O'REILLY"

Semantic
Software
Design

A New Theory and Practical Guide for

Modern Architects

Eben Hewitt

Semantic Software Design

A New Theory and Practical Guide
for Modern Architects

Eben Hewitt

Beijing + Boston « Farnham « Sebastopol + Tokyo O'REILLY"

Semantic Software Design
by Eben Hewitt

Copyright © 2020 Eben Hewitt. All rights reserved.
Printed in the United States of America.
Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editors: Ryan Shaw and Proofreader: Charles Roumeliotis
Chris Guzikowski Indexer: Ellen Troutman-Zaig
Development Editor: Alicia Young Interior Designer: David Futato
Production Editor: Kristen Brown Cover Designer: Karen Montgomery
Copyeditor: Octal Publishing, LLC lllustrator: Rebecca Demarest
October 2019: First Edition

Revision History for the First Edition
2019-09-25: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781492045953 for release details.

The O'Reilly logo is a registered trademark of O’Reilly Media, Inc. Semantic Software Design, the cover
image, and related trade dress are trademarks of O'Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

978-1-492-04595-3
[LSI]

Table of Contents

= 7 T« < iX

Partl. Episteme: The Philosophy of Design

1. Origins of Software Architecture.ovvviiiiiiiiiiii it ainees 3
Software’s Conceptual Origins 3
Copies and Creativity 9
Why Software Projects Fail 10
The Impact of Failures 13

2. The Production of CONCEPLS. .. .ouvvuieeeiiiieiiieeiiiieenineeeananiaans 17
Semantics and the Software Factory 17
The Myth of Requirements 19
Semantics and Software Architecture 20
The Semantic Field 21
Designers Are Producers of Concepts 23

Designing Concepts 24
What Is a Concept? 25
Accomplish, Avoid, Fix 26
Outlining Your Concept on the Concept Canvas 26
Ideas Are Captured in a Lookbook 30
Fit to Purpose 32
The Concept Is Expressed in a Parti 33
An Example 35
Adding Aspects to the Parti 36
The Parti Is Based on a Series of Reveals 36

Understanding Ideas 38

Sense Certainty 38
Metacognition 39
Context 41
Sets 43
Relations 44
Advantages of Semantic Design 45
. Deconstructionand Design.oeriiiiiiiiiiiiii i 49
Introduction to Deconstruction 49
Simplexity 53
(De)composition 55
Affordance 57
Give Intention and Use Value to Negative Space 58
Give Design Decisions at Least Two Justifications 61
Design from Multiple Perspectives 62
Create a Quarantine or Embassy 63
Design for Failure 63
Design Language 64
Naming 64
Start Opposite the User 65
Platforms 66
Disappearing 66
Partll. Semantic Designin Practice
4, Design ThINKING. . ..vvurrnerriii it iieeseisesnnnesnnnnes n
Why Design Thinking? 71
Exploring Design Thinking 72
Principles 73
The Method 74
Implementing the Method 81
Summary 84
. Semantic Design Practices and Artifacts.covviiiiiiiiiiiiiiiiiiee, 85
Design Principles 86
Pair Designing 88
Murals 89
Vision Box 93
Mind Maps 94
Use Cases 95
Guidelines and Conventions 96

| Table of Contents

Utils
Domain
service-api
service-impl
service-client
Approaches
Design Definition Document
Considerations for Composing Your Design Definition
Position Papers
RAID
Presentations and Multiple Viewpoints
Summary

6. The Business ASPect. ... vvueruviuerunriieieeeernesierierneressnernnsons

Capturing the Business Strategy
Provide a Common Understanding
Align Strategic Objectives and Tactical Demands

Framework Introduction
Scope of the Framework

Create the Business Glossary

Create the Organizational Map

Create a Business Capabilities Model

Create a Process Map

Reengineer Processes

Take Inventory of Systems

Define the Metrics

Institute Appropriate Governance

Business Architecture in Applications

Summary

7. The Application ASPect.oviiuieeiiiiii i iiiie i eaiaaeeaans

Embrace Constraints
Decouple User Interfaces
UI Packages
On Platform Design
Service Resources and Representations
Domain Language
API Guidelines
Deconstructed Versioning
Cacheability and Idempotence
Independently Buildable
Strategies and Configurable Services

98
98
98
99
99
99
100
108
111
112
113
115

117
120
120
122
123
124
125
125
126
129
129
131
131
132
133
136

139
140
141
142
142
144
146
147
148
149
151
151

Table of Contents

| v

Application-Specific Services 153

Communicate Through Services 154
Expect Externalization 154
Design for Resilience 155
Interactive Documentation 157
Anatomy of a Service 158

UI Packages 158

Orchestrations 158

Engines 161

Data Accessors 165
Eventing 165

Structure of an Event Message 168
Contextual Services and Service Mixins 168
Performance Improvement Checklist 170
Separating API from Implementation 171
Languages 172
Radical Immutability 173
Specifications 175
A Comment on Test Automation 178
A Comment on Comments 179
Summary 181

8. TheDataAspect......vvvviiiiiiiiniiiiiiniiiiriiiieesinisessnnierssneeass 183

Business Glossary 183
Strategies for Semantic Data Modeling 184
Polyglot Persistence 187

Persistence Scorecard 188
Multimodeling 189
Data Models for Streams 191
Feature Engineering for Machine Learning 193
Classpath Deployment and Network Proxies 195
Peer-to-Peer Persistent Stores 196
Graph Databases 198

OrientDB and Gremlin 199
Data Pipelines 200
Machine Learning Data Pipelines 203
Metadata and Service Metrics 206
Auditing 207
ADA Compliance 207
Summary 208

vi | Tableof Contents

9. The Infrastructure ASPeCt.oovviiiieiiii it it iiiie e s eaaanians 209

Considerations for Architects 209
DevOps 211
Infrastructure as Code 212
Metrics First 215

Compliance Map 217
Automated Pipelines Also First 217
The Production Multiverse and Feature Toggling 218

Implementing Feature Toggles 219

Multi-Armed Bandits: Machine Learning and Infinite Toggles 221
Infrastructure Design and Documentation Checklist 222
Chaos 224
Stakeholder Diversity and Inside/Out 226
Summary 227

Partlll. Operations, Process, and Management

10. TheCreative Director.ovveeeiii i it iii e iee e eaaaaas 231
The Semantic Designer’s Role 231
Creative Directors Across Industries 234

In Fashion 235
In Film 236
In Video Games 238
In Advertising 238
In Theater 238
In Technology 239
What's In a Name? 241

11. Management, Governance, Operations.c.coovviivruieennninnenannnns 245
Strategy and Tooling 245
Oblique Strategies 247
Lateral Thinking and Working with Concepts 248
Conceptual Tests 252
Code Reviews 254
Demos 255
The Operational Scorecard 255
The Service-Oriented Organization 258

Cross-Functional Teams 262
The Designed Scalable Business Machine 263
Managing Modernization as a Program 266
Change Management 267

Table of Contents | vii

Governance 270

Goals 270
Metrics 270
Service Portfolio 271
Service Inventory and Metadata 271
Service Design Checklist 273
Service Design 273
Service Operations 274
Business Processes 275

Data 275
Errors 276
Performance 276
Security 276
Quality Assurance 277
Availability and Support 277
Deployment 278
Documentation 278
Further Reading on Organizational Design 279

12. The Semantic Design Manifesto............ccoviiiiiiiiiiiiiiiiiiiinennn., 281
The Manifesto 281

The Four Ideals 285

The Key Practices 286
Opening 292

A. The Semantic Design ToOIbOX.ovveenieiie i iee e 293
B. FurtherReading..........ovvniiiieiiiiriiiie e eetreeeaeniernennaennnes 297
T 303

vii | Tableof Contents

Preface

Thank you kindly for picking up Semantic Software Design. Welcome.

This book introduces a new method of software design. It proposes a new way of
thinking about how we construct our software. It is primarily focused on large
projects, with particular benefit for greenfield software projects or large-scale legacy
modernization projects.

A software project is said to fail if it does not meet its budget or timeline or deliver
the features promised in a usable way. It is incontrovertible, and well documented,
that software projects fail at alarming rates. Over the past 20 years, this situation has
grown worse, not better. We must do something different to make our software
designs more successful. But what?

My assumption here is that you're making business application software and services
to be sold as products for customers or you're working at an in-house IT department.
This book is not about missile guidance systems or telephony or firmware. It's not
interested in debates about object-oriented versus functional programming, though it
could apply for either realm. It’s certainly not interested in some popular framework
or another. And for the sake of clarity, my use of “semantic” here traces back to my
philosophical training, and as such, it concerns the matter of signs. “Semantic” here
refers more to semiology. It is not related or confined to some notion of Tim Berners-
Lee’s concept of the Semantic Web, honorable as that work is.

The primary audience is CTOs, CIOs, vice presidents of engineering, architects of all
stripes (whether enterprise, application, solution, or otherwise), software develop-
ment managers, and senior developers who want to become architects. Anyone in
technology, including testers, analysts, and executives, can benefit from this book.

But there is precious little code in the book. It is written to be understood, and hope-
fully embraced, by managers, leaders, intellectually curious executives, and anyone
working on software projects. That is not quite to say that it’s easy.

The ideas in this book might appear shocking at times. They are likely to irritate some
and perhaps even infuriate others. The ideas will appear as novel, perhaps even for-
eign and strange in some cases; the ideas will surface as borrowed and recast in other
cases, such as in the introduction to Design Thinking. Taken in sum, it's my bespoke
method, cobbled together over many years from a wide array of disparate sources.
Most of these ideas stem from my studies in philosophy in graduate school. This book
represents a tested version of the ideas, processes, practices, templates, and practical
methods that together I call “semantic design”

This approach to software design is proven and it works. Over the past 20 years, I
have been privileged to work as CTO, CIO, chief architect, and so on at large, global,
public companies and have designed and led the creation of a number of large,
mission-critical software projects, winning multiple awards for innovation, and, more
important, creating successful software. The ideas presented here in a sense form a
catalog of how I approach and perform software design. I've employed this approach
for well more than a decade, leading the design of software projects for $1 million,
$10 million, $35 million, and $50 million. Although this might seem a radical depar-
ture from traditional ways of thinking about software design, it's not conjecture or
theory: again, it's proven and it works. It is not, however, obvious.

We are forced to use the language we inherit. We know our own name only because
someone else told us that’'s what it was. For reasons that will become clear, in this
book I sometimes use the terms “architect” or “architecture” under erasure, meaning
it will appear with a strike, like this: architeet. That means that I am forced to use the
word for clarity or historical purposes to be communicative, but that it is not presen-
ted as the intended meaning in the current context.

The first part of the book presents a philosophical framing of the method. We high-
light what problem we're solving and why. This part is conceptual and provides the
theoretical ground.

The second part of the book is ruthlessly pragmatic. It offers an array of document
templates and repeatable practices that you can use out of the box to employ the ele-
ments of this method in your own daily work.

The third part provides an overview of some ways you manage and govern your soft-
ware portfolio to help contain the general entropy. The book ends with a manifesto
that summarizes concisely the set of principles and practices that comprise this
method.

Taken altogether, the book represents a combined theoretical frame and a gesture
toward its practice. It is not closed, however, and is intended to be taken up as a start-
ing point, elaborated, and improved upon.

This book was written very much as a labor of love. I truly hope you enjoy it and find
it useful as you apply the method in your own work. Moreover, I invite you to

x | Preface

contribute to and advance these ideas. I'd be honored to hear from you at eben@ale-
theastudio.com or AletheaStudio.com.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program ele-
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples

Supplemental material (code examples, exercises, etc.) is available for download at
https://aletheastudio.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not

Preface | xi

need to contact us for permission unless you're reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi-
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Semantic Software Design by Eben
Hewitt (O'Reilly). Copyright 2020 Eben Hewitt, 978-1-492-04595-3”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

0’Reilly Online Learning

For almost 40 years, O'Reilly Media has provided technology

O.RE I LLY and business training, knowledge, and insight to help compa-
nies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, conferences, and our online learning platform. O’Reilly’s
online learning platform gives you on-demand access to live training courses, in-
depth learning paths, interactive coding environments, and a vast collection of text
and video from O'Reilly and 200+ other publishers. For more information, please
visit http://oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/semantic-software-design.

xii | Preface

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web-
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

Thank you to the gloriously perspicacious Mike Loukides, whose guidance and
encouragement has helped to shape these ideas and bring this work to fruition. I am
very grateful to know you and work with you. Thank you for all that you do to
advance the discourse in our field.

Thank you to the incredibly diligent, detail-oriented, assiduous Alicia Young, my
development editor at O’'Reilly. Your partnership throughout the creation of this book
has been terrific; you've done so much to improve and focus it. It's a pleasure to work
with you.

Thank you to Mary Treseler, Neal Ford, Chris Guzikowski, and the entire Software
Architecture Conference team at O'Reilly. These venues you have created make the
space and atmosphere where these ideas can be further explored and challenged.
Thank you to Tim O’Reilly, for the awesome wonder that is O’Reilly Media.

