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FOREWORD

It 1s astonishing how wide the enumeration of scientific fields 1s in this book. One can find here foundations of new
mathematics with the new real number system: philosophical foundations of the new physics: theory of evolution;
qualitative modeling and quantum gravity; cosmology and macro gravity; theory of mtelligence and the nature of
thought; geological and atmospheric turbulence and others. In each area of science the author has proposed new
nonstandard approaches to its development and solved long-standing problems. The author has formulated about 50
laws of nature that cover vast areas of natural science.

His Grand Unified Theory (GUT) must find a deserving place among other theories claiming to be named Unified
Theories. GUT as well as its theoretical applications is based on about 50 natural laws. Foremost among them are:
the existence of two fundamental states of matter — visible and dark — and the basic constituent of matter, the
superstring, that comprises both fundamental states. Suitable agitation converts dark or non-agitated and semi-
agitated superstrings to agitated superstrings or visible matter. The author’s attempt to lift the veil over dark matter
deserves attention.

The author’s important contributions in the new mathematics are the resolution of Fermat’s Last Theorem (FLT):
the solution of the gravitational n-body problem using the integrated Pontrjagin maximum principle; and the
construction of the new real number system (new reals) including the dark number that qualitatively models the
superstring.

There are many other new scientific approaches in the book. However, no one on Earth possesses Truth at the
highest level and this book while proposing new approaches calls the reader to further investigation.

V. Gudkov

Professor
Institute of Mathematics and Computer Science

University of Latvia, Rainis Boulevard, 29, Riga, LV-1459, Latvia



PREFACE

Scientific natural philosophy is distinguished from previous philosophies for being based on the grand unified theory
(GUT). Its methodology of qualitative modeling explains how nature works, while quantitative modeling describes
nature’s appearances mathematically. Therefore, GUT can be understood only as self-contained unified physical theory
based on the laws of nature. However, the two methodologies are complementary, each indispensable to the other.

Chapter 1 deals with the foundations of mathematics and physics. Chapter 2 surveys the classical and new
mathematics involved in the development of GUT but provides full details on the new real number system. Chapter
3 is the formulation of GUT through its three pillars — quantum and macro gravity and thermodynamics. Chapter 4
offers a wide range of applications of GUT from the theory of intelligence and the Earth sciences through
astronomy, cosmology, biology. physical psychology, genetic engineering for the treatment of genetic diseases and
optimal control theory through the integrated Pontrjagin maximum principle in the derivation of the quantitative
component of the solution of the n-body problem. Chapter 5, the final and main chapter, provides the philosophical
integration and summation of this work. Except for Chapter 2 the book 1s accessible to the general readership.

The author acknowledges with deep appreciation the contributions of colleagues, Professors C. G. Jesudason of the
University of Malaya, for sustained debate on GUT, E. de la Cruz of California State University, Northridge, for
constructive criticisms, and V. Gudkov of the University of Latvia for continued support and collaboration, all of
whom contributed immensely to this book. Most of all, greatly indebted to Professor V. LLakshmikantham for paving
the way to the frontiers of mathematics and science.

E. E. Escultura

Research Professor

GVP — V. Lakshmikantham Institute for Advanced Studies

GVP College of Engineering, INT University, Madurawada Visakhapatnam 530041 AP
India



GENERAL INTRODUCTION

The novelty of our methodology calls for this general introduction to initiate the reader to the grand unified theory
(GUT), the core of scientific natural philosophy. The conventional methodology of physics, quantitative modeling,
has left long-standing problems unsolved, e.g., the turbulence and gravitational n-body problems, and fundamental
questions unresolved, e.g., what the basic constituent of matter and the structure of the electron are, an inadequacy
that prompted the author to introduce an alternative methodology — qualitative modeling — that digs deeper into
nature beyond appearances to find out how it works. It explains not only the appearances of nature revealed by
natural phenomena but also their dynamics including natural forces, interactions and behavior in terms of the laws of
nature. Natural laws are discovered by observing patterns and regularity in nature and articulating them as natural
laws upon which a physical theory such as GUT is built to express scientific knowledge as a deductive system
subject to the most updated standards of mathematical rigor and precision. Thus, qualitative modeling gave birth to
theoretical physics where there was only mathematical physics. The validity of a physical theory rests on its ability
to explain natural phenomena and make verifiable predictions including invention of technology that works.
Anytime a contradiction arises in a physical theory within its own structure or from experimental results it goes
down the drain unless it is fixed by suitable modification or discovery of natural law that resolves it.

Just as all concepts of a mathematical space are defined by its axioms and conclusions derived from them, all
physical concepts and structures, properties and interactions are determined and defined by the laws of nature and
conclusions and predictions derived from them. For example, the structure and properties of the superstring are
derived from natural laws. In other words, this new methodology axiomatizes physics as a deductive system where
the axioms are laws of nature. In effect, it alters the primary task of the physicist from computation and
measurement to the search for the laws of nature.

The boundaries between dark and visible matter and semi-and non-agitated superstrings are based on the finest arc
length of visible light which may be refined in the future but our analysis will prevail as long as it is based on the
laws of nature.
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CHAPTER 1

Philosophical Foundations of Mathematics and Physics

Abstract: This chapter stands on the major rectification of foundations by David Hilbert in the early 20th Century
and more. Recogmzing the ambiguity of an individual thought being inaccessible to others Hilbert proposed that
mathematics should be concerned not only with individual thought but with its representation by objects that can be
studied collectively, including symbols, subject to consistent axioms. We stand on Hilbert’s rectification and avoid
other sources of ambiguity. where contradiction usually hides, such as infinity, large and small numbers and vacuous
concepts and propositions. Turning on the real number system we find the field axioms inconsistent and rectification
paves the way for its reconstruction into the new real number system under new set of axioms.

In physics we wonder why there are long-standing unsolved problems such as the gravitational n-body and
turbulence problems and unanswered fundamental questions like what are the basic constituents of matter and the
structure of the electrons. We conclude that its present methodology of quantitative modeling that describes nature’s
appearances mathematically 1s quite inadequate, and proceed to complement i1t with qualitative modeling that
explains not only its appearances but also how 1t works in terms of its laws. Either methodology 1s indispensable to
the other. Using qualitative modeling we proceed to participate in the 5,000-year search for the basic constituent of
matter and succeed in pinning it down to the last detail of its structure called generalized nested fractal sequence. The
superstring was the crucial factor in the solution of the 200-year-old gravitational n-body problem.

INTRODUCTION

We pose the problems and fundamental questions of mathematics and physics to guide the development of later
chapters which will provide solutions and answers. We also summarize the critique-rectification of the foundations
of mathematics that paved the way for the development of the mathematics of GUT.

THE UNSOLVED PROBLEMS OF MATHEMATICS

Mathematics has a number of unsolved problems but we focus on the most famous one, the 360-year-old conjecture
called Fermat's last theorem [17, 118] that says,

Forn = 2, the equation,
xrl X },H — Z?:l, (1)
has no solution in positive integers.

The conjecture appears simple and clearly stated but on closer look it is actually vague and it took the critique of its
underlymg fields — foundations, number theory and the real number system — to realize it. Then rectification was
carried out to remedy the ambiguity and resolve the problem. For example, Peano’s postulates that define the natural
numbers are inadequate; number theorists do not even bother with them and use instead the real number system.

CRITIQUE-RECTIFICATION OF FOUNDATIONS, THE REAL NUMBER SYSTEM

We do not bother with the natural numbers because once the real numbers are fixed as the new real number system
with the decimals as subspace and base we establish their isomorphism with the integers, i.e.. the integral parts of
decimals. We build on the great contribution of David Hilbert — the recognition of the ambiguity of the concepts of
individual thought being maccessible to others and, therefore, can neither be studied collectively nor axiomatized
nor the subject matter of mathematics. For precision and clarity, the subject matter of mathematics can only be
objects in the real world that everyone can look at and study such as symbols and material objects provided they are
defined by consistent premises or axioms that specify their existence, behavior, properties and relationship among
them. Then we call such system of objects and its axioms mathematical space. Thus, the game of chess 1s a
mathematical space where the axioms are its rules. Tank and naval warfare are mathematical spaces where the

E. E. Escultura
All rights reserved - © 2011 Bentham Science Publishers Lid.
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appropriate principles of R* and nature of weapons, tanks and battle ships are the axioms. In fact, tank battles
inspired the fields of mathematics called game theory and operations research. In arithmetic, some properties of the
decimals are taken as axioms. Without consistency a mathematical system collapses since any conclusion from it
can be contradicted by another. The choice of the axioms is arbitrary depending on what the mathematician wants
his mathematical space to do but once chosen, they become binding, 1.e., every conclusion must follow from and
every construction be justified by them to make 1t a deductive system.

Axiomatization objectifies a mathematical system and rids it of subjectivism by the mathematician as everything
rests on the axioms including the rules of inference. The axioms well-define the mathematical system and its
concepts completely and leave no room for universal rules of inference like formal logic since the latter has nothing
to do with them. In this regard, all proofs of theorems involving mappings between distinct mathematical spaces are
flawed. This applies to Godel’s incompleteness theorems [54 — 61].

This clarification 1s important as it puts an end to the confusion regarding the equation 1 =0.99... that has generated
much debate online during the last 13 years. These objects are distinct like apple and orange and to say that apple =
orange certainly makes no sense.

The problem that confronted Hilbert was how to insure the consistency of a mathematical system. He proposed a
consistent physical or mathematical model. 1.e., an isomorphism between the model and the mathematical system. A
physical model 1s, of course, consistent since its behavior is subject to the laws of nature which are consistent,
otherwise, our universe would have collapsed a long time ago. It did not and has existed and evolved to higher order
since its birth 8 billion vears ago [42], e.g., in our young universe there were neither biological species nor
biological laws that we now enjoy. To establish the isomorphism the binary operations of the mathematical system
must have counterpart binary operations in the physical model. However, since our universe (distinct from the
timeless and boundless Universe of dark matter [25] where our visible universe is a local bubble along with other
universes) 1s finite and discrete, only a finite model is possible and the mathematical systems we can check for
consistency are limited to finite systems which are quite mnadequate for the purposes of science. The simplest and
most developed mathematical system during Hilbert’s time was arithmetic.

However, the incompleteness of arithmetic makes it ambiguous and unsuitable for modeling mathematical systems
since ambiguity often hides inconsistency. The incompleteness of arithmetic means the existence of true proposition
that has no proof. The absence of proof is due to the ambiguity of concepts, 1.e., ill-defined by its axioms, and the
present axioms of arithmetic (field axioms) are inconsistent [93]. Therefore, we look elsewhere to insure consistency
of mathematical systems by identifving and avoiding the sources of ambiguity and contradiction or minimizing their
impact. They are:

1) Large and small numbers due to our limited capability to compute their digits even with the most
advanced technology.

2) Vacuous concept. For example, the concept “the root of the equation x> + 1 = 0 in the set of real
numbers” is vacuous because the equation has no root and yet the concept i = ¥(=1) is presented as its
root which does not exist. Consequently, it vields these contradictions:

i=V=D) =N/~ = 1N = 1/i=-i, 2)

from which follows, 1 =0, 1 =0 and, for any real number r, r = 0, and both the real and complex number systems
collapse. The remedy for the complex plane 1s in the appendix to [19]. Another vacuous concept 1s “the largest
mteger N”. By the trichotomy axiom one and only one of the following holds: N < 1, N =1, N > 1. The first
inequality is out and if N > 1, then N* > N, contradicting the definition of N as the largest integer. Therefore, N = 1.
This is the original version of the Perron paradox [117, 118]. (The trichotomy axiom is false in the real number
system but follows from the lexicographic linear ordering of the consistent new real number system [21])

3)  Self-referent or circular proposition where the conclusion applies or refers to the hypothesis. All the
Russell paradoxes belong to this type: so does the indirect proof. We cite a few examples to illustrate
the problems it gives rise to and find a remedy if possible.
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a) (Bertrand Russell) Let M be the set of all sets where each element does not belong to itself, i.e. M
={m: m g¢m}. Then. either M € MorM ¢ M. If M € M, the defining conditions for M holds and M
¢ M. On the other hand, it M ¢ M, then M satisfies the defining condition; therefore M € M. Self-
reference follows from the fact that a set is defined by its elements and each element 1s defined by its
membership in the set. It is a vicious cycle [78].

b)  The famous Russell antimony: A Cretan (native to Crete) saying “All Cretans are liars.” Is he telling
the truth?

¢)  The barber paradox: The barber of Seville shaves those and only those who do not shave themselves.
Who shaves the barber?

Russell’s prescription to avoid this kind of difficulty is simply to keep away from it. The contradiction in (b) can be
avoided by inserting the disclaimer “except me” after the phrase, “All Cretans”. Similarly, the problem in (¢) can be
resolved by inserting “except himself™ after the phrase “The barber of Seville”.

4)  An infinite set 1s ambiguous since we do not know all its elements. Consequently, any statement
involving the universal or existential quantifier on infinite set is ambiguous. Such statement is
unverifiable and any definite or categorical statement about an ambiguous concept is also ambiguous.
For example, to verify that every element of an infinite set has property A4, we check an element to see
i it has the property and keep checking “every” element. Obviously, we cannot exhaust all of its
elements and thus we cannot verify if the property 4 holds for all elements of the set. The same
problem is true of the existential quantifier. We cannot exhaust the elements of an infinite set to check
that there is indeed such element with the specified property.

In fact, Lakatos’ counterexample to every phase in Cauchy’s proof of Euler’s formula relating the edges, vertices
and faces of a polyhedron in R’ [77] can be attributed to the fact that the set of such polyhedra is infinite and some
exception hides behind each claim in the proof.

