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PREFACE

This book is a guide to some of Bertrand Russell’s more difficult
philosophical works and ideas. Russell’s most important and at the
same time most difficult work is Principia Mathematica, the monu-
mental three-volume opus cowritten with Alfred North Whitehead.
These volumes present in elaborate derail his ground-breaking
logical analysis of the foundations of mathematics. Written almost
entirely in logical notation, it is difficult in the extreme to work
through and understand.

Russell wrote an informal guide to Principia Mathematica—one
without logical symbolism, and, he says, one “offering a minimum
of difficulty to the reader.” This is his Introduction to Mathemati-
cal Philosophy. Though concise and beautifully written, it is itself
not always easy to understand. This guide’s first aim is to help the
reader master Russell’s informal Introduction, then, having master-
ing that, to understand Principia Mathematica. This will enable the
reader to also understand Russell’s earlier masterpiece on the foun-
dations of mathematics, Principles of Mathematics.

Russell also had a larger philosophy—one not just about logic
and mathematics, but about the world more broadly, one that
sought to understand the nature of the universe and the way that
we know it. This philosophy especially includes Russell’s metaphys-
ics, his theory of knowledge, and his theory of language, which are
the subjects of his following works: “Philosophy of Logical Atom-
ism,” Analysis of Mind, Analysis of Matter, Inquiry into Meaning
and Truth, and Human Knowledge. Because his ideas on these sub-
jects are spread out over many works and evolve over time, we take
a different approach in covering them and present each subject as
it occurs in Russell’s early, middle, and late work. Here, we aim to
give the reader a broad understanding of Russell’s larger philosophy
and to see the evolution of his thought as a whole.
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CHAPTER ONE

Introduction

Bertrand Russell (1872-1970) was arguably the greatest philosopher
of the twentieth century and the greatest logician since Aristotle.
He wrote original philosophy on dozens of subjects, but his most
important work was in logic, mathematical philosophy, and analytic
philosophy. Russell is responsible more than anyone else for the cre-
ation and development of the modern logic of relations—the single
greatest advance in logic since Aristotle. He then used the new logic
as the basis of his mathematical philosophy called logicism.

Logicism is the view that all mathematical concepts can be
defined in terms of logical concepts and that all mathematical truths
can be deduced from logical truths to show that mathematics is
nothing but logic. In his work on logicism, Russell developed forms
of analysis in order to analyze quantifiers in logic and numbers and
classes in mathematics, but he was soon using them to analyze points
in space, instants of time, matter, mind, morality, knowledge, and
language itself in what was the beginning of analytic philosophy.

This first chapter introduces Russell’s work in logic, logicism,
and analysis, and then introduces his broader inquiries of analytic
philosophy in metaphysics, knowledge, and meaning. Subsequent
chapters treat each subject in detail. However, all of Russell’s tech-
nical philosophy revolves around his logicism. Because Russell’s
mathematical philosophy is the key to the rest of his work, and
because it is the most difficult part of it, we begin this chapter with
a discussion of logicism, then keep circling back to it, relating it to
the rest, until it seems to the reader that it is the easiest thing in the
world to understand.
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1 Logic and logicism: Basic concepts

Let’s start with some basic logical concepts. A sentence is a group
of words that express a meaning that is a complete thought. A
declarative sentence expresses a meaning that is either true or false.
A proposition is the meaning expressed by a declarative sentence
such as the true proposition “The earth is round” or the false
one “The earth is flat.” So propositions are either true or false. The
declarative sentences that express them are also said to be true or
false.

Subjects and predicates follow. The subject of a proposition
is who or what the proposition is about. “The earth is flat” is
about the earth. So the earth is the subject of that proposition. The
predicate is what is said about, or attributed to, the subject. Here,
the proposition attributes flatness to the earth, so “___ is flat”
is the predicate. Logicians write predicates using blank spaces, or
more usually, variables like x, y, or z to indicate where the subject
goes in relation to the predicate. Bertrand Russell called predicates
propositional functions. In this book, we use the terms interchan-
geably.

The predicate “x is flat” is a one-place predicate, because it only
has one place where a subject can go—it attributes a property to
one thing. Two-place predicates are relations like that in “Indiana
is flatter than Ohio.” Here, the subjects are “Indiana” and “Ohio”
and the predicate is “x is flatter than y.” (In grammar, the first is the
subject and the second is the object; in logic, they are both subjects.)
Common two-place relations in mathematics are x = y, x > y, and
x < y. There are also three-place relations like that in “Ohio is
between Indiana and Pennsylvania,” where the predicate is “x is
between vy and z,” which is often used in geometry. There are also
four-place relations, and so on.

Before Russell’s logic of relations, logic consisted principally
of the Aristotelian logic of one-place predicates. This simple logic
can analyze sentences that use one-place predicates to attribute
properties to objects like “Tom is tall” or “The sky is blue.” It can
also analyze slightly more complex sentences like “All humans are
animals” (if someone is human, that person is an animal) and “Some
humans are thoughtful” (at least one person is both human and
thoughtful) and from these two sentences infer that “Some animals
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Russell’s original form of logicism, in his 1903 Principles of
Mathematics, did not attempt to avoid the paradoxes of the new
logic, and so did not contain the complex mechanisms Russell later
added to his logic to avoid them. It is a straightforward theory,
containing all of logicism’s basic elements. We present this basic
logicism, which we call naive logicism, in Chapter 2. The complex
version meant to avoid paradoxes, which occurs in the 1910-13
Principia Mathematica, we call restricted logicism. We describe that
in Chapter 3.

3 Logicism and analysis

As well as founding the logic of relations, developing the theory of
logicism, and discovering fundamental contradictions in logic and
set theory, Russell more than anyone else founded the twentieth-
century movement of analytic philosophy that still dominates
philosophy today. Analytic philosophy as practiced by Russell
logically analyzes language to say what there is and how we know
it. Analysis is a significant part of analytic philosophy and its role
in the movement is largely due to Russell. His logical analysis of
mathematics is the primary example of analysis.

Notions of analysis vary from one analytic philosopher to another
and from one analysis to another by a single philosopher. This last
case is true of Russell himself. Most generally, “analysis” for him
means beginning with something that is common knowledge and
seeking the fundamental concepts and principles it is based on. This
is followed by a synthesis that begins with the basic concepts and
principles discovered by analysis and uses them to derive the com-
mon knowledge with which one began the analysis.

In Russell’s own words (Introduction to Mathematical Phi-
losophy): “By analyzing we ask . .. what more general ideas and
principles can be found, in terms of which what was our starting-
point can be defined or deduced” (p. 1). Similarly, in Principia
Mathematica, he says “There are two opposite tasks which have to
be concurrently performed. On the one hand, we have to analyze
existing mathematics, with a view to discovering what premises are
employed . ... On the other hand, when we have decided upon our
premisses, we have to build up again [i.e., synthesize] as much as
may seem necessary of the data previously analyzed” (vol. 1, p. v).
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Immanuel Kant uses the same concepts of analysis and synthesis
to describe his Prolegomena to Anmy Future Metaphysics and
Critique of Pure Reason. “I offer here,” he says in the Prolegomena,
“a plan which is sketched out after an analytical method, while the
Critiqgue itself had to be executed in the synthetical style” (p. 8). In
the Prolegomena we start with science (mathematics and physics)
and by analysis, he says, “proceed to the ground of its possibility,”
that is, to its fundamental concepts, while in the Critique, “they
[the sciences] must be derived . .. from [the fundamental] concepts™
(p. 24).

Russell’s Introduction to Mathematical Philosophy, an informal
introduction to Principia’s logicism, is similarly analytic. About it,
he says: “Starting from the natural numbers, we have first defined
cardinal number and shown how to generalize the conception of
number, and have then analyzed the conceptions involved in the
definition, until we found ourselves dealing with the fundamentals
of logic.” About synthesis, he says “In a synthetic, deductive treat-
ment these fundamentals [reached by analysis] come first, and the
natural numbers [with which the analysis started] are reached only
after a long journey” (p. 195).

And Principia Mathematica is a synthesis: it begins with the
logical fundamentals found by analysis, and from them deductively
builds up the mathematics the analysis started with. As Russell says
in Principia itself,it is “a deductive system” in which “the preliminary
labor of analysis does not appear.” Instead, it “merely sets forth the
outcome of the analysis . . . making deductions from our premisses
... up to the point where we have proved as much as is true in what-
ever would ordinarily be taken for granted” (vol. 1, p. v).

Russell’s Introduction to Mathematical Philosophy is thus to
Principia Mathematica what Kant’s Prolegomena is to the Critique
of Pure Reason—an analysis that takes common knowledge and
finds its basic principles, which synthesis then uses to demonstrate
the knowledge analyzed. The Introduction to Mathematical Philos-
ophy and Prolegomena also both informally introduce the subjects
presented more rigorously in the synthetic works. But Kant seeks to
justify knowledge with the principles uncovered by analysis. Russell
does not. For him, the logical ideas analysis uncovers are less cer-
tain than the arithmetic it analyzes.

For Russell, what we analyze—arithmetic—is certain and
inductively justifies the fundamental principles found by analysis
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when synthesis deduces arithmetic from them. (If synthesis shows
that logic implies arithmetic, and arithmetic is true, then logic is
probably true. The argument is inductive.) Russell does not think
arithmetic is made certain by being derived from logic, but that
logic is made more certain by arithmetic being derived from it.

As Russell says in Principia: “The chief reason in favor of any
theory on the principles of mathematics [the justification of the
premisses that imply mathematics] must always be inductive, i.e. it
must lie in the fact that the theory in question enables us to deduce
ordinary mathematics” (vol. 1, p. v). What is found by analysis is
less certain than what is analyzed. Russell does not seek certainty
from the analysis of mathematics, but an understanding of the rea-
sons, however uncertain, for accepting what we normally take for
granted.

