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0

Introduction

0.1 Aims of the book

The primary aim of this book is to develop a theory of measurement that
incorporates the observer into the phenomenon under measurement. By this
theory, the observer becomes both a collector of data and an activator of the
phenomenon that gives rise to the data. These ideas have probably been best
stated by J. A. Wheeler (1990; 1994):

All things physical are information-theoretic in origin and this is a participatory
universe ... Observer participancy gives rise to information; and information gives
rise to physics.

The measurement theory that will be presented is largely, in fact, a quantifica-
tion of these ideas. However, the reader might be surprised to find that the
“information” that is used is not the usual Shannon or Boltzmann entropy
measures, but one that is relatively unknown to physicists, that of R. A. Fisher.

The measurement theory is simply a description of how Fisher information
flows from a physical source effect to a data space. It therefore applies to all
scenarios where quantitative data from repeatable experiments may be col-
lected. This describes measurement scenarios of physics but, also, of science in
general. The theory of measurement is found to define an analytical procedure
for deriving all laws of science. The approach is called EPI, for “extreme
physical information.”

The secondary aim of the book is to show, by example, that most existing
laws of science fit within the EPI framework. That is, they can be derived by its
use. (Many can of course be derived by other approaches, but, apparently, no
other single approach can derive all of them.) In this way the EPI approach
unifies science under an umbrella of measurement and information. It also
leads to new insights into how the laws are interrelated and, more importantly,
to new laws and to heretofore unknown analytical expressions for physical

1



0.1 Aims of the book 3

Caveat 1: The usual aim of theory is to form mathematical models for physical
effects. This is our aim as well. Thus, the EPI approach is limited to deriving the
mathematical expression of physical effects. It does not form, in some way, the
physical effects themselves. The latter are presumed always to exist “out there” in
some fixed form.

Caveat 2: One does not get something from nothing, and EPI is no exception
to this rule. Certain things must be assumed about the unknown effect. One is
knowledge of a source. The other is knowledge of an appropriate invariance
principle. For example, in electromagnetic theory (Chapter 5), the source is the
charge-current density, and the invariance principle is the equation of continu-
ity of charge flow. Notice that these two pieces of information do not by
themselves imply electromagnetic theory. However, they do when used in
tandem with EPI.

In this way, an invariance principle plays an active role in deriving a physical
law. Note that this is the reverse of its passive role in orthodox approaches to
physics, which instead regard the invariance principle as a derived property
from a known law. (Noether’s theorem is often used for this purpose.) This is a
key distinction between the two approaches, and should be kept in mind during
the derivations.

How does one know what invariance principle to use in describing a given
scenario?

Caveat 3: Each application of EPI relies upon the user’s ingenuity. EPI is not a
rote procedure. It takes some imagination and resourcefulness to apply. How-
ever, experience indicates that every invariance principle that is used with EPI
yields a valid physical law. The approach is exhaustive in this respect.

During the same years that quantum mechanics was being developed by
Schridinger (1926) and others, the field of classical measurement theory was
being developed by R. A. Fisher (1922) and co-workers (see Fisher Box, 1978,
for a personal view of his professional life). According to classical measure-
ment theory, the quality of any measurement(s) may be specified by a form of
information that has come to be called Fisher information. Since these
formative years, the two fields — quantum mechanics and classical measure-
ment theory — have enjoyed huge success in their respective domains of
application. Until recent times it had been presumed that the two fields are
distinct and independent.

However, the two fields actually have strong overlap. The thesis of this
book is that all physical law, from the Dirac equation to the Maxwell—
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Boltzmann velocity dispersion law, may be unified under the umbrella of
classical measurement theory. In particular, the information aspect of classical
measurement theory — Fisher information — is the key to the unification.

Fisher information is part of an overall theory of physical law called the
principle of EPI. The unifying aspect of this principle will be shown by
example, 1.e., by application to the major fields of physics: quantum mechanics,
classical electromagnetic theory, statistical mechanics, gravitational theory, etc.
The defining paradigm of each such discipline is a wave equation, a field
equation, or a distribution function of some sort. These will be derived by use
of the EPI principle. A separate chapter is devoted to each such derivation.
New effects are found, as well, by the information approach.

Such a unification is, perhaps, long overdue. Physics is often considered the
science of measurement. That is, physics is a quantification of observed
phenomena, and observed phenomena contain noise, or fluctuations. The
physical paradigm equations (mentioned above) define the fluctuations or errors
from ideal values that occur in such observations. That is, the physics lies in the
fluctuations. On the other hand, classical Fisher information is a scalar measure
of these very physical fluctuations. In this way, Fisher information is intrinsi-
cally tied into the laws of fluctuation that define theoretical physics.

EPI theory proposes that all physical theory results from observation: in
particular, imperfect observation. Thus, EPI is an observer-based theory of
physics. We are used to the concept of an imperfect observer in addressing
quantum theory, but the imperfect observer does not seem to be terribly
important to classical electromagnetic theory, for example, where it is assumed
(wrongly) that fields are known exactly. The same comment can be made about
the gravitational field of general relativity. What we will show is that, by
admitting that any observation is imperfect, one can derive both the Maxwell
equations of electromagnetic theory and the Einstein field equations of gravita-
tional theory. The EPI view of these equations is that they are expressions of
fluctuation in the values of measured field positions. Hence, the four-positions
(r, 1) in Maxwell’s equations represent, in the EPI interpretation, random
excursions from an ideal, or mean, four-position over the field.

Dispensing with the artificiality of an “ideal” observer allows us to reap
many benefits for purposes of understanding physics. EPI is, more precisely, an
expression of the “inability to know™ a measured quantity. For example, EPI
derives quantum mechanics from the viewpoint that an ideal position cannot be
known. We have found, from teaching the material in this book, that students
more easily understand quantum mechanics from this viewpoint than from the
conventional viewpoint of derivative operators that somehow represent energy
or momentum. Furthermore, that the same inability to know also leads to the
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Maxwell equations when applied to that scenario is even more satisfying. It is,
after all, a human desire to find common cause in the phenomena we see.

Unification is also, of course, the major aim of physics, although EPI is
probably not the ultimate unification that many physicists seek. Our aim is to
propose a comprehensive approach to deriving physical laws, based upon a
new theory of measurement. Currently, the approach presumes the existence of
sources and particles. EPI derives major classes of particles, but not all of
them, and does not derive the sources. (See Caveat 2 preceding.) We believe,
however, that EPI is a large step in the right direction. Given its successes so
far, the sources and remaining particles should eventually follow from these
considerations as well.

At this point we want to emphasize what this book is not about. This is not a
book whose primary emphasis is upon the ad hoc construction of Lagrangians
and their extremization. That is a well-plowed field. Although we often derive a
physical law via the extremization of a Lagrangian integral, the information
viewpoint we take leads to other types of solutions as well. Some solutions
arise, for example, out of zeroing the integral. (See the derivation of the Dirac
equation in Chapter 4.) Other laws arise out of a combination of both zeroing
and extremizing the integral. Similar remarks may be made about the process
by which the Lagrangians are formed. The zeroing and extremizing operations
actually allow us to solve for the Lagrangians of the scenarios (see Chaps. 4-9,
and 11). In this way we avoid, to a large degree, the ad hoc approach to
Lagrange construction that is conventionally taken. This subject is discussed
further in Secs. 1.1 and 1.8.8. The rationale for both zeroing and extremizing
the integral is developed in Chapter 3. It is one of information transfer from
phenomenon to data.

The layout of the book is, very briefly, as follows. The current chapter is
intended to derive and exemplify mathematical techniques that the reader
might not be familiar with. Chapter 1 is an introduction to the concept of
Fisher information. This is for single-parameter estimation problems. Chapter
2 generalizes the concept to multidimensional estimation problems, ending
with the scalar information form [ that will be used thereafter in the
applications Chapters 4—11. Chapter 3 introduces the concept of the “bound
information™ J, leading to the principle of EPI. This is derived from various
points of view. Chapters 4—15 apply EPI to various measurement scenarios,
in this way deriving the fundamental wave equations and distribution func-
tions of science. Chapter 16 is a chapter-by-chapter summary of the key
points made in the development. The reader in a hurry might choose to read
this first, to get an idea of the scope of the approach and the phenomena
covered.
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0.2 Level of approach

The level of physics and mathematics that the reader is presumed to have is
that of a senior undergraduate in physics. Calculus, through partial differential
equations, and introductory matrix theory are presumed parts of his/her back-
ground. Some notions from elementary probability theory are also used.
However, since these are intuitive in nature, the appropriate formula is usually
just given, with reference to a suitable text as needed.

A cursory scan through the chapters will show that a minimal amount of
prior knowledge of physical theory is actually used or needed. In fact, rhis is
the nature of the information approach taken and is one of its strengths. The
main physical input to each application of the approach is a simple law of
invariance that is obeyed by the given phenomenon.

The overall mathematical notation that is used is that of conventional
calculus, with additional matrix and vector notation as needed. Tensor notation
is only used where it is a “must” — in Chaps. 6 and 11 on classical and
quantum relativity, respectively. No extensive operator notation is used; this
author believes that specialized notation often hinders comprehension more
than it helps the student to understand theory. Sophistication without compre-
hension is definitely not our aim.

A major step of the information principle is the extremization and/or zeroing
of a scalar integral. The integral has the form

K= [dx Zlq.q'.x], x=(x,..,xy), dx=dx - -dxy, q,xreal,

q=(q1, .. gn)s  Gn = ga(X),

q'(x) = dq, /Ox, Dq1[Oxa, ..., Dgy]Oxy. (0.1)

Mathematically, K = K[q(x)] is a “functional,” i.e., a single number that
depends upon the values of one or more functions q(x) continuously over the
domain of x. Physically, K has the form of an “action” integral, whose
extremization has conventionally been used to derive fundamental laws of
physics (Morse and Feshbach, 1953). Statistically, we will find that K is the
“physical information™ of an overall system consisting of a measurer and a
measured quantity, The limits of the integral are fixed and, usually, infinite. The
dimension M of x-space is usually 4 (space-time). The functions g, of x are
probability amplitudes, i.e., functions whose squares are probability densities.
The g, are to be found. They specify the physics of a measurement scenario.
Quantity %" is a known function of the g,, their derivatives with respect to all
the x,,, and x. ¥ is called the “Lagrangian™ density (Lagrange, 1788). It also
takes on the role of an information density, by our statistical interpretation.
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K
zero slope

o

Fig. 0.2. K as a function of perturbation size parameter &.

with £ a finite number and 7(x) any perturbing function. Any function g.(x, &)
must pass through the endpoints so that, from Eq. (0.3),

n(a) = n(b) = 0. (0.4)
Equation (0.2) is, with this representation g,(x, €) for g(x),

b
K= J dx 2 [x, qe(x, €), qe(x, €)] = K(¢), (0.5)
a function of the small parameter &. (Once x has been integrated out, only the
e-dependence remains.)