In mathematics, particularly theory of numbers, there are many statements involving infinite set of natural numbers
that raise questions still unanswered, i.e., the statements are neither proved nor disproved. They usually stem from
the inherent ambiguity of infinite set. Consider the following examples taken from [78]:

a) A perfect number has the sum of its proper factors equal to the number itself. The first few known
perfect numbers are 6, 28, 496, 8128, and 33, 550, 336 [78]. Question: are all perfect numbers even?

b)  Twin primes are prime numbers that differ by 2, like 3 and 5 or 11 and 13. The question is: are there
arbitrarily large twin primes? Does there exist an infinite number of twin primes?

c) Goldbach’s conjecture [9] that says every even number except 2, is the sum of two primes. For
example 4=2+2, 20 =13 +7, 30 = 19 + 11, etc. Question: is the conjecture true? This conjecture has
been proved recently [23]. The uncertainty in the proof arising from the ambiguity of infinite set can
be avoided 1n this theorem by re-stating 1t as follows: given any even number N except 2 there exist
two primes whose sum 1s N. This theorem holds for any given even number N which 1s finite.

Consider the statement with the existential quantifier: The decimal expansion of a number p has no row of one
hundred threes. True or not, it is unknown although extensive calculation on its decimal expansion has not vielded
such row of threes. The probability that this statement is true is 1 — (9/10)'® which is almost 1. Thus, even a
statement with probabulity that it 1s true 1s near 1 is not certain.

Among the field axioms that define the real number system R are (a) the trichotomy and (b) completeness axioms. The
trichotomy axiom says that for any a, b € R, exactly one of the following is true, a =b, a <b or a > b; the completeness
axiom says: every non empty subset S of R that is bounded above (has an upper bound) has the least upper bound.

The completeness axiom is a variant of the axiom of choice one version of which says, essentially, that if a soft ball
is suitably sliced into infinitely small little pieces, then the pieces can be suitably rearranged, without distortion, and
reconstructed into a ball. the size of the Earth (Banach-Tarski paradox) [75]. This is a contradiction in R? inherited
from the reals and attributed to the axiom of choice. Actually the axiom of choice is incidental here. The specific
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source of the problem aside from the ambiguity of infinite set is the Archimedean property of the reals that says:
given any real number £ > 0 no matter how small and any number M, no matter how large, there exists some number
N such that Ne > M. This allows one to form an arbitrarily large object from arbitrarily large number of arbitrarily
small preces [15, 75, 78].

A paradox 1s really a contradiction but others look at 1t as something unexpected or contrary to intuition.

A counterexample to any of the axioms of a mathematical system reveals inconsistency. Lately, L. E. J. Brouwer
constructed a counterexample to the trichotomy axiom [5]. We present our version of the counterexample taken from
[21] that shows at the same time that the real number system is not linearly ordered by “<” and that an irrational is not
the limit of a sequence of rationals in the standard norm. (In fact, the notion irrational is ambiguous [21])

Let C be irrational. We want to isolate C in an interval such that all the decimals to the left of C are less than C and
all decimals to the right of C are greater than C. We do this by constructing a sequence of smaller and smaller
rational intervals (rational endpoints) such that each interval in the sequence 1s mside the preceding (this is called
nested sequence of intervals). In the construction we skip the rationals that do not satisfy the above condition.
Although given two distinet rationals x, y we can tell if x <y or x >y, we cannot line them up on the real line under
the relation “<"since 1f X, y are two rationals, X <y, there is an mfinity of fractions or rationals between them and we
cannot verify their arrangement. (Not all reduced fractions or rationals are well defined, e.g.. when the denominator
of areduced fraction is a prime other than 2 or 5, since we do not know all the digits of the quotient; in other words,
there are missing elements among the fractions, the reason for the difficulty in arranging the decimals linearly with
respect to <)

Therefore, we settle for this scenario: starting with the rational interval [A, B] we find a nested sequence of rational
intervals that “insures” C lies between the two endpoints at each stage. We go for an arrangement that will allow us
to distinguish the left from the right endpoints of the sequence. We construct rows of rationals starting with
numerator 1 in the first row, 2 in the second row, etc., and the denominators in each case consisting of consecutive
integers starting from | in increasing order gomg right so that in each case we start with a denominator of a potential
right endpoint.

Actually, we can squeeze the rows into a single row since no particular order with respect to “<” is involved. Even
this arrangement is a problem. For example, suppose at a certain stage in the construction we have a left endpoint
1/5 then the number 20/100 appears on the right and, in trying to pair the left endpoint 1/5 with a right endpoint we
skip 20/100 and all other rationals to the right of 1/5 in the ordering “<" that appear on the right and move further
left than all of them. We choose the left endpoint in the succeeding step similarly to the right of 1/5, etc. Without
loss of generality, we take this rational 1/5 to be the first left endpoint in the construction. Then once we have found
the right pair for 1/5 we either use it as the right endpoint of the next rational interval and pair it with some rational
on the right of 1/5 or find a new left endpoint to the right of the first left endpoint to pair with a right endpoint left of
1/5, etc. We make sure that we do not get closer to C than 10™ at the nth step in the choice of the first n endpoints so
that C remains inside each interval. While we are sure for all left and right endpoints A, B we have already 1dentified
in our construction, that A < C < B and all rationals night of A and left of B in the ordering “<” satisfy this
inequality, there remains an interval of rational endpoints containing C and rationals that do not satisfy this
inequality no matter how large we choose n. Therefore, the location of C remains unknown.

(In Brouwer’s version of the counterexample, there is no limitation on how close the rational end points are to the
irrational C. Therefore, by skipping the rationals that do not belong to the left or right endpoints, the right endpoints
of the sequence in the construction eventually appear on the left and the left endpoints appear on the right, the
irrational C nowhere to be found [5]. This was the first counterexample that showed the field axioms inconsistent
and invalidated Wiles” proof of FLT [110, 111])

This construction attests to the ambiguity of the concept irrational and the problem of representing 1t as limit of a
sequence of rationals; for every such sequence there is always a gap. Even the rationals in the real line are
ambiguous mainly because there is an infinity of rationals between any given two rationals so that we cannot order
them under the relation “<”, i.e., we cannot line them up in the line interval between O and 1, denoted by [0, 1],
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under this relation. This is due to the ambiguity of infinity. Consequently, the real number system is not linearly
ordered by this relation and the trichotomy axiom that says, given two real numbers x, v, one and only one of the
following holds: x <y, x = vy, x > vy, is false. It shows further that the fractions are just as ambiguous as the
nonterminating decimals the latter having a bit of advantage for being linearly ordered by the lexicographic
ordering. We shall see that the new real numbers are linearly ordered by the lexicographic ordering “<" from which
follows the trichotomy axiom.

We state the following two theorems; the proofs are standard and presented i Chapter 2.

Theorem

The rationals and 1irrationals are separated, 1.e., they are not dense in therr union (this 1s the first indication of
discreteness of the decimals).

Theorem

The largest and smallest elements of the open interval (0, 1) are 0.99... and 1 —0.99..., respectively [34].
QUALITATIVE MATHEMATICS AND MODELING

Some mathematical or scientific problems including proving or disproving Fermat’s last theorem require more than
just computation and measurement to resolve. For example, in an inverse problem in differential equations the
boundary conditions are generally unknown or incomplete and what 1s known 1s their outcome. An example of an
inverse problem is the gravitational n-body problem [41] posed by Simon Marquis de Laplace at the turn of the 17"
Century that says:

Given n bodies in the cosmos at some initial time with their respective masses, positions and velocities and subject
to their mutual gravitational attractions find their positions, velocities and paths at later time.

The bodies have history and boundary conditions way back in the past that gave rise to their present phase as a
physical system. To solve this problem we must know what they were and the nature of the bodies and their
interactions. Incidentally, it was this problem and the search for solution that gave birth to the grand unified theory
[42].

Mathematical analysis such as the critique-rectification of foundations and the real number system cannot be done
by computation or measurement alone. Therefore, we expand the tools of mathematics and science. Consider the
following mental activity:

Making conclusions, visualizing, abstracting, thought experimenting, learning, doing creative activity, intuition,
imagination and trial and error to sift out what is appropriate, negating what is known to gain insights into the
unknown, altering premises to draw out new conclusions, thinking backwards, finding premises for a mathematical
space and devising techniques that yield results.

This activity falls under rational thought or intelligence; we call its representation in the real world qualitative or
non-quantitative mathematics. A lot of imagination as component of qualitative mathematics is needed to understand
this book.

Since individual thought 1s not accessible to others and not all mental activity can be represented in the real world,
there 1s inherent ambiguity in individual thought and, therefore, only its representation in the real world that can be
studied and analyzed collectively 1s the proper subject matter of mathematics.

Qualitative mathematics introduced for the first time in and the main contribution of [46] includes abstract
mathematical spaces, foundations, mathematical reasoning and, most important of all for our purposes, the search
for the laws of nature. It is the main component of the new methodology of qualitative modeling that explains nature
in terms of its laws applied to physics for the first time in [41] to solve the n-body problem. It provides the remedy
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for the inadequacy of computation and measurements that has left longstanding problems unsolved and fundamental
questions unanswered. It alters the task of the scientist from computation and measurement that describe natural
phenomena to the search for the laws of nature upon which physical theory is built to explain natural phenomena
and solve scientific problems. Moreover. it raises the quality of scientific knowledge from description of the
appearances of nature to a deeper understanding of how nature works by explaining its internal dynamics and the
forces and interactions of physical systems in terms of natural laws.

THE PLACE OF MATHEMATICS IN SCIENCE

Like any language, the subject matter of mathematics is not nature but itself, therefore, it is not a science whose
subject matter is nature. It is a specialized language that suits the needs of science. It articulates a physical theory so
that the latter can explain natural phenomena, provide solution to scientific problem, predict the future course of a
dynamical system and serve as guide in designing technology and scientific experiment. Mathematics is the medium
of thought for studying our universe including our physical self that i1s external to our thought. We can also use it to
study the representation of thought just as we study the structure or usage of a language. Physical theory 1s the form
by which we express or articulate knowledge of nature.

The traditional role of mathematics has been computation for purposes of describing natural phenomena. Even
Einstein’s vision of uniting gravity and electromagnetism was aimed at describing both natural phenomena by
similar equations, 1.¢., the same forms except for some constants of nature. He succeeded in doing so for gravity and
electromagnetism using the field equations of relativity and Maxwell s equations of electromagnetism, respectively,
but only in a very weak sense being sought at the time: Maxwell’s and the field equations have similar forms. Then
quantum physicists joined in to try to extend the unification in the same sense to the weak and strong forces of
physics. It did not prosper, however, as they got stuck in the search for the basic constituent of matter which is
central to the description of quantum physics.

Qualitative mathematics came to physics in a dramatic way: it was instrumental in the discovery of the 11 natural
laws for the solution of the gravitational n-body problem in 1997 and the discovery of the basic constituent of matter
required for it [41]. They anchored the initial formulation of GUT called flux theory of gravitation [33].

As the main component of qualitative modeling qualitative mathematics extended the theoretical applications of
GUT to the broad fields of natural science and their applications as far as engineering, medicine [30, 32], physical
psychology [28, 29], mathematics-science education [29], theory of evolution [30, 31], geological and atmospheric
sciences and oceanography [35, 38] and design of technology along with the discovery of relevant laws of nature.
For example, at least two laws of nature were discovered to explain why the final flight of the Columbia Space
Shuttle ended in disaster killing all seven flight crew members aboard [40]. That catastrophic failure in technology
has not been explained by conventional science and the same problem of breach of the insulation panel recurred
during the resumption of the program, the reason for its termination.

Qualitative modeling found applications 1n another new field — complex systems, 1.e., physical or social systems or
problems that cannot be analyzed or solved by computation and measurement alone [6, 47]. They include
generalized fractal such as the configuration of the superstring and the problem of economic-industrial development
of underdeveloped and developing countries [6, 47].

PHILOSOPHICAL FOUNDATIONS OF THE NEW PHYSICS

The new physics elaborated in [78] is hybrid between the grand unified theory (GUT) and its mathematics [25, 42,
78]. Its main content, however, is GUT the foundations of which are the solution of unsolved problems and answers
to the fundamental questions of physics [78]. We mtroduce them here and discuss them later. The unsolved
problems include the long-standing gravitational n-body and turbulence problems and the more recent one posed by
Einstein in the 1920s, the unification of gravity and electromagnetism and the weak and strong forces of physics in
terms of similar mathematical description of their appearances. Our solution of the last problem 1s much broader: the
unification of the forces and interactions of nature by a single physical theory — GUT [42]. The unanswered
questions are listed in [78] but we give priority here to what the basic constituent of matter is.
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THE UNSOLVED PROBLEMS AND UNANSWERED QUESTIONS OF PHYSICS

A problem 1s famous because 1t is simply and clearly stated but defies solution for a long time. Consider the famous
gravitational n-body problem posed by Simon Marquis de Laplace at the turn of the 18" Century in his book
Celestial Mechanics that defied solution for two centuries. It says: given n bodies in the Cosmos at a specific mnitial
time with known masses, positions and velocities subject to their mutual gravitational attraction find their positions,
velocities and paths at later time. (It was assumed that masses of cosmological bodies do not change but they do [25,
83]) The problem seems adequately and clearly stated for we think we know what bodies and gravity are which 1s
not true. We do not know how bodies behave: nor do we know the full impact of gravity on them. In other words,
the problem is unsolvable as it is. What would it take to solve it? We have to know what a body consists of which
leads to the 5, 000-year search for the basic constituent of matter. Then we need to know what gravity is. Newton’s
so-called law that says the gravitational force of attraction between two bodies of masses m; and m- s cm apart is
given by F = Gm;mu/s”, where G is a known cosmological constant [12]. is a description of motion of two masses
subject to their mutual gravitational attraction. It appears that the solution is a matter of computation but it is not.
The questions of what matter consists of and what gravity 1s cannot be answered by describing the appearances of
bodies under the influence of gravity.

The other long-standing problem of physics, so long no one knows who posed 1t, was the turbulence problem [35].
The problem is to find out what gives rise to it, e.g., typhoon and tornado. Of course, it is not as clearly stated as the
n-body problem. One does not even know where to begin the reason the problem has defied solution for so long.
Qualitative mathematics provided the key to its solution [35, 78].