Thank you to our outstanding enterprise architecture team at Sabre. Andrea Baylor,
Andy Zecha, Holt Hopkins, Jerry Rossi, Tom Murray and Tom Winrow, I am grateful
to work with each of you and for the joy of all of the beautiful, rigorous systems we
make together. Thank you to Jonathan Haynes for your reviews of early drafts and
your brave comments that helped improve this work. Thanks goes to Clinton Ander-
son and Justin Ricketts for all of your support.

Thank you to my parents, for inspiring in me the joy and practice of writing.

Thank you to my teachers, in particular Christine Ney and Bryan Short. I cherish you
for caring enough about the world of ideas to push your students so hard.

Thank you to Alison Brown for the many important ideas you contributed here and
for your amazing nurturing and support of this work. This is for you, as if to say else-
wise would make it unso.

Preface | xiii

Caopyrighted material

PART

Episteme: The Philosophy of Design

In everything, there is a share of everything.
—Anaxagoras

In this part, we explore the figure of design itself. We examine in new light how our
work designing software came to be shaped, and challenge some received views in
our industry. We reimagine architecture as the work of creating concepts, and see
how to express those concepts working with teams to create effective software

designs.

Caopyrighted material

CHAPTER 1
Origins of Software Architecture

We are most of us governed by epistemologies that we know to be wrong.
—Gregory Bateson

The purpose of this book is to help you design systems well and to help you realize
your designs in practice. This book is quite practical and intended to help you do
your work better. We must begin theoretically and historically. This chapter is meant
to introduce you to a new way of thinking about your role as a software architect that
will inform both the rest of this text and the way in which you approach your projects
moving forward.

Software’s Conceptual Origins

We shape our buildings, and thereafter they shape us.
—Winston Churchill

FADE IN:

INT. A CONFERENCE HALL IN GARMISCH GERMANY, OCTOBER
1968 — DAY

The scene: The NATO Software Engineering
Conference.

Fifty international computer professors and crafts-
people assembled to determine the state of the
industry in software. The use of the phrase soft-
ware engineering in the conference name was delib-
erately chosen to be “provocative” because at the
time the makers of software were considered so far
from performing a scientific effort that calling

themselves “engineers” would be bound to upset the
established apple cart.

MCILROY

We undoubtedly get the short end of
the stick in confrontations with
hardware people because they are the
industrialists and we are the
crofters.

(pause)

The creation of software is backwards
as an industry.

KOLENCE

Agreed. Programming management will
continue to deserve its current poor
reputation for cost and schedule
effectiveness until such time as a
more complete understanding of the
program design process is achieved.

Though these words were spoken, and recorded in the conference minutes in 1968,
they would scarce be thought out of place if stated today.

At this conference, the idea took hold was that we must make software in an indus-
trial process.

That seemed natural enough, because one of their chief concerns was that software
was having trouble defining itself as a field as it pulled away from hardware. At the
time, the most incendiary, most scary topic at the conference was “the highly contro-
versial question of whether software should be priced separately from hardware.” This
topic comprised a full day of the four-day conference.

This is a way of saying that software didn’'t even know it existed as its own field, sepa-
rate from hardware, a mere 50 years ago. Very smart, accomplished professionals in
the field were not sure whether software was even a “thing,” something that had any
independent value. Let that sink in for a moment.

Software was born from the mother of hardware. For decades, the two were (literally)
fused together and could hardly be conceived of as separate matters. One reason is
that software at the time was “treated as though it were of no financial value” because
it was merely a necessity for the hardware, the true object of desire.

Yet today you can buy a desktop computer for $100 that’s more powerful than any
computer in the world was in 1968. (At the time of the NATO Conference, a 16-bit
computer—that’s two bytes—would cost you around $60,000 in today’s dollars.)

4 | Chapter 1: Origins of Software Architecture

And hardware is produced on a factory line, in a clear, repeatable process, determined
to make dozens, thousands, millions of the same physical object.

Hardware is a commodity.

A commodity is something that is interchangeable with something of the same type.
You can type a business email or make a word-processing document just as well on a
laptop from any of 50 manufacturers.

And the business people want to form everything around the efficiencies of a com-
modity except one thing: their “secret sauce” Coca-Cola has nearly 1,000 plants
around the world performing repeated manufacturing, putting Coke into bottles and
cans and bags to be loaded and shipped, thousands of times each day, every day, in
the same way. It’s a heavily scrutinized, sharply measured business: an internal com-
modity. Coke is bottled in factories in identical bottles in identical ways, millions of
times every day. Yet only a handful of people know the secret formula for making the
drink itself. Coke is copied millions of times a day, every day, and bottled in an identi-
cal process. But making the recipe a commodity would put Coke out of business.

In our infancy, we in software have failed to recognize the distinction between the
commodities representing repeated, manufacturing-style processes, and the more
mysterious, innovative, one-time work of making the recipe.

Coke is the recipe. Its production line is the factory. Software is the recipe. Its produc-
tion line happens at runtime in browsers, not in the cubicles of your programmers.

Our conceptual origins are in hardware and factory lines, and borrowed from build-
ing architecture. These conceptual origins have confused us and dominated and cir-
cumscribed our thinking in ways that are not optimal, and not necessary. And this is
a chief contributor to why our project track record is so dismal.

The term “architect” as used in software was not popularized until the early 1990s.
Perhaps the first suggestion that there would be anything for software practitioners to
learn from architects came in that NATO Software Engineering conference in Ger-
many in 1968, from Peter Naur:

Software designers are in a similar position to architects and civil engineers, particularly
those concerned with the design of large heterogeneous constructions, such as towns
and industrial plants. It therefore seems natural that we should turn to these subjects for
ideas about how to attack the design problem. As one single example of such a source of
ideas, I would like to mention: Christopher Alexander: Notes on the Synthesis of Form
(Harvard Univ. Press, 1964) (emphasis mine).

This, and other statements from the elder statesmen of our field at this conference in
1968, are the progenitors of how we thought we should think about software design.
The problem with Naur’s statement is obvious: it’s simply false. It’s also unsupported.
To state that were in a “similar position to architects” has no more bearing logically,
or truthfully, to stating that we’re in a similar position to, say, philosophy professors,

Software’s Conceptual Origins | 5

or writers, or aviators, or bureaucrats, or rugby players, or bunnies, or ponies. An
argument by analogy is always false. Here, no argument is even given. Yet here this
idea took hold, the participants returning to their native lands around the world,
writing and teaching and mentoring for decades, shaping our entire field. This now
haunts and silently shapes—perhaps even circumscribes and mentally constrains,
however artificially—how we conduct our work, how we think about it, what we
“know” we do.

Origins

To be clear, the participants at the NATO conference in 1968 were
very smart, accomplished people, searching for a way to talk about
a field that barely yet existed and was in the process of forming and
announcing itself. This is a monumental task. I hold them in the
highest esteem. They created programming languages such as
ALGOL60, won Turing Awards, and created notations. They made
our future possible, and for this I am grateful, and in awe. The
work here is only to understand our origins, in hopes of improving
our future. We are all standing on the shoulders of giants.

Some years later, in 1994, the Gang of Four created their Design Patterns book. They
explicitly cite as inspiration the work of Christopher Alexander, a professor of archi-
tecture at University of California at Berkeley and author of A Pattern Language,
which is concerned with proven aspects of architecting towns, public spaces, build-
ings, and homes. The Design Patterns book was pivotal work, one which advanced the
area of software design and bolstered support for the nascent idea that software
designers are architects, or are “like” them, and that we should draw our own concerns
and methods and ideas from that prior field.

This same NATO conference was attended by now-famous Dutch systems scientist
Edsger Dijkstra, one of the foremost thinkers in modern computing technology. Dijk-
stra participated in these conversations, and then some years later, during his chair-
manship at the Department of Computer Science at the University of Texas, Austin,
he voiced his vehement opposition to the mechanization of software, refuting the use
of the term “software engineering,” likening the term “computer science” to calling
surgery “knife science” He concluded, rather, that “the core challenge for computing
science is hence a conceptual one; namely, what (abstract) mechanisms we can con-
ceive without getting lost in the complexities of our own making” (emphasis mine).

This same conference saw the first suggestion that software needed a “computer engi-
neer; though this was an embarrassing notion to many involved, given that engineers
did “real” work, had a discipline and known function, and software practitioners were
by comparison ragtag. “Software belongs to the world of ideas, like music and

6 | Chapter 1: Origins of Software Architecture

mathematics, and should be treated accordingly” Interesting. Let’s hang on to that for
a moment.

* ok k

Cut to:
INT. PRESIDENT’S OFFICE, WARSAW, POLAND — DAY

The scene: The president of the Republic of Poland
updates the tax laws.

In Poland, software developers are classified as creative artists, and as such receive a
government tax break of up to 50% of their expenses (see Deloitte report). These are
the professions categorized as creative artists in Poland:

« Architectural design of buildings

« Interior and landscape

« Urban planning

« Computer software

« Fiction and poetry

« Painting and sculpture

« Music, conducting, singing, playing musical instruments, and choreography

« Violin making

« Folk art and journalism

« Acting, directing, costume design, stage design

« Dancing and circus acrobatics
Each of these are explicitly listed in the written law. In the eyes of the Polish govern-

ment, software development is in the same professional category as poetry, conduct-
ing, choreography, and folk art.

And Poland is one of the leading producers of software in the world.
Cut to: HERE—PRESENT DAY.

Perhaps something has occurred in the history of the concept of structure that could
be called an event, a rupture that precipitates ruptures.

This rupture would not have been represented in a single explosive moment, a com-
fortingly locatable and suitably dramatic moment. It would have emerged among the
ocean tides of thought and expression, across universes, ebbing and flowing, with

Software's Conceptual Origins | 7

fury and with lazy ease, over time, until the slow trickling of traces and cross-
pollination reveal, only later, something had transformed. Eventually, these traces
harden into trenches, fixing thought, and thereby fixing expression and realization.

What this categorization illuminates is the tide of language, the patois of a practice
that shapes our ideas, conversation, understanding, methods, means, ethics, patterns,
and designs. We name things, and thereafter, they shape us. They circumscribe our
thought patterns, and that shapes our work.

The concept of structure within a field, such as we might call “architecture” within the
field of technology, is thereby first an object of language.

Our language is constituted of an interplay of signs and of metaphors. A metaphor is
a poetic device whereby we call something something that it isn't in order to reveal a
deeper or hidden truth about that object by underscoring or highlighting or offsetting
certain attributes. “All the world’s a stage, and all the men and women merely players”
is a well-known line from Shakespeare’s As You Like It.

We use metaphors so freely and frequently that sometimes we even forget they are
metaphors. When that happens, the metaphor “dies” (a metaphor itself!) and becomes
the name itself, drained of its original juxtaposition that gave the phrase depth of
meaning. We call these “dead metaphors” Common dead metaphors include the “leg”
of a chair, or when we “fall” in love, or when we say time is “running out,” as would
sand from an hourglass. When we say these things in daily conversation, we do not
fancy ourselves poets making metaphors. We don’t see the metaphor, or intend one.
It's now just The Thing.

In technology, “architecture” is a nonnecessary metaphor. That word, and all it
encumbered by, directs our attention to certain facets of our work.

Architecture is a dead metaphor: we mistake the metaphor for The Case, the fact.

There has been considerable hot debate, for decades, over the use of the term archi-
tect as applied to the field of technology. There are hardware architectures, applica-
tion architectures, information architectures, and so forth. So can we claim that
architecture is a dead metaphor if we don't quite understand what it is we're even
referring to? We use the term without quite understanding what we mean by it, what
the architect’s process is, and what documents they produce toward what value.
“Architect” means, from its trace in Greek language, “master builder”

What difference does it make?

8 | Chapter 1:Origins of Software Architecture

Copies and Creativity

No person who is not a great sculptor or painter can be an architect. If he is not a sculptor or
painter, he can only be a builder.

—]John Ruskin, “True and Beautiful”

Dividing roles into distinct responsibilities within a process is one useful and very
popular way to approach production in business. Such division makes the value of
each moment in the process, each contribution to the whole, more direct and clear.

This fashioning of the work, the “division of labor,” has the additional value of mak-
ing each step observable and measurable.

This, in turn, affords us opportunities to state these in terms of SMART goals, and
thereby reward and punish and promote and fire those who cannot meet the objec-
tive measurements. Credit here goes at least in some part to Henry Ford, who
designed his car manufacturing facilities more than 100 years ago. His specific aim
was to make his production of cars cheap enough that he could sell them to his own
poorly compensated workers who made them, ensuring that what he could not keep
in pure profit after the consumption of raw materials—his paid labor force—would
return to him in the form of revenue.

This way of approaching production, however, is most (or only) useful when what is
being produced is well defined and you will make many (dozens, thousands, or mil-
lions) of copies of identical items.

In Lean Six Sigma, processes are refined until the rate of failure is reduced to six stan-
dard deviations from the mean, such that your production process allows 3.4 quality
failures per million opportunities. We seek to define our field, to find the proper
names, in order to codify, and make repeatable processes, and improve our happiness
as workers (the coveted “role clarity”), and improve the quality of our products.