We use ordinary calculus to find the solution. By the construction (0.3), K(¢)
attains the extremum value when & = 0. Since an extremum value is attained
there, K(¢) must have zero slope at ¢ = 0 as well. That is,

IK
e =0. (0.6)

=0

The situation is sketched in Fig. 0.2.

We may evaluate the left-hand side of Eq. (0.6). By Eq. (0.5), # depends
upon & only through quantities ¢ and ¢'. Therefore, differentiating Eq. (0.5)
gives

b vl r '
oK j " [3,4 3. 0% aqt] 07

e Dq. 9 T Oqr ¢ |

The second integral is

a

b

[l Za 07

bdg, d (0.7
) dx dq. Ox e Oq. O ( )dx (0.8)

- |5 alew
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same way, whereas the above approach (0.14), (0.15) is not. Instead, the EPI
approach will be used to derive the more general Einstein field equation, from
which Newton’s law follows as a special case (the weak-field limit). Or, see
Appendix D.

The reader may well question where this particular Lagrangian came from.
The answer is that it was chosen merely because it “works,” i.e., leads to
Newton’s law of motion. It has no prior significance in its own right. This has
been a well-known drawback to the use of Lagrangians. The next chapter
addresses this problem in detail.

Example 2: What is the shortest path between two points in a plane? The
integrated arc length between points x = aand x = b is

b
K:[ dc %, ¥ =+/14+4q" (0.16)

Hence

ay 1 124—1/2 ' at’/ _

9q =51 +4")"""2q, 94 =0 (0.17)
here, so that the Euler—Lagrange Eq. (0.13) is

d q'
iy S SN [ (0.18)
d.r(\ 1+ q'z)

The immediate solution is

= const., (0.19)

implying that ¢" = const., so that g(x) = Ax + B, with 4, B = const., the
equation of a straight line. Hence we have shown that the path of extreme (not
necessarily shortest) distance between two fixed points in a plane is a straight
line. We will show below that the extremum is a minimum, as intuition
suggests.

Example 3: Maximum entropy problems (Jaynes, 1957a; 1957b) have the form
jdx # =max., ¥ = —p(x)In p(x)+ Ap(x) + wp(x)f(x) (0.20)

with A, u constants and f(x) a known “kernel” function. The first term in the
integral defines the “entropy” of a probability density function (PDF) p(x).
(Notice we use the notation p in place of g here.) We will say a lot more about
the concept of entropy in chapters to follow. Directly
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0. 0%
(‘JI:{}, —d =—1l—=-Ilnp+A+uf(x). (0.21)
dp dp

Hence the Euler—Lagrange Eq. (0.13) is

1l =Inpx)+ A+ uf(x)=0, or p(x)=Aexp[uf(x)]. (0.22)
The answer p(x) to maximum entropy problems is always of an exponential
form. We will show below that the extremum obtained is actually a maximum,
as required.

Example 4 Minimum Fisher information problems (Huber, 1981) are of the
form

[dx Y =min., £ =4g7 + Ag(x)f(x) + ug*(x)h(x). (0.23)

A, u = const., where f(x), h(x) are known kernel functions. Also, the PDF
p(x) = g*(x), i.e., g(x) is a “probability amplitude” function. The first term in
the integral defines the Fisher information. Directly

a0 0%

- =8¢, ——

dq dq
The Euler—Lagrange Eq. (0.13) is then

q"(x) = (u/H)h(x)q(x) — (A/8)f(x) = 0. (0.25)
That is, the answer g(x) is the solution to a second-order differential equation.
The particular solution will depend upon the form of the kernel functions and
on any imposed boundary conditions. We will show below that the extremum
obtained is a minimum, as required.

In comparing the maximum entropy solution (0.22) with the minimum
Fisher information solution (0.25) it is to be noted that the former has the virtue
of simplicity, always being an exponential. By contrast, obtaining the Fisher
information solution always requires solving a differential equation: a bit more
complicated a procedure. However, for purposes of deriving physical PDF laws
the Fisher answer is actually preferred: the PDFs of physics generally obey
differential equations (wave equations). We will further address this issue in
later chapters.

We now proceed to generalize the variational problem (0.2) by degrees. For
brevity, only the solutions (Korn and Korn, 1968) will be presented.

= Af(x) + 2ug(x)h(x). (0.24)

0.3.2 Multiple-curve problems

As a generalization of problem (0.2) with its single unknown function g(x),
consider the problem of finding N functions g,(x), n = 1, ..., N that satisfy
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K= Jd). Ly Grs o e s GNs G1s -+ GN] = extrem. (0.26)
The answer to this variational problem is that the g,(x), n =1, ..., N must
obey N Euler—Lagrange equations,
d oY 0%
—l—] = , =1,....,N. 0.27
dx(aq:,) g, " ©-2D

In the case N = 1 this becomes the one-function result (0.13).

0.3.3 Condition for a minimum solution

At this point we cannot know whether the solution (0.27) to the extremum
problem (0.26) gives a maximum or a minimum value for the extremum. A
simple test for this purpose is as follows.

Consider the matrix of numbers [6* ' /8q; 8q}]. If this matrix is positive
definite then the extreme value is a minimum; or, if it is negative definite, the
extreme value is a maximum. This is called Legendre’s condition for an
extremum.

A particular case of interest is as follows.

0.3.4 Fisher information, multiple-component case

As will be shown in Chapter 2, the information Lagrangian is here

N
v =4 g, (0.28)
n=1
Then
A P
e 81?':, so that = a7 - Bb”‘ (0.29)
aq; dq; 9q;;
where 9, is the Kronecker delta function. Thus the matrix [0° 4 /dq Oq}] is
diag[8, ..., 8] so that all its n-row minor determinants obey
I
det | ——| =8">0,n=1,..., N. (0.30)
Ty

Then the matrix [0” % /dq;dq]] is positive definite (Korn and Korn, 1968,
p. 420). Consequently, by Legendre’s condition the extremum is a minimum.

0.3.5 Exercise
Using the Lagrangian given below Eq. (0.2), show by Legendre’s condition
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(Sec. 0.3.3) that the Newton's law solution (0.15) minimizes the corresponding
integral K in Eq. (0.2).

0.3.6 Nature of extremum in other examples

Return to Example 2, the problem of the minimum path between two points.
The solution g(x) = Ax + B guarantees an extremum but not necessarily a
minimum. Differentiating the first Eq. (0.17) gives, after some algebra,

P’ | __
('-jqfl - (1+ q’2)3;'2 - (1+ A2 '

(0.31)

signifying a minimum by Legendre’s condition.

Return to Example 3, maximum entropy solutions. The exponential solution
(0.22) guarantees an extreme value to the integral (0.20) but not necessarily a
maximum. We attempt to use the Legendre condition. However, the Lagrangian
(0.20) does not contain any dependence upon quantity p'(x). Hence Legendre’s
rule gives the ambiguous result &% /dp’? = 0. This being neither positive nor
negative, the nature of the extremum remains unknown.

We need to approach the problem in a different way. Temporarily replace the
continuous integral (0.20) by a sum

.'\.-
K=Z&r{—p,,lnp,,+ﬁ.p,,+,up,,f,,)=max‘. 032
n=1 { . }

Pn = plxn),  fo=fxn), xp=nlx,

where Ax >0 is small but finite. The sum approaches the integral as Ax — 0.
K is now an ordinary function (not a functional) of the N probabilities p, and,
hence, may be extremized in each p, using the ordinary rules of differential
calculus. The nature of such an extremum may be established by observing
the positive- or negative-definiteness of the second derivative matrix
[*K/Op;Op;). From Eq. (0.32) we have directly [?K/Op;dp,]=

—Axdiag[1/p1, ..., 1/pn]. Hence, all its n-row minor determinants obey
PK A
det|————| = ~[[ =<0 (0.33)
dpidp; 1 Di

since all probabilities p; = 0. The matrix is negative definite, signifying a
maximum as required. This result obviously holds in the (continuous) limit as
Ax — 0 through positive values.
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L=+ dmd(X)f(x). (0.38)
nk

That is, in Eq. (0.36), the terms in F,; do not contribute to the Euler—Lagrange
solution (0.34). Hence, the problem (0.36) may be re-posed more simply as

K+ Zi,,k [dx g (x)f k(x) = extrem. (0.39)
nk b
That is, to incorporate constraints one merely weights and adds them to the
“objective™ functional K. Some examples of interest are as follows.

With K as the entropy functional, and with moment constraints, the approach
(0.39) was used by Jaynes (1957a; 1957b) to estimate PDFs represented as
q*(x).

Alternatively, with K as the Fisher information and with a constraint of mean
kinetic energy, the approach (0.39) was used to derive the Schrodinger wave
equation (Frieden, 1989) and other wave equations of physics (Frieden, 1990).
Historically, the former was the author’s first application of a principle of
minimum Fisher information to a physical problem. The questions it raised,
such as why a priori mean kinetic energy should be a constraint (ultimate
answer: most generally it shouldn’t), provoked an evolution of the theory which
has culminated in this book.

0.3.9 Variational derivative, functional derivatives

The variation of a functional, the variational derivative, and the functional
derivative are useful concepts that follow easily from the preceding. We shall
have occasion to use the concept of the functional derivative later on. The
concept of the variational derivative is also given, mainly so as to distinguish it
from the functional variety.

We first define the concept of the variation of a functional. It was noted that
K is a functional (Sec. 0.2). Multiply Eq. (0.12) through by a differential de.

This gives
oK - [Pfor dfov aq)
D¢ B de = Ju [W — a(aq,):l(gg » de dx. (040]
We also used Eq. (0.9). Define the variation of K as
oK = (J—K) de. (0.41)
e

This measures the change in functional K due to a small perturbation away
from the stationary solution ¢(x). Similarly
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where ¢g(x, ) obeys Eq. (0.3). By how much does the scalar value K change if
function g(x, ¢) is perturbed by a small amount at each x?
In order to use the ordinary rules of calculus we first subdivide x-space as

Xpop=xp+Ax, n=12,... (0.46)
in terms of which
K = K[x, x2, ..., g(x), €), g(x2, €), ...] (0.47)
(cf. Eq. (0.45)). Also, Eq. (0.3) is now discretized, to
q(xn, €) = q(xp) + £7(xy). (0.48)

Note that the ordinary partial derivatives dK /dgq(x,, €), n =1, 2, ... are well
defined, by direct differentiation of Eq. (0.47).