In either case, the solution required qualitative modeling that led to the discovery of the basic constituent of matter
and the initial 11 laws of nature of GUT [41]

There are unanswered fundamental questions in physics the most ancient one being what the basic constituent of
matter 1s the answer to which 1s the key to understanding of basic physical concepts such as gravity, black hole and
the structure of the electron and atom.

THE SEARCH FOR THE SUPERSTRING

[t was the development of quantum physics in thel920s and the splitting of the atom in the 1940s that rekindled the
search for the basic constituent of matter in the 1950s that was in limbo for over 5,000 years. During that decade
particle physicists embarked on the search for the basic irreducible elementary particles (prima) by smashing the
nucleus of the atom to determine its constituents (dark matter was unheard of then). They started with the cyclotron,
then the bevatron, linear accelerator, hadron collider and now the large hadron collider or CERN, a circular
accelerator 7 km across that straddles between the boundaries of France and Switzerland [12] — all aimed at
smashing the nucleus of the atom by an energized proton to find out what 1s there, specifically, to find the frue or
rreducible elementary particles, 1.e., the basic ureducible elementary particles that comprise every atom. By the
1990s the search for the basic irreducible elementary particles was a complete success with the discovery of the
+quark (up quark) and —quark (down quark) and the electron by I. J. Thompson in 1897 [12, 43]. They are basic
because they comprise the light isotope of every atom; a heavy isotope has, in addition, the neutrino in the neutron
[43]. We shall discuss them in detail later. Whatever particle physicists have achieved beyond this point is a bonus
for natural science, a bonus for mankind.

The basic prima are produced at staggering rate in the inner core of cosmological vortices, in the vacuum of space
and 1n the cellular membrane of living things.
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CHAPTER 2

The Mathematics of the Grand Unified Theory

Abstract: This chapter surveys conventional and new mathematics involved in the development of GUT. The most
important conventional mathematics includes the theories of generalized curves and surfaces and the integrated
version of Pontrjagin maximum principle developed by L. C. Young. We summarize their original development here
because they are quantitative models of many important physical concepts. The boundary vyear for the new
mathematics is 1998, the year of publication of the counterexamples to Fermat’s last theorem that proves the false
conjecture and catalyzed the development of new mathematics such as (a) the new real number system, (b)
generalized integral, derivative and fractal and (¢) the complex vector plane (fully developed here except (c)). The
introduction to the complex vector plane that rectifies the complex number system is presented but its full
development requires re-writing of the rectified complex number system as the basis for rectification of complex
analysis. The introduction of qualitative mathematics paved the way for qualitative modeling, the crucial factor for
the discovery of the superstring and the 11 initial laws of nature required for the solution of the gravitational n-body
problem by serving as foundations of GUT. The d-sequence of a dark number qualitatively models the superstring.
the generalized curve quantitatively models its path and that of an elementary particle and the new real number
system quantitatively models time and distance of ordinary space. The generalized surface quantitatively models the
expanding Cosmic Sphere before its burst at t = 1.5 billion vears from the start of the Big Bang.

INTRODUCTION

We survey the mathematics directly involved in GUT’s development but provide details on the major ones: the new
real number system and the generalized curves, mtegral, derivatives and fractal. We consider conventional
mathematics of GUT developed before 1997 and call the rest new mathematics.

CONVENTIONAL MATHEMATICS

The most important conventional mathematics involved in the development of GUT are the theories of generalized
curves and surfaces and the integrated Pontrjagin maximum principle the last one developed by L. C. Young in 1969
which he adapted to generalized curves of optimal control theory called relaxed trajectories [117]. It is an improvement
over the original Pontrjagin maximum principle developed by Pontrjagin and his associates in 1962 [91].
Special Functions and Generalized Curves
We consider mischievous functions that render certain established methods ineffective. However. once tamed they
are useful. Examples of mischievous functions are the infinitesimal zigzag and the wild oscillation,

Sin™1/x, (sin"1/x)(cosx™1/x). n

where m and n are integers.

The Infinitesimal Zigzag

We generate a sequence of functions (polygonal lines),
Cova=vu(x),0=<x<1:n=12,., (2)
that converges to curve Cy, point-wise (or in the sup norm) as follows:

Without loss of generality, take Cy: vy =v; (x) 0 <x <1, the polygonal line joining A and B formed by sides AD and
DB of triangle ABD with vertices at A(0, 0), B(1, 0) and D(1/2, 1/2) (Fig. 1). Note that their slopes are +1 and -1,
respectively. For the second term in the sequence, join the midpoint P of AD to the midpoint Q of AB and point Q to
the midpoint R of DB to form the polygonal line APQRB from A to B. We denote this function by Cy: y, = ya(x), 0
<X < |. We continue similar construction on the polygonal APQRB. From the geometry of the figure, the slope of

E. E. Escultura
All rights reserved - © 2011 Bentham Science Publishers Lid.
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C,n=1,2, .., atany point in [0, 1] is +1 or —1 except at corner points where it is simultaneously +1 and —1
(derivative does not exist in this set of measure 0 being countable). Also, the length | C, | of C,= | Cy | = length of
C; = 2. Continuing similar construction on the finer polygonal lines we obtain a sequence of polygonal lines C,; v,
=yux).n=1 2.0 <x<1, having the following properties:

@ |Gl =@+ ) A+ 7)) A =2 = | G &)

where v, is the denvative of y,; A = {x |y,,“(x) =+1} and ¥ = {x |yn’(x) = —1} (the set at which y,” = £1 has
measure 0).

(b) The sequence C;; n =1, 2, ..., is uniformly convergent point-wise and since each C,, is continuous the limit, Cy:
vo=0,0=x <1, is continuous. In fact, y, coincides with y(x) = 0, x € [0, 1], which is absolutely continuous. Hence,
vy is also absolutely continuous.

Y

D (1/2,1/2)

X

ol»

Q B(1,0)

Figure 1: The first two terms of the sequence of polygonal lines that tends fo the infinitesimal zigzag in the interval [0, 1].

(c) What about the derivative of yo? Does 1t exist? If it does, what 1s 1t? We cannot have vy” = 0. For, 1if that were so,
it would violate the dominated convergence theorem applied to the integrals in (a) since this would imply,

Jon((1 + o)) dx = 1#£2 =1im | C,| = lim [ ((1 + (v, dx, )

as n — «. Derivative of v, does not exist in the ordinary sense because the sequencey,’ ., n+ 1,2, ..., or -1, +1, -1
+1, ..., does not converge to a single point since its set limit 1s {-1, +1}, i.e.. y,' 1s set-valued.

The function Cg:(ve, vo'): vo=0, yo  ==x1, 0 <x <1 1s a counterexample to a theorem 1n [93] that says, an absolutely
continuous function is differentiable, almost everywhere. Cy is absolutely continuous but nowhere differentiable. It
raises some important points which are the source of this particular contradiction:

(a) Inadequacy of the present notion of function; this was pomted out in [112, 113] 70 years ago and,
again, more recently in [117]. A function defined by its values alone cannot distinguish the function
C:y = 0 from Cyyp= 0 which are distinct in at least two ways: one 1s differentiable and the other 1s
not and they also have different lengths.

(b) Inadequacy of the notion derivative; that the derivative of a function cannot be adequately expressed by
its values because derivative is a property belonging to an extension of its underlying space (extension of
n-space in the general case) whose restriction to the space of real-valued functions contradicts some of its
properties (e.g., properties of absolutely continuous function). Therefore. there is a need to extend the
notion of function to include those with set-valued derivative. Also, the present defect in the notion of
limit 1s passed on to other notions defined by limits including the derivative [117].

The function Cqyo= 0, yo’ = £1. 0 <x < 1, belongs to a wider class of curves called generalized curves different
from the ordmary curve C: y =0, 0 <x < 1. Yet their values coincide point-wise. Furthermore, their arc lengths
differ; in fact, there are countably infinite functions of this kind. One can see that although the sequence of functions
C.n=1,2, ..., converges to the segment AB point-wise, its standard limit, say, in the sup norm, 1s something else:
the infinitesimal zigzag, Cyyo=0, yo” = £1. This example raises two very important points:
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(1) Fallacious proof of existence of a mathematical object by approximation or convergence as well as the
erroneous use of numerical and algorithmic methods without existence theory (in fact, this flaw is a
variant of vacuous statement).

(2) The inadequacy of the values of a function in characterizing its derivative; thus, the present notion of
derivative is inadequate to capture the complexity of the property of a function.

This inadequacy of the notion of function and derivative as well as numerical method without rigorous justification has
far-reaching significance for all of analysis and beyond. In particular, any theorem on derivative inherits this problem.
That is drawn out by a property of a mischievous function that we shall deal with later. The infinitesimal zigzag 1s our
first example of a mischievous function. It serves as counterexample to a number of well-established theorems.

Significance of the Infinitesimal Zigzag

This example says that the sup norm and the metric induced by point-wise convergence are not the natural metric for
purposes of optimization, especially, in the calculus of variations; moreover, the properties of a curve are not fully
accounted for by its values or parametric representation. We must put into account the behavior of its derivative and,
as remedy, if f(t), t € [0, 1], is the parametric representation of a curve C we represent it by the pair C: (f, g) where g
is the derivative of f. Then the natural metric for purposes of optimization is the Young measure which we shall
present later or curvilinear integral of some objective function along it (which can be the cost function) [117]. If we
represent that measure by the integral,

I(C) = fjo 1 (E(). g(O)dt, 6

then I(C) is the Young measure of the curve C. When the integrand is 1. I(C) is called the length of the curve. Thus,
a curve 1s a lmear functional and curves of the same Young measure belong to the same equivalence class
representing that linear functional. This makes functional analysis available to optimal control theory. In an optimal
control problem the derivative g is the control parameter so that it is independent of f; in other words. the system is
controlled by finite set of values of the derivative.

Another case of optimization where the “obvious™ curve is not the optimal solution is this example: find the
minimum of the integral,

[0, (1 +x7)(1 + (7%= 1)) ™)t (6)

(where x” is derivative) from 0 to 1 among admissible functions x(t) subject to x(0) = x(1) = 0. The “obvious’
optimal curve among conventional curves is x = 0, subject to x(0) = x(1) = 0 and the minimum is 2'”. However, by
admitting infinitesimal zigzag, which is like the ordinary curve x = 0 but whose derivative 1s set-valued and
concurrently takes the values +1 and —1, and attaching a probability weight 1/2 to each of these values, we obtain a
minimum of 1. Thus, the conventional theory of curves yields incorrect solution of this variational problem.

Here, the infinitesimal zigzag is a generalized curve or, to be precise, this generalized curve is the equivalence class
of curves of the same Young measure (with set-valued derivative) [117]. Incidentally, all four types of cosmic waves
and the superstring are generalized curves because they have one thing in common: set-valued derivatives; so is the
path of a primum (elementary particle) [119].

The Wild Oscillation Sinl/x

Our next mischievous function is the wild oscillation, F(x) = sinl/x. This 1s a special case of the more general
mischievous function sin™1/x*, where k. m, are positive integers. It reveals a flaw in the Lebesgue theorem on the
Riemann mtegral that says:

A bounded function 1s Riemann integrable if and only 1f its set of discontinuity has measure zero [93]. The bounded
function F(x) = sinl/x whose only discontinuity is at x = 0 is not Riemann integrable in any neighborhood of the
origin. Known proof of integrability of sinl/x involves construction of a Riemann integral outside an e-
neighborhood of x = 0, where € > 0, which exists, and taking a sequence of such integral as € — 0, which converges.
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The limit of such a sequence, however, is not necessarily Riemann integrable, certainly, not sinl/x because no
Riemann sum of this function can be formed in any neighborhood of 0. The best we can say here is that one can
construct a convergent sequence of Riemann integrals with some relation to the function sinl/x in the same e-
neighborhood of x = 0 but its limit i1s something else. This 1s, in fact, a form of the Perron paradox on the use of
necessary conditions without an existence theory [117, 118]. It also 1llustrates the same fallacy mentioned earlier in
the proof of existence of some mathematical object by approximation or convergence as well as the use of an
algorithmic solution of a problem the existence of solution of which 1s not establish.

In the development of the Henstock integral in [80] the function sinl/x” plays a central role. However, the theory is
flawed by the inadequate notion derivative. While this function is shrunk to zero by the factor x”its derivative is not
for it belongs to a higher space independent of the function. The function considered in [80] is x’sin1/x% 0 <x < 1. It
is asserted that its derivative F’(x) exists at x =0 and F’(x) = 0 because at that point its one-sided derivative can be
trivially computed since, using the ordinary definition of derivative, we have,

|AF [ /] ax] < [ ]/ x]=]x]. )
so that lim |AF|/|Ax|,asx—vO+, exists.

The inequality follows from the fact that F(x) is bounded by its envelope y = +x”. F(x) is continuously differentiable
outside x = 0. In fact, we have, at x # 0,

F*(x) = 2xsin1/x” - (2/x)cos1/x°, @)
and its graph is shown in Fig. 2. where the term 2xsin1/x” has been discarded since it vanishes as x — 0. However,
the term (2/x)cos1/x> oscillates rapidly along all values in the interval (—o, o) as x — 0" and does not converge. This

is a particular kind of discontinuity, an example of what we shall call chaos. Moreover, this 1s another example of a
derivative of a function that is independent of it.

Our final mischievous function is a function of the type,

(e"“x5)(sin™1/x% + cos"1/x%) or (e x5)(sin1/x7), 9)

F'(x) = 2x sin1/x?- (2/x) cos1/x?