But one must ask, how are our names serving us?

Processes exist to create copies. Do we ever create copies of the software itself? Of
course, we create copies of software for distribution purposes: we used to burn copies
of web browsers onto compact discs and send them in the mail, and today we distrib-
ute copies of software over the internet. That is a process facilitating distribution,
however, and has little relation to the act of creating that single software application
in the first place. In fact, we never do that.

Processes exist, too, in order to repeat the act of doing the same kind of thing, if not
making the same exact thing. A software development methodology catalogs the
work to be done, and software development departments have divisions and (typi-
cally vague) notions of the processes we undergo in the act of creating any software
product or system. So, to produce software of some kind, we define roles that

Copies and Creativity | 9

participate in some aspect of the process, which might or might not be formally rep-
resented, communicated, and executed accordingly.

This problem of determining our proper process, our best approach to our work,
within the context of large organizations that expect measurable results according to
a quarterly schedule, is exacerbated because competition and innovation are fore-
grounded in our field of technology. We must innovate, make something new and
compelling, in order to compete and win in the market. As such, we squarely and
specifically aim not to produce something again that has already been produced
before. Yet our embedded language urges us toward processes and attendant roles
that might not be optimally serving us.

Such inventing suggests considerable uncertainty, which is at odds with the Fordian
love of repeatable and measurable process. And the creation of software itself is
something the planet has done for only a few decades. So, to improve our chances of
success, we look at how things are done in other, well-established fields. We have
embraced terms like “engineer” and “architect,” borrowed from the world of con-
struction, which lends a decidedly more specification-oriented view of our own pro-
cess. We created jobs to encapsulate their responsibilities but through a software lens,
and in the past few decades hired legions of people so titled, with great hopes.

More recently, we in technology turned our sights on an even more venerable mode
of inquiry, revered for its precision and repeatability: science itself. We now have data
“scientists.” Although the term “computer scientist” has been around perhaps the
longest, no one has a job called “computer scientist” except research professors,
whose domain all too often remains squarely in the theoretical sphere.

The design of software is no science.

Our processes should not pretend to be a factory model that we do not have and do
not desire.

Such category mistakes silently cripple our work.

Why Software Projects Fail

As I mentioned earlier in this chapter, software projects fail at an astonishing rate:

« In 2008, IBM reported that 60% of IT projects fail. In 2009, ZDNet reported that
68% of software projects fail.

» By 2018, Information Age reported that number had worsened to 71% of soft-
ware projects being considered failures.

10 | Chapter 1: Origins of Software Architecture

« Deloitte characterized our failure rate as “appalling” It warns that 75% of Enter-
prise Resource Planning projects fail, and Smart Insights reveals that 84% of digi-
tal transformation projects fail. In 2017 Tech Republic reported that big data
projects fail 85% of the time.

« According to McKinsey, 17% of the time, IT projects go so badly that
they threaten the company’s very existence.

Numbers like this rank our success rate somewhere worse than meteorologists and
fortune tellers.

QOur projects across the board do not do well. Considering how much of the world is
run on software, this is an alarming state for our customers, us as practitioners, and
those who depend on us.

Over the past 20 years, that situation has grown worse, not better.
A McKinsey study of 5,600 companies found the following:

On average, large IT projects run 45 percent over budget and 7 percent over time,
while delivering 56 percent less value than predicted. Software projects run the highest
risk of cost and schedule overruns.

Of course, some projects come in on time and on budget. But these are likely the “IT”
projects cited in the McKinsey study, which include things like datacenter moves, lift-
and-shift projects, disaster-recovery site deployments, and so forth. These are com-
plex projects (sort of: mostly they’re just big). I have certainly been involved in several
such projects. They're different than trying to conceive of a new software system that
would be the object of design.

The obvious difference is that the “IT” projects are about working with actual physi-
cal materials and things: servers to move and cables to plug in. It's decidable and clear
when you're done and what precise percentage of cables you have left to plug in. That
is, many CIO IT projects of the back-office variety are not much more creative than
moving your house or loading and unloading packages at a warehouse: just make the
right lists and tick through them at the right time.

It’s the CTO’s software projects that run the greatest risk and that fail most spectacu-
larly. That’s because they require the most creative, conceptual work. They demand
making a representation of the world. When you do this, you become involved in
signs, in language, in the meaning of things, and how things relate. You're stating a
philosophical point of view based in your epistemology.

You're inventing the context wherein you can posit signs that make sense together
and form a representation of the real world.

That’s so much harder.

Why Software Projects Fail | 11

It's made harder still when we don’t even recognize that that’s what we are doing. We
don’t recognize what kind of projects our software projects are. We are in the seman-
tic space, not the space of physical buildings.

The McKinsey study demarcates IT projects as if they are all the same because they
are about “computer stuff” (I speculate). The results would look very different if
McKinsey had thought better and saw that these I'T projects should be lumped in with
facilities management. The creation of a software product is an entirely different mat-
ter, not part of “I'T” any more than your design meetings in a conference room are
part of the facilities company you lease your office space from.

But creative work need not always fail. Plenty of movies, shows, theatrical produc-
tions, music performances, and records all get produced on time and on budget. The
difference is that we recognize that those are creative endeavors and manage them as
such. We think we're doing “knife science” or “computer science” or “architecture™
we're not. We're doing semantics: creating a complex conceptual structure of signs,
whose meaning, value, and very existence is purely logical and linguistic.

This assumes that everyone from the executive sponsors to the project team had fair
and reasonable understanding of what was wanted, time to offer their input on the
scope, the budget, the deadline. We all well know that they do not. Even if they did,
they're still guessing at best, because what they are doing by definition has never been
done before. And it’s potentially endless, because the world changes, and the world is
an infinite conjunct of propositions. Where do you want to draw the line? Where,
really, is the “failure” here?

Because software is by its nature semantic, it’s as if people who aren’t software devel-
opers don’t quite believe it exists. These are hedge fund managers, executives, MBA-
types who are used to moving things on a spreadsheet and occasionally giving
motivating speeches. They don’t make anything for a living.

Software projects often fail because of a lack of good management.

The team knows from the beginning the project cannot possibly be delivered on time.
They want to please people, they worry that management will just get someone else to
lie to them and say the project can be delivered on the date that was handed to them.

As a technology leader in your organization, it’s part of your job to help stop this way
of thinking and have the healthy, hard conversations with management to set expect-
ations up front. They can have some software in six months. It's not clear what exactly
that will be. Software projects succeed when smart, strategic, supportive executives
understand that this is the deal and take that leap of faith with you to advance the
business. When greedy, ignorant executives who worry about losing a deal or getting
fired themselves dictate an impossible deadline and tremendous scope, you must
refuse it. This is in part how the failed software of the Boeing 737 Max was created.

12 | Chapter 1: Origins of Software Architecture

The McKinsey study goes on to state the reasons it found for these problems:

« Unclear objectives

« Lack of business focus
» Shifting requirements
« Technical complexity

« Unaligned team

« Lack of skills

« Unrealistic schedules

« Reactive planning

These are the reasons that software projects fail.

If we could address even half of these, we could dramatically improve our rate of suc-
cess. Indeed, when we focus on the semantic relations, on the concept of what we are
designing, and shift our focus to set-theorizing the idea of the world that our software
represents, our systems do better.

Of these reasons, the first five could be addressed by focusing on the concept: the idea
of the software, what its for, and the clear and true representation of the world of
which the software is an image. The remaining three are just good old fashioned bad
management.

The Impact of Failures

So perhaps now we can say there is a rupture between our stated aims, the situation in
which we find ourselves as technologists, and how we conceptualize and approach
our work. We are misaligned. The rupture is not singular. It shows itself in tiny cracks
emerging along the surface of the porcelain.

But what does it mean for a software project to fail? Although metrics vary, in general
these refer to excessive overruns of the budget and the proposed timeline, and
whether the resulting software works as intended. Of course, there are not purely
“failed” and purely “successful” projects, but not meeting these three criteria means
that expectations and commitments were not met.

And even when the project is done (whether considered a failure or not), if some
software has shipped because of it, the resulting software doesn’t always hit the mark.
Tech Republic cites a study showing that in 2017 alone, software failures “affected 3.6
billion people, and caused $1.7 trillion in financial losses and a cumulative total of
268 years of downtime.”

The Impact of Failures | 13

Worse, some of these have more dire consequences. A Gallup study highlights the
FBI's Virtual Case File software application, which “cost U.S. taxpayers $100 million
and left the FBI with an antiquated system that jeopardizes its counterterrorism
efforts” A 2011 Harvard Business Review article states that the failures in our IT
projects cost the US economy alone as much as $150 billion annually.

The same HBR article recounts the story of an IT project at Levi Strauss in 2008. The
plan was to use SAP (a well-established vendor and leader in its technology) and
Deloitte (a well-known, highly regarded leader in its field) to run the implementation.
This typical project, with good names attached, to do nothing innovative whatsoever,
was estimated at $5 million. It quickly turned into a colossal $200 million nightmare,
resulting in the company having to take a $193 million loss against earnings and the
forced resignation of the CIO.

Of course, that’s small stakes compared with what President Obama called the
“unmitigated disaster” of the HealthCare.gov project in 2013, in which the original
cost was budgeted at $93 million, soon exploding to a cost 18 times that, of $1.7 bil-
lion, for a website that was so poorly designed it was able to handle a load of only
1,100 concurrent users, not the 250,000 concurrent users it was receiving,.

Discovering a root cause in all this history will be overdetermined: there are failures
of leadership, management, process design, project management, change manage-
ment, requirements gathering, requirements expression, specification, understanding,
estimating, design, testing, listening, courage, and in raw coding chops.

Where are the heroes of architecture and Agile across all this worsening failure?

Our industry’s collective work on methods, tooling, and practices has not improved
our situation: in fact, it is only becoming markedly worse. We have largely made mere
exchanges, instead of improvements.

It’s also worth nothing that we in software love to tout the importance of failure. Fail-
ure itself, of course is horrible. It is not something to be desired.

What people mean, or at least should mean, when they say this, is that what is impor-
tant is to learn and to do something new to address the aspects that helped lead to a
failure, and that sometimes (often) failure accompanies doing something truly new.
It's easy to repeat a known formula, but we must be supported in attempts to try
something different, and take a long view.

The importance of failure, in this context, is not to celebrate it. It is to underscore that
we are not doing good enough work. We can do better. There is no easy fix. As Fred
Brooks stated in his follow-up essay to 1975% excellent book, The Mythical Man
Month: Essays on Software Engineering, there is no silver bullet.

But there is a way.

14 | Chapter 1: Origins of Software Architecture

It starts with a question. What would our work look like if instead of borrowing bro-

ken metaphors and language that cripple our work, we stripped away these traces,
and rethought the essence of our work?

What we would be left with are concepts, which are at the center of a semantic
approach to software design. The next chapter unpacks the idea of concepts as they
apply to our proposed approach to your role in designing effective software.

The Impact of Failures | 15

Caopyrighted material

CHAPTER 2
The Production of Concepts

The external character of labor for the worker appears in the fact that it is not his own, but
someone else5, that it does not belong to him, that in it he belongs, not to himself, but to
another.

—Karl Marx

Semantics and the Software Factory

The manufacturing process requires a system. The process of making a system for
anything itself requires a system. This is a meta-model: a way of making models.

In 1844, German economist Karl Marx wrote about the problems of the division of
labor in his Economic and Philosophical Manuscripts. By dividing work into many
jobs, each with only one distinct responsibility, the work within each field becomes
repetitive, rote, and is drained of opportunity for creativity. Such is the fate of indus-
trial workers—our forebears in computer hardware factories from which software has
separated only in its physical space of production, but not entirely in our minds as
developers and designers. And certainly not in the minds of corporate leaders.

In the built world, architecture as a field is concerned with the transformation of raw
materials within a given site to create a concrete space, fit to a stated purpose. This
space might be a resort, a concert hall, a cathedral, a theater, an office building, a
bridge, a tunnel, or a park. The building architect starts with the ground, the site on
which the building will be built. The site is clearly defined and preestablished in no
uncertain terms by real estate ownership and zoning laws. Humans have had homes
and offices and hotels and formal gowns and luggage and many of the objects of
architecture and design for thousands of years. The ideas of going to work in an
office with others, or attending a musical performance, or traversing a body of water
safe and dry, these are well-understood human functions that have been going on for
thousands of years, across all cultures across the entire settled world.

17

We in software and systems have chosen for our conceptual parents “architecture”
and “design.” These are the words we use to describe our work. We print them on
business cards, and they rest in the fields of endless human resources databases to
describe our job functions. Qur field is prescribed by their inherited language and
conceptual models. This is understandable, but perhaps inadequate.

It's understandable because the building architect is concerned primarily with making
something that must be sturdy, usable (fit to purpose), and delightful. The conceptual
miss comes, I assert, because these fields are not predominated by a concern for
something novel (an innovation, the expounding of an idea that is new). Put bluntly,
building architects make rather an object that did not exist before, within a tightly
prescribed realm of human interaction.