In all of the preceding, the numbers #(x,) are presumed to be arbitrary but
fixed. Then the perturbations in (0.48) are purely a function of £. Consequently,
K given by (0.47) is likewise purely a function K(¢).

Next, consider the effect upon K(¢) of a small change de away from the
stationary state £ = (). This may simply be represented by a Taylor series in
powers of de,

oK 1 K 2
e=l) £=l) e=(0)
The coefficients of de and de? are evaluated as follows.
By the chain rule of differentiation
JdK oK d
i M (0.50)
de — dq(x,) Oe

(For brevity, we used g(x,., €) = g(x,).) Also,

K _ 9 (IK d OK  0g(xy) | Og(xm)
r=a(5) - 2 Bate| 2B

q(x,) Oe de
after re-use of (0.50),

— P K aq{x,,.) f)q(x,,}
; aq{-tm] a‘}'(xn) Oe de

L

(0.51)

after another derivative term drops out.
If we multiply Eq. (0.50) by de and Eq. (0.51) by de? evaluate them at
¢ = 0, and use definitions (0.41) and (0.42), we get

JdK JdK
E Y de = ; aq(x”) &q('rll')

and (0.52)
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PK &K

oa 2_N~_ oR”
352 dé ; aq(xm) 6?(.1’,;} aq(xm) aq(xn)s

=0
respectively.
Following the plan, we substitute these coefficient values into Eq. (0.49).
Next, multiply and divide the first sum by Ax and the second sum by Ax®.
Finally, take the continuous limit Ax — 0. The sums approach integrals and we

have
=jdx . BK]aq(x)

dK (&) ax"0 Ax Bg(x,)

1 1 >PK
=1 | dx'dx]| li
t3 l "[Aii’o AxZ 9g(xm) Dqxn)

0g(x") dg(x) + -

(0.53)

where x, — x, x,, — x’ in the limit. We demand that this take the simpler form
(cf. Eq. (0.43))

oK L[ .. ©OK ,
dK () » = de m dg(x) +5JJ dx' dx W dg(x")dg(x) +---.
(0.54)

By Eq. (0.53) this will be so if we define

0K . 1 9K
54) = .ﬁ]ulcTU Ax f)q(x,,)’ Xp — X (0.55)
and

5"1‘{ . l dZK X, — X, Xy — xr‘ (0.56)

5q(x) 59() — Avto Ax? Dgem) q(xr)’

Equation (0.55) is the first functional derivative of K in the case of a
functional dependence (0.45). It answers the question “By how much will the
number K change if the function g(x) changes by a small amount at all x?”

Equation (0.56) defines the second mixed functional derivative of K. As
noted before, we will have occasion to use this concept in Chapter 11 on
quantum gravity. The dynamical equation of this phenomenon is not the usual
second-order differential equation, but, rather, a second-order functional
differential equation. The second functional derivative is with respect to
(metric) functions g(x), where x is, now, a four-position. See the following.

Although the preceding derivation was for the case of a scalar coordinate x,
it is easily generalized to the case of a four-vector x as well. (One merely
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replaces all scalars x by a four-vector x, with all subscripts as before. Of
course, ¢ is still a scalar.) This gives a definition
K im PK
dg(x") 0g(x) — ax—0 Ax? dg(x,) dg(x,)’ (0.57)

X, — X, X,—X, Ax=AxAyAzcAt,

where ¢ is the speed of light and Ax is the increment volume used in four-
space.

Finally, we consider problems where many amplitude functions gi(x, €),
k=1,2,... exist. (We subscripted these with a single subscript, but results
will hold for any number of subscripts as well.) In Eq. (0.45), the functional K
now depends upon all of these functions. We now get the logical generalization
of Eq. (0.57),

&K 1 FK

e = |iIm = s Xp— X, X, — X, (0.58
Og(x")0gi(x)  ax—0 AX? Og;(X,) Ogi(X,) :

0.3.10 Exercise

Show this result, using the analogous steps to Egs. (0.45)-(0.57). Hint: The
right-hand functions in Eq. (0.48), and &, must now be subscripted by &. Then
Eq. (0.49) becomes a power series in changes de; including (now) second-
order mixed-product terms dey de; that are summed over k and j. Proceeding,
on this basis, through to Eq. (0.57) now logically gives the definition (0.58).

The procedure (0.49)—(0.56) may be easily extended to allow third, and all
higher, orders of functional derivatives to be defined. The dots at the ends of
Egs. (0.53) and (0.54) indicate the higher-order terms, which may be easily
added in.

0.3.11 Alternate form for functional derivative

Definition (0.55) is useful when the functional K has the form of a sum over
discrete samples g(x,), n = 1, 2, .. .. Instead, in many problems K is expressed
as an action integral Eq. (0.2), where g(x) is continuously sampled. Obviously,
definition (0.55) is not directly usable for such a problem. For such continuous
cases one may use, instead, the equivalent definition

OK _ o Klg() + ed(x — »)] — K[g(x)]
ﬁq(}f] T =0 £

where 0(x) is the Dirac delta function (Ryder, 1987, p. 177).

(0.59)
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0.3.12 An observation

Suppose that two non-identical functionals /[g(x)] and J[g(x)] obey a relation
I-J=0 (0.60)

for some scalar function g(x). Is there necessarily a solution g,(x) to the
variational problem

I —J = extrem.” (0.61)
The latter is a problem requiring quantity / — J to be stationary for some
g2(x). As we saw, its solution would have to obey the Euler—Lagrange Eq.
(0.13). This is, of course, a very different requirement on g»(x) than the zero-
condition (0.60). Moreover, even if g;(x) exists there is no guarantee that any
solution g,(x) exists. Thus, the fact that a functional is zero for some solution
does not guarantee that that, or any other, solution extremizes the functional.
Analogously, the existence of an algebraic zero-point does not necessarily
imply that an extremum condition is satisfied at either the zero-point or
anywhere else.

0.4 Dirac delta function

A handy concept to use when evaluating integrals is that of the Dirac delta
function d(x). It is the continuous counterpart of the Kronecker delta function
J\II

dy=0fori#j, Y d5=1, (0.62a)
i=1
N
> fi05 = fi (0.62b)
=1

for any i on the interval (1, N). Notice that d;, for a fixed value of i, is a
function of j that is a pure “spike,” i.e., zero everywhere except at the single
point i = j where it has a “yield” of 1.

Similarly, d(x) obeys

d(x — a) =0 for x # a, deﬁ{x—a}: 1, (0.63a)

] dx f(x)0(x — a) = f(a) (0.63b)

for any real @ and any function f(x). (In these integrals and throughout the
book, the limits are from —oc to oc unless otherwise stated.) It is useful to
compare Egs. (0.62a) with Eqs. (0.63a), and Eq. (0.62b) with Eq. (0.63b). What
should function d(x) look like?

From Egs. (0.63a) it must be flat zero everywhere except at the point x = a,
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1 . . Y
F(k)= \/EJ dx f(x)exp(—ikx), 1i=+v—-1 (0.65)
and its inverse relation
I ’ ’ g

Substituting Eq. (0.66) into (0.65) gives
F(k) = J dx exp(—ikx) ﬁ J dk’' F(k") exp(ik’x)

= Jdk' F(k')%J dxexp[—ix(k — k')] (0.67)

after switching orders of integration. Then, by the sifting property Eq. (0.63b),
it must be that

] - [ — _ i
EJ dxexp[—ix(k — k')] = 0(k — k'). (0.68)

Analogous properties to Eqs. (0.63b) and (0.68) exist for multidimensional
functions f(x), where x is a vector of dimension M. Thus there is a sifting

property
de f(x)o(x — a) = f(a) (0.69)
and a Fourier representation
Wjdx exp[—ix-(k — k')] = o(k — K'). (0.70)
The latter is a multidimensional delta function. These relations may be derived

as easily as were the corresponding scalar relations (0.63b) and (0.68).
Another relation that we will have occasion to use is
d(ax) = 2,
|al
Other properties of the delta function may be found in Bracewell (1965).
A final relation of use is (Born and Wolf, 1959, Appendix 1V)
_ O(x — a) +0(x + a)
; 2|al

a = consi. {(0.71)

ox* — a*)

(0.72)
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Ronald A. Fisher, 1929, from a photograph taken in honor of his election to Fellow of
the Royal Society. Sketch by the author.

1.1 On Lagrangians
The Lagrangian approach (Lagrange, 1788) to physics has been utilized now
for over 200 years. It is one of the most potent and convenient tools of

Copyrighted material



1.1 On Lagrangians 25

theory ever invented. One well-known proponent of its use (Feynman and
Hibbs, 1965) calls it “most elegant.” However, an enigma of physics is the
question of where its Lagrangians come from. It would be nice to justify and
derive them from a prior principle, but none seems to exist. Indeed, when a
Lagrangian is presented in the literature, it is often with a disclaimer, such as
(Morse and Feshbach, 1953) “It usually happens that the differential equa-
tions for a given phenomenon are known first, and only later is the Lagrange
function found, from which the differential equations can be obtained.” Even
in a case where the differential equations are not known, often candidate
Lagrangians are first constructed, to see whether “reasonable™ differential
equations result.

Hence, the Lagrange function has been principally a contrivance for getting
the correct answer. It is the means to an end — a differential equation — but
with no significance in its own right. One of the aims of this book is to show, in
fact, that Lagrangians do have prior significance. A second aim is to present a
systematic approach to deriving Lagrangians. A third is to clarify the role of
the observer in a measurement. These aims will be achieved through use of the
concept of Fisher information.

R. A. Fisher (1890-1962) was a researcher whose work is not well known to
physicists. He is renowned in the fields of genetics, statistics, and eugenics.
Among his pivotal contributions to these fields (Fisher, 1959) are the maximum
likelihood estimate, the analysis of variance, and a measure of indeterminacy
now called “Fisher information.” (He also found it likely that the famous
geneticist Gregor Mendel contrived the “data™ in his famous pea plant
experiments. They were too regular to be true, statistically.) It will become
apparent that his form of information has great utility in physics as well.

Table 1.1 shows a list of Lagrangians (most from Morse and Feshbach,
1953), emphasizing the common presence of a squared-gradient term. In
quantum mechanics, this term represents mean kinetic energy, but why mean
kinetic energy should be present is a longstanding mystery: Schrodinger called
it “incomprehensible™ (Schridinger, 1926).

Historical note: As will become evident below, Schridinger’s mysterious
Lagrangian term was simply Fishers data information. May we presume from
this that Schrodinger and Fisher, despite developing their famous theories
nearly simultaneously, and with basically just the English channel between
them, never communicated? If they had, it would seem that the mystery should
have been quickly dispelled. This is an enigma.