“In mathematics,” Russell further says, “the greatest degree of
self-evidence is usually not to be found quite at the beginning, but
at some later point . . .. hence, the early deductions [of Principial,
until they reach this point, give reasons rather for believing the
premisses because true consequences follow from them, than for
believing the consequences because they follow from the premisses”
(p. v=vi). Principia does indeed show that arithmetic follows from
logic, which gives us some reason to accept those logical principles
as an account of arithmetic’s nature.

4 Logical analysis: The theory of
descriptions

These concepts of analysis and synthesis may seem vague, but they
will get you a long way in understanding Russell’s Introduction
to Mathematical Philosophy and Principia Mathematica. At some
point, however, to understand Russell’s work one must learn his
more technical, logical kinds of analysis that are his theory of de-
scriptions and incomplete symbols, his “no-class” theory of classes,
his theory of logical types, and his logical constructions.

In the theory of descriptions, Russell analyzes descriptions of
objects and classes by translating them into his new logic, where we
can see that they do not always mean what they seem to mean in
ordinary language. That is, Russell analyzes expressions of ordinary
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language into more careful logical expressions that are their true
meaning. His Introduction to Mathematical Philosophy as a whole
is the simpler sort of analysis, but within it are several more techni-
cal logical analyses using the theory of descriptions.

Russell first published the theory of descriptions in his 1905 ar-
ticle “On Denoting.” The theory figures prominently in Principia
Mathematica, where it is given a fairly clear presentation in the
Introduction. Russell’s clearest exposition of it is in the 1918 “Phi-
losophy of Logical Atomism,” and another is in his 1919 Introduc-
tion to Mathematical Philosophy (Chapter 16), which is the version
most people read in college.

For Russell, the theory of descriptions shows that the grammar
of ordinary language is often misleading. Using ir, sentences con-
taining singular definite descriptions—descriptions of the form “the
so-and-so” such as “the author of Waverly” in the sentence “Scott
was the author of Waverly”—are analyzed so that the description
does not occur in the logical analysis of the sentence, but is replaced
by a predicate.

For example, “the author of Waverly” in “Scott was the author of
Waverly” is replaced with the predicate “x wrote Waverly” and the
sentence becomes “There is exactly one thing x such that x is Scortt,
and x wrote Waverly,” or more briefly, “Scott wrote Waverly.” The
description “the author of Waverly” no longer occurs in the logical
analysis of the sentence. In particular, the word “the” is gone. That
is the whole function of the theory of descriptions.

Why analyze a sentence so that the definite description it con-
tains, and especially the word “the,” disappears? Notice that “the
author of Waverly” seems to function like a name and to denote a
particular object. However, the expression that replaces it, “x wrote
Waverly,” is a predicate, not a name, and by itself it does not denote
any such object. Let us pause here to consider this idea that names
denote, but predicates do not. It is an important idea to Russell.

The idea that names refer to, or denote, objects should not be
controversial. “Napoleon” refers to the commanding French gen-
eral at the battle of Waterloo, “Einstein” to the man who created the
special and general theories of relativity, and so forth. And as Rus-
sell points out, names have these references independently of occur-
ring in propositions. Finally, definite descriptions like “the author
of Waverly” seem to function like names and refer to particular
individuals too, just as “Sir Walter Scott” does.
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Predicates, on the other hand, do not name, or refer to, objects.
For example, the predicate “x is red” does not name or denote any
particular individual by itself independently of occurring in a prop-
osition. It does not specify which object or objects it might be used
to apply to. So a predicate is definitely not a name. Because definite
descriptions are not names but are predicates, Russell calls them
incomplete symbols. They appear to name objects, but they really
don’t.

By showing that definite descriptions, which appear to be
names of objects, really aren’t, we can see how sentences contain-
ing descriptions can be meaningful without the sentence asserting
the existence of what is described. For example, we can see how
sentences like “The present king of France rolled the round square
down the golden mountain” can be meaningful without asserting
that any of these things exist.

This solves a general problem of logic for Russell—how to logi-
cally analyze sentences containing definite descriptions true of no
objects. More significantly, Russell uses a variation of this theory,
called his “no-class” theory of classes, to remove all references to
classes in his logic by treating names of classes and descriptions
of classes as predicates. Then, since logic, so interpreted, does not
assume that sets exist, the Russell paradox of the set of all sets that
are not members of themselves cannot occur—as we will see next.

5 Logical analysis: The “no-class”
theory of classes

In addition to analyzing singular definite descriptions so that
what appear to be names are seen to actually be predicates that
do not name anything, Russell sometimes treats proper names the
same way, for example, in Principia Mathematica (in *14.21). He
suggests there that words like “Homer” that appear to be proper
names are actually concealed definite descriptions like “the author
of the Homeric poems.” They are then treated like definite descrip-
tions and replaced with predicates. By 1918, in “The Philosophy of
Logical Atomism,” Russell is using this idea aggressively, insisting
that all proper names like “Socrates” and “Napoleon” are disguised
definite descriptions, but in Principia, he only suggests it once.
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6 Logical analysis: The theory
of logical types

Though the no-class theory does avoid Russell’s paradox of class-
es, there is a paradox similar to it for predicates that the no-class
theory does not eliminate. This of course is because the no-class
theory eliminates classes, not predicates. Here is the new paradox:
Some predicates are true of themselves, for example, “x is a predi-
cate” is itself a predicate. Others are not—for example, “x is red” is
not red. From this, we can form the predicate “x is a predicate that
is not true of itself.” This predicate is true of some predicates and
not of others. But is it true of itself or not? If it is, it isn’t, and if it
isn’t, it is. We thus have a contradiction.

So simply eliminating classes from one’s logic and logicism using
the no-class theory does not eliminate all self-referential paradoxes
from logicism, because similar paradoxes arise in it for predicates.
We can try to use something analogous to the no-class theory to
eliminate predicates. For example, we might replace predicates with
propositions. Unfortunately there are also self-referential paradoxes
for propositions. And so on.

Fortunately, Russell has another method for avoiding paradoxes
called the theory of logical types. Notice that both versions of
the Russell paradox result from allowing a set to be a member
of itself or a predicate to apply to itself. The many other sorts
of self-referential paradoxes similarly arise self-referentially, by
allowing sets to be members of themselves, predicates to apply to
themselves, propositions to be about themselves, and so forth. The
theory of types prevents the paradoxes from arising by banning
self-reference.

In the mature “restricted” logicism of Principia, then, as well as
adopting the no-class theory of classes, Russell adopts the rule that
a set cannot be a member of itself and a predicate cannot apply to
itself, that is, it cannot take itself as an argument. This rule is the
theory of logical types. And the theory of logical types is justified
by the vicious circle principle, which says that any sentence formed
by a set taking itself as a member or predicate taking itself as an
argument is meaningless. By adopting the rule that is based on this
principle, namely, the theory of types, the paradoxes for both sets
and predicates do not arise.
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The theory of types works like this: If sets cannot meaningfully
be members of themselves and predicates cannot meaningfully refer
to themselves, we end up with a hierarchy of different types, or
levels, of sets or of predicates, their level depending on what type
of things they can meaningfully take as members or arguments, and
on what sets or predicates can meaningfully take them as members
or arguments.

At the first level in the hierarchy are individuals. This is the zero-
order. Then, there are predicates that apply to individuals. These
are called first-order predicates. Anything we call an object is an
individual—cars, people, molecules, mountains, what have you. A
first-order predicate is something like “x is brave.” It applies to indi-
viduals to form propositions like “Nelson Mandela is brave.”

Since first-order predicates now cannot apply to themselves,
predicates that apply to first-order predicates are called second-
order predicates. If courage is a first-order property, we must use
a second-order property, like “x is an important virtue” to say
something about it such as “Courage is an important virtue.”
First-order predicates also cannot take predicates of a higher-
order than themselves as arguments. Then there are predicates
that apply to second-order predicates—these are third-order
predicates. And so on.

Sets are structured similarly with individuals again at the zero-
order. Sets that take individuals as members are first-order sets,
sets that take sets that take individuals as members are second-
order sets, and so on. And propositions about objects are first-order
propositions, those about first-order propositions are second-order
propositions, and so on.

This is the basic idea. The actual theory of types is a few steps
more complicated than this and will be explained in full in Chapter 3.
But as you can see, stratifying sets and the things they can take as
members, or predicates and the things they can apply to, prevents
them from being self-referential, so the paradoxes of logic and set
theory cannot arise.

Notice though that both the no-class theory of classes and the
theory of logical types are used to avoid the paradoxes of class
theory and logic. Why both methods? First, the no-class theory gets
rid of sets by converting them to predicates. But since paradoxes
also arise for predicates, the theory of types is needed to stratify
predicates and prevent paradoxes for predicates from arising.
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There are also predicates that apply to sets, but since the no-class
theory transforms these sets into predicates, there is no need to cre-
ate a separate hierarchy for them. This keeps the theory of types
from getting any more complex than it already is. There are also
philosophical problems with stratifying predicates that apply to
sets. By converting the sets to predicates, the philosophical prob-
lems such as the one described below are avoided.

Notice that there is still a hierarchy for sets in type theory.
Why? Although it is understood that symbols for sets are “really”
predicates in Principia, the mathematics in it is done using
symbols for sets anyway. They still need stratifying in order to
be used, even though we know they are really predicates. And
because there are self-referential paradoxes that arise for pro-
positions, the hierarchy of propositions is included in the theory
of types as well.

One last point: notice that the paradoxes for set theory only arise
from some sets. But the no-class theory eliminates all sets. This is
clearly overkill. Why do it? Answer: As well as needing to avoid the
set-theoretic paradoxes, Russell has separate philosophical reasons
for wanting to eliminate classes from his logic altogether, for exam-
ple, to avoid the ancient problem of the one and the many.