However, when something is new as an idea, and not merely a latest realization of a
very old idea, we call it an invention. Or art. In this way, the term architecture, the
nonnecessary metaphor that has been carried over time onto our mental model of
how we think of our work, how we talk about it, and what we think our responsibili-
ties are with respect it, has converged into a dead metaphor, perhaps constraining or
hampering our work more than it any longer enables and supports it.

What if, in that moment decades ago, as encapsulated at the NATO Conference in
1968, in that moment as fumbling around for how to assign metaphors to ourselves
to understand our work, in an effort to bootstrap our field, we had instead adopted
the term “composer;” or conductor, or play director, or writer? They were on the table.
It's not unthinkable. But our entanglement, our fusion, at the time with the manufac-
turing processes in hardware, have led us down a path that has created many wonder-
ful programs and advances in software.

But perhaps these advances are in spite of, not because of, these industrial metaphors?
Or rather, that they were critical at the time, but no longer as useful?

The world has changed in these many decades since the NATO Conference in 1968.
The world is more synthetic. Jobs must move up the value chain. A faculty member of
the Arizona State University School of Architecture recently told me that the unem-
ployment rate for architects in the Phoenix area is higher than 50%. In fact, the best
way to face the highest possible unemployment rate for yourself is to go to architec-
ture school. It’s not a job that creates enough value in the world of physical buildings
because computers and civil engineering codes aid lower-level modelers. Such a fate
is coming for architects in software who cannot determine how to move up in the
chain of value creation for customers.

We have been altogether too inward facing, burdened by thinking the job was to cre-
ate an enterprise ontology, or fill out the chart of a Zachman framework and think we
have done something useful. We have not. We have merely complied with one avail-
able method of trying to understand our own place in the world, justifying an

18 | Chapter2: The Production of Concepts

existence, the frame of a field grappling with its own identity. This was a necessary
stage to move through, yet we cannot remain in stasis there.

To be clear, I am not merely arguing for us to all have a title change and get on with
the same practices. But because the name begat practices that don't fit our work, it
stands to reason we might learn from having new ones.

The Myth of Requirements

In system design, we speak of the “requirements” This word creates a false center, a
supposed constant, which creates problems for our field. These problems come in the
form of a binary opposition set up between the product management team and the
development team. It supposes, in the extreme form, that the product management
team knows what to build and that the development team are passive receptacles into
whom we insert this list of what they are required to build. Within an Agile method,
some freedom is perhaps allowed to the development team in how to design within
that list of requirements.

The requirements, however, do not exist. But the requirements, like everything else of
value, are just made up by someone. They are not first known and then told. They are
invented.

Part of the work of the new architect-creative is to help create those requirements,
both functional and nonfunctional. To see what needs to be done, what might work,
what structure accounts for what we think we want the system to do, or what we
think someone else we've never met might want or need the system to do three years
from now when it’s harder to change and how to accommodate that.

How do we know that Indiana Jones is the archaeology professor who finds the Lost
Ark of the Covenant? Because George Lucas invented a character named Indiana
Smith, and Steven Spielberg didn't like the name so he changed it to “Indiana Jones.”
And all of a sudden there is a world of the 1930s and a man standing in it and he
needs to go do something and someone needs to get in his way and how might that
work? That’s how requirements are made, in the movies and in software. People make
stuff up.

When you make stuff up as a software designer, that world, like the world of the
movie into which you posit a character with a conflict, is your context. It’s the place
where you posit signs that have meaning in relation to one another. It’s your semantic
field.

The Myth of Requirements | 19

Semantics and Software Architecture

This book has a single primary purpose among many purposes: to help you better
design software. To do so, it advances a new model, a new approach, a new set of
ideas and tools called semantic software design.

Why “semantics™?

Semantics, as a field, is concerned with the production of meaning, and how logic and
language are used. It is “the linguistic and philosophical study of meaning, in lan-
guage, programming languages, formal logic, and semiotics. It is concerned with the
relationship between signifiers—like words, phrases, signs, and symbols—and what
they stand for in reality”! It is about sets. It is about relations, and the possibilities that
language itself creates, performs, and cuts off.

This precisely describes the role that arehiteets designers should be playing, the kind
of work they should be doing. The logic demanded by the compiler and the business
requirements remain logical problems, set theoretical problems. Everything the
developer does is expressed in language.

Semantics = logic + language.

That sounds exactly like the work we do when we are allowed to do our best work as
software developers. But we've been trained around these incorrectly conceived
metaphors. So we don’t have a set of practices to even see where we are making the
little mistakes that accrue toward failed projects. We have practices that rather dis-
courage the kind of thinking we must embrace to make successtul designs.

The problem with software—a chief reason our projects fail—is a failure of our lan-
guage. We are not architects. Not even close. We do not build buildings with an obvi-
ous and known prior purpose, which is an approximate copy of the same kind of
building people have been making and using for thousands of years, using tangible
commodity materials on a factory line. Quite the opposite.

Our only material is that of language and ideas, names and meanings, signifiers and
signifieds. Our only material is semantics.

When we design software we are designing the semantics of a demarcated field of signifi-
ers and signifieds.

That is our primary activity. It takes its material expression in a collection of classes
or functions as syntax in some language. But these languages are interchangeable
enough. And the syntax is not the message.

1 https://en.wikipedia.org/wiki/Semantics

20 | Chapter2: The Production of Concepts

The semantic field comprises the set of sets of interplaying linguistic terms that form
the idea our software represents from a comprehensive systems view. It's the nouns
and verbs in your domain, how they relate, and how in your software system design
that complete set of ideas acts as an overlay representing the “real” world.

We are haunted by our inherited language. It’s the air we breathe: it’s ubiquitous and
invisible. It has both shaped and deformed our thinking, and our software suffers.

Semantics is the missing step. This is the piece that we skip because we did not know
it was required. Because our inherited conception of our field took us to the factory
lines, away from language and epistemology (the study of what is knowable, and how
we can know what we know), and philosophical categories.

To perform semantic software design, you perform these steps:

. Define its semantic field.

. Produce your concept within it.

1

2

3. Deconstruct the concept to improve it.

4. Design the system according to the deconstructed concept and its semantic field.
5

. Write the software and realize the attendant systems and processes.

Where we fall short is in rigorously creating a concept of our software as above.
When we do this, our software succeeds. When we do not, we endure a thousand
minor missteps, many of which we don’t even see, that over time add up to larger fail-
ures of our projects and systems.

The rest of this book unpacks these ideas and illustrates how to apply them to make
more successful software systems and projects.

The Semantic Field

A proposition is a declaration about what is the case. It represents the set of possible
worlds or states of affairs in which it obtains truth-value, in which it is true.

The universe is an infinite conjunct of propositions.

As an infinite conjunct of propositions, the universe is a (very long) list of all of the
statements that result in a truth-value. Because time keeps passing, that list is infin-
itely long.

The conjunctive is just the logical connector “and” We could say “this is true and this
is true and this is true..." If we said only true things, and said all the true things, we
would have a complete image of the entire universe across time and space. If we could
iterate every proposition across space and time, we would have an exhaustive repre-
sentation of the universe.

The SemanticField | 21

Representing some aspect of the actual world in its true propositions is the work of
the software designer.

If the scope of our software was to represent the entire universe, we would translate
the infinite list of propositions into executable statements. This would be straightfor-
ward because computers understand the true/false binary.

But someone has to pay for this project. And they don’t have infinite time and they
don’t need all that scope. Just some of it. We use logic and language to form a concept.
Our concept is the collection of our propositions. We carve out a space from that
infinite conjunct of propositions representing the world. We create a boundary sepa-
rating the scope of our software, its domain, from the rest of the universe. There are
things we represent and things we will not. This is how we define that semantic field.

Because we do not have time and scope and budget or need to represent the entire
universe, we carve off the scope of our domain. All software for certain and by neces-
sity will have this boundary. This is the edge of your semantic field, that place where
your software stops representing the world. At this boundary, you will suffer border
skirmishes between your representation and what you've cast out or left out beyond
the horizon. We are forced to round our thought off in a not-entirely-consistent way.

If we did not draw such a line around the domain, our work would be to represent All
The Things, our scope would be infinite, our representation would be of the entire
universe in eternity, and our software would be the actual lived world and we would
be God. Because this is not the case, we have to stop making representations, and
that’s our semantic boundary, and that makes inconsistencies in our logic and lan-
guage, our semantics. But if we consider that boundary consciously, because we're
aware of it, because we understand that our work is actually semantics and not engi-
neering or architecture, we will make the logic and language better. And because they
are only building blocks in software, our software will be better.

The main thesis of this book is that software fails because of improper understanding
of the world, because of an improper understanding of our role—we have thought we
were engineers and architects instead of philosophers and semanticists—and this
results in unclear objectives, undue complexity, incorrect and changing requirements,
lack of alignment, lack of focus, wasted effort, churn, and disarray—many of the top
reasons the McKinsey report states that software projects fail.

Software is a linguistic and logical endeavor. If we think we are the semanticists or
philosophers of our systems, we will make better language and use better logic. And
because those are the only tools of software design, our software will be better.

The semantic field allows for the possibility of concepts.

22 | Chapter2: The Production of Concepts

Designers Are Producers of Concepts

To be engaged with architecture is to be engaged with almost everything else as well: culture,
society, politics, business, history, family, religion.

—Paul Goldberger

Vitruvius is the first Roman architect of record, working in the first century BC.

He wrote de Architectura, now known as Ten Books on Architecture, which is still
taught to this day at university. It would be nearly 1,500 years before another book on
architecture was written. Vitruvius declares that the architect should be versed in
drawing, geometry, optics, history, philosophy, astronomy, music, theater, medicine,
law, and other fields.

Building architects are told this sort of thing all the time: that they must engage with
all of culture, all schools of thought and academic disciplines, and understand many
disparate fields in order to do their work. The lineage of this assertion comes from de
Architectura.

Yet we in software somehow find ourselves exempt. As the world in general becomes
more and more specialized, we frequently find ourselves satisfied to recount the var-
iants of Big O notation and argue the virtues of MergeSort over QuickSort, or
(heaven forbid) this JavaScript framework over that one.

This should not be the case.

Thinking only from our own perspective as computing practitioners leaves our
design tepid, derivative, inefficient, incomplete, untrustworthy, unstable, and costly to
expand and maintain.

We must begin with the concept.

The concept must support integrity and harmony. It must provide for, as Vitruvius
asserts, the three critical components: stability, utility, and beauty.

Technology Strategy Patterns

Please see this book’s companion volume, Technology Strategy Pat-
terns, for a more in-depth discussion of an architect’s attributes and
how architecture and strategy best work together in a tech
organization.

Designers Are Producers of Concepts | 23

Designing Concepts
Good designs do not merely execute the stated requirements.
The creative architect will first create a coherence and an integrity to the concept.

First, we design the concepts. The concepts inform, provoke, and support the local
designs that they encompass. For the effective enterprise architect, these might be
designs of software systems, integrations, infrastructure, organizations, the use of
data, and business processes.

Proceeding from the concept, all the elements can work together in a coherent system
of signs.

We are not merely drawing deployment diagrams. We ask ourselves, what is your
theme, your point of view? What design principles can a user intuit from your work
without being told them?

Thinking in systems means that you observe the entire system. Step back far enough
to see all of it, the whole thing. You need to see all the parts to form an understanding
of the relations between all the parts, both within the bounds of the system and the
universe of systems that it touches and in which it participates. Then, in a double-
action, use that knowledge to understand each part on its own. Considering each part
as its own integral system, without a view of those relations, what new light does it
emit? What new understanding can you find in the observance?

Now strip it down further: consider the object of the system as a thing-in-itself,
relieved of our assumptions about what it is and why it is.

Now build the system up again, suspending your prior knowledge, reaching each
object itself, and see how the relations reveal themselves anew. Reexamine how the
relationships could be improved, augmented, destroyed, and rearranged based on this
violent investigation.

Only now can you proceed with confidence that you have considered for your client
the forces at work, the justifications for their presence in the system, their organiza-
tion, and the context in which this system will operate and others within which it
possibly could.

The behavior your system exhibits reveals the web of all of these interrelated and
interdependent subsystems. There are many decisions to be made, whether by you,
your team, or the participating team (the application developers or those working in
the process).

The arehiteet is the chief philosopher of their system.

The work and the joy of the architect is to create a concept, then clarify it, then com-
municate it for realization.

24 | Chapter2: The Production of Concepts

What Is a Concept?

So architecture is art and it is not art; it is art and it is something more, or less. This is the
paradox and its glory, and always has been.

—Paul Goldberger

A concept is a complex idea consisting of compounded abstractions over a variety of
related ideas. A concept is an interpreted representation of some aspect of the world.

Concepts are not facts. They are attempts to explain something. Your software might
not appear to be an attempt to explain something about the world. But it is in fact the
result of a concept. That concept might be very poor: it might be logically unsound,
ethically problematic, or aesthetically challenged. One of the arguments of this book
is to foreground the concept given that you have no material to carve, no plot of land
to build on with concrete and steel. You are defining concepts. That’s the job of the
software designer.