In fact, Schrodinger’s dilemma is a direct outgrowth of the prevailing view,
both during his era and today, as to what Lagrangians physically represent. This
fundamental question defines a “worldview™ as well. The prevailing view was
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Table 1.1. Lagrangians for various physical phenomena. Where do these come
from and, in particular, why do they all contain a squared gradient term?
(Reprinted from Frieden and Soffer, 1995.)

Phenomenon Lagrangian
2
. . 1 fa
Classical mechanics _m(_q) -V
2\t
1| (0gY
Flexible string or compressible fluid 7P (a—?) —-c*Vg-Vg
Diffusion equation —Vy - Vyp* —
ﬁ!
Schrdédinger wave equation “am Vi - V™
m
ﬁz
Klein—Gordon equation —— Vi U™ —
Elastic wave equation %pigz —_
4
Electromagnetic equations 4 Ogy - Ogy —
n=1
Di ti L Vy - Vy* =0
irac equations 7 V- Vy =
, : Oqm O,
General relativity (equations of motion) Z Zaun(g(T)) o ot
m,n=1
1
metric tensor
2
E
Boltzmann law 4(%}) — -+, p(E)=4¢*(E)
2
o\
Maxwell-Boltzmann law 4(%) — s @) =¢7(0)

Lorentz transformation (special relativity)

Helmholtz wave equation

diq, 0ig, (invariance of integral)

_Vw.vgp* _

that they are energies, and their integrals are “action integrals.” On this basis
the Lagrangian for classical mechanics, shown at the top of Table 1.1, is the
difference between a kinetic energy term m(dq/dt)*/2 and a potential energy
term V. However, consider the following counterpoint.
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Lagrangians exist whose terms have no explicit connection with energy.
Examples are those describing genetic evolution (Chapter 14), macroeco-
nomics (Chaps. 13 and 14), and cancer growth (Chapter 15). (These Lagran-
gians were of course not known in Schrodinger’s day.) There is no denying the
law of conservation of energy, but, evidently, the concept of energy does not
suffice for forming Lagrangians for all fields of science. Is there a concept that
does?

There is no science without observation. Therefore a common denominator
of all science is measurement. This views science from the bottom up (Sec.
0.1). On this basis the terms of the Lagrangian should describe in some way the
process of measurement and the information flow it incurs. In fact, measure-
ment sets in motion a flow of Fisher information (Chaps. 3, 10). On this basis
the mysterious squared-gradient term of Schrédinger turns out to be the amount
of Fisher information that resides in the measurement (Eq. (2.19) of Chapter
2). In particular, it is the amount of Fisher information residing in a variety of
data called intrinsic data. The remaining terms of the Lagrangian will be seen
to arise out of the information residing in the phenomenon that is under
measurement. Thus, all Lagrangians consist entirely of two forms of Fisher
information — data information and phenomenological information.

The concept of Fisher information is a natural outgrowth of classical meas-
urement theory, as follows.

1.2 Classical measurement theory

1.2.1 The “smart” measurement

Consider the basic problem of estimating a single parameter of a system (or
phenomenon) from knowledge of some measurements. See Fig. 1.1. Let the
parameter have a definite, but unknown, value 6, and let there be N data values
Vis .- VN =, In vector notation, at hand. The system is specified by a
conditional probability law p(y|0) called the “likelihood law.”

The data obey

y=0+x, (1.0)

where the xj, ..., xy = x are added noise values. The data are used in an
estimation principle to form an estimate of # which is an optimal function (}(y}
of all the data; e.g., the function might be the sample mean N~'3,y,. The
overall measurement procedure is “smart™ in that é‘(y) is on average a better
estimate of # than is any one of the data observables.

The noise x is assumed to be intrinsic to the parameter & under measure-
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1.2.2 Fisher information

This information arises as a measure of the expected error in a smart measure-
ment. Consider the class of “unbiased” estimates, obeying (6(y)) = 0; these
are correct “on average.” The mean-square error e® in such an estimate 0
obeys a relation (Van Trees, 1968; Cover and Thomas, 1991)

el =1, (1.1)

where [ is called the Fisher “information.” In a particular case of interest
N =1 (see below), this becomes

I = dep’%x]/p(x). p' =dp/dx. (1.2)

(Throughout the book, integration limits are infinite unless otherwise speci-
fied.) Quantity p(x) denotes the probability density function (PDF) for the
noise value x. If p(x) is Gaussian, then / = 1/0? with ¢° the variance (see
derivation in Sec. 8.3.1).

Equation (1.1) is called the Cramer—Rao inequality. It expresses reciprocity
between the mean-square error ¢ and the Fisher information / in the intrinsic
data. Hence, it is an expression of intrinsic uncertainties, i.e., in the absence of
outside sources of noise. It will be shown in Eq. (4.53) that the reciprocity
relation goes over into the Heisenberg uncertainty principle, in the case of a
single measurement of a particle position value #. Again, this ignores the
possibility of noise of detection, which would add in additional uncertainties to
the relation (Arthurs and Goodman, 1988; Martens and de Muynck, 1991).

The Cramer—Rao inequality (1.1) shows that estimation quality increases (e
decreases) as [ increases. Therefore, / is a quality metric of the estimation
procedure. This is the essential reason why [/ is called an “information.”
Equations (1.1) and (1.2) derive quite easily, as is shown next.

1.2.3 Derivation

We follow Van Trees (1968). Consider the class of estimators IE)[y} that are
unbiased, obeying

(B(y) — ) = Jd}' [6(y) — 6]p(y|6) = 0. (1.3)

PDF p(y|@) describes the fluctuations in data values y in the presence of the
parameter value ). PDF p(y|@) is called the “likelihood law.” Differentiate Eq.
(1.3) 9/00, giving

. ap B
de{ﬂ—ﬂ)ﬁ—jdyp—ﬂ. (1.4)



1.2 Classical measurement theory 31

This means that the fluctuations in y from € are invariant to the size of 6, a
kind of shift invariance. (This becomes an expression of Galilean invariance
when random variables y and € are 3-vectors instead.) Using condition (1.11)
and identity (1.5) in Eq. (1.9) gives

_ ap(y — 0] 3
I= jdy [—5(,1’ — 8}} /p(} a), (1.12a)

since by the chain rule 3/9060 = (9/(y — )Ny — 0)/00 = -3/ Ny — 0).
Parameter € is regarded as fixed (see above), so that a change of variable
x = y — 6 gives dx = dy. Equation (1.12a) then becomes Eq. (1.2), as required,
with py(x) = p(x) as simpler notation. Note that / no longer depends upon 6.
This is convenient since & was unknown.

Shift invariance (1.11) holds quite often. Consider a scalar case N = | of
Eq. (1.0) and temporarily regard x as a “noise” value. By Eq. (1.0), since 6 is
fixed, each time a fluctuation x occurs a corresponding y value occurs. Then
the frequency of occurrence of a value of y in the presence of a fixed € equals
that for a corresponding value of x, or

p(y|0) = px(x|0) = px(yv—0|6) since x=y—8. (1.12b)
Next, consider any effect whereby the noise fluctuation x is independent of the
size of . By definition of independence
px(x]0) = px(x). (1.12¢)
Using this in (1.12b) with x = y — @ then gives (1.11) as required.

This derivation required that the noise fluctuation x be independent of the
size of 8. When does this occur physically? In fact the most fundamental
physical effects obey this property. A few are considered next. In these
examples, all coordinates x, y, @ are measured, as usual, from a fixed origin in
the laboratory.

Suppose that a particle, of mass m and at general linear position y, is
undergoing oscillatory linear motion about a fixed rest position € along X.
Denote its general displacement from € as x, so that Eq. (1.0) is again obeyed.
The particle is attached to one end of an elastic spring whose other end is
fastened at @. The spring exerts a restoring force —Kx upon the particle,
K = const. As is well known, the motion of the particle is governed by
Newton’s second law, in the form

—Kx = md*x/dt*. (1.12d)

This says that the motion of the particle is completely described by the time
dependence of x. The value of & simply does not enter in. It results that, if the
observer keeps track of the particle’s trajectory values x and bins them at a
constant time subdivision to form a histogram of relative occurrences py(x),
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then this histogram (or probability law) is likewise found to be independent of
the size of @. That is, Eq. (1.12c) is obeyed. Then by the argument below Eq.
(1.12c), the required effect (1.11) is likewise obeyed.

The condition Eq. (1.11), or equivalently (1.12¢), is also called one of “shift
invariance.” This is for the following reasons. Suppose that the origin of
laboratory coordinates were shifted in X' by a finite amount Ax. Then both
coordinates y and @ are so shifted. Denote by subscript s the shifted coordi-
nates. Thus y; = y+ Axand 6, = 6+ Ax. Butthen x;, =y, — 6, =y -0 =x
(by Eq. (1.11)); that is, each new value x; of the displacement equals the old
value x. Consequently, if the new displacement values are binned, the new
probability law py (x;) = py(x), the old. The law is invariant to shift.

In many applications the invariance holds only over a finite range of shifts.
This occurs, for example, for probability laws which are the “point spread
functions” of optics (Born and Wolf, 1959). These are shift-invariant over only
a finite area called the “isoplanatic patch.” However, we shall not explicitly
consider such finite-area cases in this book.

The previous argument holds as well for any left-hand force term in (1.12d),
so long as it depends only upon x. That is, it holds so long as the force term
depends only upon the particle’s displacement from the center of potential
located at €. More generally, it holds for any isolated quantum mechanical
system subject to such a potential. Here, ignoring the time for simplicity, a
particle obeys a probability law py(x) = |1(x)|, where x is again the displace-
ment of the particle from the center of potential (or from some fixed point in
the laboratory if there is no potential). The probability law is not of the form
|y(x|@)[*>. The absolute position # of the center of potential does not enter into
the Schrédinger wave equation, which governs (x). Equivalently, irrespective
of the position of the origin of coordinates in the laboratory, or indeed of the
laboratory in the universe, the particle obeys the same Schrodinger wave
equation.

Finally, we should consider cases where shift invariance does not hold.
Possibly the most well-known example is that of the Poisson law,

P(y|6) = e-"%, y=0,1,2,....

The right-hand side is visibly not a function of y — @, as was needed for shift
invariance (Eq. (1.12b)). The Poisson law was originally used to describe the
number y per year of Prussian cavalry officers kicked to death by their horses.
It also describes many physical situations, e.g., the random number of photons
of ambient light counted during a finite detection time, where the mean count
is 6. Data y exhibit what is called “signal-dependent noise,” since their
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fluctuations depend upon the absolute size of the “signal” value €. As an
example of the signal dependence, the variance of the fluctuations equals 6.