Sometimes symbols for sets are treated as representing many
things (its members), other times they are treated as representing
one thing (the set itself). But it cannot be both. Because of this and
other such philosophical puzzles, as well as in order to simplify the
theory of types, Russell eliminates all classes from his logic using the
no-class theory and the idea of logical fictions to define them away.

These, then, are the broad outlines of Russell’s mathematical
philosophy called logicism. We have seen that Russell uses several
different kinds of analysis in his mathematical philosophies. He
also applies these methods outside of mathematics to answer philo-
sophical questions about the world at large. We have already seen
four varieties of analysis: the general kind that seeks the most basic
concepts and principles, the theory of descriptions, the no-class
theory of classes, and the theory of logical types. A fifth kind is
Russell’s analysis of entities with logical constructions, which he
uses to analyze physical points, space and time, mental phenomena,
matter, and even moral and political concepts. These topics will be
introduced in the remainder of this chapter, and discussed at greater
length in Chapters 4 through 6.
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7 Analysis and metaphysics

Russell’s ideas about the nature of reality are often responses to
problems in logic, mathematics, and analysis. His views on reality
in early work (1900-17) are expressed in Principles of Mathematics
(1903), “On the Relations of Universals and Particulars™ (1912),
and “Analytic Realism” (1911). In them, a defense of analysis is
part of his view of reality.

Philosophical monists, who were common in England in Russell’s
time, argue that analyzing the whole of reality into parts is impos-
sible. They feel that the nature of objects is determined by the role
they play in larger wholes, and that analyzing wholes into parts
leaves out these larger connections. And if the nature of an object
lies in the role it plays in a whole, and the nature of that whole lies
in the role it plays in some larger whole, reality is ultimately one
undivided whole—the plurality we experience is an illusion.

To defend analysis, Russell rejects the monists’ arguments and
concludes that reality is plural and “atomistic,” that is, composed of
parts that can be understood independently of their role in the whole.
Details about reality in Russell’s atomism are reached by analysis of
logical principles—it is a logical atomism. He believes that logic and
grammar reveal the nature of reality. This avoids beliefs about real-
ity not warranted by logic. For example, if reality consists of things
that can be analyzed into parts, the parts themselves are either com-
plex and further analyzable or not complex and simple. If they are
complex, they presuppose the existence of still simpler entities.

Russell’s logical atomism is also based on understanding
grammar. Monists assume that the logic of sentences always has a
subject-predicate form, where a predicate applies a property to a
subject—as in “Socrates is wise” where the predicate “x is wise” ap-
plies the property of wisdom to Socrates. If all sentences are really
subject-predicate sentences, relations expressed by verbs in senten-
ces like “Socrates is wiser than Plato” must also be properties.

Instead of understanding “Socrates is wiser than Plato” as
expressing the relation “x is wiser than v” between Socrates and
Plato, monists understand it as saying that “x is wiser than Pla-
to” is a property of Socrates. Treating relations this way makes
being wiser than Plato seem like an essential property of Socrates.
Treating all relations this way—as essential properties of objects—-
makes everything seem interrelated to every other thing as a part
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of its essential nature. Thus, they can only be understood as parts
of wholes. This view takes relations as “internal” (i.e., essential)
properties of objects.

With his logic of relations, Russell can say that verbs are not
predicates and relations are not properties of things. Rather, rela-
tions are entities in their own right, not part of the things related.
Relations between things are thus “external” to the nature of things.
They are not facts about the essential nature of the things related.
This is the view of “external relations.” Complexes of things are
thus external relations among simpler things.

Using grammar as a guide, Russell also assumes that entities
occur in specific ways in propositions. Some occur only as subjects
of propositions. Others occur as relations or properties of proposi-
tions but can also occur in other propositions as subjects. Those
that can only be subjects he calls “things™ or “particulars.” Those
that can be both subjects and predicates or relations he calls “con-
cepts” or “universals.”

Russell also examineslogic and grammar to find the basic elements
of nature. These include numbers, classes, concepts, properties,
propositions, universals, particulars, particles, points, and instants.
As analysis develops, the list of elements changes. The theory of des-
criptions says descriptions are not names, and soon that “Socrates”
is a disguised description and not really a name either. Instead, they
are properties or relations, Similarly, the no-classes theory replaces
classes with properties, so classes need not be assumed to exist. Both
theories are metaphysical: they eliminate the need to assume the
existence of certain entities, assuming others instead. The theory
of types is also metaphysical in distinguishing these elements into
different logical types of things.

In Russell’s middle period (1918-34) logic and metaphysics con-
tinue to be linked in works such as “Philosophy of Logical Atomism”
(1918), his introduction to Ludwig Wittgenstein’s Tractatus (1921),
Analysis of Mind (1921), and Analysis of Matter (1927). He now
thinks his carlier ideas are mistaken. In 1911, properties and rela-
tions are abstract entities, u#niversals that can occur in propositions
as predicates or as things and subjects, for example, as “Robert is a
man” and “Man is a concept.” He now thinks relations and proper-
ties cannot be subjects and that universals are not among the data
of experience. We only experience particulars.
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knowledge of them is a priori. But this is because they are now
viewed as definitions, which are uninformative. With empirical
knowledge, he no longer thinks we are conscious of particulars
and universals or know them by acquaintance. The proper meth-
od of philosophy is still to make as few metaphysical assumptions
as possible, and neutral monism lets him avoid assuming a non-
physical relation called “awareness.” He now defines mental occur-
rences using logical words, assuming only the particulars of neutral
monism.

The construction of minds and objects occurs by gathering par-
ticulars together in different ways. At any moment, for example,
a star is a class consisting of various sensation-particulars. Your
momentary experience of the star, that is, what occurs in you, is
a different class of the same particulars. The whole collection of
classes over time defines the star, and the whole collection of your
experiences of stars and other things defines you.

After constructing mental phenomena in Analysis of Mind,
Russell returns to the study of matter. This is due to changes in
his views he thinks general relativity and quantum theory require.
In Analysis of Matter (1927), he argues that all experiences—all
data—are subjective and determined by a person’s standpoint. He
now accepts inductive inferences from our experiences to events
in the physical world that cause them. He thus gives an account
of induction and of scientific reasoning which assumes events con-
tinuous with those we perceive and extrapolates from perceived
relations to relations among events in physical space-time.

In the 1930s and 1940s, Russell’s late period, these themes domi-
nate his discussion of knowledge, especially that of the a priori
principles that guide scientific reasoning. The principal texts are
Inquiry into Meaning and Truth (1940) and Human Knowledge
(1948). The paper “On Verification” (1938) is also important. The
postulates are those actually involved when scientists or ordinary
people pursue a line of reasoning. Of all possible inferences that
might be drawn from the data, what governs the decision to follow
one and ignore the others? On his view, it is the presence of a priori
expectations about the world.

These have a psychological origin. They are caused by experience
but not inferred from it and exist as primitive beliefs or habits. For
example, if idly watching the path of a cat crossing an empty room,
you would be astonished if it winked in and out of sight, or if it
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should be here and then suddenly somewhere quite different. This
is because we bring expectations about continuity and permanence
to experience that are created by experiencing certain qualities
and general patterns in the world, not just by our psychology. Qur
expectations, which, made explicit, are postulates of science, are
therefore about the world but known a priori, since we bring them
to experience. His late period also focuses on “linguistic epistemo-
logy,” that is, with constructing languages to aid us in discovering
what the data are and what we must infer.

9 Analysis and the theory of meaning

In his early period, Russell’s theories of meaning are confined to
what words and sentences denote. These occur in his early meta-
physical works such as the Principles (1903). Russell thinks the
meaning of a name, verb, or predicate, is the entity it denotes, which
may be concrete or abstract, in time and space or outside them.
Words that occur as subjects of sentences denote either particulars
or universals (things or concepts), while predicates and verbs denote
only universals.

Though the things corresponding to words and phrases are their
meanings, this is not to say that we are aware of them as meanings.
Russell explains this with his doctrine of acquaintance with univer-
sals. We can be acquainted with a patch of color and not know that
it is an instance of the word “yellow.” For this, the particular patch
is not enough: we need to grasp the universal yellow. The under-
standing of meaning is by way of universals.

The above remarks concern words. Until 1910, the meaning of a
sentence is also viewed as a single complex entity—the proposition
aRb of two objects a and b with relation R to one another. On this
view, a sentence has a meaning (the complex entity) even if it is not
believed or judged. Eventually, Russell finds this doctrine unaccept-
able and replaces it with the theory that a sentence has no complete
meaning until it is judged or supposed or denied by someone. On
this view, judging is not a relation between a person and a single
entity aRb, but a relation between a person and a, R, and b. The
proposition is broken into parts and enters into a person’s belief,
which arranges them in a meaningful way.
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There is now no single entity aRé that is the meaning of a
sentence. There are only sentences, which are incomplete symbols,
and the context of belief that gives the sentence a complete mean-
ing. This is another analysis using the theory of descriptions: a sen-
tence “aRb” is an incomplete symbol that acquires meaning when
judged or believed but is otherwise meaningless. That a person has
a belief is a fact, and the entities that constitute the meaning of the
sentence are gathered together with the believer in that fact. Just as
the theory of descriptions replaces descriptions with predicates, so
here it replaces propositions with facts of belief.

This theory requires that a person is acquainted with the
things that enter into the belief, for example, with a4, R, and b. But
acquaintance with this data is not enough to make a judgment. To
believe or judge, a person must also be acquainted with the form
in which things are put together. In this case, he or she must grasp
what it means to assert a relation.

In his middle period, Russell’s analysis of language and mean-
ing develops well beyond his early views, which hardly constitute
a theory of meaning at all. Some texts are “Philosophy of Logi-
cal Atomism” (1918), “On Propositions” (1919), Analysis of Mind
(1921), “Vagueness” (1923), “Logical Atomism™ (1924), and “The
Meaning of Meaning” (1926). The novelty is the attempt to explain
language and meaning in terms of causal relations to the world.