Figure 2: Graph of F'(x) = - (2x"x)cosl.e"x2 where the term 2xsinl/x’ is discarded since it tends to 0 with x; it takes all values in
(—oo, +eo)as x — 0.

where z = x°, k. m. n are positive integers. Finding the limits of these functions, as x — 0, quickly reveals that
L Hospital’s rule breaks down on (9). The reason: these functions do not satisfv its hypothesis at the origin, that the
function should not have a zero n any neighborhood; each of the functions in (9) has countably infinite zeros n any
neighborhood of the origin. Also by rearranging the factors one gets different standard limits. The generalized
derivatives of (e"%x")sin™1/x? and (e"“x*)(sin™1/x?) or their expectations are evaluated in [2] and used to generalize
L Hospital’s rule; the latter 1s applied to functions (9) to evaluate their limits as x — 0 [2].
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Rapid Spiral and Oscillation

A primum (unit of visible matter) is mathematically modelled by the rapid spiral x = t, r(t) = B(sinnnt)(cos™ knt), t €
[-1/k, 1/k], © =nt, n, m, k. integers, n >> k, m even, whose profile is a sinusoidal curve of even power [25]. Its cycle
energy is Planck’s constant h = 6.64x10**oules [12], the irreducible unit of energy that we shall discuss later.
Energy conservation and flux compatibility pull the primal cycles together to form a set-valued function that
requires the generalized ntegral [19] to do calculation on 1t because the ambiguity or uncertainty of large number
induces uncertainty on such large number of primal cycles.

(Note: a function multiplied by an oscillation 1s an oscillation)

Rectification of Inadequacy Function and Derivative

Partial rectification of the inadequacy of the concepts finction and derivative is done in [112, 113] by representing a
vector function f with values in R by a pair (f, g), where g 1s the derivative of f that takes values in a field of vectors
belonging to a separate space isometric to R" This representation formalizes the independence of the derivative from
function. (For full development of this idea and the requirements on f and g see [112, 113]; we provide a summary later).
Further rectification 1s required by the reconstruction of the real numbers into the consistent new real number system.

Regarding the derivative component of the pair (f, g) Young went so far as admitting set-valued derivative with the
introduction of chattering controls [117]; in the study of convex vector functions the notion of a set of landing
hyperplanes at a point 1s admitted. This corresponds to a set of tangent lines for a real-valued function [117]).

The thrust of rectification focuses on the derivative component of the pair (f, g) in the representation of a function. It
1s this approach that led to the introduction of generalized curves which. in turn, established an existence theory and
resolved the Perron paradox [117] in the calculus of variations, paving the way for the latter’s modern formulation in
optimal control theory. However, with the appearance of set-valued functions in the study of fractal and chaos this
rectification effort still falls short; we need to allow set-valued function in the pair (f, g) as a way to capture the
complexity of certain notions, particularly, function and derivative.

Note that the approach in [113] reflects the methodology of enrichment: enriching the space with new elements to
achieve an existence theory or convergence.

Let {fy(), g«()}.n=1,2. ..., t € [a, b] be a sequence of functions in the new sense, where each f,(t) is continuous
and g, (t) measurable and well-defined almost everywhere. We suppose further that the end points |a,, b,] of the
domains of definition of f,,(t) and g,(t) tend, respectively, to 0 and 1 as n — . For our purposes here we require that
a, > 0, and each of fi(t) and g,(t) has common extension to some mterval T containing both [0, 1] and the sequence
of intervals [a,, by, n =1, 2, ... We define the limit set of {f,(1), g,(t)}as the pair ({fy o(1)}. {go o(t)}), where {f;
o)} = Shim{f, ()} = the set of limit points of a diagonal element {f,(t,)}, as n — o« and t, — t and {g, (1)} =
Slim{gg o(1)}= the set of limit points of a diagonal element {g,(t )}, asn — o and t, — t. Since [, 1s continuous its
limit 1s independent of the sequence {1;}: not so with g, since we only require measurability. Thus, we distinguish
the limit set of a sequence of pairs {f,(t), g,(t)} by the particular sequence {t}, where t, — t. This is consistent with
our observation above that there 1s infinity of coincident but distinct curves on the segment AB. each element being
determined by the particular curve that tends towards it. (As we shall see later those curves are countably infinite)
As special case, let ty — t for all t in T. Then the closure of such sequence {f,(t). g,(1)} under this convergence 1s
called the space of generalized curves. The complete formulation of the theory of generalized curves as linear
functionals is given in [113]; we summarize it below. Essentially, a generalized curve is one with set-valued [113].

Applications of the Infinitesimal Zigzag

We make references to the superstring although we shall take it up later since we want to introduce its mathematical
models. A superstring 1s a nested fractal sequence of superstrings where the first term 1s a close helix: it has a flux
called toroidal flux in its helical cycle which is a superstring traveling at 7 x 10* cm/sec or 107 times the speed of
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light [4]. the toroidal flux has a toroidal flux in its helical cycle which is a superstring traveling at the same speed,
etc. The projection of a helix on the plane through its axis is sinusoidal or oscillatory curve, by the energy
conservation equivalence [25].

Given any curve in the plane we can deform it into an oscillatory curve y = sim™bx which is rectifiable; we can
further deform 1t into some 1sosceles triangle ADB so that 1ts length 1s preserved and equal to the sum of the lengths
of AD and DB. In turn, we can deform this triangle into a finer oscillatory curve K, with length preserved (Fig. 3).
We iterate this deformation forming an alternate sequence of polygonal lines and oscillatory curves K, from A to B.
Again, the sequence K,, tends towards a generalized curve called infinitesimal oscillation whose function component
coincides with the zero function C: y= 0, 0 < x < 1. Its length 1s equal to the original length K| of K and its
derivative at any point x € [0, 1] is set-valued and equals the set of limit points of the derivatives of the sequence of
oscillations at x.

Since the segment AB is arbitrary we can prescribe its length to be an arbitrary number € > 0. Then we have the
following:

Theorem 1

Given an oscillatory curve K, any number £ > 0 and a line segment AB, there exists a continuous deformation of K
into a fine oscillatory curve inside an e-neighborhood of AB that preserves the length of K [24, 34].

Theorem 2

Given an oscillatory curve K, there exists a continuous deformation of K, with length preserved, into an arbitrarily
small neighborhood of a point [24, 34].

Proof

We prove both theorems. Let A be a given point and B a point in the e-neighborhood of A and suppose |AB| =¢n2
> (. There exists a deformation of K, with length preserved, into two sides of an isosceles triangle ADB where
|AD| + |DB| = |K|. Following the construction above there exists a sequence of polygonal curves C, and
corresponding oscillatory curves K, such that for each n, K, = C,, = AD + DB = K and K, tends to the segment AB
(Fig. 3). Hence there exists a positive integer N such that whenever n = N, the curve K, lies nside the e-
neighborhood of A. (This establishes the first theorem) since the length of AB 1s arbitrary, € > 0 and 1 ABy = ¢&/2.
Then the second theorem follows from the first).

Figure 3: Sequence of sinusoidal curves of length | K | that tends towards infinitesimal oscillation of the same length.

Note that m each case the oscillatory structure 1s preserved as well as its length. Thus, 1t 1s possible to shrink an
oscillatory curve of any length into an infinitesimal oscillation at a point. Now. let B > 0, where 3 is small. and let K
be an oscillatory curve of large length K. Let £ = /2 < |K |/2. As before, we deform K into the two sides of an
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1sosceles triangle ADB with base AB, where 1 AB7 = ¢. Let h be the altitude of this triangle, then for suitably small
e.h~ |K|/2 By the

Archimedean property of the decimals there exists some positive integer n such that
|K|2"2< | K| 2™ < K| 2 (10)

Therefore, in the sequence of oscillatory curves K, with | K;| = |K |, for each i = 1, 2,..., which tends towards the
line segment AB, there 1s one whose amplitude satisfies the inequality (10). We state this as a theorem.

Theorem 3

Let k be an oscillatory curve with large length |K |and let & >0, & = p/2 < |K [/2. Then one can continuously
deform the oscillatory curve K into an arbitrarily small neighborhood of a point with its length and amplitude
prescribed to satisfy,

|K |27 < |K|2™ <e< |K| 2% (1
for some integer n [24, 34].
The following theorem [24] is now obvious and follows from the above theorems:

Theorem 4

The real line 1s chaos.

Theorems 1 — 4 model different aspects of the shrinking of a superstring. They have other implications for physics
that can explain certain phenomena such as the tremendous but undetected (latent) energy in the nucleus of an atom.
Tremendous because we can pack infinitesimal helical loops into an arbitrarily small neighborhood of a point at very
high energy level hZ where h is Planck’s constant and € is number of helical cycles. They cannot be detected by our
means of observation such as light since if the wavelength of the latter 1s sufficiently fine there would be no
interference or discordant resonance with this infinitesimal helix due to difference in orders of magnitude of its
cycles (the helix can be semi- or non-agitated superstring [25]). Helix and oscillation (sinusoidal) are universal
configurations of matter and they are related: the projection of a helix on a plane through its axis is sinusoidal.
Infinitesimal helix and oscillation are both generalized curves because their derivatives are set-valued. The
superstring, basic constituent of matter, is an infinitesimal helical loop, a generalized curve [25, 113].

The Generalized Curves

We summarize the development of the generalized curves [112, 113, 117] as an offshoot of the search for existence
theory in the Calculus of Variations to resolve Perron paradox [117. 118] coming from the use of necessary
condition without existence theory. We reconstruct its basic formulation to get a sense of the method of enrichment.

Consider the parametric equation x(), t; =t = t,, of the curve C, where x(t) 1s absolutely continuous and takes values
in R™ At each t we take a vector y(t) taken from a vector field in a separate space 1sometric to R" which we also
denote by R" We require the vector y(t) to lie in a unit sphere S, i.e., |y{t) | = 1. We also require C to lie in a
compact cube in R" and denote by A the compact Cartesian product of these two sets. Our Lagrangian belongs to
the space Cy(A) of continuous functions with compact support A. We further assume that our Lagrangian is
homogeneous in y so that it is determined in R"by its restriction to A since if L is the Langrangian and (x, y) is any
point in R"<R" then there exists some scalar a > 0 such that y = ay, where y € S. From the homogeneity of L in v,

L(xy) =L(x.a¥) = af(x.y), 12)
where f € Cy(A) 1s the restriction of L. to A.

We make a minor adjustment for simplicity of notation by representing C(x(t), v(t)), a >t > b, as a curve delined on
the compact set A. Here we have attached a derivative y(t) to stress the independence of derivative from x(t). We
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also assume the parameter t to be an arc length from the initial point of C to avoid dependence of the curvilinear
integral along C on its parametrization but more on intrinsic properties.

We consider two curves Cy (xi(t), yi(1)), a =t > b and Cs (xa(t), y2(1)), ¢ = t = d. equivalent if their curvilinear
integrals satisty,

HC) = [ O 10)AL = [ e FEa(0).y2(0)dt = 1(C2), (13)

for all f € Cy(A). Thus, a curve Cq 1s completely determined by the values of its curvilinear integrals all { € Co(A),
i.e., a linear functional g in the dual space C*(A) defined on Cy(A).

We define fine convergence of a sequence g, n =1, 2...., of elements of C*(A) and say that g, converges to g, or g,
— goif g.f — gof for all f € Cy(A). The closure of this space of curves in the new sense is called the space of
generalized curves. In this sense a generalized curve is the fine limit of ordinary curve.

A generalized curve 1s also called a generalized flow, where the latter is an element of the positive cone of C*(A),
i.e., gf = 0 forall f € C(A) with f = 0. It 1s the space of generalized curves that provides an existence theory m the
calculus of variations and optimal control theory and renders Perron paradox inoperative there, showing again how a
contradiction is resolved by some sort of enrichment, embedding or completion. This fine convergence induces a
metric on R" called Young metric. Thus, the distance between two curves C and C- 1s given by,

I((C) - I(C)). (14
This norm 1s really the sup norm 1in the space of generalized curves defined as,
sup | gif — gof | forall £ € Co(A). (15)

We require these linear functionals g;, g- to be well-defined in the intervals of definitions of their respective duals
(ordinary curves) in A and have common endpoints, the same requirement for fine convergence, that the dual
sequence of g, in A must have endpoints tending towards those of its limit g, The length of a generalized curve g 1s
the value of the integral (15) when f = 1. This norm is the right one consistent with the counterexample presented
earlier, the polygonal line that converges to an infinitesimal zigzag. In that case the function f is the arc length ((1 +
(yo’(t))g}m which is constant and equal to V2 for each C,,. Thus, gf= [[0__ (1 + (yo’(t))z)l'th = 2. Of course, the
derivative of f, yo'(t), 1s set-valued with value {1, —1}, and its dual in C*(A), where A [0, 1] x [0, —1], is the
infinitesimal zigzag.

The development of the generalized curves started 70 years ago but the study of fractal bifurcation and chaos can
benetit much from it, not to mention its many applications. In fact, a generalized curve such as the infinitesimal
zigzag 1s both chaos and limit set of fractal but it needs to be rediscovered because contemporary studies on fractal
have recent origin. In the case of bifurcation (or more generally, multifurcation), which 1s the transition from chaos
to fractal, it can be explained by the fact that even well-behaved functions y = f(x) passing through some point (x,
vo) 1s only one of the countable infinity of local solutions of some differential equation near (Xq, vo) satisfying an
initial condition on its derivative there. Put another way, near the point (Xy, v¢), there is a countable infinity of
functions (f(x), g(x)), which are local solutions of some set-valued differential equation. For each choice of g in a
set-valued differential equation of the form x” € {g(t, x(t)} we have, for a given probability distribution, a
corresponding branch of the solution. This is how multifurcation occurs at every point on the initial function as well
as on each branch. This is how chaos ultimately results. This is similar to the formulation of the development of
generalized surfaces that we used for dealing with the undecidable proposition FLT. Later, it was extended to
relaxed trajectories of control theory [117].

(For extension of this methodology to the development of generalized surfaces see [50, 114 — 116])

To summarize, the generalized curve quantitatively models the superstring, primum and its path in flight [119] and
spiral path of visible matter falling into the core and spinning around the eye of a cosmological vortex which are
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continuous arcs with set-valued derivatives [20, 78]. What we see in a spiral nebula are its stars and minor vortices
falling into its core and spinning around the eye. Rapid spiral quantitatively models a simple primum and rapid
oscillation the photon and primum in flight [25]. R* quantitatively models physical time and distance, non-standard
g-sequence of d* the nested fractal superstring and d* the tail end of its toroidal fluxes, a superstring and continuum.
The decimals model the metric system and the integers the countably infinite and discrete dark and visible matter;,
and, as we shall see later, GUT qualitatively models our universe. Note that a physical system may have more than
one mathematical model but only one qualitative model within equivalence.