Most of the probability laws that are derived in this book are presumed to
obey shift invariance (1.11) or its multidimensional form Eq. (2.16). Notable
exceptions are the PDFs derived in Chaps. 12 and 14.

1.2.5 Use of principal value in evaluating 1

Certain probability laws, such as the exponential,

_ Jalexp(=x/a), a=>0, x=0
plx) = {0, £<0 (1.12e)

have discontinuities in x. For (1.12e) it is the point x = 0. Then the slope
dp /dx becomes indefinitely large in Eq. (1.2) for the information, so that the
latter blows up. This must be avoided if / is to be a practical tool of the
approach. Here is where the Cauchy principal value idea enters in. The point of
discontinuity is simply aveided, by redefining the information 7 in (1.2) such
that isolated points of discontinuity are skipped over during the integration. For
example, in the case (1.12e) of the exponential law, the redefined information
obeys

I = lim [ dx p*(x)/ p(x), 6>0 (1.12f)
=0 Jo+9

(cf. Eq. (1.2)). This gives the well-defined answer / = I/a?- for the law (1.12e).
In general the redefined information also still obeys the Cramer—Rao
inequality, since the resulting error

e’ = lim [ dx [é{y} — 07 px), yv=0+x, 0>0 (1.12g)
=0 Jo 19

differs from that (Eq. (1.10)) of the non-principal value approach by an isolated
point of finite value. Such a point contributes negligibly to the integral.

From this point on, by information / we shall mean the principal value of
the information.

1.2.6 Solutions p(x) of problem I = extrem.

In the case of a flar probability law of any width, the principal value of the

information is, from Eq. (1.12f), identically / = 0. Does this make sense?
Consider the problem of finding the probability law p(x) that extremizes the

information functional (1.12f). By the Legendre condition of Secs. 0.3.3 and
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0.3.4 the extremum is a minimum. What then should be the nature of the
solution p(x) to the problem?

The following tendencies will be found in Sec. 1.7. The more spread out and
smooth the law p(x) is the more random is x, and the more disordered the
system is; therefore, the smaller the information / should be. Thus, solving a
problem [ = min. should give the smoothest law p(x) possible. Let us see
whether using the principal value of the information gives this kind of result.

Unconstrained problem: Suppose that x is restricted to the interval (x, x2).
The problem is to find p(x) obeying

iy —d
I = lim J dx p"*(x)/ p(x) = min., &>0. (1.12h)
W +d

With a Lagrangian % = p'*(x)/p(x), we see that 0.4 /0p' =2p'/p and
0% (8p = —p'?/p*. Then the Euler-Lagrange Eq. (0.13) for the solution
obeys 2f'+ f2=0, f=p'/p. The solution for f is f =2(x+a)”!,
a = const. Then p is found from this to be

p(x)=(bx+c¢c)P, xx<=x<xy b, c=const, (1.121)

a truncated parabola. Back substituting this result into (1.12h) gives a mini-
mized information of size

I = 4b*(xs — x)). (1.12j)

This shows that the absolute minimum value for I, f =0, is attained when
b = 0. Then by (1.12i)

plx) =c
Hence p(x) is a rectangle function. This is indeed the smoothest law within the
fixed interval. Hence our requirement that / monotonically decrease as p(x)
gets smoother is satisfied by use of the principal value definition of /. Not
having had to evaluate the infinite slope values p’(x) at the endpoints was
essential to the calculation. To avoid such points is the reason the principal
value will be implicit in all calculations of the Fisher information and Fisher
channel capacity (Chapter 2) in this text.

Constrained problem: Next, consider a family of PDFs that are constrained
to obey p(0) =0, and to have the form of a power law, p(x) = Cx? (cf. Eq.
(1.121)), 0 = x < x3, C = const., y = const. These PDFs arise in the analysis
of cancer growth with time (Chapter 15), where x is a value of the time. The
condition p(0) = 0 means that the time origin is the time of inception of the
cancer. The PDF (1.12i) gave an absolute minimized / value of zero. Now how
small a value of I can be attained?

Since p(x) must obey normalization and p(0) =0, a constant solution
y =0 is no longer possible, so that the absolute minimum value / =0 is

2= const., X} =SX<x. (1.12k)
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H remains constant. H is then said to be a global measure of the behavior of
p(xp).
By comparison, the discrete form of Fisher information / is, from Eq. (1.2),

;:M—lz[P(anrl)_P(xn)]z_ {115}

p(xn)

If the curve p(x,) undergoes a rearrangement of points x, as above, dis-
continuities in p(x,) will now occur. Hence the local slope values
[p(xns1) = p(x,)]/Ax will change drastically, and so the sum (1.15) will also
change strongly. Since [ is thereby sensitive to local rearrangement of points, it
is said to have a property of localiry.

Thus, H is a global measure, while / is a local measure, of the behavior of
the curve p(x,). These properties hold in the limit Ax — 0, and so apply to the
continuous probability density p(x) as well.

This global versus local property has an interesting ramification to valuating
financial securities (Sec. 13.7.1). Another is as follows.

Because the integrand of 7 contains a squared derivative p'? (see Eq. (1.2)),
when the integrand is used as part of a Lagrangian the resulting Euler—
Lagrange equation will contain second-order derivative terms p”. Hence, a
second-order differential equation results (see Eq. (0.25)). This dovetails with
nature, in that the major fundamental differential equations that define prob-
ability densities or amplitudes in physics are second-order differential equa-
tions. Indeed, the thesis of this book is that the correct differential equations
result when the information /-based EPI principle of Chapter 3 is followed.

By contrast, the integrand of H in (1.13) does not contain a derivative.
Therefore, when this integrand is used as part of a Lagrangian the resulting
Euler—Lagrange equation will not contain any derivatives (see Eq. (0.22)); it
will be an algebraic equation, with the immediate solution that p(x) has the
exponential form Eq. (0.22) (Jaynes, 1957a, 1957b). This is not, then, a
differential equation, and hence cannot represent a general physical scenario.
The exceptions are those distributions which happen fo be of an exponential
form, as in statistical mechanics. (In these cases, I gives the correct solutions
anyhow; see Chapter 7.)

It follows that, if one or the other of global measure A or local measure / is
to be used in a variational principle in order to derive the physical law p(x)
describing a general scenario, the preference is given to the local measure /.

As all of the preceding discussion implies, H and [/ are two distinct
functionals of p(x). However, quite the contrary is true in comparing / with an
entropy that is closely related to H, namely, the Kullback—Leibler entropy. This
is discussed in Sec. 1.4.
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But each of the two far-right sums is Ax~!, by normalization, so that their
difference cancels out, leaving

L+ Ax
I=-2/A0Y pxn)in (%) (1.22a)
) /6;{2)-[ dx p(x) In (ﬂ%w;m) (1.22b)
= —(2/Ax*)G[p(x), p(x + Ax)] (1.22¢)

by definition (1.16). Thus, / is proportional to the cross-entropy between the
PDF p(x) and a reference PDF that is its shifted version p(x + Ax).

1.4.1 Historical note

Savage (1972) first proved the equality (1.22b). It was later independently re-
proved by Vstovsky (1995).

1.4.2 Exercise

One notes that the form (1.22b) is indeterminate 0/0 in the limit Ax — 0.
Show that one use of 1"Hopital’s rule does not resolve the limit, but two does,
and the limit is precisely the form (1.2) of .

1.4.3 Fisher information as a “mother” information

Equation (1.22c) shows that 7 is the cross-entropy between a PDF p(x) and its
infinitesimally shifted version p(x + Ax). It has been noted (Caianiello, 1992)
that / more generally results as a “cross-information” between p(x) and
p(x + Ax) for a host of different types of information measures. Some
examples are as follows: )

R.=1In dep(x)“ plx+Ax)'% = —AX* 27 (1 — @), (1.22d)

for a # 1, where R, is called the “Renyi information™ measure (Amari, 1985);
and

W= cos"U dxp' () p' Px + Ax)|, WP — AXP471], (1.22¢)

called the “Wootters information” measure (Wootters, 1981). To derive these
results, one only has to expand the indicated function of p(x + Ax) in the
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integrand out to second order in Ax, and perform the indicated integrations,
using the identities [ dxp’(x) = 0 and [ dxp"(x) = 0.

Hence, Fisher information is the limiting form of many different measures
of information; it is a kind of “mother” information.

1.5 Amplitude form of /

In definition (1.2), the division by p(x) is bothersome. (For example, is [/
undefined since necessarily p(x) — 0 at certain x?) A way out is to work with a
real “amplitude” function g(x),

Px) = (). (1.23)
(Interestingly, probability amplitudes were used by Fisher (1943) independently

of their use in quantum mechanics. The purpose was to discriminate among
population classes.) Using form (1.23) in (1.2) directly gives

I = 4deq’2(x}. (1.24)

This is of a simpler form than (1.2) (no more divisions), and shows that /
simply measures the gradient content in g(x) (and hence in p(x)). The integrand
g'*(x) in (1.24) is the origin of the squared gradients in Table 1.1 of
Lagrangians, as will be seen.

Representation (1.24) for / may be computed independently of the preced-
ing. One measure of the “distance” between an amplitude function g(x) and its
displaced version g(x + Ax) is the quadratic measure (Braunstein and Caves,
1994)

1* = de [q(x + Ax) — g(x))* — &rzldxq'z(x} = Ax?471] (1.25)

after expanding out g(x + Ax) in first-order Taylor series about point x (cf.
Eqgs. (1.22c—e) preceding).

1.6 Efficient estimators

Classically, the main use of information / has been as a measure of the ability
to estimate a parameter. This is through the Cramer—Rao inequality (1.1), as
follows.

If the equality can be realized in Eq. (1.1), then the mean-square error will
go inversely with /, indicating that [ determines how small (or large) the error
can be in any particular scenario. The question is, then, when is the equality
realized?
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The left-hand side of Eq. (1.7) is actually an inner product between two
“vectors” A(y) and B(y),

A =L /B, By =@-0\F (1.26a)

Here the continuous index y defines the yth component of each such vector (in
contrast to the elementary case where vector components are discrete). The
inner product of two vectors 4, B is always less than or equal to its value when
the two vectors are parallel, i.e., when all their y-components are proportional,

A(y) = k()B(y), k(@) = const. (1.26b)

(Note that function k(@) remains constant since the parameter @ is, of course,
constant.) Combining Egs. (1.26a) and (1.26b) then provides a necessary
condition (i) for attaining the equality in Eq. (1.1),

J1n p(y|6)
a0

A condition (ii) is the previously used unbiasedness assumption (1.3).
A PDF scenario where (1.27) is satisfied causes a minimized error €2, that
obeys

= k(O)[O(y) — 6]. (1.27)

et =1/1. (1.28)

The estimator 9( ) is then called “efficient.” Notice that in this case the error
varies inversely with information I, so that the latter becomes a well-defined
quality metric of the measurement process.