For words, Russell adopts a partly behaviorist account where
words are classes of sensations (mouth movements, sounds, etc.)
and acquire meaning by association with other sensations of the
things meant. For example, a child experiences certain sensations
that are collectively a toy and learns to make certain sounds that are
collectively the word “toy.” Departing from behaviorism, Russell
says the sensations of the toy give rise to images associated both
with the toy and the word “toy.” The meaning of “toy” and the
images are products of cause and effect where the word or image
can come to have the effects the original sensations had.

Russell had, in his carly period, resisted reliance on images in
his theories of meaning, but in his middle period he embraces
them. Belief is no longer a relation among things (a, R, b, and a
person). Instead, the content of belief consists of images and feelings
(acceptance, doubt, etc.). And verbs occur in sentences under new
constraints. They now do not name anything (denote no universal)
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but merely create a structure of words that is the sentence. Just
as an egg carton is not a kind of egg but a means of holding eggs
in a pattern, verbs are now merely means of creating a spatial (if
written) or temporal (if spoken) relation among words in sentence.

Russell’s late period work on language occurs in Inquiry into
Meaning and Truth (1940). There he tries to solve philosophical
problems by constructing proto-languages and artificial languages.
As before, we have feelings toward images or words. He now builds
on this by developing a psychological or causal theory of a hier-
archy of languages having logical constraints. In the logically fun-
damental language, we use single-word sentences for immediate
experiences. But our utterances also convey feelings like doubt or
certainty toward beliefs, as when we wonder “Is it true that this is
sugar?” With this idea, Russell explains the psychological meaning
of logical words like “true.”

We also find a new analysis of indexical words like “I,” “this,”
and “here.” At the same time, he tries to identify a minimum
vocabulary for sciences like physics and to identify the kinds of
sentences that can serve as premises. Since he is interested in physics
and psychology, he asks whether the words and sentences that re-
port the observations of a physicist will also serve in the same way
for psychology.

Philosophers besides Russell have pursued their own conceptions
of analysis. Russell’s friend G. E. Moore, who influenced Russell as
well as later philosophers, is an important example. But there is no
doubt that Russell is most responsible for founding the movement
of analytic philosophy. In the following pages, Russell’s contribution
to that philosophy is described in greater detail. The next chapter
describes Russell’s logicism, and the chapter following describes the
elaborations he added to it to avoid paradoxes it faced. Following
that, in Chapters 4 through 6, we return to the broader doctrines
about things, knowledge, and language sketched above.



CHAPTER TWO

Naive logicism

Bertrand Russell’s greatest achievement after the invention of
modern logic was his use of that logic to analyze mathematics and
show that its true nature is logic. The view that mathematics is
logic is called logicism. To demonstrate his logicist thesis, Russell
analyzed mathematics to show that all mathematical concepts, and
especially the concept number, can be defined in terms of logical
concepts and that all mathematical truths can be deduced from
logical truths. The attempt to demonstrate that mathematics is just
logic is called the logicist program. Russell first described his logi-
cist program in his 1903 Principles of Mathematics, carried it out
in elaborate detail with Alfred North Whitehead in their 1910-13
three-volume Principia Mathematica, and presented it informally in
his 1919 Introduction to Mathematical Philosophy.

Russell was not the only person to argue that mathematics can be
derived entirely from logic. Gottlob Frege (1848-1925) had argued
for the view informally in 1884 and Richard Dedekind in 1888.
Frege then argued for it rigorously in 1893 and 1903, though he
did so using a strange and difficult notation.! And before this, the
philosopher Rudolf Hermann Lotze had asserted though had not
argued for the view that mathematics is just logic. But Russell’s
reduction of mathematics to logic is the one that brought the atten-
tion of the world to the subject and that developed the idea in its
greatest detail and sophistication.

In May 1901, while writing his 1903 book on logicism, Russell
discovered a contradiction in his logic. The contradiction is now
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concepts and five axioms. Dedekind has shown the same thing, with
a little less elegance, in 1888. Hence, these axioms are often called
the Dedekind-Peano axioms.

Since the real numbers and all their properties and operations
can be derived from the natural numbers, and the natural numbers
can be derived from Peano’s five axioms and three primitive con-
cepts, that means that all classical mathematics can be derived from
Peano’s five axioms and three concepts. Russell then only needed
to show that Peano’s three undefined concepts can be defined with
logical concepts and his five axioms deduced from logical truths to
show that all classical mathematics can be derived from logic, thus
showing that mathematics is just logic.

The reason why Russell had to define Peano’s primitive concepts
in terms of logical concepts before deriving Peano’s axioms from
logical axioms is this: to deduce a statement from other statements,
all of the concepts the first statement contains must be possessed
by the other statements, or else definable in terms of concepts they
possess, otherwise the first statement cannot be deduced from them.
Peano had deduced all the principles of arithmetic from his axioms
using just three undefined concepts—zero, number, and successor,
plus logical concepts such as any, all, the same as, noi—to express
his axioms. Russell thus had to define zero, number, and successor
in terms of the logical concepts before he could deduce Peano’s axi-
oms from logical propositions.

2 Introducing Peano’s axioms

Before looking at how Russell defines Peano’s concepts in terms of
logical concepts and derives Peano’s axioms from logical truths, let
us first see how Peano derives the natural numbers and arithmetic
from his axioms, and the reasons why Russell thinks Peano’s primi-
tive concepts need further defining at all. For now, let number mean
natural number. Peano’s axioms are then:

1 0isanumber

2 the successor of any number is a number
3 no two numbers have the same successor
4

0 is not the successor of any number
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5 any property belonging to 0 and to the successor of any
number which has it belongs to all numbers (mathematical
induction)

Using these five axioms expressed in terms of zero, number, and
successor, Peano defines the natural numbers as follows: 1 is the
successor of 0, 2 is the successor of 1, and so on. This gives us an
endless series of continually new numbers, because, by axiom 2, we
can go on endlessly defining, and by axiom 3 no new successor is the
same as an earlier successor, and by axiom 4, no successor is 0. This
insures that the series is not circular but is an endless progression
beginning with 0 and such that every successor is a new number.

Finally, axiom 5 guarantees that the series contains all the natural
numbers, because by the first axiom, 0 is a number, and by axiom
2 if something is a number so is its successor. Axiom 5 says that if
0 has a property and the successor of every number with the prop-
erty also has it, then all numbers have the property. And since 0 is a
number and the successor of any number is a number, axiom 5 lets
us assert that every natural number is a number in this series. Put
another way, saying that all the natural numbers are in the series of
numbers defined by Peano’s axioms is the same as saying that all
natural numbers are in the set N of numbers generated by these axi-
oms and definitions. And because 0 is in N and the successor of any
member of N is in N, axiom § guarantees that all natural numbers
are in the set N of all the numbers generated by Peano’s axioms.

Peano began the series of natural numbers with the number 1: his
first axiom is “1 is a number.” In Russell’s version of Peano’s sys-
tem, the natural numbers begin with 0: Russell’s first axiom is “0 is a
number.” We will use Russell’s definition of the Peano axioms. Though
we have defined 0 and all the natural numbers with them, there are
no positive or negative numbers yet, much less fractions or irrational
numbers. These are all defined later in terms of natural numbers.

As well as defining the natural numbers, Peano must define
addition and multiplication for them. Here are his definitions: Let
Sn mean the successor of n. Then m2 +n for any numbers m and »
is the number such that

6 m+0 = m,and
7 m+8Sn = S(m+n)
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From these two rules, we can calculate m +# for any numbers by
applying the rules repeatedly until we arrive at the answer. (It is a
recursive definition.) For a simple example, we calculate 3 + 2:

342 =3+81

3+51 = S(3+1)
S(3+1) = S(3 +50)
S(3+50) = SS(3+0))

SS(3+0)) = 883
8§83 = 54
84 = 5.

This definition presupposes that we have already defined each
number in terms of its successor and so know that SO = 1,81 = 2,
and so on. Peano’s definition of addition essentially defines # + #
as being m applications of the successor function, first to 7, then to
the successor of 7, then to the successor of the successor of #, and
so on for m applications.

Multiplication is similarly defined: m2 X n is the number such that

8 mx(0 = 0,and
9 mXSn =m+(mXn).

For a simple example, we calculate 2 X 3:

2X3 =2%X82
2X82 =2+(2X2)
24(2X2) =2+ (2XS51)
24(2X81) =242+ (2X1))
242+ (2X1) =2+ (2+(2%50)
2+(2+(2X80) =2+(2+(2+0))
24+(2+2+0) =2+(2+2)=2+4 = 6.
In other words, m X n equals m added to itself 7 times. And we

have already defined addition and so may use it in defining
multiplication.
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The statement of definitions like “m +0 = m™ and “m + S(n) =
S(m +n)” may appear to be more like axioms than definitions,
that is, like extra principles added to the Peano axioms to permit
addition and multiplication. And if by “definition” we mean some-
thing that adds nothing new to a system, but only introduces new
notation for what can already be asserted with other symbols, then
because Peano’s definitions of addition and multiplication do seem
to introduce new principles not stated by Peano’s axioms, thus
extending the expressive power of Peano’s axioms, the definitions
themselves seem more like axioms than definitions.

In deriving arithmetic from Peano axioms, we are allowed to use
logic (indeed, we must use logic to derive anything from anything
else), and for Dedekind, Peano, and Russell, set theory is a part of
logic. As Russell shows in Principles of Mathematics, addition and
multiplication can be defined in terms of set theory using the opera-
tion of ser union. This makes Peano’s definitions of addition and
multiplication for arithmetic theorems of logic, and since nothing
new is introduced by them, they are definitions as well. So if set
theory is a part of logic, addition and multiplication are both defini-
tions and theorems.