The Generalized Surfaces

We summarize Young's theory of generalized surfaces and his joint work with W. H. Fleming [50, 114 — 116]. We
shall focus on the more developed version in [116] for R™, m > 3.

Let X be the Euclidean m-space and let the parameters (u, v) range in the unit square R(0<u<1,0<v< 1) We say
that x(u, v) 1s a generalized Dirichlet representation of if it is defined and bounded in R and takes values in X,
absolutely continuous on the intersection of R with almost every line u = constant or v = constant, its extension to
the perimeter of R is continuous and its dirichlet integral,

L(x.R) = (1/2) Jg (x2)* + (x)")dudv, (16)
1s finite.

We say that x € X if x 15 an element of m-space. X €D and x 1s a generalized Dirichlet representation x(u, v). We
also write x € D(N) to mean x €D and L(x, R) <N for some positive integer N. The jacobian j(u, v) of x(u, v) 1s the
vector product of the partial derivative x,, and X,. i.e., their normal, and exists almost everywhere in R. we write (x,
1) € D to mean x € D and j 1s the jacobian of x. The values of any j(u, v) are bivectors. They lie in the space J
whose elements can be identified with the skew-symmetric matrices ] =(j), 1. s, 1, ..., m, of rank 2 or 0. We define
the norm |j | for | € T as the square root of X(j,)* summed up for 1 <r <s < m). We denote by I, the subset of J
consisting of the j of norm 1 and by J* the hyperspace obtained from J by deleting the condition that j be of rank 2 or
0. We write further (E. I), (E. I)), (E.J*¥) for the Cartesian product of a subset E of X with I, I, I*.

We write for the space of continuous functions f = f(x, j) € (X. I;) with norm Il = sup | f(x. 1 | for x < B, where B is
sufficiently large constant depending on the context. Just as for generalized curves we require homogeneity of f in j,
ie., f(x, o) = af(x, j) for a = 0 so that the extension of f is defined by its restriction to F. the function f is called
integrand and this is analogous to the Larangian for generalized curves. The classical generalized integral is defined as,

L= fRf(x(u,v),j(u,v))dudv, feF (17)

A parametric surface 1s the equivalence or maximal class consisting of x € D all of which give the same value to the
functional L(f) for each integrand f (or for its symmetric integrand). Each integrand f in the class is a representation
of L(f). We define L(f) a generalized surface. A generalized surface L(f) is termed fine limit of the sequence of
generalized surfaces L(), n =1, 2, ..., if for each relevant integrand f (each { in or symmetric f) the values of L(f)
converge weakly to L(). It can be seen that every generalized sequence 1s expressible as the limit of a sequence of
uniformly bounded parametric surfaces (ordinary surfaces). Such convergence induces a norm on the linear
functional representing surfaces defined by the expression sup [L(f) — L (f)), where the supremum is taken over all f
€ I whose norm is < 1 (or symmetric f). When fy(x, j) = 1 for (x, j) € (X, ;) we term L(fo) the area of the
generalized surface .. Note that in this formulation a generalized surface 1s a linear functional. The area of a
generalized surface L(f) 1s L(1) (which corresponds to the length of a generalized curve gf when f 1s the constant 1).

The requirement of continuity for f is not necessary; measurability suffices. This can be further weakened by
allowing set-valued integrand with appropriate probability distribution. In fact, in taking the limit of parametric
representation of surfaces we may have set-valued integrand. Therefore, we introduce the notion of generalized
derivative of an integrand as the expectation or average of its set-values at a point in each argument. This 1s the same
as the equivalence class of probability distributions that yields the same expectation. For surfaces we can also admit
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set-valued jacobian with a probability distribution. This way we can deal with the notions of bifurcation and
multifurcation of surfaces and chaos. Each surface that emerges has a certain probability of being actualized, such
probability being determined by the probability distribution of its jacobian.

The space of generalized surfaces 1s complete 1n the norm defined by this fine convergence. This provides the
needed existence theory which is local, i.e., the existence of a surface subject to suitable mitial and boundary
conditions 1s valid only i a suitable neighborhood of a point. This is all we can expect since 1t 1s defined by
differential equations describing local properties of the underlying space. However, it 1s shown in [114 — 116] that a
global generalized surface is the fine limit of a sequence of suitable conventional surfaces. In Young's theory, the
space of surfaces is enlarged to insure existence. This is achieved by allowing set-valued jacobians of a vector
partial differential equation satisfying the requirements in [114 — 116] with unit measure or probability distribution.
A generalized jacobian is the expectation of a set-valued jacobian with probability distribution. Thus, the local
solution of a partial differential equation with set-valued jacobian depends on its probability distribution;
consequently, the solution space forms a family of surfaces each of which 1s a representation of a generalized
surface. A conventional surface 1s a solution of a conventional partial differential equation (with well-defined
jacobian) satisfying requirements in [114 — 116]. Probability distribution introduces uncertainty in the space of
generalized surfaces. Another level of uncertainty is brought in by the proof of local existence of a surface which
uses fine convergence of a sequence of conventional surfaces along with the completeness of the space of
generalized surfaces.

The Cosmic Sphere [42] which we shall discuss later 1s modeled quantitatively by a generalized surface.

The Integrated Pontrjagin Maximum Principle

We summarize the integrated version of the Pontrjagin maximum principle that we shall need in Chapter 4.

The Integrated Version

This version of the Pontrjagin maximum principle is developed in [117] (with slight improvement in [22]) from the
origmal principle by Pontrjagin and his associates [91] to apply to generalized curves. specifically, relaxed
trajectories of optimal control theory. Anchored on some existence theorems. it was meant to rid optimal control
theory of the Perron paradox, a contradiction arising from the use of necessary condition without existence theory
[117]. The principle itself is a necessary condition consisting of three parts but it rests on proof of existence of
optimal solution of the optimal control problem among relaxed trajectories.

This principle was used to calculate the trajectories, positions and velocities of the n bodies in the gravitational n-
body problem once the qualitative solution was provided by GUT [41]. But why do we really need to go through this
level of sophistication when GUT has already determined that the n-bodies fall to or orbit around the cores of their
respective cosmological vortices along rotating spiral streamlines? The streamlines are not ordinary curves but
generalized curves, i.e., they have set-valued derivatives, and for purposes of applications we need the specific
equation of the trajectory of each body in the problem. In fact, we can look at a falling body as being subjected to
two-valued control set one value being the pull of gravity and the other the impact of the centrifugal force of spin.
The path of a body 1s what is called infinitesimal simplicial curve, i.e., piece-wise arcs corresponding to alternating
constant values of the control set U consisting of two elements. A generalized curve called relaxed trajectory is the
limit of a sequence of simplicial curves in the Young measure [117]. Superposed on it is another generalized curve
due to the micro component of turbulence but has no visible impact on this macro problem.

Formulation of the Problem

We first summarize the formulation of the time-optimal control pre-problem for each body in the original naive
optimal control theory [117], i.e., without the benefit of existence theory. Then we update the formulation to be able
to utilize the Integrated Pontrjagin Maximum Principle. We ask for the minimum of the integral,

If'(l,x,u,w)dt, (18)

for trajectories x(t), controls u(t) and constants w and subject to,
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X = g(t.x,u,w)dt, (19)

where u(t) ranges n the set U, w in W and subject to suitable specified conditions (dimensionality is at our
disposal). We can eliminate the constants w by regarding the pair (x, w) as a point in higher space and adjoining the
differential equation,

dw/dt =0, (20)

which insures that w is constant along any trajectory. Then we add to our end condition that the initial or final values
of the projection w of (x, w) lie in W. Thus, the only effect of the constants is to alter dimensionality and end
conditions.

To further simplify the problem we introduce another coordinate x,subject to,
XO = f(tsxnu)a (21)

and write x and g for the pairs (x,, x) and (f, g). We also add the end condition x; at the final end of a trajectory
which correspond to the time t = 0; in other words, we reverse time and find the minimum of —x; for trajectories x(t)
and u(t) subject to

X =g(txu), (22)

where u(t) ranges in U and x(t) satisfies approprate end conditions. Thus, in this problem what is being minimized
1s the function x; which n applications can be the cost function. Without loss of generality we assume that the pair
of endpoints of x(t) belongs to some pre-assigned closed set B of the Cartesian product of x-space with itself (i.e..
the mitial values of t is not restricted directly, e.g., we can set t +t, in place of t). We denote by G(t, x) the set of
values of the vector g(t, x, u)

for fixed (t, x) as u ranges in U. Then we ask for the minimum of —x; subject to the condition,
X € G(t). (23)

The problem with constraint (22) is called the controlled pre-problem; the one with constraint (23) the uncontrolled pre-
problem. The latter has larger space of trajectories from which to find the minimum. As the space of trajectories becomes
larger the better is the chance of existence of minimum. The space of trajectories of either problem is still conventional;
we can still improve the solution by enlarging the space beyond conventional trajectories into the space of generalized
curves. This 1s exactly what we need for the gravitational in-body problem because the trajectories we are looking for are
the spiral streamlines each of which 1s the local resultant of the effect of gravity and centrifugal force mathematically
modeled by relaxed trajectory. L. C. Young set the machinery for doing so [117] as follows.

Instead of the constraint equation,
X=u, 24)

where the velocity vector 1s controlled directly and coincides with the control vector u we attach a probability or unit
measure to u (normalized probability distribution) so that the actual velocity dx/dt becomes the integral of u with
respect to this unit measure. This is called the weighted average or expectation value for this probability measure.
Then the control function u(t) that yields a specific trajectory be replaced by the probability measure v(t). Such
measure is called chattering control value v, and we say that it reduces to a conventional control u if the measure is
totally concentrated at u. We write V for the space of chattering control values v, i.e., the set of unit measures on 1.

Existence Theorems

We quote some existence theorems on conventional and relaxed trajectories from [117].
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(1) Existence of Solutions to the General Initial Value Problem for Ordinary Differential Equations

Let f(1, x) be a vector-valued function with values in n-space and suppose in some neighborhood of (t, xy), fit, x) is
continuous in x for each t, measurable in t for each x, and uniformly bounded in (1, x). Then there exists an
absolutely continuous function x(1) defined in some neighborhood of t, such that x(ty) = x, and, almost everywhere in
that neighborhood,

X = fitx(t)) (25)

This theorem 1s of fundamental importance in both optimization and approximation theories, calculus of variations
and optimal control.

(2) Halfway Principle of McShane and Warfield

Suppose given a continuous map p* from Q to P, and a measurable map p™** from R to P such that

P**®R) cp*Q) cP (26)
Then there exists a measurable (lifting) map q* from R to Q such that

p**= p*q* (27)
We denote by G(t. x) the set of the values of G(t, x. v) when (t. X) is kept fixed and v allowed to vary in V.

(3) First Corollary

Let x(1) be continuous in the finite time interval T and let z(t) be measurable vector-valued function in T such that
z(t) € G(t, x) or z(t) € G(t, x). Then there exists a measurable conventional or chattering control u(t) or v(t) such

that z(t) = g(t, x(1), u(t)) or z(t) = g(t, x(t), v(1)).

(4) Second Corollary (the Filippov I.emma)

If. in particular, x(t) is an (uncontrolled) conventional trajectory subject to X € G(t, x) or relaxed trajectory subject
to X € G(t, x) almost everywhere. Then there exists a measurable conventional or chattering control u(t) or v(t).so
that x(t) coincides with the corresponding controlled trajectory satisfying the differential equation

x = g(tx(t)u(r) or dx(t)/dt = g(t,x(1),v(t)), (28)

almost everywhere.

(5) Uniqueness Theorem for the Initial Value Problem of an Ordinary Differential Equation dx/dt = {{t, x)

Suppose, in addition to the hypothesis of (1), that for some constant K, the function f{t, x) satisties, whenever (t, x;)
and (t, X») lie in some neighborhood N of (t. Xo), the Lipschitz condition

Ifixs) = fitx) [ <K [ feo—x, /. 9)
Then in some neighborhood of t; there exists one and only one absolutely continuous function x(t) such that

xX(t) = xo + [ifitx(v)d, (30)
where A= [, t,].
Let f € C,(T x U), the space of continuous functions on f(t, u) on T x U, where U is the set of control values u, and

T is some fixed time interval. We write A for some variable time interval of U. For such pair (f, A) consider the
function w of (f, A) defined by the integral
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w(f.A) = [Lf(t.v(t)dt, 31
where v(1), t € T 1s a measurable chattering control (or v is conventional control, 7.e., unit measure concentrated at
some point u € U). We understand the integrand f(t. v(t)) as shorthand notation for an integral of f, for constant t,

with respect to probability measure v(t) on U. then we regard w as a measure and identify w(f, A) with the integral
[yofdw. (32)
Then we write,
w = v(t)dt, 33)
Bearing in mind that (31) 1s a double integral; thus, every control measure 1s determined by a chattering control v(t).
The control measure w will be termed simplicial if it is defined by (31) where v(t) reduces to a conventional piece-

wise constant control u(t). Then we use formula (32) and reinterpret u(t) as a unit measure on U concentrated at one
point u(t). We denote by W the space of all control measures w. We introduce fine convergence in this measure. A

sequence of control measures w,, v = 1,2, ... 1s termed convergent if, for each f, the values w,(f, A) tend to a limit
w(f. A) uniformly in A; then we say that w, tends to w.
(6) Theorem

(i) The space W is sequentially complete. (ii) In order that a real function w of fand A be of the form w(f, A) where
w € IV, the following system of conditions is both necessary and consistent.