A concept is always a concept of something: it is a representation. As such, you are
necessarily interpreting what is important about the world, what requires independ-
ence, what merits refining, what earns a place at the table of competing representa-
tions, who gets a voice and a name and a fully rounded character and who doesn't.
You are making value judgments, ethical judgments, aesthetic judgments, telling and
participating in a story about the world, whether you're doing so consciously or not.

A concept is nonobvious. It's a complex of ideas and abstractions mixed with judg-
ments. It is the product of thinking. A simple and direct referent is not a concept.
Saying “My software system is an ecommerce website” is not a concept. That is obvi-
ous, understood, undistinguished from any of the other millions of ecommerce web-
sites. Saying “My software system is an ecommerce website that lets people barter
(trade goods and services) with each other instead of paying with money” is one step
closer. It's more distinct, refined, and complected.

A concept can be argued against. A reasonable person could argue that your concept
is incorrect, that your representation is incomplete, shoddy, or misguided. This is an
easy test to see whether your concept is forming. If no one would argue the opposite
of your statement, you haven't done anything but cheer a marketing slogan.

If I were to ask you to draw a picture of a “pet,” what would you draw? Perhaps a big,
fat snuggly kitty. Or a skittish and playful kitten. Or a bird, an iguana, a dog, a ferret.
There are many different ideas that complect into a concept. Foregrounding metacog-
nition, or thinking about how you think, helps you recognize these kinds of differ-
ences, including your own biases. It's an important step to doing these more
consciously. That, in turn, is an important step in creating compelling concepts that
are the hallmark of truly innovative software.

WhatlsaConcept? | 25

Accomplish, Avoid, Fix

To be useful in a typical software project, your concept will generally be about one of
three things: accomplishing something, avoiding something, or fixing something:

Accomplish
This might mean that your user can make a contribution, or can take advantage
of a new opportunity in an emerging market. Projects involving accomplishing
are about doing something new, different, exciting. They’re about making more
cakes.

Avoid
Your project might be about helping you avoid something negative, like fraud or
noncompliance, or averting risk. Theyre about more fairly dividing up the cake
you already have.

Fix
Software projects often arise in order to address some sins of the past, and “sim-

plify” or “streamline” some particularly messy process. They’re not really about
cake.

Your new software project probably is not about all three, or even two of these. If it
seems that way, your concept might be too sprawling, unruly, and too poorly con-
strained. You should refine it.

Outlining Your Concept on the Concept Canvas

To start to work with your concept in a more practical way, you can outline it.

Consider something that you do know about the project. Think in terms of some-
thing your customer might want to accomplish, avoid, or fix. In a sentence, answer
this question:

Who wants what by when and for what reason?

These are basically the aspects of the “reporter” questions, and are very similar to the
structure of a user story. Your organization might have a “one pager” or “Business
Requirements Document” that is intended to answer these kinds of questions. Your
design concept is most immediately informed by the business idea: some application
or major update that product management or other executives want to make. It is
informed too by the overall business strategy, your technology strategy, and the crea-
tive work you perform in designing the concept.

These are interrelated, and shown in a cluster of associated ideas, as illustrated in
Figure 2-1. They should inform one another in a continuous cycle, and not unidirec-
tional or only top down. The design concept for your local application can be robust

26 | Chapter2: The Production of Concepts

and rich and innovative enough to reinform and at times even reinvent the technol-
ogy strategy and business strategy.

Business Technology
Strategy Strategy

Business
Idea

Design
Concept

Figure 2-1. The relations between these elements are not hierarchical

To support your concept, and this richer cycle, consider what the need behind the
need is. Consider how they would like to accomplish this. Typically the “business”
will come up with what needs to be done, and expect architecture to describe how it
should be done. This is fine. There is greater value in the designer who can shape the
technology concept such that it informs and changes and perhaps even reimagines
the business idea.

What are the salient bullet points across People, Process, and Technology? Consider
the strengths your organization can build on, and challenges to overcome.

Constraints are often found to be frustratingly constricting in other models of soft-
ware design. They are welcome in our world, however, because they give us an
anchor, something real to help orient us.

Divergent and convergent thinking

As you work through your concept, you should go through two stages, divergent
thinking, followed by convergent thinking.

With divergent thinking, you generate a list of candidate solutions that should be very
different from one another, and very different from what exists today. Then, in a
second, distinct stage, use convergent thinking to conflate these ideas, throw out the
ones that won’t work, and come up with your concept based on this refinement:

WhatlsaConcept? | 27

Divergent thinking

Generate a wide variety of possible solutions. They should have variety and be
distinct across the array of candidate solutions. What solutions do not neatly
conform with your current application or business landscape? How can you fol-
low your curiosity? How can you imagine a solution that is prompted outside the
field of the local software problem, such as by a bit of music, art, an opera, a toy, a
game, something entirely outside the domain? Are you taking a risk? You should
be clear on what the risk is. If you are not sure what it is, you might not be doing
something sufficiently interesting. Capture your solution candidates in a list that
becomes part of your lookbook or scrapbook.

Convergent thinking
After your divergent thinking exercise has generated a list of candidate solutions,
it’s time to narrow this field to a coherent single concept. Here, you are creating a
set of filters or lenses by which to view your related ideas so that you can clarify
and refine these scattered lists into what will become your working concept. To
do so, ask yourself and your team the following types of questions for each candi-
date solution:

1. What absolute constraints are known?

2. How might these candidates fit within a budget, if known?
3. How might these candidates fit within a timeline?
4

. What known elements of the business or technology strategy do these candi-
dates support?

W

What new opportunities does this create?

6. What positive and negative elements of our current landscape of People, Pro-
cess, and Technology does this enhance or aggravate?

7. What people or roles would need to approve or work together with these
candidates?

There are many questions and conversations your team will have that might be more
relevant to this process for your situation. These are just to get you started.

The convergent thinking exercise will result in a few key components. There might be
three to seven of them. These are the main ideas that together form the concept. Later
in executive briefings, marketing slides, customer-facing product decks, interviews,
and other forms of communication, you’ll use the statement and then these main bul-
let points as the “elevator pitch” to quickly and concisely express the concept—what
this system is about, why it exists, and whom it benefits.

Your ideation work at this stage can be captured in this template, which I call the
“Concept Canvas.” Figure 2-2 depicts this.

28 | Chapter2: The Production of Concepts

Concept: Name
Strategic Component: Name

Statement of Need:

End State Outcome: Strengths to Build On:

Item
Component 1: Name People Process Tech + ltem
<Description>

tem « ltem + ltem Challenges to Overcome:

_— t . y
terr * ltem tem ltemn

Item

Component 2: Name People Process Tech Constraints:
<Description> - ltem - [tem .« ltem |:> . LE‘(I3|-‘"‘-E‘_E:J\:\3TO\'}’

tem = ltem + ltem

Component 3: Name People Process Tech

<Descriptions Tactical Next Steps

Item
Item

tem = ltem * ltem
tem « ltem = |tem

Figure 2-2. Capturing your concept in the Concept Canvas

Of course, companies don’t have concepts: people do. Get your team together for a
morning and work through the Concept Canvas. This can then serve how you put
together the project plan and create the detailed design.

In our practice, we don't do “architecture,” for reasons we discussed. Rather, in
Semantic Software Design we are producers of concepts, designers of concepts. We
express them in a way that allows others to be inspired and participate and under-
stand the boundaries.

In summary, a rough guiding outline for how to work with your concept at this early
stage is as follows:

1. Concept statement: A single sentence or phrase. This is like the melody of a tune
you can hum. Its not the whole song; it’s a memorable image that helps you com-
municate the basic subject.

2. Statement of need: Captures who wants what by when for what reason. This
ensures that you are striking the right balance between being creative and curious
and not going off on a tangent that has no business value. Who are the custom-
ers, end users, business partners, and internal executives who stand to benefit—
or could stand in the way?

3. Alignment with strategy: You will have a greater chance of relevance, impact,
and support if it is very clear that your concept relates and advances at least one
element of the business and technology strategies. You should identify this
explicitly.

WhatlsaConcept? | 29

4. Idea components: These are the highly cohesive idea components that work
together to form the concept. Consider them each through the lenses of People,
Process, and Technology.

5. Path forward: After you have your basic concept, you want to consider how you
will bring it into the world as a real system. There is of course considerable work
to be done yet. At this point, you have only a complex set of ideas that together
form your concept. The remainder of this book is devoted to showing how to
turn that concept into a designed system that can be implemented as fantastic
software. But you need a bridge to help cross this gap between concept and
designed system. The path forward captures circumstances in the real world and
tactical next steps that you want to take in order to advance your concept into a
system design and working software.

You capture these in your single Concept Canvas. You can then add this to your parti,
as we discuss shortly.

Ideas Are Captured in a Lookbook

In the fashion and design world, there’s something called a lookbook. This is a collec-
tion of photographs that a designer will use to showcase their work for a particular
line or season or campaign. It gives viewers possible suggestions on how to pull
together a few components from the new season’s line, such as these jeans, that
sweater, and these boots to form a look or a personal style.

John Malkovich Lookbook

Venerable actor John Malkovich has turned his talents to designing
his own fashion line, and you can find an example of his lookbook
here.

In fashion, this is a collection of images illustrating the concept. At first, you can use
it that way, too. Eventually, your lookbook will become a compilation of design sour-
ces, inspirations, and otherwise random-seeming documents. It’s your idea diary, and
it helps you to recall all the aspects of the concept you're working with as you form it.
It helps you as a concise compendium to show others so that you can collaborate on

the design.

30 | Chapter2: The Production of Concepts

Your lookbook might have many of the following items:

« Informal sketches

« UML-type diagrams, but nothing formal or definitive-looking
» Images

« Mind maps

« Snippets of thoughts
+ Key customers

« Relevant quotes

« Stories

« Links

« Videos

« Colors

« Materials

Your lookbook is like an active journal in collage form. There will be many sources of
inspiration along the way that might have informed your concept. Simply capture
them in this single place so that you have them to refer back to. This single place
might just be a growing Word document, a special page on the wiki, a OneNote file, a
web page, or whatever you like.

You might be working with a set of themes, the way a composer would have a set of
themes for different characters or events. One might be “craftsmanship.” How would
you express that to your team or think of it yourself? You might consider some of the
following:

« The Mercedes-Benz AMG “one man, one engine” philosophy, as shown in this
video. Every AMG engine bears the signature of the one man who made it.

« A master seamstress making a tiny replica of the Miss Dior Dress from the 1950s
in this video.

« A master cobbler making a pair of Prada shoes in this video.

If one of your themes was about radically rethinking historical approaches, you might
include the Google X Moonshot Thinking video, and so forth.

Initially, the audience for your lookbook will be the other folks on your team, but it’s
probably not useful outside that at first. It should feel a bit personal, as if to share it,
youd be revealing something, a bit of your attitude, tastes, inspirations, understand-
ing, limits of that understanding, some part of yourself. You might feel a slight pang

Ideas Are Captured in aLookbook | 31

of nerves to do so. That’s good. This means that you're doing something that matters
to you, something you're truly engaged with.

As it becomes more refined, you can use it as a catalog from which to pull particular
views that help you communicate the design to the variety of diverse collaborators
who might include UI/UX folks, developers, executives, managers, and customers.

Fit to Purpose

As an artist, yes, I have constraints. Gravity is one of them.

—Frank Gehry

The Walt Disney Concert Hall opened its doors in Los Angeles in 2003 to become the
new home of the Los Angeles Philharmonic. After being designed by architect Frank
Gehry, it was constructed over the course of four years.

At the time of its opening, the following story was told by Los Angeles Times music
critic Mark Swed:

When the orchestra finally got its next [practice] in Disney, it was to rehearse Ravels
lusciously orchestrated ballet, Daphnis and Chloé. ... This time, the hall miraculously
came to life. Earlier, the orchestra’s sound, wonderful as it was, had felt confined to the
stage. Now a new sonic dimension had been added, and every square inch of air in
Disney vibrated merrily. Toyota says that he had never experienced such an acoustical
difference between a first and second rehearsal in any of the halls he designed in his
native Japan. Salonen could hardly believe his ears. To his amazement, he discovered
that there were wrong notes in the printed parts of the Ravel that sit on the players’
stands. The orchestra has owned these scores for decades, but in the Chandler no con-
ductor had ever heard the inner details well enough to notice the errors.

Figure 2-3 shows this fantastically expressive building.

This is architecture at its best: inventive, coherent, clear in concept, expressive, in
conversation with its context, multivariate, improvisational, alive. The building
appears as moving music itself. To support the quality of sound that it does, and the
comfort and clarity it affords patrons, is astonishing. Gehry’s building is brilliant,
beautiful. Moreover, as the story about the misprinted music sheets reveals, the build-
ing is incredibly well fit to purpose. So must our concepts be.

32 | Chapter2: The Production of Concepts

Figure 2-3. The Walt Disney Concert Hall in Los Angeles by architect Frank Gehry
(photo: Wikipedia)

In an interview, Gehry states that in architecture, you must ask, “Then what?” You
can love the clients, love the city, hit the budget, be polite, be good to work with.
These things are merely the table stakes. So you must ask yourself, “Then what?” to
get the real value out of your work.

