.1] is sequentially compact.



NOTIONS OF COMPACTNESS 53

Proor. See[l11]. .

In contrast to Theorem 3.6 above, in a compact complete separable metric
space we have the following result:

THEOREM 3.9 (RCA(). The following are equivalent:
1) ACA();
ii) If A is compact then every closed set in A is separably closed:
iil) If A is compact then every separably closed set in A is closed.
ProoF. See [4]. B

If we also consider the notions of located or weakly located, we have the
following set of results:

TueOREM 3.10 (RCAy). The following are equivalent:
ACAUZ

i
ii) If A is compact then every closed set in A is located:

)

) /A4 !
iii) If A is compact then every separably closed set in A is located.;
iv) If A is compact then every separably closed set in A is weakly located:,
v) If A is compact then every closed and weakly located set in A is located:
vi) If A is compact then every closed and weakly located set in A is separably
closed.

—

PRrROOF. See [9]. =
THEOREM 3.11 (RCAy). If A is compact then every closed and located set in
A is separably closed.
PrOOF. See [9]. a
THEOREM 3.12 (RCAy). The following are equivalent:
i) WKL; )
ii) IfAA is compact then every closed and separably closed set in A is located;
iii) If A is compact then every closed and separably closed set in A is weakly

located: X
iv) If A is compact then every closed set in A is weakly located.
ProoF. See [9]. B
For more details on the notions of located and weakly located sets. see [9].
In a standard presentation of real analysis one shows that the three notions
of compactness defined above are. in fact, equivalent. With limited axiomatic
strength this is not the case until we reach ACA,. as we demonstrate in the
remainder of this section.
THEOREM 3.13 (RCAy). The following are equivalent:

1) ACA()Z
ii) Every Heine-Borel compact space A is compact.
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n < m there is an i, < k, such that d(x,x,;) < 27". Let ¢ € N<" be
such that Ih(¢) = m + 1 and o(n) = i, for each n < m. Note that for all
i.j <lh(g).

d (Xig() Xjaty) S d (Xiaty.x) +d (X, X5()) <27 +27

so that for all k € N, and in particular all & < lh(e). (d(x; (). X))k <
27 427/ 4 2% Therefore, since ¢ ¢ T, there must exist 7, j. k < Ih(¢) such
that (d (x;,().a;))x <r; —27" —27% and hence (d (x;, (). a;))k <r; — 27"
Then

d(x.a;) <d(x.x,,0)) +d(xXi00-a;) <1

ie. x € (a;.r;) and j < m. Thus (i) implies (ii). as desired.

To see that (ii) implies (i). we note that [0, 1] is compact (take the sequence
{{(k27" : k < 27"} : n € N)) and then apply Lemma 3.7. =

LemMA 3.16 (RCAy). If A is sequentially compact then it is Heine-Borel
compact.

ProOOF. Let U = ((b,.r,):n € N) be an open cover of 4. If U has no
finite subcover, it follows that for each k& € N there is some x € A such that
x e~ U,ex (by.ry). e d(x.b,) = r,forallnm < k. Let x = {(a; :i € N).
Then foreach n < k.

<d(x.b,)
<d(x.ap)+ d(ﬂ,}-,bn)
< 27k + d(ak=bn)‘

It follows that d(ay.b,) > r, —27% for all n < k and hence that {a € A4 |
Vi <k (d(a.b,) >r, —27%)} #0. Let

cr=pacAWNn<k(dab,)>r—27%)

I'n

and consider the sequence {c; : k € N). If A is sequentially compact. there is
a subsequence (cx, : { € N), k; < k;41 which converges to some y € A. Fix
n € Nand e > 0 and let iy be such that for all i > iy. d(y.cg,) < e. Then for
all k = max(n, k;,).

Fn— 2K <d(b,. )
< d(bny) + d(yck)
<d(bp,y) +e.
Thusd(b,.y) > r, —27% —¢e forall k > max(n. k;, ) so thatd (b,. ) =r,—c.
Since € > 0 was arbitrary, it follows that d(b,, y) > 1y, ie. vy & (by.r). As
n was arbitrary. we have y gé Us; (by. ) = U. contradicting the assumption

that U is an open cover of A. Thus if U is an open cover of A. it must have a
finite subcover, as desired. -
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TueoreM 3.17 (RCAy). The following are equivalent

1) ACAp; R

ii) Every sequentially compact space A is compact.

Proor. For (i) implies (ii). assume ACA, and suppose further that A is se-
quentially compact. By Lemma 3.16, 4 is Heine-Borel compact and therefore,
by Theorem 3.13, 4 is compact.

For (i) implies (i), let f : N — Nbe I-landlet S = {2-/%) : k € N}U{0}.
as in Theorem 3.13. Clearly S is sequentially compact so that, if (ii) holds,
ACA, follows as in Theorem 3.13. =

‘We now establish a result for sequential compactness corresponding to that
of Theorem 3.15 for Heine-Borel compactness:

THEOREM 3.18 (RCAy). The following are equivalent.

1) ACA[);

i) If A is compact then it is sequentially compact.

Proor. For (i) implies (ii). suppose that A is compact as witnessed by the
sequence ({x,; :i < i,):n € N). Let (y; : k € N) be a sequence of points in
A and define a set T € N<V by:

o € Tiff vj < lh(e) [o’(j) < ij]
AVi. j < lh(c [d Xia(i)s Xjal(j )<2_ +27/
AYm 3k = m (d (ye.xi50)) <277)].

Note that 7 exists within ACAg. Intuitively, ¢ € T iff ¢ describes a finite
sequence of overlapping balls of decreasing radius, each of which contains
infinitely many points of the sequence (y; : k € N). Clearly T is a bounded
tree and, using the pigeonhole principle, it is easy to see that 7 is infinite.
Therefore, by Lemma 3.14, there is a path f € N through 7. Consider the
sequence (Xut1f(n41) - 1 € N). Asin the proof of Theorem 3.15, there is an
x € A such that x = limy, 0o Xp1 r(ns1)- Without loss of generality we may

assume that d(x.x, ;| f(,41)) < 27"V, Define a sequence (k, : n € N) by
recursion. as follows:

ko = f"k{d(k’ﬁf )<2 ]
ki1 = ﬂk [k >k /\d(-}f\ Xn+1f(n+l)) <2 ”Jrl)]

Note that this sequence exists as f is a path through T and so the ball
(Xps1.f (ns1)- 2~ "1 contains infinitely many points of the sequence (y : k €
N). Then for all n € N we have:
d(x' x"k) < d(x= Xnt 1, f(n+1) ) + d( n+l1.f(n+1)> y/\n)
< 2—(n+1)+2 (n+1) _ 21