Russell defines addition and multiplication in terms of set theory
as follows: The union of two sets is the set whose members belong
to either of the original two. Then, » + # is the number of members
of a set that is the union of two sets, one having m members and
the other n members, where no item belongs to both. Multiplica-
tion is similarly defined. Take two classes, one with » members
and the other with = members. Let their multiplicative class be the
class formed from all possible ordered pairs consisting of one mem-
ber from each of the two sets. The product m X is the number of
ordered pairs in the multiplicative class.

Independently of set theory, addition and multiplication can be
derived from second-order logic in ways corresponding to these
set-theoretical definitions. So second-order logic can also justify
Peano’s definitions of addition and multiplication as theorems of
logic. Addition and multiplication can thus be derived from logic
when logic includes either second-order logic or set theory. And
from this, Peano’s principles of addition and multiplication are both
theorems and definitions of the logic.

Following W. V. Quine, many people view set theory as part of
mathematics rather than logic. Also following Quine, and to avoid
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paradoxes of second-order logic, many people limit the logic they
use to first-order logic. Then, in a first-order system of logic without
set theory, Peano’s principles of addition and multiplication cannot
be proved from prior logical assumptions but must be explicitly
added as axioms to the original five axioms. But when logic includes
set theory or second-order logic, and Russell’s logic includes both,
the Peano definitions of addition and multiplication are both theo-
rems and definitions.

3 The definition of number

We can now define logicism in terms of Peano’s axioms: logicism is the
program of defining Peano’s three primitive concepts zero, number,
and successor in terms of logical concepts and deriving Peano’s five
axioms from logical truths. But how, specifically, does Russell do
this? Quite simply, he both defines the three concepts and deduces
the five axioms from his definition of number. Russell’s definition of
number—commonly called the “Frege-Russell” definition of number
because Russell and Frege each proposed it—is this: a number is the
set of all sets having the same number of elements in them, 2 being
the set of all couples, 3 the set of all triples, and so forth.?

At first glance, this definition of a number seems circular. It
defines number in terms of itself, and uses specific numbers like 2
to define 2, 3 to define 3, etc. But number can be defined without
using the concept itself, like this: A number is a class of all classes
having the same number of members. Two classes have the same
number of members when they are similar. A number is thus a set of
all sets similar to each another. We then only need to define similar-
ity without the concept of number.

Before doing this, however, we introduce some logical notation:
Russell’s symbols for relations. We use capital letters R, S, or T to
represent relations Then, if R is a two-place relation—if it relates
one thing to another—we use two variables, x and y, to represent
the two things, and write xRy, which says x has relation R to y. For
example, if we let R represent the relation greater than, xRy says
that x is greater than y. Some people write this as R(x, y) instead
of xRy. But again, if R is the relation greater than, R(x, y) says x is
greater than y. In this guide, we write two-place relations as xRy.
Now let’s return to the definition of similarity.
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Peano’s definitions of addition and multiplication are thus also true
for the new interpretation. The Peano axioms, including addition
and multiplication, are as true for interpretation (b), 0, 2, 4, 6,
8,10,...,astheyare for0,1,2,3,4,5,....

In the same way, other interpretations make Peano’s axioms true.
For another example, let the numerals, 0, 1, 2, 3,4, 5 ..., mean
what we usually mean by:

(c) 100,101, 102,103,104, 105 ...

Here 0 means what we usually mean by 100, but number and suc-
cessor stay the same. Addition and multiplication get redefined so
that m 4+ 7 now means what we ordinarily mean by m +n + 100,
and m X n means what we ordinarily mean by m Xz + 100.

Here is another oddity: how do we say what we ordinarily mean
by 0 and 1 with interpretation (c)? If negative numbers are devel-
oped, we can then use “~100” to mean what we usually mean by
“0.” This seems to go beyond the Peano axioms. We have a similar
problem with interpretation (b). With it, we can only count couples
of things, say, pairs of socks. But we cannot count odd numbers of
socks. We must first extend the system beyond the Peano axioms, in
this case, by developing fractions. Then 1/2, 3/2, 5/2 can mean what
we usually mean by 1, 3, 5.

Differing interpretations that each satisfy a set of axioms are
isomorphic to one another. Specifically, if each makes the axioms
true and there is a 1-1 correspondence between the objects of the
interpretations, they are isomorphic. For Peano’s axioms, each will
be a progression of objects with one object, 0, having no successor.
More new words: an interpretation making a set of axioms true is
a model of those axioms and is said to satisfy the axioms, There are
an infinite number of interpretations of Peano’s axioms that satisfy
them. Which interpretation should we use to interpret the axioms
and the numerals?

5 The true meaning of “number”

Mathematicians commonly say that for the purposes of pure
mathematics, it doesn’t matter what the symbols for numbers
mean—they can even be left uninterpreted and pure mathematics
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will getalong just fine without them. In fact, alternative geometries
have been worked out without clarifying what they mean by point,
line, or plane. As long as the axioms are consistent (i.e., don’t lead
to a contradiction), it is acceptable mathematics. Still, mathemati-
cians also often claim that an intuitive sense of the symbols guides
their work. Moreover, logicians and set theoreticians who analyze
mathematics into fundamental concepts want to understand what
it is all about whether their work matters to mathematics or not. So
again, which interpretation should we use?

Russell argued that our numbers cannot be just any of an infi-
nite number of progressions that satisfy the Peano axioms, because
we want them to “apply in the right way to common objects. We
want to have ten fingers and two eyes and one nose. A system in
which 0 means 100, 1 means 101, and so on, might be all right for
pure mathematics, but would not suit daily live.”* Russell’s defini-
tion of number picks out this standard interpretation. Still, Russell
understands that we can use an interpretation in our everyday lives
where 0 means what we now mean by 100. The model we choose
to interpret our numerals is wholly a matter of convention, and
Russell understands that. So what is he saying?

Even though the model we use for arithmetic is a purely conven-
tional choice, there is just one interpretation that almost all mem-
bers of the human race have chosen, and that is the interpretation
that says people have one nose and two eyes. This is the interpreta-
tion Russell’s definition of number gives us. It is wholly a matter
of convention that humans have chosen this model, but it is the
convention we have chosen. Thus, picking Russell’s definition of
number to interpret Peano’s axioms may entirely be a matter of
convention, but being the established human convention, it is still
the true meaning of “number” as we use the word.

By saying that his definition of number is the right one, Russell
also means that by his definition, numbers apply to classes. By his
definition—that a number is a set of similar sets—to say that there
are 12 Apostles means that the class of Apostles has the property of
being 12. And this is just how we use numbers. It cannot be the case,
for example, that the number 12 is a property of each Apostle, so
that Peter is 12, Paul is 12, and so on. Being the property of a class is
how natural numbers actually work. Not all definitions of number
make this clear. Only by viewing numbers as properties of sets will
numbers apply properly to the world.
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Russell’s definition of number is thus again the one needed for
applied mathematics. This does not mean that his interpretation of
Peano’s axioms is itself applied mathematics. A system of applied
mathematics, Russell says, must contain nonlogical constants, and
Russell’s definition of number and interpretation of the Peano axi-
oms is purely logical. Logicism is pure mathematics, not applied
mathematics. But pure mathematics cannot be used for applied
mathematics unless numbers are something like sets of similar sets.

(Note: First we say that for Russell a number is a set of all sets
similar to one another, then we say that for Russell a number is the
property of a set. But these are just two ways of saying the same
thing. Take the set of all the dogs in the world. To say that some-
thing belongs to the set of all dogs is to say that it has the property
of being a dog. Similarly, to say that the number 12 is the set of all
sets having 12 members is to say that each set in it has the property
of having 12 members.)

According to one standard theory, the meaning of a word is
either its extension, its intension, or both. A word’s intension is a
definition picking out every object the word applies to. Its extension
is the set of things the intension picks out. By Russell’s definition,
the number 3 is the set of all sets with 3 things. Thus, Russell defines
numbers as the extension of a numeral, so for those who believe the
meaning of a word is its extension, Russell’s definition of number
gives the true meaning of the word.

For those who think the true meaning of a word is its intension,
that is, a definition that picks out all and only those things in its
extension, Russell’s definition of number—the set of all sets similar to
one another—is what defines the set of things numerals pick out. And
for those who think the meaning of a word is both its intension and
its extension, they can have both the definition and the set it defines.

Philosophers sometimes say that Russell’s logicism substitutes
classes for numbers, and that the use of his definition of number
is justified as a substitute only because the classes do everything
numbers do in mathematics. But this is a misunderstanding. If the
meaning of a word is its extension and/or intension, then Russell’s
definition of number is exactly what we mean by a number, it is not
just a substitute for it.

Peano was aware that an infinite number of interpretations
satisfied his axioms, but he intended that we use his system with
an intuitive understanding of its three fundamental concepts. He



36 RUSSELL

also thought that we could define those concepts by “abstraction,”
where we abstract from the different interpretations what is com-
mon to all of them. But what is common to all of them is just that
they satisfy Peano’s axioms, that is, the axioms themselves are the
only things that are common to all the different interpretations.
Peano’s idea for defining number thus does not pick out any par-
ticular interpretation. And without a particular interpretation,
and especially one that applies numbers to classes in the way that
humans actually do, we will not be able to apply mathematics to the
world properly, or really, at all. With Russell’s definition, we can.

6 The concepts defined and
axioms derived

We now show how, with Russell’s definition of number, one can
define Peano’s primitive concepts and deduce his axioms from logic.
Russell’s most accessible account of this is in his Introduction to
Mathematical Philosophy. But there are places in it where people
sometimes get stuck. We thus take special care in what follows to
explain what we feel are the difficult spots of the Introduction.
In particular, we find that people first encounter difficulty read-
ing it with the definitions of posterity (N-posterity, R-posterity,
P-posterity). These are really not hard to understand, but pay atten-
tion when we get there. We will make them clear to you. But first we
will go through Russell’s simpler 1903 version of logicism.