1.6.1 Exercise

It is noted that only certain PDFs p(y|@) obey condition (1.27), among them
(a) the independent normal law p(y|60) = A[[.exp[—(y, — 6)*/20%], A=
const., and (b) the exponential law p(y|0) = [[,e *"/?/0, y, = 0. On the
other hand, with N = 1, (¢) a PDF of the form

p(y|0) = Asin*(y—0), A=const., |y—0|<n

does not satisfy (1.27). Note that this PDF arises when the position € of a one-
dimensional quantum mechanical particle within a box is to be estimated.
Hence, this fundamental measurement problem does not admit of an efficient
estimate. Show these effects (a)—(c).

Also show that the estimators in (a) and (b) are unbiased, as required.
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1.6.2 Exercise

If the condition (1.27) is obeyed, and if the estimator is unbiased, then the
estimator function 6(y) that attains efficiency is the one that maximizes the
likelihood function p(y|@) through choice of @ (Van Trees, 1968). This is called
the maximum likelihood (ML) estimator. As an example, the ML estimators for
the problems (a) and (b) preceding are both the simple average of the data.
Show this.

Note the simplification that occurs if one maximizes, instead of the like-
lihood, the logarithm of the likelihood. This log-likelihood law is also of
fundamental importance to quantum measurement theory; see Chapter 10.

1.7 Fisher I as a measure of system disorder

We showed that information 7 is a quality metric of an efficient measurement
procedure. Now we will find that / is also a measure of the degree of disorder
of a system. High disorder means a lack of predictability of values x over its
range, i.e., a largely uniform or “unbiased™ PDF p(x). Such a curve is shown
in Fig. 1.2(b). The curve has small gradient content, i.e., it is broad and
smooth. Then by (1.24) the Fisher information [/ is small.

Conversely, if a curve p(x) shows bias to particular x values then it exhibits
low disorder. See Fig. 1.2(a). Analytically, the curve will be steeply sloped
about these x values, and so the value of [ becomes large. The net effect is that
I measures the degree of disorder of the system.

p(x) p(x)

/__\

X X

(a) (b)

Fig. 1.2. Degree of disorder measured by [ values. In (a), random variable x shows
relatively low disorder and large / (gradient content). In (b), x shows high disorder and
small /. (Reprinted from Frieden and Soffer, 1995.)
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sian PDF, | = 1,»‘rrE (see derivation in Sec. 8.3.1). Then I = I(t) = 1/(Dt), or
I decreases with 1.
Can this result be generalized?

1.8.2 The ‘I-theorem’

Equation (1.29) states that /7 increases monotonically with time. This result is
usually called the *“Boltzmann /H-theorem.” In fact there is a corresponding “ /-
theorem™

di(t)

—={). .
=0 (1.30)

1.8.3 Proof
Start with the cross-entropy representation (1.22b) of K1),

1(f) = =2 lim Ax~* [dxpln{ Pax/P)
A0 (1.31)

p = pxln,  pax = plx + Ax]t).

Under certain physical conditions, e.g., “detailed balance,” short-term correla-
tion, shift-invariant statistics (Gardiner, 1985; Reif, 1965; Risken, 1996) p
obeys a Fokker—Planck differential equation

. 2

% = —%[Dﬂx, Np] + *;?[Dz(% Hpl, (1.32)
where Dj(x, t) is a drift function and Ds(x, #) is a diffusion function. Suppose
that pa, also obeys the equation (Plastino and Plastino, 1996). Risken (1996)
shows that two PDFs, such as p and pa,, that obey the Fokker—Planck equation
have a cross-entropy

G(1) = - [dxpln(pz’pm (1.33)
that obeys an H-theorem (1.29),
dG(r)
- = 0. (1.34)

It follows from Eq. (1.31) that /, likewise, obeys an /-theorem (1.30). Thus, the
I-theorem and the H-theorem both hold under certain physical conditions.
There also is a possibility that physical conditions exist for which one
theorem holds to the exclusion of the other. From the empirical viewpoint that
the /-theorem leads to the derivation of a much wider range of physical laws
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1.8.5 Ramification to temperature

The Boltzmann temperature (Reif, 1965) T is defined as 1/T = dHg/JE.
where Hp is the Boltzmann entropy of an isolated system and E is its energy.
Consider two systems A4 and A’ that are in thermal contact, but are otherwise
isolated, and are approaching thermal equilibrium. The Boltzmann temperature
has the important property that, after thermal equilibrium has been attained, a
situation
T=T". lza,ﬂ, lE?ib
r oOF r o'
of equal temperature results. Let us now look at the phenomenon from the
standpoint of information /, i.e., without recourse to the Boltzmann entropy.
Denote the total information in system 4 by /, and that of system A" by [I'.
The parameters 6, ' to be measured are the total energies £ and E’ of the two
systems. The corresponding measurements are Yg Y. Because of the /-
theorem (1.30), both I and I' should approach minimum values as time
increases. We will show later that, since the two systems are physically
separated and hence independent in their energy data Yz Yg, the Fisher
information state of the two is the sum of the two [ values. Hence, the [-
theorem states that, after an infinite amount of time, the information of the
combined system is

(1.35)

I{E)+ I'(E") = min. (1.36)
On the other hand, energy is conserved, so that
E+E =C, (1.37)

C = const. (Notice that this is a deterministic relation between the two ideal
parameter values, not between the data; if it held for the data, then the prior
assumption of independent data would have been invalid.)

The effect of (1.37) on (1.36) is

HEY+ I'(C — E) = min. (1.38)
We now define a generalized “Fisher temperature™ Ty as
1 o1
—=—kyp =—. 1.39
Ty " 50 (1.39)

Notice that # is any parameter under measurement. Hence, there is a Fisher
“temperature” associated with any parameter to be measured. From (1.39), Ty
simply measures the sensitivity of information level 7 to a change in system
parameter €. The constant kg gives each Ty value the same units. A relation
between the two temperatures Tand Ty is found below for a perfect gas.
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Consider the case in point, § = E, 8" = C — 6. The temperature Ty is now
an energy temperature 7. Differentiating Eq. (1.38) 9/0E gives
or  or
(=1 =0 Tp = Th 4
EJE+6£’( )=0, or Tg E (1.40)
by (1.39). At equilibrium both systems attain a common Fisher energy tem-

perature. This is analogous to the Boltzmann (conventional) result (1.35).

1.8.6 Exercise

The right-hand side of Eq. (1.39) is impractical to evaluate (although still of
theoretical importance) if /is close to independent of 6. This occurs in close to a
shift-invariant case (1.11) where the resulting / is close to the form (1.2). The
key question is, then, whether the shift-invariance condition Eq. (1.11) holds
when 6 = E and a measurement yg is made. The total number N of particles
comprising the system is critical here. If N = 10 or more, then (a) the PDF
p(ye| E) will tend to obey the central limit theorem (Frieden, 2001) and, hence,
be close to Gaussian in the shifted random variable yx — E. An [ results that is
close to the form (1.2). At the other extreme, (b) for small N the PDF can
typically be ¥ (assuming that the N = 1 law is Boltzmann, i.e., exponential).
Here, shift invariance would not hold. Show (a) and (b).

1.8.7 Perfect gas law

So far we have defined concepts of time and temperature on the basis of Fisher
information. We now show that the perfect gas law may likewise be derived on
this basis. This will also permit the (so far) unknown parameter kg to be
evaluated from known parameters of the system.

Consider an ideal gas consisting of M identical molecules confined to a
volume ¥ and kept at Fisher temperature Tz. We want to know how the pressure
in the gas depends upon the extrinsic parameters F"and Tg. The plan is to first
compute the temporal mean pressure B within a small volume dV = A dx of
the gas and then integrate through to get the macroscopic answer.

Suppose that the pressure results from a force F that is exerted normal to
area A and through the distance dx, as in the case of a moving piston. Then
(Reif, 1965)

F dx JE

Ade  aV
where the minus sign signifies that energy E is stored in reaction to work done
by the force. Using the chain rule, Eq. (1.41) becomes

(1.41)
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dE Ol ol

g2 _ Ll 1.42

the latter by definition (1.39) with @ = E. Here d[ is the information in a data
reading dy of the ideal energy value dE. In general, quantities p, d/, and Tg
can be functions of the position r of volume 4V within a gas. Multiplying
(1.42) by dV gives

p(rydV = kgTe(r)dl(r) (1.43)

with the r-dependence now noted. Near equilibrium the gas should be well
mixed and homogeneous, such that 7 and T are independent of position r. Then
Eq. (1.43) may be directly integrated to give

PV = keTEel. (1.44)

Note that / = [ dI(r) is simply the total information due to many independent
data readings dyg. This again states that the information adds under indepen-
dent data conditions.

The dependence (1.44) of p upon Fand T is of the same form as the known
equation of state of the gas

PV = MKT, (1.45)

where k is the Boltzmann constant and T is the ordinary (Boltzmann) tempera-
ture. Comparing Eqs. (1.44) and (1.45), exact compliance is achieved if kg Tg
is related to kT as
kT
kiTg
the information per molecule. The latter should be a constant for a well-mixed gas.
These considerations seem to imply that thermodynamic theory may be
developed completely from the standpoint of Fisher entropy, without recourse
to the well-known properties of the Boltzmann entropy. In fact much progress
is being made in this direction. It has been shown that Fisher information obeys
the same Legendre transform property and concavity property as does entropy
(Frieden et al., 1999). Also, the use of Fisher information in place of entropy
leads to a Schrodinger wave equation formulation of non-equilibrium thermo-
dynamics (Frieden et al., 2002a, b; also see Chapter 13). This formulation
permits both quantum and thermodynamic effects to be analyzed simulta-
neously.

=1I/M, (1.46)

1.8.8 Ramification to derivations of physical laws

The uni-directional nature of the /-theorem (1.30) implies that, as t — oo,
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I(t) =4 j dx g (x|1) — min. (1.47)

Here we used the shift-invariant form (1.24) of /. The minimum would be
achieved through variation of the amplitude function g(x|¢). It is convenient,
and usual, to accomplish this through use of an Euler—Lagrange equation (see
Eq. (0.13)). The result would define the form of ¢(x|¢) at temporal equilibrium.
In order for this approach to be tenable, it would need to be modified by
appropriate input constraint properties of g(x|f), such as normalization of
p(x|t). Other constraints, describing the particular physical scenario, must also
be tacked on. Examples are fixed values of the means of certain physical
quantities (case o = 2 below). Such constraints may be appended to principle
(1.47) by using the method of Lagrange undetermined multipliers, Eq. (0.39):

Kﬂ
I+ Z.l;l.J.dx g (x| 1) fi(x) = extrem., (1.48a)
k=1
Jdﬂ( gx|)filx)= Fr. k=1,...., K, a= const. (1.48b)

The kernel functions f(x), constraint exponent a, and data values Fj are
assumed known. The multipliers A; are found such that the constraint equations
(1.48b) are obeyed. This approach is taken in Chapter 13, and called the
principle of minimum Fisher information (MFI). Owing to the arbitrariness of
the constraints, it is Bayesian in nature, and therefore approximate. See also
Huber (1981).