We must push ourselves to deliver something truly special, something of such won-
derful function that we help our users hear notes they never heard before. We can
astonish and delight.

The Concept Is Expressed in a Parti

It is better to enter a turn slow and come out fast than to enter a turn fast and come out
dead.

—Dr. Ferry Porsche

Building architects have space, a neighborhood, and a building to build. They can
start with physical objects, like a sculptor: a block of marble.

We in technology cannot do this. We have no space, no material but our logic, our
language, and how we employ semantic signs to produce a concept.

The Concept Is ExpressedinaParti | 33

The concept is the first moment of our work, and the one most often skipped and
ignored because we did not even know it should be part of our work. Because we
started with the “architect” metaphor. This causes us to make many other local cate-
gory mistakes that accrue toward the failure of our projects.

Our work is to produce a concept. That concept produces a system design. That system
design is comprehensive to create the best context for writing valid and sound
requirements, both functional and nonfunctional, and for allowing them to be viewed
together. The concept also informs a designed project model. Because our view is com-
prehensive, we design the project plan every bit as much as the software system.
Because they go together in symbiosis. Taken together, our projects then have a far
higher chance of succeeding than software projects have over the past 25 years or so.
Such a program model produces working software that is innovative, delights cus-
tomers, and features outstanding support for nonfunctional requirements. It also
offers the most rewarding opportunity for the people on these teams to have fun and
make a meaningful contribution that they are excited and delighted to do. With our
approach, we stand a better chance to light a fire within people instead of under
people.

The advent of the microprocessor meant that we had to conceive of how to create
sturdiness, and fitness to purpose, and beauty, in a nonphysical realm. This is the
realm of the philosopher more than of the architect.

As we have discussed, one reason so little software is properly functional or pleasant
to use is that when we were busy borrowing metaphors, perhaps we picked the wrong
one. And after we did, even then we skipped a part, and an important one: the parti.

The parti is short for “parti pris;” meaning a “decision taken” in French. It is an image
expressing the general organization of a design. The parti takes the Concept Canvas,
the lookbook, and the ongoing changes and reveals of the project over time as inputs
and refines them over the course of the project into a decision log of the key compo-
nents. The parti is the first representation of high-level executable system compo-
nents that can be built as software modules.

Partis are never reused because they are particular to this design challenge, these con-
straints, this context.

A straightforward, simple example comes from NASA (though they don't call it a
parti), which you can see in Figure 2-4.

34 | Chapter2: The Production of Concepts

Lunar Lander

Relay Satellite

Satellite
Communications

Ground Network
System

Figure 2-4. A concept sketch for a lunar landing system

This is enough to have hard discussions with as you focus your concept. It is at a high
level. It focuses on the comprehensive system context, not one subsystem.

An Example

Imagine that we’re to begin work on a new machine learning-based software project
for the travel industry. We might create a parti for this software based on Athena. She
is the Greek goddess of wisdom, strategy, craft, the harvest, and war, and advisor to
travelers.

We ask, what possibilities does this suggest? Where does it direct our focus and atten-
tion? How can this create a theme for our design that supports coherence? Many
things come to mind:

« The machine learning must not be tacked on to one aspect, but must be natively
relevant in the entire scope.

« The Strategy pattern can be used to inject ever more implementations of stated
algorithms. The system must create a new context for the business to pivot and
support alternate growth.

« A focus must remain on craftsmanship and careful adherence to resilience.
« The system will bring the harvest, the new capabilities in retailing and offers.

« The system should offer exceptional user support through its interfaces, offering
creative and just-in-time advice to travelers.

The Concept Is Expressed inaParti | 35

Now you have the basis, a grounding, for thinking about ways in which such ideas
might be realized in the architecture. Pulling together these high-level contours under
a single unifying personage as “Athena” makes sense. Capturing your concept in a
unifying character, figure, name, or readily expressible idea will help you communi-
cate your ideas with others who can help to refine the concept.

Define one supporting pole around which your idea can find another idea to enter a
dialogue. Where do these ideas argue? On what basis? What do they try to persuade
each other of? Where can they agree? Use that tension to create a space for the circu-
lation of ideas.

Pick one pole, and design that entire pole. Now you have something to hang other
ideas on, something that has survived the first round of interrogation. This will help
prepare other aspects of the system.

Adding Aspects to the Parti

At this point, you've explored how one aspect of the system might work, how it can
be useful, and powerful. Now change dimensions and design across the whole
field, but only one inch deep so that you can see where the boundaries might be. You
don’t need to define them all firmly yet, but you've put a line on the horizon. You
have one aspect thought through, and many others as points identified on the field.

You do not need to express the parti directly or map all of these elements to some-
thing concrete. It acts as an organizing principle and should be useful to you as you
continue to mentally process and further explore and imagine the system. Eventually,
your parti will find its way into a variety of concrete documents with design deci-
sions, and the trick is to keep it in mind as you create these:

o Use case diagrams
« A deck outlining the design
« Class and component diagrams for key areas

» A complete architecture definition document

We address these in further depth in Chapter 5. The parti should not burden, but
ignite.

The Parti Is Based on a Series of Reveals

I have always felt that if you know what you're going to do in advance, then you won't do it.
Your creativity starts with whether you're curious or not.

—Frank Gehry

The parti must reveal, moment by moment, the key aspects of the story. It is nothing
but a silly flight of fancy without a concrete realization. The parti is a disposable

36 | Chapter2: The Production of Concepts

bridge toward human use. It can lend an organizing principle to your design that
allows people to intuit it better and support you in providing more ways to serve the
customer, the human user, as they want to be, and as they might not yet have imag-
ined they want to be.

A reveal is the careful dosage to the implementing teams of what they can under-
stand. It is your job, not theirs, to provide the concrete links to the parti within
aspects of the design. Eventually the parti will fall away altogether, having blossomed
from abstraction into design diagrams into a working system.

Make the system for the extreme users: both the experienced power user who is able
to do everything, like make their own macros, and the novice user who only cares
about 10% of the functions should be able to easily and readily do the obvious jobs.
Consider the extremes up front and play them against each other to provide some-
thing that works for both of them. Consider other spectra for extreme users: old and
young, native speakers and nonnative speakers, women and men, short and tall, those
who need the deep details and those who need the quick summary.

Know what and where your reveals are. Consider the people on your project and how
you will implant the parti into everyday life.

Look for opportunities to express the concept in every aspect, across the templates
you make, the hiring practices, the culture of the project team, the development life
cycle, the milestones, the management, the ordering and prioritizing.

Do not expect too much of the parti. It has its moment of real value in capturing the
concept, and then will fade away. New requirements, laws, and constraints will
emerge. Change it or abandon it if and when necessary and reconceive based on new
things you've learned. You must do this in order to retain the holistic integrity of the
concept, not the original concept or your parti.

Let the system begin to speak to you. Enter into a dialog with your concept that
hourly gains greater embodiment, through ever more avenues: the system diagrams,
the use cases, the goals, and the ways to achieve them.

Let it change your course as it takes on more life of its own. You make the child, name
it, teach it. Then, as the child grows, they show you that theyre not a tiny version of
you, but have their own values, desires, and methods; the child becomes your teacher.

As Eisenhower said, “Planning is indispensable. Plans are useless.”

The Concept Is Expressed inaParti | 37

Understanding ldeas

Every block of stone has a statue inside it and it is the task of the sculptor to discover it. I saw
the angel in the marble and carved until I set him free.

—DMichelangelo

We do not understand the idea that represents our system. That is because it is
incomprehensible. But also because it has not been our aim.

Michelangelo might have viewed his work as revealing the angel already within the
marble. But the marble existed, and the only work was to chisel. The creative archi-
tect starts with emptiness, with nothing. And before him, a world of infinite con-
juncts, a field, in which to assert some object anew. We have no marble.

When we approach system design in attempting to understand, we subvert our best
efforts because we cannot understand what we have yet to invent.

We therefore seek instead to understand the idea of ideas, not the idea of our system
or the solution we think were making, but ideas themselves. Are we quite sure we
know what an idea is?

Sense Certainty

See this? This is this. This ain't something else. This is this.
—Robert DeNiro, The Deer Hunter

We receive sensory data, a multiplicity of inputs, constantly. A filmed motion picture
typically runs at 24 frames per second. The pictures are all still photographs. But as
with a flip book, our minds fill in the transitions that are not truly there to give us the
illusion of motion and continuity.

This is not thinking, but sensing. We do not have an idea. We have not mixed this
stream of sense data with our own apprehension and conclusions. We have only com-
plected sense. Nineteenth-century German philosopher Hegel calls this “sense-
certainty,” and it’s sometimes called “picture-thinking”

We can, in this mode, believe that they understand utterances like “here,” “now;” and
“this,” concretely, as if they were direct referents—as if we think there is a fixed,
understood definition of “here” or “now” or “this”

To be blunt, when we say these words, we believe we are saying something meaning-
ful and that we know what we are talking about, when in fact we do not. Parsing these
very commonly used words is almost impossible.

The distinction is critically important because our software projects are filled with the
words of the requirements, the words of the design, and the words of the code. We
must be crystal clear (as much as possible) that we are saying what we mean. When

38 | Chapter2: The Production of Concepts

we start to try to express what we have observed about the world in language, mixed
with our ideas about their coherence, we begin to form concepts. These are the basis
of strong designs.

Metacognition

One of the most important skills you can have as a designer is to cultivate your meta-
cognitive ability. You notice yourself thinking about how you think, as you do it. You
see not only your concepts, but you form more complex concepts and notice the
manner in which you constructed them.

When you think about how you think, you call into question a variety of things:

« The sensory data you take in, respond to, recall, and retain, and how you respond
to it, what you pick out, prioritize, conjoin, and disjoin.

« How you synthesize this data to represent it back to yourself as interpreted ideas.

« Your own understanding of yourself as a stable identity that can perform this
apprehension consistently, with clarity.

Foregrounding your metacognition puts you in a dialog with yourself. Being in a dia-
log with yourself as if you were two people, perhaps arguing, will help you to quickly
shape nothing into something. And that “something” will be better, more interesting,
higher performing because you are considering it more carefully, more richly, with
fewer assumptions and biases.

You can practice this by batting your concepts back and forth between seemingly dis-
parate characteristics. Consider the following:

« Sturdiness and flexibility

« Distribution and performance
« Security and ease of use

« Simplicity and complexity

« Tall and short

« Wide and narrow

« Bright and dark

« Solid and void

« Stasis and circulation

+ Presence and absence

« Software and hardware

Understanding Ideas | 39

« Business and philosophy

« Architecture and art

How are you privileging one term in the binary pair? What sense data, history, ideas,
subliminal suggestions, constraints, laws, cultural norms, biases, stereotypes, and
viewpoint led you to this privileging? How can you find the concept that unifies both
terms in each pair, such that the trade-offs you make become no apparent trade-off at
all?

Then, after you have incorporated the competing concerns and satisfied the constitu-
ent members of the British parliament arguing in your head to the point where you
feel there are no longer opposites, you have a concept with integrity, harmony, and
sturdiness, and one that is closer to bringing the design to its truth of the matter.

Criticize your own mental processes. Stand back and observe how you intake data,
from where, and why. You are always absorbing data; this data continually shapes
your mental space, the field which harvests thought. What can you observe about
what you're taking in, to perform a habitual act of synthesis?

How can you then subvert or overturn that synthesis with a new perspective of appa-
rently disparate or seemingly unrelated things? How is a raven like a writing desk?

Go shopping or to the park or to see a movie or listen to music or a lecture on some-
thing entirely unrelated to your design challenge. Not as a field trip with a stated aim,
but as a quotidian act of noticing how your daily commute informs your design, how
a crumpled paper might beget Gehry’s Disney Concert Hall. All of these will inform
your thinking, what you see as possibilities of relations, and give you raw material
and metaphors to work with as you hone your concepts about the design and light a
path toward what concepts your design in turn affords the world.

It is an act of pattern recognition, synthesis, and subversion.

Software is often broken, and often broken from the start, in its conceptual under-
standing of the world. As we have discussed, a software design represents our concep-
tion of a portion of the real world. Yet we cannot design and make the software that
represents the world of infinite conjuncts; we would never be finished and go to mar-
ket. So we must draw a line, a border, create a margin around some subset of this
world as we conceive it to limit our scope to have something to build. And that we
will call the domain. This is the set, the scope of the software, and it is at this horizon,
the gap between our concept and our created field imposed on top of the phenom-
enological world, that computers must act rationally, decidably, given their inputs.
Their inputs are only those within the field we demarcate, and their outputs only
those that we allow. Despite our best efforts, at some point, the point of this horizon,
we must stop and ship the software. And there is ambiguity at these borders, the

40 | Chapter2: The Production of Concepts

meeting points of the phenomenological world and our artificially superimposed
field.

For example, we might be called upon to make a system to predict the price of homes.
So, naturally, we define, among others, the class “House.” We spend a million dollars
on sophisticated machine learning projects to make better predictions. We do not
understand why our prediction so often fail us. We included the attributes of age,
square feet, acreage. But, fatally, did not include the attribute “proximity-to-the-
beach”: because we curtailed our semantic field there.