From Peano’s five axioms and three undefined concepts, the
natural numbers and their properties can be derived along with
addition and multiplication. And once we have the natural num-
bers, we can define negative and positive numbers (when a = b +x,
x is negative when a<b and positive when a>b) and fractions (as
ratios of natural numbers in the form m/n). And with the rational
numbers, we can define the irrational numbers with what is called
a Dedekind cut, explained in detail below.

To derive all this from logic, Russell will logically define Peano’s
three undefined concepts and deduce Peano’s five axioms from
logic using those definitions and logic. In 1903, in Chapter 14 of his
Principles of Matbematics, Russell does this in a simple and straight-
forward way. First he introduces his logical (i.e. set-theoretic) defini-
tion of numberas a set of setsall having the same number of members,
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that is, that are similar to one another. Then he defines the individual
natural numbers, beginning with 0 and 1, using his general definition
of number. With addition and the number 1, he defines successor
of. And with these concepts logically defined, he derives the rest of
the natural numbers, proving that Peano’s axioms are logical truths.
Now let’s go over this in detail.

First, in the 1903 Principles, Russell defines the natural numbers
with his general definition of number like this:

(a) O is the class of all classes whose only member is the null set

(b) a number is a class of all classes similar to any one of
themselves

(c) 1 is the class of all classes not null and such that if x and y
belong to them,x = y

{(d) n + 1, the successor of any number #, is the number of the
union of a class a of # members and a class of one member
x, when 7 is a number and x ¢ a

(e) the natural numbers are the members of every class s that 0
belongs to, and that # + 1 belongs to if 7 belongs to it

(Russell sometimes defines 0 as the class of all classes whose
only member is the null set, but often says more simply that it is
the class whose only member is the null set. These definitions are
the same. In set theory, two sets are identical when they have
exactly the same members—not the same number of members,
but exactly the same members. All classes containing only the null
set have exactly the same member, the null set, and so are identical,
that is, they are all the same set. There can only be one set whose
only member is the null set.)

Russell’s definitions above define zero, number, successor, and
each natural number. And given these definitions one can prove that
the five Peano axioms are logical truths, expressed wholly in logical
terms and true for all possible cases. (A logical truth, after all, is true
for all possible cases of it.) Specifically, from these definitions the
following Peano axioms are obviously true:

1 0isanumber

2 if nis a number, n+ 1 is a number, where #»+ 1 means the
successor of 7
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every inductive property. So to define numbers, we need to define
objects that belong to every inductive class. And for that, we need
the concept of posterity.

5 the posterity of # =df the class containing all the members
of every hereditary class that # belongs to (where heredity is
defined in terms of successor of).

And from this we can easily define the posterity of 0.

6 the posterity of 0 =df the class of objects that belong
to every hereditary class 0 belongs to (where heredity is
defined in terms of successor of).

The posterity of 0 is thus the set of numbers that belong to every
hereditary class 0 belongs to. This is just a precise definition of
mathematical induction (axiom 5), that every property that belongs
to 0, and to the successor of every number with that property, be-
longs to all numbers. In other words, natural numbers have all the
hereditary properties 0 has. We can now define the natural numbers
in terms of posterity.

7 the natural numbers =df the posterity of 0

This defines natural number in terms of zero and successor by
defining posterity in terms of zero and successor and defining
natural number in terms of posterity.

Two of Peano’ axioms can be inferred from the definition
of natural number in terms of posterity alone. The definition of
natural number implies Peano axiom 1, that 0 is a number, because
the natural numbers are defined as the posterity of 0, and the poster-
ity of a number includes the number itself, so 0 is a natural number.
The definition of natural number also implies Peano axiom 5,
the principle of mathematical induction, because the posterity
of 0 just is the definition of mathematical induction. In other
words, since the natural numbers are defined with mathematical
induction (posterity), they must imply mathematical induction in
return (axiom 5). The definition of natural number also allows one
to weaken Peano axiom 2, which says the successor of a natural
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number is a natural number. We can drop the last part, because
we have just defined natural numbers in terms of successors, so
the successor of a natural number is already a natural number by
definition.

We now define 0 and successor with the Frege-Russell definition
of number, and derive the other three Peano axioms from them.
0 is the set whose only member is the null set, and the successor of
a number 7 is the number of a class with # items to which an item
x is added where x does not belong to the original class. Note: the
concept number of a class in this definition is already defined by the
Frege-Russell definition of number.

We then prove Peano axiom 4, that 0 is not the successor of any
number: by the definition of successor, the successor of a number is
the number of a class with at least one member, but this is not true
of 0, so 0 does not succeed any number. The weakened version of
axiom 2—every number has a successor—follows from the defini-
tion of successor: since any class can have a member added to it, its
number of members is then the successor of its earlier number of
members. It only remains to define axiom 3, that no two numbers
have the same successor.

If the universe contains an infinite number of things, then for
each natural number there will be other natural numbers greater
than it, specifically, for any number m, there will always be the
number 7 + 1. Then we can say that m+1 = n+1 only if m = n.
But if the universe is finite, this is not the case. If there are, say, 10
things in the universe, the successor of 10 is null, because there
is no class of 11 things, and the successor of 11 is likewise null.
Then 10+1 = 11+ 1. Peano axiom 3 holds only for an infinite
universe.

In 1903, Russell thought he could logically prove that the uni-
verse contains an infinite number of things, if only abstract objects
like propositions, numbers, or classes. By 1910, he realizes this can-
not be proved logically. He therefore has to accept as an assump-
tion that the universe consists of an infinite number of things. This
assumption is called the “axiom of infinity.” By assuming an infinite
universe, Peano’s third axiom is valid. In his early logicism, how-
ever, Russell did not realize that he needed this assumption.

If the universe is infinite, Russell can define Peano’s three basic
concepts in terms of logical concepts, and derive Peano’s five
axioms from them. Granting him this one assumption, his logicist
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thesis seems vindicated. Also, by defining the basic concepts this
way, one can say what it means for something to be finite. Each
natural numbers is finite. With the natural numbers, one can define
this important property.

8 Ordering the natural numbers

Because natural number is defined with posterity, and posterity is
defined with successor, natural numbers are finite. Proof: finite nat-
ural numbers can be reached from 0 by successive additions of 1.
Thus, finite natural numbers obey mathematical induction starting
from 0. Thus, finite natural numbers possess every property pos-
sessed by 0 and by the successor of every number possessing the
property. Thus, finite numbers are the posterity of 0 as defined by
the successor relation.’ And by definition, these are all the natural
numbers.

Any natural number can therefore be reached from 0 by a finite
number of steps from n to #+ 1. Or really, any natural number can
be reached from any other natural number by a finite number of
steps from n to n+ 1, or from n+1 to »n if moving toward 0. So
every natural number is finite. This defines finite number in terms
of mathematical induction.

There are only a finite number of numbers between any two nat-
ural numbers, because defining natural numbers with mathematical
induction makes them so. The only progressions that make mathe-
matical induction true have a finite number of steps between any
two of their members. After all, if there were an infinite number
of steps between them, you would never reach one from the other,
and could not define the unreachable one with mathematical induc-
tion.

For example, moving step-by-step from -1 in the series -1, -1/2,
-1/4,-1/8 ... 1/8,1/4,1/2, 1, you will never reach 1, for there are
an infinite number of steps between the two—the steps from -1 to 1
go on forever. But a series of numbers defined as those reached by
repeatedly adding or subtracting 1 starting from any other member
of the series makes every number in it finite, with the number of
successor or predecessor steps between any two of them also finite.

Finally (before discussing order), though each natural number
is finite and the number of steps with the successor or predecessor
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function between any two is finite, the class of finite natural numbers
itself is infinite. There are an infinite number of finite integers: the
successions go on forever, but each element in the progression, being
a finite number of steps from any other, is itself finite. The number
of natural numbers thus cannot be a natural number, but must be
a higher “infinite” number. In fact, it is X (aleph null), the smallest
infinite number.

In addition to defining the natural numbers and their finitude,
mathematical induction (posterity) also defines their order. In fact,
it defines the order of magnitude, 0, 1, 2, 3, . . . that we are so
familiar with. Simply defining the natural numbers with the Frege-
Russell definition of number, as a set of similar sets, does not define
their order. What organizes objects into a series is some relation
among them. But the natural numbers do not have just one order.
As Russell says in IMP (p. 29), they have all the orders of which
they are capable, and the natural numbers are capable of an infinity
of orders. For example, you might start with 0, list all the odd num-
bers, then all the evens, like this: 0, 1, 3,5, ..., 2, 4, 6, and so on.
Or you might start with 1, then take all the evens, then all the odd
multiples of 3, then the odd multiples of 5 but not 2 or 3, and so
on. Each order is defined by a different relation among them. Their
most important order is their order of magnitude.

To order any set of objects, an ordering relation R must have
three properties. It must be:

1 asymmetrical—if g has relation R to b, b does not have
relation R to a.

2 transitive—if g has relation R to b, and b has R to ¢, then a
has R to c.

3 closed for the series—for any two objects x and y being
ordered, either x has relation R to y or y has R to x.

The successor relation might at first seem capable of ordering the
natural numbers according to magnitude by itself, for 1 is succeeded
by 2,2 by 3, 3 by 4, and so on, in what seems like a series. But the
successor relation is not transitive: though 1 is succeeded by 2, and
2 is succeeded by 3, 1 is not succeeded by 3. Nor is the successor
function closed: it cannot tell us whether 3 comes before 7 or
vice versa, and that is what an ordering relation must do. We can,
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however, use the successor relation to define a transitive relation,
namely, the relation of a number # to its posterity.