The most difficult step in the MFI approach is deciding what constraints to
utilize (called the “input” constraints). The solution depends critically upon
the choice of input constraints, and yet they cannot simply be all that are
known to the user. They must be the particular subset of constraints that are
actually imposed by nature. In general, this is difficult to know a priori. Our
own approach — the EPI principle described in Chapter 3 and applied in
subsequent chapters — is, in fact, of the Lagrange form (1.48a). However, it
attempts to free the problem of the arbitrariness of the constraint terms. For this
purpose, a physical rationale for the terms is utilized.

It is important to verify that a minimum (1.47) will indeed be attained in
solution of the constrained variational problem. A maximum or point of
inflection could conceivably result instead, defeating our present aims. For this
purpose, we may use Legendre 5 condition for a minimum (Sec. 0.3.3): Let 4
denote the integrand (or Lagrangian) of the total integral to be extremized. In
our scalar case, if
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(called the EPI principle below) are, in general, different from those obtained
by the corresponding use H = max. of entropy. See Sec. 1.3.1. In fact, EPI
solutions and H = max. solutions agree only in statistical mechanics; this is
shown in Appendix A.

It 1s interesting that correct solutions via EPI occur even for PDFs that do
not obey the Fokker—Planck equation. By its form (1.32), the time rate of
change of p depends only upon the present value of p. Hence, the process
has short-term memory (see also Gardiner, 1991, p. 144). However, EPI may
be used to derive the 1/f power spectral noise effect (Chapter 8), a law
famous for exhibiting long-term memory. Also, the relativistic electron obeys
an equation of continuity of flow dp/dt = ¢V« (y*[aly). p = v*y (Schiff,
1955), where all quantities are defined in Chapter 4. This does not quite
have the form of a Fokker—Planck Eq. (1.32) (compare right-hand sides).
However, EPI may indeed be used to derive the Dirac equation of the
electron (Chapter 4).

These considerations imply that the Fokker—Planck equation is a sufficient,
but not necessary, condition for validity of the EPI procedure. An alternative
condition of wider scope must exist. Such a one is the unitary condition to be
discussed in Secs. 3.8.5 and 3.8.7.

1.8.10 Flow property

Since information / obeys an /-theorem Eq. (1.30), temperature effects Egs.
(1.39) and (1.40), and a gas law Eq. (1.44), indications are that / is every bit as
“physical™ an entity as is the Boltzmann entropy. This includes, in particular, a
property of temporal flow from an information source to a sink. This property
is used in our physical information model of Sec. 3.3.2.

1.8.11 Additivity property

A vital property of the information /[ is that of additivity: the information from
mutually isolated systems adds. This is shown as follows.

Suppose that we have N copies of the urn mentioned in Sec. 1.8.1. See Fig.
1.3. As before, each urn contains particles that are undergoing Brownian
motion. (This time the urns are not broken.) Each sits rigidly in place upon a
table that moves with an unknown velocity 6 in the X-direction, relative to the
laboratory. A particle is randomly selected in each urn, and its total X-
component laboratory velocity value y, is measured. Let x, denote the
particle’s intrinsic speed, i.e., relative to its urn, with (x,, n =1,..., N)=x.
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- N ()
- ‘IJY];‘[)U& mn Pm Pn a0 o0 +;pi o0 . (1.56)

m#En

Now use the fact that, in this equation, the probabilities p; for k # m or n
integrate through as simply factors 1, by normalization. The remaining factors
in [], p« are then p,, p, for the first sum, and just p, for the second sum. The
result is, after some cancellation,

Opm Opn AP
I = lea‘ym dvn 5" 28 +ij,, —-( ) (1.57)

mn

m#n

This simplifies, drastically, as follows. The first sum separates into a product
of a sum

Opn
E dyvy —— 1.58
~ [ 4T ( )
with a corresponding one in index m. But
op, 0 J
Ll d =—1=0 1.59
[ S = 5 [ 2 = 3 (1.59

by normalization. Hence the first sum in Eq. (1.57) is zero.
The second sum in Eq. (1.57) is, by Eq. (1.5),

Z [dyn p”(ﬁ'ﬁ In pn) Z Iy “60)

by the definition Eq. (1.9) of /. Hence, we have shown that

N
1=%"1, (1.61)
n=|

in this scenario of independent data. This is what we set out to prove.
It is well known that the Shannon entropy H obeys additivity, as well, under
these conditions. That is, with

—de P(y16)1n p(y]6). (1.62)

under the independence condition Eq. (1.53) it gives

H = Z H,, H, = _Id}’n Pn{,‘-"nla) In ﬂn{}’nlg)- (1.63)

n=1
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1.8.12 Exercise

Show this. Hint: The proof is much simpler than the preceding. One merely
uses the argument below Eq. (1.56) to collapse the multidimensional integrals
into the one in y, as needed.

One notes from all this that a requirement of additivity does not in itself
uniquely identify the appropriate measure of disorder. It could be entropy or, as
shown above, Fisher information. This is despite the identity In(fg) =
In(f) + In(g), which seems uniquely to imply entropy as the measure. Un-
doubtedly many other measures satisfy additivity as well.

1.8.13 I = min. from statistical mechanics viewpoint

According to a basic premise of statistical mechanics (Reif, 1965), the PDF for
a system that will eccur is the one that is maximum probable to occur.

A general image-forming system is shown in Fig. 1.4. It consists of a source
S of particles — any type will do, whether electrons, photons, etc. — a focussing
device L of some sort and an image plane M for receiving the particles. Plane
M is subdivided into coordinate positions (x,, n = 1, ..., N) with a constant,
small spacing &, An “image event™ x, is the receipt of a particle within the
interval (x,, x, + €). The number m, of image events x, is noted, for each

2P plx, + A)

(0] L M

Fig. 1.4. A statistical mechanics view of Fisher information. The ideal point source
position S’ gives rise to the ideal PDF p(x, + Ax), while the actual point source
position S gives rise to the empirical PDF p(x,). Maximizing the logarithm of the
probability of the latter PDF curve implies a condition of minimum Fisher informa-
tion, I[ p(x,)] = I = min.
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n=1,..., N. There are M particles in all, with M very large. What is the joint
probability P(my, ..., m,)?

Each image event is a possible position x,, of which there are N. Therefore
the image events comprise an Nary events sequence. This obeys a multinomial
probability law (Frieden, 2001) of order N,

P(my, ..., my) = M! Hr(r”)mﬂ (1.64)

The quantities r(x,) are the “prior probabilities” of events x,. These are
considered next.

The ideal source S for the experiment would be a very small aperture that is
located on-axis. This situation would give rise to ideal (prior) probabilities
r(x,), n =1, ..., N. However, in performing the experiment. we really cannot
know exactly where the source is. For example, for quantum particles, there is
an ultimate uncertainty in position of at least the Compton length (Sec. 4.1.17).
Hence, in general, the source S will be located at a small position Ax off-axis.
The result is that the particles will, in reality, obey a different set of probabili-
ties P(x,) # r(x,). These can be evaluated. Assuming shift invariance (Eq.
(1.11)) and 1: 1 magnification in the system,

plx,) = r(ix, — Ax), or r(x,) = p(x, + Ax). (1.65)

By the law of large numbers (Frieden, 2001), since M is large the

probabilities p(x,) agree with the occurrences m,, by the simple rule

my, = Mp(x,). (1.66)
(This takes the conventional, von Mises viewpoint that probabilities measure
the frequency of occurrence of actual — not ideal — events (Von Mises, 1936).)
Using Eqgs. (1.65) and (1.66) in Eq. (1.64) and taking the logarithm gives

InP=C+ Mp(xy)Inp(x,+Ax) = > In[Mp(x,)]! (1.67)

where C is an irrelevant constant. Since M is large we may use the Stirling
approximation In ! ~ w In u, so that

InP = B+MZp{x,,)ln(

plx, + M]), (1.68)

plx,)

where B is an irrelevant constant. The normalization of p(x,) was also used.
Multiplying and dividing Eq. (1.68) by the fine spacing ¢ allows us to replace
the sum by an integral. Also, since P is to be a maximum, so will be In P. The
result is that Eq. (1.68) becomes

InP =~ jri‘-:p(x}l (

p(x +&x)) (1.69)

p(x)
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after ignoring all multiplicative and additive constants. Noticing the minus sign
in Eq. (1.22b), we see that Eq. (1.69) states that

I[p(x)] = I = min., (1.70)

agreeing with Eq. (1.47).

This approach can be generalized. Regardless of the physical nature of
coordinate x, there will always be uncertainty Ax in the actual value of the
origin of a PDF p(x). As we saw, this uncertainty is naturally expressed as
a “distance measure™ [/ between p(x) and its displaced version p(x + Ax)
(Eq. (1.69)).

It is interesting to compare this approach with the derivation of the /-
theorem in Sec. 1.8.3. That was based purely on the assumption that the
Fokker—Planck equation is obeyed. By comparison, here the assumptions are
that (i) maximum probable PDFs actually occur (basic premise of statistical
mechanics) and (ii) the system admits of an ultimate resolution “length™ Ax of
finite extent.

The two derivations may be further compared on the basis of effective
“resolution lengths.” In Sec. 1.8.3 the limit Ax — 0 is rigorously taken, since
Ax is, there, just a mathematical artifact (which enables 7 to be expressed as
the cross-entropy via Eq. (1.22b)). Also, the approach by Plastino et al. to the
I-theorem that is mentioned in that section does not even use the concept of
Ax. By contrast, in the current derivation Ax is not merely of mathematical
origin. It originates physically, as an ultimate resolution length and, hence, is
small but intrinsically finite. This means that the transition from the cross-
entropy on the right-hand side of Eq. (1.69) to information / via Eq. (1.22b) is,
here, only an approximation.

If one takes this derivation seriously, then an important effect follows. Since
I is only an approximation on the scale of Ax, the use of I[¢g(x)] in any
variational principle (such as EPI) must give solutions g(x) that lose their
validity at scales finer than Ax. For example, Ax results as the Compton length
in the EPI derivation of quantum mechanics (Sec. 4.1.17). A ramification is
that quantum mechanics is not represented by its famous wave equations at
such scales.