(a) w(f, A) is linear in f and additive in A;
(b) fit, u) >0in A x Uimplies w(f, A) >0;
(c) fit,u)=1inAxUimplies w(f, A) = /Al

(d)  Theorem. (i) The space W is sequentially compact. (ii) Simplicial control measures are dense in W.
We term bundle of relaxed, conventional or simplicial trajectories the family of trajectories which meet a given
bounded closed subset of (1, x)-space corresponding to closed time intervals, possibly degenerate ones all contained
in a fix time interval.
A sequence of functions

XpteT,teTnv=12 .., (34)
where T, are closed time intervals all contained in some fixed time interval will be said to converge uniformly to

Xp.t €T, 35)

if, first. Ty x,. t € T, a closed time interval whose extremities are the limits of those of T,. and. second, for some
choice of a closed time interval T containing T, and all but a finite number of the T,, these exist, for large v,
extensions of our functions of the form,

X, teT, (36)
which tend uniformly to a corresponding extension to T of xy(t) (T, may be a point).

(7) Theorem

A bundle of relaxed trajectories is sequentially compact and complete and the corresponding bundle of simplicial
trajectories is dense in it.
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(8) Corollary

Suppose the set G(1, x) of the values of g(t, x, u) for fixed (1, x) is convex. Then any bundle of conventional
trajectories is sequentially complete and compact, and the corresponding bundle of simplicial trajectories is dense
nit.

(9) Existence Theorem for Relaxed Solutions

Let Q be a bounded closed set of (t, x)-space, P a closed set in the Cartesian product of (t, x)-space with itself and T
a closed finite interval of 1. We denote by Xthe set of relaxed trajectories x(1) defined on closed subintervals of T'
which meet Q and p a pair of extremities situated in P. The function g(t, x, u) which appears in the differential
equation (5) is supposed continuous and subject to the Lipschitz condition in x. Then either Xis empty or there exists
in Xa relaxed trajectory for which the difference at the endpoints of the coordinates x, of x assumes its minimum.

The Pontrjagin Maximum Principle: Integrated Version

For greater generality we suppress dependence on the chattering control v(t) by writing g(t, x) for g(t, x, v(t)).
Consider a convex family G of such functions, a family such that every convex combination

Yoiig;, 37

of a finite number of members g;, of G with constant coefficients o; = 0, where Xo; = 1, is itself a member of G (in
the chattering case the family G are functions g of the form g(t, x. v(t)) and convexity holds in a stronger sense n
which the coefficients oy are allowed to be measurable functions of t instead of constants). In addition we require
that every function g(t, x) in G is continuously differentiable in x for fixed t and measurable in t for fixed x. and also
that each g and its partial derivative g, are bounded functions of (t, x) or, more generally, bounded in absolute value
by some integrable function of t only. These various requirements are to hold only in some bounded open set O of (t,
x)-space. In the chattering case all these requirements are satisfied if we make the stipulation that g(t. x. u) 1s
continuously differentiable.

We consider the family
H=vyG (38)

of Hamiltonian functions h(t, x, y) = yg(t. x), where vy is a variable vector and each g € G gives rise to a
corresponding & € H. we shall be concerned with points (t, x) that lie in a sufficiently fine neighborhood of the set
described by a given fixed trajectory C of the form x(t), t; £ t <t In terming C a trajectory we imply that the
function x(1) is, almost everywhere in its interval, a solution of the differential equation,

X = g(t, x(), (39)
for some fixed corresponding member g € G moreover, X(t) 1s to be absolutely continuous.

We term ordinary point of C a point at which (39) holds; in particular, we say that C has ordinary endpoints if the
dertvatives X(t;) exist and have the values g(t;. x(1)), 1 =1, 2. We assume function x(1) continued outside its interval
domain, when convenient, subject to the same differential equation and absolute continuity. In view of the
uniqueness theorem any such extension is uniquely determmed once we fix the member g € G and an mitial
condition of the type x(ty) = X,

We write q for the ordered pair of endpoints of C and P for a small neighborhood of q. Thus, p lies in the space of such
ordered pairs g, i.e., in the Cartesian product of (t. X)-space with itself or, equivalently, O with itself. We denote by Q
the subset of P consisting of ordered pairs (p, q) of endpoints of trajectories in O, sufficiently close to C. Any such
trajectory has the form y(t), 71 <t < 1, where y(t) 1s absolutely continuous and satisties, for almost all t in its interval of
definition, a differential equation similar to (34) with g replaced by some member g of form g(t, x. v(t)).

In P suppose given a smooth manifold M with q as boundary point where M 1s represented by local coordinates as a
smooth one-to-one map of a smooth Euclidean domain with its boundary. We take the interior of M and boundary of
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M as corresponding 1mages of the nterior and boundary of this domain. We suppose the dimension of M to be = 1
so that it does not reduce to a point. We suppose, further, that the boundary of M at q has a tangent subspace, which
1s itself the boundary of a tangent half-space (a tangent half-subspace by taking half-lines tangent to M at q). We
suppose that a neighborhood of q in M has a continuous one-one map onto a neighborhood of q m this tangent halt-
subspace such that q corresponds to itself and that, if q + p denotes the image of p in M, we have,

P=q+3dp+o(p-q (40)

where o(p — q) 1s small compared with p — q as p = q. In particular, local coordinates can be thought of as
coordinates on the tangent half-subspace. Moreover, a vector ¢ # 0 in the underlying (2n + 2)-dimensional Euclidean
space will be termed an inward normal of M at the point q if it is, first, orthogonal at q to the boundary of M, i.e., to
a hyperplane through q that contains the tangent subspace of this boundary and, second, directed towards the side of
this hyperplane that contains the tangent half-subspace of M.

A trajectory C is an M-extremal if it contains no interior point of M; we term conjugate vector along C an absolutely
continuous and nowhere vanishing vector-valued function y(t) with values in n-space defined on the same interval as
x(t). If h is the Hamiltonian corresponding to the element g € G that enters into the differential equation (38)
satisfied by x(1), we term corresponding momentum and denote by n(t) the (n+1)-dimensional vector derived from
v(t) by the adjunction of the mitial component

—h(t, x(), () = no(D. (41)
We term corresponding transversality vector for C the (2n+2)-dimensional vector,
(=(t). n(t2)). (42)

The Integrated form of the Pontrjagin Maximum Principle

Let g € G, h be the corresponding Hamiltonian function yg(t, x) and let C be an M-extremal of the form x(t), t; <t <
ty, satisfving, almost everywhere, the corresponding differential equation (21) which we now write X = ch/&. If C
has ordinary endpoints or M consists of pairs with the same coordinates as q, then there exists a conjugate vector
v(t) along C such that the pair (x(t), y(t)) satisfies the following three condition:

(a) The canonical Euler equations:

X = 6h/dy, y = —oh/oy. 43)
(b) The Weierstrass condition: As function of /. € H, the quantity,

[ah(t x(). y(0)dt, 44)
assumes its maximum when A = h.
(c) The transversality condition:

Then the transversality vector (42) is an inward normal of M.

NEW MATHEMATICS

We shall consider here the new mathematics involved the development of GUT, namely, the new real number
system, chaos and turbulence and generalized fractal, integral and derivatives but we focus on the new real number
system and the generalized integral; the rest we shall summarize or refer to original sources. We have already
introduced qualitative mathematics and qualitative modeling, the most important new mathematics involved mn
GUT. The new real number system provides qualitative models for important physical systems like the superstring
and our universe. Therefore, it is a very important component of the new methodology.
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Fractal, Generalized Fractal and Chaos

The generalized fractal of particular importance to GUT that we consider here is nested generalized fractal. (See [11,
48, 53, 87, 109] on geometrical fractal)

Definitions and Examples

Classical fractal is iterated affine transformation of a given generator, some geometrical figure in the case of a
geometrical fractal; it is mainly quantitative [13, 24]. Affine transformation is a combination of contraction and
translation the effect being to generate a sequence of self-similar figures, i.e., each term except for the first is similar
to the preceding term, at decreasing scale. We generalize this fractal construction to include as well, rotation, taking
mirror image, sliding along a curve and replication all of which preserve similarity. The last characteristic 1s the
most important for applications, especially, in biology. We have seen this replication in the form of splitting or
branching of roots and branches of a tree and the veins of its leaf. This also happens in mitosis or cell-division where
self-similarity is in terms of the replication of the genes in every offspring cell. The last two examples are physical
fractals where the sequences involved are finite since visible physical systems are finite our visible universe being
finite [25]. Moreover what 1s replicated need not be geometrical figure but general properties of the terms of the
fractal sequence. We call this formation generalized fractal; only qualitative mathematics 1s capable of modeling
generalized fractal, especially, when there 1s multiple replication or multifurcation. In the root of a tree every branch
continues as nested fractal, i.e., each term in the sequence 1s contained 1n or a part of the preceding term (in this case
at decreasing scale). The characteristic here 1s replication more than self-similarity and decreasing scale because the
terms may not be geometrical but some characteristics or processes as in the above examples of replication. Mitosis
in a living cell is a special fractal that biologists use to describe its replication in the offspring cell, especially, its
genetic content; here decreasing scale does not apply but self-similarity and replication do.

Nested fractal is nature’s way of packing huge energy in a physical system or attaining maximum efficiency in a
physical process. an expression of energy conservation and a universal configuration of nature that applies even to
man-made structures such as machines, buildings and bridges due to its optimal properties. In biology, encoding of
information in the brain 1s a fractal process [29].

The fractal structure of the roots of a tree allows it to absorb maximum nutrients {from the ground and that of its branches
and veins of its leaf allows optimal efficiency in the distribution of nutrients to the stomata for food production
(photosynthesis), e.g., fruit, and distribution to where they are needed including fruits that humans can harvest.

Chaos is mixture of order none of which is identifiable. For example, in regions where there is much under-ocean
volcanic activity the ocean surface heats up, throws the gas molecules above it info motion (kinetic energy) that
pushes them apart and creates low pressure. Low pressure sucks gas molecules around it and the initial rush throws
trillions of gas molecules mto collision that makes it impossible to monitor or even predict the path of any single
one. At the same time, every molecule is subject to the laws of nature. This 1s then a classic case of chaos but 1t 1s
transitional since collision 1s energy dissipating. Energy conservation induces global order and tumns it into
coherence of order called turbulence in this case a hurricane.

The formation of tropical cyclone is an example of standard dynamic system. It starts on a calm summer day which
is order; then chaos ensues as a transition to coherence of order called turbulence, in this case, a cyclone which is a
vortex of gas molecules in the atmosphere. This transition from chaos to turbulence is due to energy conservation.
Chaos is energy dissipating; in this example it is due to collision of gas atoms and molecules which is distortion of
order; therefore, energy conservation induces its evolution into global order, the cyclone. Then the cyclone vanishes
when nothing infuses energy on it, e.g., warm corridors on the ocean, and its energy dissipates nto the atmosphere;
when a cyclone passes through a warm corridor its power rises because heat or kinetic energy 1s fed to it. [t was once
suggested that an atom bomb be dropped into the eye of a typhoon to end it. That would be like pouring gasoline
into brush fire. At the same time, when the eye hits and gets plugged in by a mountain its power declines because
friction dissipates its energy.

It 1s impossible to model chaos computationally, only qualitative modeling can. Another example is fundamental
chaos or dark matter one of the two fundamental states of matter that we shall consider later; fundamental in the
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sense that it is part of the cycle of matter: all matter comes from it and will ultimately return to it. However,
fundamental chaos is not energy dissipating because the semi-and non-agitated superstrings do not interact among
themselves; therefore, it is stable and has zero entropy, the only stable physical chaos. (The real line is mathematical
chaos [24. 78]; so are infinitesimal zigzag and oscillation [24, 78]).

The Peano Space-Filling Curve

The problem here is to map the unit interval [0, 1] onfo @ unit square by continuous function. The usual tool is a
theorem that says: the limit of a uniformly convergent sequence of continuous functions is continuous. But all
constructions so far are difficult to visualize. We make the geometrical construction of this curve quite simple [27,
34] using the concept of nested fractal sequence.

Divide the unit square into 9 little squares by the lines,
X=1/3,x=2/3y=1/3,y =/2/3. “5)

We label the blocks, By, B,, Bs, By, Bs, B, B4, Bs. B, starting at the bottom row from left to the right, then up to the
middle, then left to the first block at the middle row, then up on this block to the top row, then right to the last block of
the top row to the right hand corner of the square (see Fig. 4). details are discussed below. We take as the first initial
generator the segment g, 1(x): y =X, 0 <x =< 1/3; take the mirror image of (flip over) g, ;(x) with respect to the y-axis to
obtain the second nitial generator g; _;(x): v = —x, 0 <x < 1/3; take the mirror image of the second mitial generator to
obtam to obtain the third initial generator, g, _1(x): v =X, 0 = x =-1/3 and take the murror image of the third generator
to obtamn the fourth generator, g, 1(x): v =x, 0= x = —1/3. The four initial generators are:

gnx):v=x.0<x<13:g X)) y==x,0<x<1/3,

g x)ry=x,02x2-13 g x):y==x0=2x2-1/3. (46)
y By (11)
B? / \ / Bg
BS

gl—l g]-l

Figure 4: The first term f)(t) of the fractal sequence and its generators g;;. g_y;. g1 and g, in the construction of the Peano
space-filling curve obtained by translating them suitably to form the ordered polygonal line from the origin to the point (1. 1).
Arrows indicate direction of the polvgonal line.

Then the initial function f,(t) in the iteration process follows:

fi(x): gn(x). gia(x). + (1/3.1/3). gu(x) + (2/3).
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g 1)+ (1, 173), g 11(x) + (2/3, 213),
g1(X) + (173, 1/3), gn(x) + (0, 2/3),
g1 (x) + (173, 1), gni(x) + (2/3. 2/3), 0 <x < 1/3. 47)

The functions that comprise f(x) are suitable translations of the generators in (43) to form a polygonal line through
the diagonals of

blocks By, B..... Be. in that order with suitable orientation. Construction of f)(x):

(1) The first segment of f,(x) 1s g;1(x).

(2) For the second segment in block B,, use g, (t) by translating it to the right by 1/3 units and up by 1/3
units so that its initial point coincides with the terminal point of g;;(x) and terminal point coincides
with the lower right hand vertex of B,.