Remember, a property is hereditary if, whenever a natural number
n has it, its successor 7’ has it; a class is hereditary if, whenever »
is a member of it, so is #”; the posterity of # is the class of numbers
with every hereditary property » has; and the posterity of 0 is the
class of numbers with every hereditary property 0 has. Now 0 has
every hereditary property that 0 has, so 0 belongs to its own pos-
terity, and so does every other natural number, because the natural
numbers are defined as the posterity of 0. Clearly, then, posterity is
the relation “less than or equal to” ().

Posterity (<) is a transitive relation: for any natural number x,
¥, 2, if x <y and y <z, then x < z. However, it is not asymmetrical:
when x <y, we don’t know if x <y or if x = y. The relation less
than (<), however, is asymmetrical. When x <y, ¥ cannot be less
than x. To define an ordering relation with the successor relation,
we want less than (<), which Russell calls proper posterity, not
less than or equal to (posterity). Here is the definition: a number
n is in the proper posterity of m if n possesses every hereditary
property possessed by m’. This is transitive, asymmetrical, and also
closed—for any two numbers m and », either m < or n <m. With
this, we can define the natural numbers in their familiar order of
magnitude.

Both posterity and proper posterity are defined with the succes-
sor relation n° = n+ 1, because they are defined with heredity and
heredity is defined with successor. A relation defined with this sense
of successor will clearly order the natural numbers: moving from
n to n+1 is the very essence of the natural numbers. But not all
objects can be ordered using this sense of successor, for example,
consider the series of kings of England. Here, we move from one
member of the series to a successor, but here “successor” means
“eldest legitimate son,” not n+ 1.

Or consider fractions. The relation less than, being asymmetrical,
transitive, and closed, will order any two fractions m/n and plq,
determining whether one precedes the other or the other precedes
the one. But fractions do not have successors the way natural num-
bers do. Fractions are dense. For any two fractions there is always
a third between them in order. The notion of less than, when de-
fined as proper posterity with a notion of hereditary which itself
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We then generalize this to define all positive and negative
integers, not just +1 and —1. When c¢ is the successor of b and b
the successor of a, the relation between ¢ and a is 2 applications of
the successor function. Denote this as S2. Then, ¢S?¢ means ¢ is the
successor of the successor of a, that is, ¢ = a+ 2 and that means
that $? defines +2. Now let §* mean x applications of the succes-
sor function where x is any natural number. Then +x will be §%,
that is, the successor function applied x times. Similarly for negative
numbers, —x will be §**, the predecessor function applied x times.
Addition and multiplication for positive and negative integers are
defined like those for natural numbers.

Fractions (ratios) are as easy to define. The fraction m/n is the
relation between two natural numbers x and y when xn = ym. For
example, 2/4 = x/y when 2y = 4x, which is true when x = 1 and
y=2,0orx =2andy =4orx =3 andy = 6, and so on. This
thus defines fractions in terms of multiplication of natural numbers,
and 1/2 = 2/4 = 3/6 = 4/8, and so on. We then define addition for
them in terms of addition and multiplication of natural numbers:
mip +nlp = (m+n)lp and min+plg = [(mxq)+ (nxp)|/(nxq),
just as in ordinary arithmetic. Multiplication for ratios is similarly
straightforward, namely, minxplq = (mxp)l(nxq).

Fractions are relations between natural numbers, and so
different from natural numbers. Natural numbers are classes of
classes; fractions are relations between natural numbers, and so
relations between classes of classes—not the same at all. (When
Russell introduces his theory of types—described in the next
chapter—natural numbers and fractions become different logical
types and even more different from one another.) Positive and
negative integers are also relations between natural numbers, but
not the same relations, so fractions are also different from positive
or negative integers.

The fractions 0/m and m/0 are zero and infinity for any natural
number m. The zero of the fractions is not the zero of the natu-
ral numbers, as explained above. And the infinity of the fractions,
symbolized as e, is not the Cantorian infinite X . It is a poten-
tial infinite; Cantor’s is an actual infinite. It is like the series 1, 2,
3,4,...getting progressively larger and larger, rather than like the
set of all natural numbers {1, 2, 3, 4, . .. } taken at once, as with
Cantor’s infinity. Cantor’s infinity assumes the axiom of infinity—-
that there are an infinite number of things. The infinity of the frac-
tions does not.
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To order the fractions in a series, Russell defines greater than and
less than for fractions. From here on, let m, n, p, and g be nonzero
natural numbers. Then, for two ratios m/n and p/g, m/n is less than
plq if and only if mqg < pn. Similarly, m/n is greater than p/g if and
only if mqg > pn. In the series of ratios, 0 and o are the smallest and
largest numbers. If they are omitted, there is no smallest or larg-
est fraction. For any fraction, m/2n is smaller than it and 2m/n is
larger, and between any two fractions m/n and p/q when min<plq,
(m+ p)/(n+ q) is always greater than m/n and less than p/q.

There are thus always an infinite number of fractions between
any two other fractions, unlike the natural numbers and integers.
This property is called “compactness” by Russell and density by
contemporary mathemaricians. Also, there is no fraction p/g that
immediately follows another fraction m/n in the series of fractions:
no two fractions are consecutive. These are properties of Cantorian
infinity, not the infinity of fractions: they cannot be proved without
the axiom of infinity.

Our fractions are so far signless. Russell defines positive and
negative fractions as he did for the integers: + p/qg is the relation
mfn+ plg to min, where mfn is any fraction at all. This relation
means “greater than by p/g,” that some number is greater than an-
other by p/q. And —p/q is defined as the converse relation, m/n to
mfn + plg, which means “less than by p/g.” Positive and negative
fractions are clearly different from positive and negative integers:
positive and negative integers are relations of classes of classes;
positive and negative fractions are relations of relations of classes
of classes.

Though the definitions of positive and negative integers and
rational numbers are straightforward, it is interesting that both
ratios and signed integers are relations of classes of classes but not
the same relation, and so not the same, and that signed ratios are
relations of relations of classes of classes. Only natural numbers are
classes of classes. The difference between the potential infinity of
fractions and the actual Cantorian infinite is also of interest.

10 Background to defining real numbers

Other than its answer to the question “What is a natural number?”
what is most interesting in logicism is its answer to the question
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“What is a real number?” What are new in real numbers are
irrational numbers, for example, V2 and 7. Irrational numbers,
or really, irrational lengths or magnitudes, were discovered by
the ancient Greeks when they discovered that squares with sides
1 unit by 1 unit long will have diagonals whose lengths cannot be
expressed by any fraction or any other numbers known to them,
and then discovered many more such magnitudes.

Because irrational lengths cannot be expressed as fractions, and
lengths are the subject matter of geometry rather than arithmetic,
not all objects of geometry can be expressed in terms of arithmetic.
Arithmetic and geometry thus had relatively separate developments
from the Greeks on. With the development of algebra, irrational
numbers were encountered again, this time as possible solutions to
equations. But these made even less sense to mathematicians than
irrational lengths in geometry: at least lengths are real. The divide
between geometry and arithmetic, and later algebra, thus persisted
into the nineteenth century.

Whitehead and Russell define irrational numbers as lengths
in Principia Mathematica (PM), specifically, as the lengths of
number lines in analytic geometry, where numbers are correlated
with points on a line. They define irrationals as line segments of a
number line—as a series of numbers—rather than as single points
on it. Russell defines irrational numbers similarly in Introduction to
Mathematical Philosophy (IMP),

Fractions are similarly defined in Principia as relations between
line segments This differs from IMP, where fractions are relations
of natural numbers as we defined them in the last section. In PM,
however, fractions are relations of line segments. For example, 2/3
is the relation between two lines A and B, where A is two-thirds as
long as B, and this is defined as being the case when 3 lengths of A
equal 2 lengths of B. In Principles of Mathematics (POM), Russell
distinguishes between ratios and fractions (PM and IMP do not),
ratios being relations of natural numbers, as in IMP, and fractions
being ratios of lengths as in PM. But Russell’s POM definition of
fractions as ratios of lengths was unclear, and so is replaced in PM
with a better one by Whitehead, namely, the one described above.

Three volumes of PM were published. A 4th volume—on
geometry—was planned but never written. However, one will find
places in POM, PM, and IMP where Russell, and Whitehead in
PM, discuss various geometric subjects as a part of logicism, giving
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ghost-like hints of what a logicist treatment of geometry might have
been like. The definitions of fractions and real numbers in PM and
of real numbers in IMP are examples of this.

The definition of real numbers in Principia Mathematica did
not originate with Russell and Whitehead, but with Dedekind as
a part of the arithmetization of analysis. Dedekind defined certain
sets of rational numbers, known as Dedekind cuts, that correspond
to points on the number line and represent both rational and irra-
tional real numbers. Russell added the definition of mathematical
concepts in terms of logical concepts and the derivation of math-
ematics from logic.

Mathematicians often conceive of real numbers differently than
Russell, as points on a number line. Sometimes that point is described
more carefully as the limit of a particular series of fractions that
progresses toward it. But for Russell, real numbers are the whole
series of ratios approaching that limit, not just the limit itself. In this
way, Whitehead and Russell treat them as segments—something
geometrical. These make it easier to apply mathematics to the
physical world.

11 Real and complex numbers defined

Russell defines both rational and irrational real numbers with what
is called a Dedekind cut, in honor of Richard Dedekind who first
used them to define real numbers. A Dedekind cut divides all the
members of a number series into two sets, where every member of
the series is in one of the two sets and every number in one set is
less than every number in the other. Each set is called a section. The
section with the lower numbers is the lower section, the other is the
upper section.