This is a somewhat moot point, since then accurate observations at that scale
could not be made anyhow. Nevertheless, it suggests that a different kind of
mechanics ought to hold at scales finer than Ax. Such considerations of course
lead one to thoughts of quantum gravity (Misner er al., 1973, p. 1193); see also
Chapter 11. This is a satisfying transition from a physical point of view. Also,
from the statistical viewpoint, it says that EPI is a complete theory insofar as
defining the limits of its range of validity.
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Klein—Gordon equation (Chapter 4) and the vector wave equation of electro-
dynamics (Chapter 5).

1.8.15 Multiple PDF cases

In all of the preceding, there was one, scalar parameter @ to be estimated. This
implies an information Eq. (1.2) that may be used to predict a single-
component PDF p(x) on scalar fluctuations x, as sketched in Sec. 1.8.8. Many
phenomena are indeed describable by such a PDF. For example, in statistical
mechanics the Boltzmann law p(E) defines the single-component PDF on
scalar energy fluctuations £ (Chapter 7).

Of course, however, nature is not that simple. There are physical phenomena
that require multiple PDFs p,(x),n=1,..., N or amplitude functions
gu(x), n =1, ..., N for their description. Also, the fluctuations x might be
vector quantities (as indicated by the boldface). For example, in relativistic
quantum mechanics there are four wave functions and, correspondingly, four
PDFs to be determined (actually, we will find eight real wave functions
gn(x), n=1, ..., 8 corresponding to the real and imaginary parts of four
complex wave functions). To derive a multiple-component, vector phenomen-
on, it turns out, requires use of the Fisher information defining the estimation
quality of multiple vector parameters. This is the subject of the next chapter.
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As before, the data are “intrinsic’ in that their fluctuations x,, are presumed to
characterize solely the phenomenon under measurement. There is, e.g., no
additional fluctuation due to noise in the instrument providing the measure-
ments. An information measure / of fluctuations x, will likewise be intrinsic to
the phenomenon, as we required at the outset.

How realistic is this model? In Chapter 10 we will find that immediately
before real measurements are made the physics of the intrinsic fluctuations
X, is independent of instrument noise. Indeed, how could fluctuations prior
to a measurement depend upon the measuring system? Hence, ignoring the
instrumental errors in this model, prior measurement scenario agrees with
the real, prior measurement scenario. We call this scenario the ‘intrinsic’
data scenario.

For simplicity of notation, it is convenient to define “grand” vectors @, y, dy
over all n as

O0=(0,,....0y). y=(.--.¥n) dy=dy ---dyy. (2.2)

2.1.2 Aim of the data collection

In chapters to follow, the intrinsic data y, will be analyzed presuming either
of two general aims: (i) to estimate #,, per se, as when 6, is the nth four-
position of a material particle; or (ii) to estimate a fimction of each 8,, as
when @, is an ideal four-position and the electromagnetic four-potential
A(0,) is required.

For either scenario (i), (ii), we want to form a scalar information measure
that defines the quality of the y,. The answer should, intuitively, resemble the
form of Eq. (1.2).

2.1.3 Assumption of independence

Suppose that 6, x,,, and y,, are statistically independent. In particular, the data
¥, are then collected efficiently. This is the usual goal in data collection. It can
be accomplished by two different experimental procedures: (a) N independent
repetitions of the experiment under the same initial conditions, measuring @, at
each; or (b) in the case of measurements upon particles, one experiment upon
N particles, measuring the N different parameters @, that ensue from one set
of initial conditions. In scenario (a), independence is automatically satisfied.
Scenario (b) tries to induce ergodicity in the data y,, e.g., by measuring
particles that are sufficiently separated in one or more coordinates.
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2.1.4 Real or imaginary coordinates

Each coordinate x,, of a four-vector x is, in general, either purely real or purely
imaginary (Frieden and Soffer, 1995); also see Sec. 1.8.14 and Appendix C. An
example of ‘mixed’ real and imaginary coordinates is given in Sec. 4.1.2.

2.2 Optimum, unbiased estimates

An observer’s aim is generally to learn as much as possible about the
parameters @. For this purpose, an optimum estimate

0, = 0,(y) (2.3)
of each four-parameter @, may be fashioned. Each estimate is, thus, a general
function of all the data. An example of such an estimator is simply y,, i.e. the
corresponding data vector, but this will usually not be optimum. One well-

known class of optimum estimators is the “maximum likelihood™ estimator
class discussed in Chapter 1.

2.2.1 Unbiased estimators

As with the case of “good” experimental apparatus, the estimators are assumed
to be unbiased, i.e., to obey

(0.(y)) = Iﬂ’y 0.(y)p(y0) =0, (2.4)

where p(y|@) is the conditional probability of all data y in the presence of all
parameters . Equation (2.4) says that, although a given estimate will generally
be in error, on average it will be correct. How small the error may be, is next
established. This introduces the vital concept of information.

2.2.2 Cramer—Rao inequalities

We temporarily suppress index n and focus attention on the four components of
any one (n fixed) foursome of scalar values @,, y,, x,, v=0, 1, 2, 3. The
mean-square errors from the true values @, are

€ = de [6,(y) — 6,1 p(]0). (2.5)

Since the data are independent, each mean-square error obeys complementarity
with an ‘information’ quantity [,

e, =1, (2.6)

where
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In p(y|®))
I, = de [%} p(y|0). (2.7)

(See Appendix B for derivation, where /, = F,,.) Equations (2.6) and (2.7)
comprise Cramer—Rao inequalities for our vector quantities. They hold for
either real or imaginary components 6,; see Appendix C. When equality is
attained in (2.6), the minimum possible error €’ is attained. Then the estimator
is called “efficient.” Quantity /, is the vth element along the diagonal of the
Fisher information matrix [F]. The 7, thus comprise a vector of informations.

2.3 Stam’s information

We are now in a position to decide how to construct, from the vector of
informations /,, the single scalar information quantity / that we seek. Regain-
ing subscripts n and summing on Eq. (2.6) gives

YN /e, <33 L (2.8)

n ”
Each term in the left-hand sum was called an “intrinsic accuracy” by Fisher.
Stam (1959a) proposed using the sum as a scalar information measure / for a
vector scenario (as here),

=331/, <> Y I, (2.9)

n v n
where the inequality is due to Eq. (2.8). Stam’s information is promising, since
it is a scalar quantity. We adapt it to our purposes.

2.3.1 Exercise

Stam’s information /, in depending explicity upon the error variances, ignores
all possible error cross-correlations. However, for our additive error case (2.1),
where the data y, are independent and the estimators are unbiased (2.4), all
error cross-correlations are zero. Show this.

2.3.2 Trace form, channel capacity, efficiency

The right-hand side of Eq. (2.9) is seen to be an upper bound to /. Assume
that efficient estimators are used. Then, the equality is attained in Eq. (2.6), so

vl

that each left-hand term 1/e:, of Eq. (2.8) equals its corresponding informa-

v

tion value /,,. This means that the upper bound in Eq. (2.9) is realized. An
analogous situation arises in the theory of Shannon information. There, the
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channel capacity, denoted as C, denotes the maximum possible amount of
information that may be passed by a channel (Reza, 1961). Hence, we likewise
define a capacity C for the estimation procedure to convey Fisher information
I about the intrinsic system,

d1n p(y|0
I=C= ZJG’W(YIG)Z( I:ag{yl )), (2.10)

the latter due to (2.7). It is interesting that this is the trace of the Fisher
information matrix (see Appendix B, Eq. (B7)). This information also satisfies
our goal of measuring the intrinsic disorder of the phenomenon under meas-
urement (see Sec. 2.8). It also measures its complexity (Sec. 2.4.1).

2.3.3 Exercise

Taking the trace of the Fisher information matrix ignores, of course, all off-
diagonal elements. However, because we have assumed independent data, the
off-diagonal elements are, in fact, zero. Show this.

The trace operation (sum over n) in Eq. (2.10) has many physical connota-
tions, in particular relativistic invariance, as shown in Sec. 3.5.1.

2.4 Physical modifications

The channel capacity Eq. (2.10) simplifies, in steps, due to various physical
aspects of the intrinsic measurement scenario.

2.4.1 Additivity of the information; a measure of complexity

Additivity was previously shown (Sec. 1.8.11) for the case of a single
parameter. The generalization to a vector of parameters is now taken up. As
will be seen, because of the lack of “cross talk” between different data and
parameters, the proof below is a little easier.

Since the intrinsic data are collected independently (Sec. 2.1.3), the joint
probability of all the data separates into a product of marginal laws

p(y10) = [ Pa(yul®) = [ [ puly.l02). (2.11)

The latter equality follows since by Eq. (2.1), @, has no influence on y,,
m # n. Taking the logarithm of Eq. (2.11) and differentiating then gives
dlnp(y|l®) 1 dp,

8@;,‘“ - E Td-é:;: Pn = pn(!"n|81!)‘ {2 ]2}



The aim of this book is to show that information is at the root of all fields
of science. These fields may be generated by use of the concept of
“extreme physical information” or EPI. The physical information is defined
to be the loss of Fisher information resulting from observing any given
scientific phenomenon. The act of observation sets off a physical process
that may be modeled as a mathematical game between the observer and
a “demon” characterizing the phenomenon. The currency of the

game is Fisher information. The output of the game is the distribution law
describing the statistics of the effect and, in particular, the acquired data.
Thus, in a sense, the act of measurement creates the very law that
governs the measurement. It is self-realized. This adapted edition of
Physics from Fisher Information has been rewritten throughout in addition
to the inclusion of much new material.

From reviews of the original book

“... suitable for advanced undergraduates, especially those with a strong theory
background, or beginning graduate students. The book has two attractive features:
the frequent discussions in basic physical terms, and the candid way in which the
author describes how he has developed his thoughts ... | urge the readers of this
review to take a good look at the book, which is well-written and certainly
thought-provoking.”

American Journal of Physics

“Frieden’s information-based methods provide a stunningly clear interpretation of
the laws of physics ... Unlocking the fundamental laws is impressive enough, but if
this one principle really is the key to all physics, it should do more than reproduce
what physicists already know. It should also reveal the secrets of unsolved
mysteries.”

New Scientist

“Frieden has proposed a principle that nicely incorporates the transfer of informa-
tion between a measurement and the physical system that is being measured and
from which, almost miraculously, all known laws of physics can be derived.”

The Physics Teacher

“One suspects that the ideas it contains ... will continue to be discussed for gener-
ations to come ... It seems safe to conclude, all in all, that the unexpected union
between physics and Fisher information will prove both lasting and fruitful.”

SIAM News
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