We cannot conceive of all the things. We cannot include all that we can conceive of.
At some point, we must stop and make a compromise. Make these moments of com-
promise conscious, and this will mitigate the blow of the lie were telling our system
about its origins and context. This is the key aspect to better concepts, which are the
supporting substructure of better software.

Context

Always design a thing by considering its next largest context: a chair in a room, a room in a
house, a house in an environment, and environment in a city plan.

—Finnish architect Eliel Saarinen

There are only two kinds of problems in the world: trivial and nontrivial.

A trivial problem is straightforward. Its cause is direct, simple, and obvious. Its span
of influence is small. Examples include pricking your thumb, or running out of paper
towels. Its solution is similarly clear, direct, and simple. These are simple systems and
the behavior of the constituent elements of simple systems is predictable.

We are not interested in those here.

A nontrivial problem is almost always more complex than at first it seems. Trendy
practitioners will tell you to “Keep It Simple, Stupid.” This is a useless and empty
phrase. The problem is not simplicity versus complexity, and developers “making
things complex.” Sometimes things are in fact complex.

Imagine you are designing an ecommerce system. You have a database of Products,
wherein you assign an ID and name and description. We know when we add prod-
ucts to our cart, we are asked for a quantity. So we add a column to the Products table
for “quantity” That’s the simplest thing to do. But this is absurd.

We learn from our quick trip into sets that here there are two concepts at work: the
product, and the product-as-object-during-shopping-by-a-particular-customer. And
that is a related, but different matter.

This thing has certain properties that are its essence, and then there are other new
properties that are obtained only in the process of shopping; those cannot be

Context | 41

separated from that idea. There is no abstract quantity. So you must create something
new. You might invent the Inventoryltem or CartProduct to express this new relation:
you have the user. The pencil doesn't have quantity=3; that decorating idea must exist
to capture ideas that are not metadata about the product but are first-order properties
of the shopped item.

This is the purpose of item variants. We think there is a “shirt” But a shirt is an
abstraction. You can’t sell it until you know its size and maybe its color and maybe its
intended gender. Are we to make three rows for small, medium, and large shirts?
What about color—we sell them in white, black, and blue. Are there then nine rows?
Do we double each of these according to gender? This is an inefficient database
design, and so this fault should call out to us that we are missing an idea—missing a
part of our concept.

So seeing this disconnect we must create a new object: we create the idea of the var-
iant. We now have created semantic space that allows these ideas of color, size, gen-
der, and what-have-you to be full and rich in expression and be themselves extensible
(if later we add one for men’s and one for womens) but each have their integrity and
maintain an efficient design.

It might seem counterintuitive after all these years of false conditioning to “keep it
simple” But the smart designer enlarges the problem space. You create ideas that are
semantically coherent with the overall design not to add complexity, but to make the
inherent complexity of the world efficiently represented in your design. You see many
contexts. You attempt to blow up and undermine your design the moment you see it
leap to life, knowing it will be used many different ways, only some of which you
intend.

Enlarging the problem space is about identifying multiple levels of causation. You
have a problem: the user needs to do X. First, that might or might not be the problem.
Ask why do they want to do that? In many cases, the user does not want to do at all
the thing they are doing. They don't want to shop for that snazzy shirt and put it in
their cart and buy it. They want to wear it. The shopping is a necessary evil to the
wearing. This is an area in which Amazon simply excels.

You cannot solve all of these problems by continuing to trace things back in endless
deferrals. But you can perhaps arrive at a different, more general solution. This often
means that you can see many benefits, more than originally hoped for.

Often, it’s just as easy to do it right as it is to settle for a lesser design because that will
beget workarounds and compensations.

You can reduce the set later as needed to fit the timeline, budget, and other concerns.

42 | Chapter2: The Production of Concepts

Sets

As you saw in the previous example, design is about thinking in sets. In this view, we
see the world as a collection of collections, each containing generally three element
counts: zero, one, or many.

What belongs to this object necessarily and what doesn’t? What does and doesn’t
belong together perhaps? What is optional to add on top?

Set theory is a rich and difficult study. For our purposes, two basic ideas will get us a
long way:

Extension

What belongs in this set? What is the name that puts these things in a group? For
a retailer, the group might be “All the stores of Brand X,” which is rather straight-
forward. Now you have something to call a stake in the ground. We continue,
and posit “All the stores in Kalamazoo” But where is the border precisely, or is it
a gerrymandering contorted border, a zip code, or set of them? What if they want
to run a campaign that allows owners to set discounts for their own store, but
Oscar owns several of them?

Essence
Essence refers to that without which, not. That is, if you don’t have some part of a
thing, you can no longer say you still have that thing.

Determining essence is difficult, but essential in keeping the ambiguities at the mar-
gins to a minimum, which is what will undermine your design, and make it expensive
and untoward to maintain.

If you take away your hand, are you still you? I think most people would agree that
they are: they don't lose their identity because they lost their hand. They can still be
found guilty of crimes and identified for tax purposes. How much of you can you lose
before you are not you anymore? If you suffer early onset dementia with your body
healthy and well intact, are you still you? These questions are difficult to determine.
Luckily, software is not as complex as people are.

Naive Set Theory

For a good introduction to set theory, I encourage you to read the
mathematics textbook Naive Set Theory by Paul Halmos from 1960.
Its short and dense. For the truly impatient, make sure youre
familiar with the concepts presented on the Wikipedia page.

Sets | 43

Relations

We already understand relations, the connections between objects. My aim is to for-
malize and problematize that understanding just a little bit so that you design with
the edges in mind. Let’s take a moment to consider these key terms:

The Axiom of Pairing
It is the case that for any two sets there exists a set that they both belong to. When
you assert a figure into the field, ask what other sets it also is a member of. Then
determine validity and priority.

Domain
We use this word regularly in software. It comes from set theory, and more for-
mally refers to the set of input or argument values for which some function is

defined.

Range
The difference between the lowest and highest values in a set.

Intersection
The intersection of A and B is the set of all objects that are both in A and in B.

Union
The set consisting of all objects that are elements of A or of B or of both. For
every collection of sets, there exists a set that contains all the elements that belong
to at least one set of the given collection.

Complement
The set of all objects that belong to A but not to B.

There are three ways to talk about equivalence:

Reflexive
A relation is reflexive if all the members of a set have the same relation to the set.
So equality is a reflexive relation. “Less than” is not reflexive.

Symmetric
A relation is symmetric if, for all A and B in a set X, A is related to B if and only if
B is related to A. Examples include:

« Is married to

« Isasibling of

44 | Chapter2: The Production of Concepts

Transitive
A relation is transitive if it has the following property: if A is related to B and B is
related to C, then A is also related to C. Examples include:

« Being a subset of
« Implies

« Divides

Even though we might be familiar with some of these terms from programming lan-
guages and databases, using this lens in your system analysis and design is sure to
come in handy. The only point here is to encourage you to explore your concepts
using this framework of how objects relate to one another.

Advantages of Semantic Design

On two occasions I have been asked, “Pray, Mr. Babbage, if you put into the machine wrong
figures, will the right answers come out?” I am not able rightly to apprehend the kind of con-
fusion of ideas that could provoke such a question.

—Charles Babbage

So we have thought of ourselves awkwardly as engineers and architects, and we've
enjoyed none of the materials, methods, or tools, and that has meant we have mis-
conceived of our field and misapplied a lot of square pegs into a lot of round holes.
The only thing in our field that comes close, really, to the discourse of engineering is
that the speed of light means we can enjoy an understanding of the limit and measur-
able rate of data transfer.

With the advent of user stories in Scrum and related Agile methods, we have lost a lot
of our focus on communicating coherently and specifically. This leads to a culture in
which there’s never enough time to do it right, but somehow always enough time to
do it over. This makes projects fail. The Semantic methodology offers a list of docu-
ments that together make it practicable and repeatable in your organization, captur-
ing an incredibly rich and robust set of perspectives on the software, with various
forms of communication. It focuses equally on the functional and nonfunctional
requirements, which are often missing.

But if you think through your concept, you will purposely reveal more of the seman-
tic field that is your representation of the world. As you work through the concept,
the semantics evolve and are challenged and refined. Your resulting ideas and the lan-
guage and logic overall will be more sound, more robust, more comprehensive, and
more customer-centric, and your requirements, both functional and nonfunctional,
will be far, far better than what you're used to. Your design will be fit to purpose,
sturdy, harmonious, and beautiful. You will have expressed. You will have created the

Advantages of SemanticDesign | 45

context in which fantastic software is born. That software will be reliable, maintaina-
ble, extensible, scalable, available, secure, and delightful to the user.

And that’s the whole point.

There are a variety of other advantages in this method:

It focuses the team and encourages them to be personally engaged and
motivated.

It unleashes more creativity.

It offers informal methods for testing your logic and your biases at the point in
the project where it will never be cheaper, quicker, or easier to change.

It takes a comprehensive view. It’s synthetic, from many sources, more open, less
narrow and rigid. The ideas are native to software more so than engineering or
architecture.

It is failure-oriented, as much as success-oriented. By foregrounding opposites
and contradictions and teasing them out, we predict more problems earlier and
can work to prevent them.

It encourages you to focus on not just dividing the existing cake, but on making
more cakes because the only cost that matters in an innovative landscape is
opportunity cost.

It does not use metaphors that do not apply, which misguides our thinking. In
software, that matters considerably given that logic and language are the only
tools we have.

Contrary to much of what we see in Agile, you insert the concept design as an
upfront phase. This does not make it waterfall. And waterfall is not inherently
bad. It is bad, however, to presume to spend years of dozens of people’s time and
millions of dollars of other people’s money making software that you haven't
thought through. Thinking it through as we outline here will make better
requirements and make you far more likely to do it right the first time.

The focus on setting the context helps developers be productive while owning—
and being accountable for—the software they make.

It’s prescriptive in certain documents and very loose in other areas of the method.
This allows for easy incorporation into the many other processes that you must
or like to use, while retaining the flexibility of an Agile process.

It underscores the multiplicity of “customers” of the software, which makes it
more robust and usable to all the actual diverse users of your software.

It sheds several false notions that lead us astray, such as a definition of “done.”
Software is almost never “done” the way a building gets done. One of the systems
in my charge is nearly 20 years old, and yet 200 people still work on it every day.

46

| Chapter 2: The Production of Concepts

They're not just doing operating system updates. An evolutionary approach
works more naturally with how successful applications actually live in the real
world. The semantic method establishes a framework for its further evolution by
an array of teams and stakeholders.

« Because we foreground the concept and maximize context and extensibility, it is
easier to adjust for changes, problems, or new ideas as they inevitably arise, mini-
mizing churn. The abstractions will be at the optimal level across your design.
Nonoptimal abstraction is often the way that lots of hacks and tacked-on addi-
tions begin to rise up like weeds or poorly executed additions to a house across
your code, making it more difficult to maintain in the long run.

« Because a lack of timely, good decisions by the proper parties leads to failures, we
include communication plans and clear semantic paths for working across teams
in a complex environment. Decision making is an important part of the efficient
flow.

« We foreground assumptions and list them along with requirements such that if
they change, we can quickly plan for them.

+ We thoughtfully align with the strategy and pave communication and decision
routes between development teams and leadership. We do not assume, as other
methods do, that software development teams exist in a vacuum, or only in some
dark room decorated with Star Trek paraphernalia where executives never go
except to slide pizza under the door. That isolation of the development teams is
not one to maintain. When we foreground software design as a software problem
instead of a semantic problem, we help build a wall that shouldn’t exist. That wall
creates divergence between the strategy and the local project and teams, which
threatens the project. You can be “in the zone” when your alignment is clear.

Software projects fail because people don't know what they want, what they are mak-
ing, why they’re doing it, who makes what decisions about it, and what the abstrac-
tions and routes are to make those things clearer.

Our methods heretofore have improperly addressed these aspects, and they are the
precise aspects of a software project that the semantic design method addresses. Let’s
dive deeper into what it is and how it works.

Advantages of Semantic Design | 47

Caopyrighted material

CHAPTER 3
Deconstruction and Design

Perhaps something has occurred in the history of the concept of structure that could be called
an ‘event,” if this loaded word did not entail a meaning which it is precisely the function of
structural—structuralist—thought to reduce or suspect...

—TJacques Derrida, “Structure, Sign, and Play in the Discourse of the Human Sciences”

Introduction to Deconstruction

This section might appear “out there,” marginal, even inconsequential, as some dis-
tracting oddity in a book on software design. It could feel external to our purpose,
irrelevant, too unfamiliar, discomforting.

This section serves as critical context for the practical tools and strategies you will
learn in Parts II and III of this text. Is this section the marginalia, or is it the thing
itself?

* * Kk

Cut To:

INT. A CONFERENCE BALLROOM AT JOHNS HOPKINS UNIVER-
SITY, BALTIMORE, MARYLAND, US, 1966 — NIGHT

The Scene: A conference for philosophy professors
titled “The Language of Criticism and the Sciences
of Man.”

Action!