There are several different kinds of cuts, depending on how the
“point of section”—the point where the two sections are divided
—is defined. For a cut in the series of fractions, where a is the
lower section, f§ the upper section, and ¢ a fraction in the series,
we might define a as every fraction less than ¢ and f as ¢ and every
fraction greater than c. Then, the upper section f has a minimum
value, namely, ¢, but the lower section ¢ does not have a maximum
value.
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The fraction ¢ is thus the minimum value of f; no member of
f is less than ¢. The lower section a has no maximum value, it
contains every fraction less than ¢, but not ¢ itself. As the values
of its members increase in size they come closer and closer to ¢
but never reach it; for every one of them, there are always others
that are closer to ¢, and for these too there are still others that
are closer. There is no greatest number in a that is greater than all
the others.

This lower section a does however have an upper limit: it is the
number in the series that the members of @ approach but never reach
as they increase in value, namely, ¢. Though a has no maximum, it
has ¢ for an upper limit. If we reverse the matter and make a cut in
the series of fractions where every member of the lower section a is
less than or equal to ¢ and every member of the upper section f is
greater than ¢, then a will have a maximum value, namely ¢, but f
will have no minimum. It will, however, have c as a lower limit.

Two sets of fractions where one contains every fraction lower
than ¢ and the other contains every fraction greater than ¢ would
not be a cut. A cut must place every member of a series in either the
lower or upper section. The two sets just described do not contain
every fraction—they leave out ¢ itself. And two sets where one con-
tains every fraction less than or equal to ¢ and the other contains
every fraction greater than or equal to ¢ are also not a cut, because
the same fraction cannot belong to both sets.

For some cuts, the lower section has a maximum value and the
upper section has a minimum value, for example, a cut in the posi-
tive integers. Then, if the lower section is every integer less than or
equal to 7 and the upper section is every integer greater than 7, the
lower section has 7 as its maximum value and the upper section
has 8 as its minimum value. Finally, there are cuts with neither a
maximum nor upper limit for the lower section and neither mini-
mum nor lower limit for the upper section. These are used to define
irrational numbers.

Can we make a cut in the fractions at V22 Not exactly. V2 is not
a fraction at all, so we cannot define a cut in the fractions by letting
¢ =V2,a = the fractions less than ¢, and f the fractions greater
than ¢. But we can let ¢ = 2 and define a as the set of fractions
whose square is less than 2 and f those whose square is greater than
2.Then, a has neither a maximum nor upper limit, and f has neither
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arithmetic following Cantor. But what we have covered here is the
core of logicism, and enough to discuss the modifications Russell
made to logicism in Principia Mathematica to prevent paradoxes
from arising in it. These modifications amount to what we call
Russell’s restricted logicism, described in the next chapter. Russell’s
logical definition of infinity and its arithmetic, and the problems
that arise for it, are discussed in Chapter 7, on “The Infinite.”



CHAPTER THREE

Restricted logicism

Russell conceived oflogicism—the thesis that mathematicsisnothing
more than logic—in January 1901 and described it in detail in his
1903 Principles of Mathematics. But even before finishing the book,
he discovered a contradiction in its logic. Unless he could find a way
of expressing his logic so that it did not imply the contradiction, the
logicism of the 1903 book, which presupposed this logic, would be
unacceptable, for any theory that implies a contradiction contains
at least one false premise.

By the time the book was ready to print, Russell still had not
found a way to modify his logic so that it would avoid the contra-
dictions. (By this time there were several.) He thus left the book
in its original form, contradictions and all, appending a proposed
solution to them at the end of the book. The solution, however,
was inadequate: only when he presented the mature version of logi-
cism in the 191013 Principia Mathematica, which contained many
complexities in its logic the earlier version did not, was he able to
avoid the contradictions and save his logicism.

The original 1903 version of logicism, presented without any
of the complexities introduced later, we call naive logicism. This
simpler form of logicism was described in the last chapter. In this
chapter, we describe Russell’s mature logicism of 1910-13. In
particular, we describe the complexities added to the theory in order
to avoid the contradictions. Essentially, these complexities restrict
the use of logic so that the contradictions cannot be stated. We thus
call this mature logicism restricted logicism.
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What are these restrictions? The most important,and the principal
difference between naive and restricted logicism, is Russell’s theory
of types. But the theory of types makes Russell’s logicism so
complex that the axiom of reducibility must then be introduced to
simplify it. This axiom, however, is itself quite complex: Russell has
simplified his logicism by adding more complexity to it! Finally, for
good measure, Russell defines classes, or really, explains them away,
with a “no-class” theory of classes based on his theory of descrip-
tions. He also uses the theory of descriptions to define, or again,
explain away, mathematical functions (things like “f(x) = x> +17).
These too add a lot of complexity to logicism.

The version of type theory described here is that of Principia
Mathematica, as Russell’s discussion of it in his 1919 Introduction
to Mathematical Philosophy is inadequate. In this chapter, then, we
take the reader straight to the heart of Principia Mathematica itself.
Similarly, our descriptions of Russell’s axiom of reducibility, theory
of descriptions, and no-class theory are described as they occur in
Principia. It is time for the reader to begin understanding that book
directly.

1 Background to discovering
the Russell paradox

Russell did not begin writing the Principles of Mathematics with
logicism in mind, much less with any idea of the paradoxes to
come. He had written a final draft of it between October and
December 1900. Only after that, in January 1901, did he conceive
of logicism. In May 1901, he wrote Part One of the book, describ-
ing his logic, and began writing Part Two, on logicism, the same
month. Then disaster struck: while writing the part on logicism,
he discovered a contradiction in the logic of Part One. The contra-
diction threatened to be fatal to his logic, and so to the theory of
logicism based on ir.

A contradiction is a statement or set of statements making two
claims that cannot both be true. For example, in “It is both raining
out and not raining out at the same time and place” at least one
claim must be false, and we would have to look out the window or
go outside to decide which we should throw out. Similarly, because
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Russell’s logic implied a contradiction, at least part of it was false
and had to be thrown out. But logicism was based on this logic, so
if part of the logic was thrown out, the logicism might not work
anymore. Russell had to both reject part of the logic and replace
that part with something that did not imply any contradictions and
yet did all the work of constructing mathematics from logic that the
discarded part had done.

At first Russell did not appreciate the difficulty that eliminating
the contradiction would present. Though aware of it while writing
the section on logicism for his book during June 1901, he did not
revise his logic or modify his approach to logicism at that time to
avoid the paradox. Similarly, when he rewrote the section on logic
in May 1902 again, nothing was modified to avoid the contradic-
tion. In fact, he turned the manuscript into his publisher in its un-
modified form, thinking he would find a solution to the contradic-
tion quickly later on, write a brief account of how to avoid it, and
get this to his printer and into the book before it went to press.

A solution to the paradoxes, however, was not readily forth-
coming, so in November 1902 Russell added a hasty appendix to
his book suggesting a tentative solution, while also mentioning the
difficulties the proposed solution faced. The solution tentatively
proposed was a simpler version of the more complex theory of
types he would eventually adopt and publish seven years later in
Principia Mathematica. Before accepting the theory of types, in
Principia, Russell would spend five years searching for a less drastic
solution. But he could find nothing else that would both eliminate
the paradoxes and save logicism.

2 The set of all sets that are not
members of themselves

The paradox in the form in which it was first discovered—as
the set of all sets thar are not members of themselves—arises in
Russell’s set theory, and also in Frege’s, Cantor’s, Dedekind’s, and
Peano’s set theories, because, like the others, he assumed what is
called the “axiom of comprehension,” that for every predicate that
can be formulated in the language of logic or set theory, there is a
set consisting of all and only those objects the predicate is true of.
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In most cases, this assumption is perfectly acceptable; for example,
the predicate “x is divisible by 2” defines the class of even numbers.
No problem arises here. But some predicates can be defined in set
theory that do produce contradictions such as Russell’s paradox.
The axiom of comprehension must thus be restricted somehow so
these paradoxes do not arise. The paradox as stated above assumes
sets and so is a problem for set theory. Another version of it arises
directly from logic itself using predicates, and another still from
logic using relations. These are thus problems for logic itself and not
just set theory. Similar paradoxes arise within mathematics.

Here is Russell’s paradox for set theory in full: Some sets, such as
the set of mathematical objects, are members of themselves, because
sets are themselves mathematical objects. Most are not, for exam-
ple, the set of prime numbers is not itself a prime number. There be-
ing sets that are not members of themselves, there is a set a of all sets
that are not members of themselves, which can easily be defined:
a =df the set of all things x such that x is not an element of x. Is @ a
member of itself or not? If it is, then it isn’t, and if it isn’t, then it is.
So @ both is and isn’t a member of itself, which is a contradiction.

Here is the same idea expressed a little more formally in the next
four paragraphs, with symbolism for those with logic. (Symbols used
are “xea” for “x is a member of a,” “x¢ a” for “x is not a member
of a,” “p—q” for “if p is true then q is true,” “p<«>q” for “p is true
if and only if q is true,” “V” for “all,” “3” for “some.”) Let a be the
set of all sets that are not members of themselves: or symbolically,
a = {x: x¢x). Then, for all sets x, x is a member of « if and only
if x is not a member of x: or symbolically, (Vx)[(x€a) <> (x & x)].
Since, this applies to any x, it must apply when x is a. But then a is
a member of a if and only if a is not a member of a: or symbolically,
(a€ea)«> (aga). This means that if @ is a member of a then a is not
a member of a, and if a is not a member of a then a is a member of
a: or symbolically, [(aea)—=(aga) and (ag a)—(aea)]. And this is a
contradiction.

Using a few more symbols (“~p” for “it is false that p” or
simply “not-p”; “p v q” for “either p or g is true”), here is why
this is a contradiction: Logic translates p — ¢ (if p then g) as ~p v g
(not-p or q). Thus, we translate “p—~p” as “~p v ~p.” And ~p v ~p
is simply ~p. And we translate ~p—p as p v p, which is simply p.
Applying thisto [(aea)— (aga)and (aga)— (aca)], (a€a)— (aga)
becomes (aga)v(aga), which is (a¢a), and (aga)—(aca)