(3) For the second segment, simply translate g;;(x) to the right by 2/3 units so that the initial point
coincides with the terminal point of the previous segment and the terminal point with the upper right
hand vertex of B;

(4) Then we move up to B, The segment that will go here is suitable translation of g_;;(x). etc. Then
follow the same construction with suitable translations of generators through Bs, Bg, ... By so that the
end pomnt of f;(X) coincides with the point (1, 1). The mitial construction of f5(x) 1s shown in Fig. 5.

y Bg (1,1)
SN |
Bfi \ B5/ \ B4
gy
2l NV2AENZ4
ANANZN N | £
NN A7 al
ANV B, B;
INZ ANV N4
7 IS\ N
g]_[ gl.l

Figure 5: Contracting fj(f) by 1/3 at the origin yields one of the generators g,,(t); the other generators are as follows: g_,,. mirror
image of g,; about the y-axis. g_, ,, mirror image of g_;; about the —x-axis and g, , that of g_,_; about the —y-axis. Suitable

o2-1 -2

translation of these generators forms a finer polygonal line from the origin to the point (1. 1). the second term f5(t) of the fractal
sequence [71].

The second set of generators for the second term f5(x) of the fractal sequence 1s constructed as follows:

(1) Contract f; through its projection cone with vertex at the origin and call its image go,.
(2) Flip g-» over the y-axis, i.e., take its mirror image with respect to it, and call it g o-;
(3) Flip g », over the —x-axis and call the image g - »;

(4) Flip g » > over the —v-axis and call the image g- ».
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(Fig. 5 shows the construction of the second set of generators)

We construct £5(x) using the generators g-»(X), g »(X). 2_2.5(x) and g- 5(x) as follows:

f5(x): ga(X), g2o(x) + (173, 1/3), gan(x) +(2/3, 0),

g 2(X) H(1.1/3), gm(x) +(2/3, 0), g 22(x) +(2/3, 2/3),

g (X)) + (173, 1/3), gn(x) + (0, 2/3),

22 (X)) + (173, 1), g2o(x) +(2/3, 2/3). 0 <t < 1/3. (48)

The next phase is, again, contraction of f5(x) by 1/3 to form the first of the four generators of f3 denoted by gis(x)
and taking suitable mirror images to complete its four generators. Then we iterate this phase of the construction to

generate the sequence of functions, fi(x), 2(x)..... f(x). with the following properties:

(M
2
3)
)
&)

Each f,(x).n=1, 2...., is made up of polygonal lines as suitable translations of the generators of f,(x).
Self-similarity 1s obvious from the construction since the onentation of f,,(x), for each n, 1s preserved.
Each f,(x) in the sequence is continuous;

The sequence f,(x). n =1, 2,..., is uniformly convergent;

Therefore, the sequence f,,(x), n =1, 2,..., converges to a continuous function f(x) whose graph clearly
fills up the unit square.

Filling up the Unit Cube

The above construction can be extended to fill up the unit cube by the continuous mapping of the unit interval as
follows:

(&)
2

Consider the unit cube with vertices A(0, 0, 0), B(1, 0, 0), C(0, 1, 0), D(0, 0, 1).
Subdivide the cube by the planes,

x=1/3.x=23y=1/3,y=2/3.2=1/3,z=2/3, 49)

mto 27 hittle cubes.

3)

)

&)

©)

As in the construction of the Peano space-filling curve, connect the diagonals of the little cubes from
A(0, 0, 0) suttably in the right order to form a polygonal line through the little cubes once and ending
up at so that the entire cubes is covered stretch and deform the unit interval AB to a polygonal line and
map each segment in suitable order into the diagonals of at the origin joining the vertices B(0, 0, 0)
and B(1/3, 1/3, 1/3),.... B(2/3, 2/3, 2/3) and B(l. 1, 1), where the last segment is mapped into the
diagonal of the little cube opposite the first little cube at the origin and the terminal point at the
opposite corner of the cube at its diagonal. Call this polygonal line f).

Contract f) to 1/3 into the first cube (by pushing it through its projection cone with vertex at the origin.
This contracted polygonal line becomes the first generator gy, of {5, take the mirror image of g,
about the y-axis; the image 1s the second generator g, of f>; take the mirror image of g,_;, about —x-
axis to obtain the third generator g,_,_;; take the mirror image of g;_;_, about the —y-axis to obtain the
fourth generator of .

Suitably translate these generators as in the construction of f; to form the appropriate finer polygonal
line from the origin to the point (1, 1) of the unit square made up of the segments of f; through the
contracted cubes with the terminal point at the vertex of the original cube opposite the origin.

Continue this iteration procedure to obtain a uniformly convergent sequence of continuous functions
1), f>, ... whose point-wise limit is a continuous function. We shall call this the Peano cube space-
filling curve.

E. E. Escultura
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This construction is constructivist, intuitive and the simplest so far. Earlier constructions use this theorem: the limit
of a uniformly convergent sequence of continuous functions is continuous. This construction can be extended to the
n-hypercube where n is odd.

The Infinitesimal Zigzag as Limit Set of Fractal

Consider without loss of generality the equilateral triangle ADB of Fig. 1 with one vertex at the origin A and with
base AB. We denote by g;;(t) side AD which we take as the initial generator. We take the mirror of g;;(t) with
respect to the y-axis and denote it by g_; 1(t) as the second generator. The third generator is the mirror image of the
second with respect to the negative x-axis denoted by g_,_,(t) and the fourth generator 1s the mirror image of the
third with respective to the negative y-axis denoted by g;_;(t). Their parametric equations are given by:

gn(®): (L y) - g Xy)=(. -0, 0<t<1/2. (50)

To construct function f,(t), we take gy(t). O <t < ‘4, as part of fi(t) and combine it with the translation of g, (1)
given by (X, y) = g1 (1) + (1/2, 1/2), 0 <t < 1/2. Its graph 1s the polygonal line formed by segments AD and DB.

To construct f5(t) in the iteration process, we contract gi,(t) by 4 and denote this by gao(t). This 1s one of the
generators. Rotate go»(t) by —m/2 to form another generator g- »(t). The generators are given by gx»(1): (x, v) = (L, 1),
g o(t) = (t, —1). 0 <t <1/4.
The function fo(t) is given by the following system of equations,

£5(1): (X, ¥) = gao(l). (X, V) = goot) + (1/3, 1/4),

(X, ¥) = ga(t) + (1/2, 0), (X, y) = goo(t) + (3/4, 1/4),

0<t<l/, (51)

and is represented by the polygonal line APQRB with x replaced by t and y replaced by x.

We iterate this construction to generate a sequence of functions f,(t) represented by the curve C,., n =1, 2...., with
the following properties:

(1) The sequence f,(t), n=1, 2..... is uniformly convergent and each f,, is continuous,

(2) For each n, the length | C, | of C, satisfies
lc.l=lc | =2 (52)

(3) The sequence f,, converges to a continuous function f,(t) represented by the curve Cy: vo(t) = O which coincides
point-wise with the ordinary constant curve C: x(t) =0, 0 <t <1, distinct from it since

|Col =timlc, | =tlim[¥2] =~2= |C|. (53)
This curve Cj is the infinitesimal zigzag.

One property of the superstring is that, left alone, it shrinks steadily. We model this behavior mathematically using
the superposition of a sinusoidal curve over a polygonal line as shown in [24, 34] (the sinusoidal curve is the
projection of the helix on the plane through 1ts axis). Given any real number r > 1, there exists an 1sosceles triangle
ADB with sides AD and DB having total length |AD| + |DB| =1 Following the above construction, we form a
sequence of polygonal lines whose limit 1n the sup norm 1s | AB | but whose length 1s r. Thus. AB 1s a coimncidence
ol countably many curves distinct from AB and from each other. The ordinary segment AB 1s the visible element of
the countably infinite space of generalized fractals. The rest is dark matter.
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The preceding construction can be generalized to apply to any triangle, ADB, where the slopes of AD and DB are
m; and m,, respectively, and —w < m; <o, —eo <m; < . Then we can pack countably infinite infinitesimal zigzags
into AB whose lengths vary along all values in the interval |AB . o) each of which has set-valued derivative (m;,
m_) at each point on AB.

A More General Geometrical Fractal
We first illustrate a convenient way of contracting a compacts set.

Given compact set B in R" (subspace of the n-Cartesian product of the real line) and any real number s, 0 <s <1,
then the set,

sB={sb|b e B}, (54)

1s similar to B in the sense that for any point b € B with components bk, k = 1, 2...., n, sbk/bk = s. i.e., ratios of
components are preserved. For a plane set B (Fig. 6) the set sB is a contraction of B along the projection cone B*
towards 1its vertex at the origin where remains in the line segment joining it to the origin during contraction. In fact,
B* can be expressed as

B*=uU{tB},0=<t<]1, (55)
obtained by taking the union of B with its projection cone whose vertex is the origin. Note that since for any real

number s, 0 < s < 1, lim s™ = 0, the compact set B in R" can be shrunk towards a point at the origin by iterated
construction,

b
2 i
sB,s B, ...,s"B,... (56)
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Figure 6: Plane geometrical figure B contracted by s by pushing it suitably through its projection cone towards its vertex at the
origin.

Suppose B has diameter of length 6, where
8 =sup{d(p.q) [ p.q € B} (57)

and d(p, q) 1s the Euclidean distance between p and q. Let s = 1/3. We rotate and translate B/3 suitably so that its
diameter coincides with the x-axis and its left extreme point 1s at the origin. We translate B/3 along the x-axis twice
one at a time so that their images join end to end at extreme points shown in Fig. 7a. Consider B/3 at the origin and
its two images and denote them by By, B2, By, respectively; denote their union by

B, =B;uBuBia (58)
B 1s the generator and first term of the nested fractal sequence we are constructing. We contract By, again, through

its projection cone by 1/3. The image consists of contraction of B/3 to B/3” at the origin and similar translation of
the latter twice one at a time so that they join end to end as in the previous construction shown in Fig. 7b. We denote
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the components of the contraction of By by B, Bas, Bas, respectively, where each is the contraction of B/3 to B/3%
Note that the image of B; lies inside B;; and the extreme right endpoint of Ba; coincides with the extreme right
endpoint of Bjs. We translate B;; (which contains B;) twice one at a time along the x-axis so that their images are
end to end with By, and denote them by Bs;. B2, Bos each component of which 1s equal to the contraction of B/3 to
B/3~ Then the second term of our nested geometrical fractal sequence is given by

B, = B2 uB2uBas (59)
We iterate the construction and form the nested fractal sequence,

B.n=213 ... (60)
and take k successive translations of g,, = 8B:

G =gn

G1:=g11 +(5/k. 0, 0)

Gizs=gn +(28/k.0,....0)

Gi=gn=(0k-10/k,0,..,0). (61)
Take the union of the G, m =1, 2, .... k — 1, to obtain,
G,=uUGp,,m=1,2, ... k-1 (62)

shown in Fig. 7 for a three-component generator.

We 1terate this construction to obtain a sequence G, G, ..., Gy, forming a nested geometrical fractal that shrink to
the x-axis jomning the origin and the pomt (3. 0. ..., 0). Again, obvious generalization can be done by allowing linear
combination of the different contractions of the generators at each stage in the affine transformation.

We note that the set limit, point-wise or in the sup norm, of a nested geometrical fractal set is chaos.

This method can be further generalized by allowing linear combination of different contractions of the generator at
each stage in the iteration process.

This fractal mathematics, particularly, infinitesimal oscillation i1s the key to an understanding of physical
singularities such as black hole and the tremendous but dark or latent energy 1n the nucleus of an atom. As we shrink
an oscillation to a point with its length preserved, its energy hv, where h is the Planck’s constant and v its frequency,
rises without bounds. However, 1t 1s dark (undetectable) with respect to our present means of observation such as
light due to difference in orders of magnitude between their frequencies (the same principle that applies to non-
resonance of radio or TV reception).
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Theorem 3 is really a prescription for pushing matter (of which oscillation is its universal motion and fractal its
universal configuration) into the hidden or dark region of matter. It is quite well known in physics today that 95% of
matter in our universe 1s dark [8, 42]. Dark matter consists of non-agitated superstrings, visible matter of agitated
superstrings; a primum 1s agitated superstring [43].

Note that the proofs of the above theorem are geometrical and much simpler and suitable for animation. In fact,
fractal construction of the Peano space-filling curve was animated 1in the presentation of [44]. This construction 1s an
extension of the method used in the Peano space-filling curve as limit of nested fractal sequence.

Fractal 1s everywhere in nature because it is one of the expressions of energy conservation identified in the law of
nature called Energy Conservation Equivalence. It is nature’s way of packing huge energy in a physical system or
carrying out a process most efficiently.

The New Real Number System

We now optimize the applications of qualitative mathematics to rectify the weakness of the real number system and
build the new real number system as the new foundation of mathematics that retains all the interesting and desirable
properties of the real numbers.

QOur Strategy

Our strategy is not simply to build the contradiction-free mathematical space called the new real number system R*
but also to meet the needs of natural science and practical affairs while retaining the valid interesting and useful
properties of the real number system. Then the new real number system must contain mathematics that has
worldwide applications. In particular, it must provide both continuous and discrete mathematics including the
decimals whose physical model, the metric system, has worldwide applications that other systems of measures are
converting to it. Any other useful mathematics that may arise we shall consider a bonus. Concretely, the new real
number system must be a continuum since physical space 1s which pervades everything and cannot be split into
disjomt nonempty subsets. The key 1s to choose the right consistent axioms upon which to build it. These are the
parameters for our construction.

The Terminating Decimals

We first build our base space, the terminating decimals R under these axioms:
Axiom 1. 0 and | are elements of R.

Axioms 2 and 3. The addition and multiplication tables.

Axioms 2 and 3 initially well-define O and 1 then the digits or basic integers 0, 1, 2, 3, 4, 5,6, 7, 8 and 9 and the
terminating decimals.