Enter French philosopher JACQUES DERRIDA. He is 36,
French-Algerian, soft-spoken, dressed in a suit
rumpled from his recent travel from Paris. He steps
to the podium to deliver his paper. He takes a sip
of water. He speaks.

49

DERRIDA

(quietly)

Perhaps something has occurred in the
history of the concept of structure
that could be called an “event,” if
this loaded word did not entail a
meaning which it is precisely the
function of structural—structuralist—
thought to reduce or to suspect...

As he continues, the room falls hushed. Then nervous. Then angry. Then astonished.
His talk is called “Structure, Sign, and Play in the Discourse of the Human Sciences”
After he delivers it, the attendees retire to a chamber to smoke and argue into the
early hours of the next morning on its implications.

This paper would mark an origin of change, and advance, in the course of philosophy
and the humanities for the next several decades. It is an astonishing piece of writing,
and an incredibly erudite, fiery blast to his audience of assembled philosophy profes-
sors who, like those at the 1968 NATO conference, were searching for the path for-
ward in their field.

Derrida had been invited to speak with the supposition that his work would elaborate
and help popularize the idea of structuralism. Instead, he devoted his argument to
illustrating how philosophers can only talk in the language they inherit, and that as a
result, their concepts are limited: they rely on the patterns of previously established
metaphysics and base their arguments on it, even as they denounce it. He exposed
how the central theses and propositions of the structuralist philosophical endeavor
were in contradiction and how, as a result, their field was in stasis.

Derrida gave this paper at a conference intended to promote structuralism, and in a
sense, in a single evening, it ended the field. It is widely cited as the precipitating
event, the rupture, that ignited post-structuralism in the United States, introducing
new ways of thinking about writing, feminism, language, epistemology, ontology, aes-
thetics, social construction, ideology, and political theory, across philosophy, sociol-
ogy, political science, the arts, and the humanities.

The Paper

You can read “Structure, Sign, and Play” here in English transla-
tion. I highly encourage it. It’s a (very) tough piece of writing, in
part because the writing is performative. That is, the writing exhib-
its an acting out of the circling argument that Derrida is making. It
is, purposefully, a triumph of structure.

50 | Chapter3: Deconstruction and Design

In “Structure, Sign, and Play,” Derrida begins with the idea that in an argument or
analysis, terms (signs) are defined purely in relation to one another. Put simply, we
only can conceive of “good” in relation to “bad,” or “success” in relation to “failure,”
along a spectrum of nuance and differing meaning in contexts. Such structuralist sys-
tems thereby allow “play” in their terms because meaning is deferred; in a sense, the
can is kicked down the road from one sign to another such that establishing a fixed
and firm meaning in a sign is problematic because of this play.

The crux of Derrida’s position is this: throughout the history of structuralist thought,
we have relied on some anchoring center. This center is the term, sign, or idea that
appears as fixed, immutable, assumed, given: metaphysical. As such, it is beyond the
system of play that all the other signs operate within; it is incontrovertible, assumed
and therefore unexamined, not held to the same standard or afforded the same inter-
pretations. It is not subject to the same terms of the established system and as such is
outside the system. “The center,” he therefore concludes, “is not the center.”

Derrida’s philosophy, introduced in this talk and subsequently outlined in dozens of
books across his formidable career, especially his key work Of Grammatology, is
called deconstruction.

Deconstruction in Popular Culture

This is probably a term you've heard in popular culture, where it is
typically misunderstood, diluted, misused. There’s a movie, Decon-
structing Harry. It is a term Derrida employed to mean destroy and
create from within, at once. Before his death, he evolved this idea of
deconstruction over decades in dozens of books. He was incredibly
smart and learned, and his ideas are very complex, and are in no
way intended for the layperson. Our aim here is to take up, in the
manner of a bricoleur, the bits and pieces of these ideas available to
us and apply them as tools to illuminate our endeavors in software

design.

Derrida argues that when we examine semantic structure via deconstruction, we see
that the structure of meaning rests upon a series of binary oppositions, sets of pairs
that are opposed to each other in meaning, and from which they respectively derive
their meaning. Such pairs, as we can see even in our loose conversation in our daily
lives, might be good/bad, good/evil, presence/absence, speech/writing, man/beast,
God/man, man/woman, being/nothingness, normal/abnormal, sane/insane, healing/
hurting, primary/secondary, civilized/uncivilized or “savage,” theory/practice, and so
forth.

Introduction to Deconstruction | 51

Binary Oppositions

The idea of binary oppositions is important to understand in
semantic software design. You can read more about it here.

Assigning fixed meaning requires that we privilege one of the terms in a pair of
binary oppositions that unwittingly are held up as unquestionable, beyond reproach.
Derrida argues that the history of structuralism is the history of mere substitutions of
one honored and indisputable center for another, whether the central idea is “God” or
“Being” or “Man” or “presence.” His point is that there is a contradiction inherent in
structuralism such that it is rendered incoherent.

So what does all this mean in practice? The deconstructionist move is as follows:

1.

Read the argument closely and carefully. For us, this means we consider our
understanding of the domain, the semantic field, closely and carefully.

. Find the sets of binary pairs that form the structure of the concept as given.
. Determine which term in the binary pair the author privileges above the other.

. This can lead us to the assumed anchoring center that escapes challenge and

makes possible the rest of the discourse in which the terms can abound in
meaning.

. Expose this contradiction and overturn the binary oppositions such that the

argument unravels and a new concept is created that properly can incorporate
the terms in the system without the prior inconsistency and false privileging. It
does this in a way that does not glibly reduce to “everything is everything,” but
rather marks the undecideability and interplay of the terms.

It's a Process

Pay careful attention to understand this method insofar as it’s pre-
sented here. Deconstruction provides a critical means for gaining a

* true understanding for how a system operates, especially a system
derived from a concept that is purely logical and linguistic, as any
particular software system is. In this way, a method of deconstruc-
tion is a critical tool in better system design. These few steps in
deconstruction represent a key, one might say “central,” element in
semantic software design as it unfolds throughout this book. We'll
see how to apply it practically. For now; just don’t lose this term.

In this talk, Derrida revealed the problems philosophy had at its core, how its internal
contradictions abounded in ways that could no longer be ignored.

52

Chapter 3: Deconstruction and Design

He closes his paper with the following:

Here there is a sort of question, call it historical, of which we are only glimpsing today
the conception, the formation, the gestation, the labor. I employ these words, I admit,
with a glance toward the business of childbearing—but also with a glance toward those
who, in a company from which I do not exclude myself, turn their eyes away in the face
of the as-yet unnameable which is proclaiming itself and which can do so, as is neces-
sary whenever a birth is in the offing, only under the species of the non-species, in the
formless, mute, infant, and terrifying form of monstrosity.

It's interesting to note that building architecture, our sometime progenitor, has an
entire school of deconstructionists who are among the best in their field. Included on
this illustrious list are the Pritzker Prize-winning Zaha Hadid, whose opera houses,
bridges, and cultural centers are among the most brilliant works of her generation;
the Pritzker Prize-winning Rem Koolhaas, who has designed museums and Prada
stores around the world while also holding a position as an architecture professor at
Harvard; Frank Gehry, the architect of the practically perfect Disney Concert Hall;
and Daniel Libeskind, whose work includes the very moving Jewish Museum in
Berlin.

The power of deconstruction in philosophy over the years caused it to reach into
farther-flung realms, including cuisine: the deconstructed Caesar salad introduced in
California in the 1990s owes its existence to Derrida and his philosophy of decon-
struction.

What does this have to do with software? Everything, in fact. Certainly as much as
buildings and towns do.

After you define your concept and your semantic field, deconstruct it yourself in an
analytical move to expose the inadvertent bad arguments and misunderstandings and
contradictions and privileges introduced into the system. This is the step in which
you really improve it for better flexibility, more accurate representation of the world,
better resilience, scale, and more.

If it’s not at all clear how exactly this is the case, not to worry. This is just an introduc-
tion and we explore further what it means and how it works in the coming chapters.

Simplexity

We often are told, and sometimes cling to, the slogan to make systems simple. We
hear, “Keep It Simple” We “know” that good design is simple. This is not the case. Or
rather, while this statement passes for an idea, it isn't one.

The engine of a typical E-class Mercedes-Benz has three times as many parts than a
typical Honda Accord. Which is the better engine? There’s one answer if you want to
go 180 mph. What are you hoping for from the car? Access to a greater number of

Simplexity | 53

mechanics with fewer specialized skills might be a design goal. That offers a different
answer.

Is Google search “simple”? For the end user, amazingly so. It’s estimated that Google
contains two billion lines of code, or roughly 40 times the size of Microsoft Windows,
estimated at 50 million lines.! This of course begs the question, What part of Google
is “search,” when it's used in web searches, Maps, Gmail, and many other products?
Or is it more complex than that?

Your intent must not be a facile “simplicity” Nor can it be to design for its own sake.
Nor, obviously, to overengineer because complexity is fun or because were building
our resumé, or we don't know when to stop or what we're designing or for whom.

We create accidental complexity when we focus improperly on simplicity.

Fred Brooks is the famous architect and manager of the IBM System/360, and the
author of the book The Mythical Man Month in the 1970s. He thought to write it after
his exit interview from IBM in which Thomas J. Watson asked him why it was so
much harder to manage software projects than hardware projects. In his paper “No
Silver Bullet,” Brooks outlines two types of complexity:

Essential complexity
This is the complexity inherent in the design problem. It cannot be reduced.

Accidental complexity
This is the kind of complexity that is created by the developers themselves. It
does not inhere in the concept itself. It is due to weak design, poor coding quality,
or inattention to the problem.

Counterintuitively perhaps (and certainly counter to recent received ideas), your
intent should be to embrace the complexity of the many users of different kinds with
different needs. These include the many competing concerns of audit, attestation,
accounting, the timeline, the budget, and so forth.

Right-size the complexity of your concepts according to the job.

More important, never mistake accidental, or potential complexity, for essential
complexity.

1 See https://bit.ly/2qo8mHB.

54 | Chapter3: Deconstruction and Design

(De)composition

The problem is not getting cool air to the engine, it’s getting the hot air away.
—Dr. Ferry Porsche

When we go to design a software system for a Human Resources (HR) department to
use, we ask what matters an HR department is concerned with. We decide they are
concerned with humans: after all, it’s in the name.

But, alas, they are not.

There are many humans that are not accounted for in an HR database—most of
them, in fact. So we decide to cast the lasso that will demarcate our field, our ground,
a bit more modestly. So we say: let an Employee (the kind of human the system is
about) be a thing that exists in this world.

We quickly ascribe attributes to this class. We then consider what assumptions we
have made, what we have left out. We realize there may be reasons to keep records of
contractors who work for the company, but are not employees. So we must add an
accounting for them, and their employers. Now we have extended the idea, and also
realize we have room for some consolidation, because even though employees and
contractors are different, they share many attributes that matter for these purposes.

So we say that a person exists, to hold these shared attributes, since both, for now at
least until the robots come, are people. And so forth.

The point is not to review basic object-oriented analysis, an understanding of which
is assumed. The point is to illustrate how this process might go well, how it might go
wrong, and how we do best to quickly search out the boundaries of our field, the
horizon beyond which we will not step, because that's where the ambiguities are
found.

The second we cast any figure into the field, we ask what assumptions we're making.

To avoid oversimplifying, or early simplifying, both of which lead to accidental com-
plexity or overengineering and poor design, is to understand the essence of a thing.

You do this by looking at the universe first and then zooming into your problem
space. Then, after you have posited some figures onto the field, stop and zoom out
further again, to ask what you might be assuming.

Focusing on making something simple will create unwanted complexity later.

Embracing complexity now will allow you to organize your work properly. The orga-
nization here is to reveal what functional, integral subsystems can work together to
create the complete functional system (see Figure 3-1).

(De)composition | 55

NONE (parental context)

A2

7\

A-21 A-22 Al A-24

e

A2 |A-212) [A-213] [AI] |JAO| [AI3| |A14

s

Al A2 A3 A4 (A4 (A142] [A-143

TOP A-0 (with viewpoint and purpose)
A-21 A22| |A23

Figure 3-1. Decomposition (source: Wikipedia)

If you start from “simple,” you will end up tacking things on to handle the burgeon-
ing, competing concerns. This will create a design with less integrity and harmony
and internal consistency.

Instead, start with the universe, and then narrow down subsystems.

With practice you can do this quickly, and then almost intuitively as a matter of
course, so it doesn't take as long as it sounds.

If we think our problem is how to get cool air into the engine, we have made many
assumptions, and started too late in the problem space. The problem is not that; it is
how to keep the engine cool enough to function properly. These may casually sound
the same, but they are entirely different.

These assumptions invite nonessential elements. They add unnecessary complexity to
the design.

You might ask how to give more horsepower to a big engine that is already very pow-
erful. That is a failure of analysis. Instead, ask whether the real problem is not that
you want the car to go faster.

Look for the nonobvious places to start. We must take time to separate the categories
of the problem space properly or assign relations properly.

To make a car go faster, increasing horsepower is an obvious place to start.

56 | Chapter3: Deconstruction and Design