They are the elements of R as a mathematical space. The nonterminating decimals belong to the extension of R
called the new real number system denoted by R*. The elements 0 and 1 are called the additive and multiplicative
identities of R, respectively. Initially, they are ill-defined until axioms 2 and 3 well-define them as well as their
properties and relationship with the other integers and the terminating decimals.
We first define the digits or basic integers beyond 0 and 1:

1+1=22+1=3;...,8+1=9 (63)

We omit the statements of the addition and multiplication tables which are familiar to everyone since primary
school. Then we define the rest of the integers as base 10 place-value numerals:

Ay ... 4= a,10%+ a, 10"+ . +a,, (64)
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where the a,s are basic integers. The metric system models the system of decimals.

Now, we extend the integers to include the additive and multiplicative inverses —x and, if x is not 0, 1/x (reciprocal
of x), respectively. Note that the reciprocal of an integer exists only if it has no prime factor other than 2 or 5. We
also extend the operations + and x by re-stating associativity, commutativiy, distributativy, etc., and introduce
something else that is new: the rules of sign that we take as part of the axioms of this extension (we need not write
them as they are familiar). Then we define subtraction as a new operation: the difference between x and v or y
subtracted from x. Then we define another new operation: division of an integer x by a nonzero integer y, or
quotient, denoted by x/y and defined by:

xfy = x(14y). (65)

provided y 1s neither 0 nor a pime other than 2 and 5. We similarly extend distributivity of multiplication relative to
addition and include them as axioms of the extension. We consider subtraction the inverse operation of addition and
division that of multiplication as examples of duality that we shall consider in detail below. Formally, we define
subtraction of y from x by the equation: x — vy = x + (—y) and division by: x/y = x(1/y). We define a terminating
decimal as follows:

aa, 1. apbbg . by =a,10"+a, 10"+ +a,+b,/10
+bo/10° 4+ +b/10%= 210"+ a, , 10" '+ +a,

+5,(0.1) +bs(0. 1) + ... +b(0. ¥, (66)

where a,a, ;... a; is the integral part, b,b,... by the decimal part and 0.1 = 1/10. The terminating decimals are well-
defined since the reciprocal of 10 has only the factors 2 and 5. If x and y are relatively prime integers, y # 0O, then the
quotient x/y of x by y exists only if v has no prime factor other than 2 or 5. Such quotient is called rational.

The Nonterminating Decimals

We define the nonterminating decimals for the first time without contradiction and with contained ambiguity, i.e.,
approximable by certainty. We build them on what we know: the terminating decimals, our point of reference for all
its extensions.

A sequence of terminating decimals of the form,

N.ﬁ],N.alag, ...,N.alag___an, (67)

where N 1s integer and a, is called standard generating or g-sequence. Its nth g-term, N.aja,... a, defines and
approximates its g-limit, the nonterminating decimal,

N.aja,...a,.... (68)

at margin of error 10™ provided each nth g-term is computable, i.e., there is some algorithm or rule for computing
the nth digit from the digits. For example, the nth digit can be the last digit of the sum of the squares of its preceding
two digits. The digits of m can be computed from its infinite series expansion. A decimal is normal if every digit is
chosen at random the digits [16]. The g-limit of (67) is the nonterminating decimal (68) provided the nth digits are
not all O bevond a certain value of n;, otherwise, it is terminating. As in standard analysis where a sequence
converges, i.e., tends to a number, in the standard norm. a standard g-sequence, converges to its g-limit in the g-
norm where the g-norm of a decimal 1s itself. Note that a decimal consists of the integral part, the integer to the left
of the decimal point, and the decimal part, the sequence of digits to the right of the decimal pomnt which may be
terminating or nonterminating. Then we alternatively define an integer as the integral part of a decimal.

We recall that in the real number system a rational is defined as nonterminating periodic, i.e., the digits are periodic
after a certain digit, and a real number is irrational if it is nonterminating and nonperiodic. Each of these concepts is
ambiguous for it 1s impossible to verify if the digits are periodic or not. Thus, the concept irrational 1s ambiguous
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which we discard so that the decimals belong to two mutually exclusive classes, terminating or rational and
nonterminating,

We define the nth distance d, between two decimals a. b as the numerical value of the difference between their nth
g-terms, ay, by, i.e., d, = |a, — by| and their g-distance 1s the g-limit of d,, We denote by R* the g-closure of R, i.e., its
closure in the g-norm.

A terminating decimal 1s degenerate nonterminating decimal, i.e., the digits are all 0 beyond the nth decimal digit for
some n. The nth g-term of a nonterminating decimal repeats every preceding digit at the same order so that if finite
terms are deleted the nth g-term and g-limit are unaltered and the remaining terms comprise its g-sequence. Thus, a
nonterminating decimal may have many g-sequences and we consider them equivalent for having the same g-limit.

Since addition and multiplication and their inverse operations subtraction and division are defined only on terminating
decimals computing nonterminating decimals 1s done by approximating each term or factor by its nth g-term (called n-
truncation) which is a terminating decimal and using their approximation to find the nth g-term of the result of addition
or multiplication and 1ts mverse operation as its approximation at the same margin of error. This 1s standard
computation, i.e., approximation by decimal segment at the nth digit. Thus, with our premises we have retained
standard computation but avoided the contradictions and paradoxes of the real numbers. We have also avoided vacuous
statement, e.g., vacuous approximation, because nonterminating decimals are g-limits of g-sequences which belong to
R*. Moreover, we have contained the inherent ambiguity of nonterminating decimals by approximating them by their
nth g-terms which are not ambiguous being terminating decimals. In fact, the ambiguity of R* has been contained
altogether by its construction on the additive and multiplicative identities O and 1.

As we raise n, the tail digits of the nth g-term of any decimal recedes to the right indefinitely, i.e.. it becomes
steadily smaller until it is unidentifiable from the tail digits of the rest of the decimals. While it tends to O in the
standard norm it never reaches 0 in the g-norm since the tail digits are never all equal to O: it is also not a decimal
since the digits are not fixed. Since none of the tail digits of a decimal 1s distinguishable from the rest the set of the
tail digits of this set cannot be split into two distinet subsets which makes 1t a continuum in the algebraic sense.

In iterated computation to get closer and closer approximation of a decimal, e.g.. calculating f(n) = (2n"+1)/3n", n =
1. 2, ..., the tail digits may vary but recede to the right indefinitely and become steadily smaller leaving fixed digits
behind that define a decimal. We approximate the result by taking its initial segment, the nth g-term, to desired
margin of error by choosing n suitably.

The Dark Number d*

Consider the sequence of decimals,

(3"ajas...a.,n=1,2, ..., (69)
where 8 1s any of the decimals, 0.1, 0.2, 0.3, ..., 0.9, a;, ..., a;. basic integers (not all 0 simultancously). We call the
nonstandard sequence (68) d-sequence and its nth term nth d-term. For fixed combination of 8 and the a;s, ) =1, ..,

k, in (68) the nth d-term 1s a terminating decimal and as n increases indefinitely it traces the tail digits of some
nonterminating decimal and becomes smaller and smaller until it 1s indistinguishable from the tail digits of the other
decimals. As n — @ the nth d-term recedes to the right and tends to some number d. its d-limit in the d-norm, which
is never 0 (since the ajs are not simultaneously 0 and each d-term is not 0). It is called dark number d which is
indistinguishable from the rest of the d-limits of (68) for all other choices of & and ajs. Therefore, the set of all dark
numbers for all choices of & and a;s is a countable continuum (since any set of sequences is countable) denoted by
d*. Thus, d* is set-valued and a continuum (negation of discrete) of dark numbers; the decimals are joined by the
continuum d* at their tails. The dark number d* is a continuum in the algebraic sense since no notion of disjoint
open set is involved. Note that while the nth d-term of (69) becomes smaller and smaller with indefinitely increasing
n it is greater than 0 no matter how large n is so that if x is a decimal, 0 < d <x. If an equation or function is satisfied
by every dark number d we may substitute d* for d in it so that we can write 0 <d* <x in the above inequality.
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At the same time, since the tail digits of all the nonterminating decimals form a countable combination of the basic
digits 0, 1, ..., 9 they are countably infinite, i.e., in one-one correspondence with the integers but their d-limits,
being a continuum, have no cardinality (which applies only to discrete set). Any set whose elements can be labeled
by integers or there is a scheme for establishing one-one correspondence between them and the integers 1s countably
infinite. It follows that the countable union of countable set 1s countable.

Observation

Cantor’s diagonal method proves neither the existence of nondenumerable set nor that of a continuum; it proves only
the existence of countably infinite set, i.e., the off-diagonal elements consisting of countable union of countably
infinite sets. The off diagonal elements are not even well-defined because we know nothing about their digits (a
decimal is determined by its digits). Therefore, we have the following:

Corollary

(1) Nondenumerable set does not exist; (2) Only discrete set has cardinality; a continuum has none.

Corollary (1) follows from the fact that a well defined set can be constructed only from at most countable union of
finite set. Thus, the continuum hypothesis of set theory collapses. In view of the requirements of a mathematical
space that 1t must be well defined by consistent set of axioms. 1t 1s not necessary to develop set theory as a kind of
universal language for mathematics since its axioms are not valid in any mathematical space anyway unless there is
a set of consistent axioms that well defines it in which case it becomes a mathematical space.

Like a nonterminating decimal, an element of d* is unaltered if finite d-terms are altered or deleted from its d-
sequence. When 8 = 1 and aja,...ap = 1 (69) is called the basic or principal d-sequence of d*, its d-limit the basic
element of d*; basic because all its d-sequences can be derived from 1t. The principal d-sequence of d* 1s,

O n=1,2, ., (70)
obtained from the iterated difference,

N-(N-1)99... =1-0.99... =0, excess remainder of 0.1;

0.1 —0.09 =0, excess remainder of 0.01;

0.01 —0.009 = 0, excess remainder of 0.001; (71)

Taking the nonstandard g-limits of the extreme left side of (70) and recalling that the g-limit of a decimal is itself
and denoting by d the d-limit of the principal d-sequence on the rightmost side we have,

N-(N-1)99...=1-099..=d, (72)
Since all the elements of d* share its properties then whenever we have a statement “an element d of d* has property
P” we may write “d* has property P”, meaning, this statement is true of every element of d*. This applies to any
equation involving an element of d*. Therefore, we have,

d¥*=N-(N-1).99...=1-099.... (73)

Like a decimal. we define the d-norm of d* as d* and d* = 0.

Theorem

The d-limits of the indefinitely receding to the right nth d-terms of d* is a continuum that coincides with the g-limits
of the tail digits of the nonterminating decimals traced by those nth d-terms as the a,s vary along the basic digits.

If x 1s nonzero decimal, terminating or nonterminating, there 1s no difference between (0.1)" and x(0.1)" as they
become indistinguishably small, i.e., as n increases indefinitely. This is analogous to the sandwich theorem of
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calculus that says, lim(x/sinx) = 1, as x — 0: in the proof, it uses the fact that sinx <x < tanx or 1 < x/sinx < secx
where both extremes tend to 1 so that the middle term tends to 1 also. In our case, if 0 <x <1, 0 <x(0.1)" < (0.1)"
and both extremes tend to 0 so must the middle term and they become indistinguishably small as n increases
indefinitely. If x > 1. we simply reverse the inequality and get the same conclusion. Therefore, we may write, xd, =
d, (where d;, 1s the principal element of d*) and since the elements of d* share this property we may write xd* = d*,
meaning, that xd = d for every element d of d*. We consider d* the equivalence class of its elements. In the case of x
+ (0.1)" and x, we look at the nth g-terms of each and, as n increases indefinitely, x + (0.1)" and x become
indistinguishable. Now, since (0, 1)" > ((0.1)™" > 0 and the extreme terms both tend to 0 as n increases indefinitely,
so must the middle term tend to 0 so that they become indistinguishably small (the reason d* is called dark for being
indistinguishable from 0 vet greater than 0). We summarize our discussion as follows: if x is not a decimal integer (a
decimal integer has the form, x=N.99..., N =0, 1, ...) then,

X+ d* =x; otherwise, if x=N.99.. .,

x+d¥ =N+l x—d*=x;1f x # 0, xd* = d*; (d*'=d*,n=1,2,...,N=0,1,...;1 -d*=099...;

N-(N-1)99...:1-099... =d* N=1,2, ... (74)
It follows that the g-closure of R. i.e.. its closure in the g-norm. 1s R* which includes the additive and multiplicative
inverses and d*. We also include in R* the upper bounds of the divergent sequences of terminating decimals and
integers (a sequence 1s divergent if the nth terms are unbounded as n increases indefinitely, e.g., the sequence 9, 99,
...) called unbounded number u* which is countably infinite since the set of sequences is. We follow the same

convention for u*: whenever we have a statement “u has property P for every element u of u*” we can simply say
“u* has property P). Then u* satisfies these dual properties: for all x,

X +u* =u* for x # 0, xu* =u* (75)

Neither d* nor u* 1s a decimal and their properties are solely determined by their sequences. Then d* and u* have
the following dual or reciprocal properties and relationship:

0d* =0, 0/d* =0, Ou* =0, 0/u* =0, 1/d* = u*, 1/u*=d* (76)

Numbers like u* — u*, d*/d* and u*/u* are still indeterminate but indeterminacy 1s avoided by computation with the
g- or d-terms.

It 1s clear that d* and u* are the counterparts of the mfinitesimal and infinity of calculus; the only difference 1s that
both d* and u* are well defined.

The decimals are linearly ordered by the lexicographic ordering “<" defined as follows: two elements of R are equal
if corresponding digits are equal. Let

N.aa,..., M.b;bs... € R. (77)
Then,

N.aja,... <Mbb,if N<Morif N

=M, a, <b;1fa, =b,, a<b,, .., (78)
and, 1f X 1s any decimal we have,

0<d* <x<u* (79)

The trichotomy axiom follows from lexicographic ordering. This is the natural ordering mathematicians sought
among the real numbers but it does not exist there because it contradicts the trichotomy axiom.



