BEST PRACTICES

—

Demystffyfng the Black Art

Steve McConnell

Two-time winner of Software Development magazine's Jolt Award

Table of Contents
Welcome

\ Sci £ Sof Estimati
Why This Book Was Written and Who It Is For
Key Benefits Of This Book

What This Book Is Not About

Where to Start

Acknowledgments
Equations
Figures

L. Critical Estimation Concepts

(13 : » "

1.1. Estimates, Targets, and Commitments

1.2. Relationship Between Estimates and Plans

1.3. Communicating about Estimates, Targets, and Commitments
1.4. Estimates as Probability Statements
1.5. Common Definitions of a “Good” Estimate

1.6. Estimates and Project Control

1.7. Estimation’s Real Purpose

1.8. A Working Definition of a “Good Estimate”

Additional Resources

2. How Good an Estimator Are You?

2.1. A Simple Estimation Quiz

2.2. Discussion of Quiz Results
How Confident Is “90% Confident”?
How Wide Should You Make Your Ranges?
Where Does Pressure to Use Narrow Ranges Come From?
How Representative Is This Quiz of Real Software Estimates?

3. Value of Accurate Estimates

3.1. Is It Better to Overestimate or Underestimate?

Arguments Against Overestimation

Arguments Against Underestimation
Weighing the Arguments

3.2. Details on the Software Industry’s Estimation Track Record

How Late Are the Late Projects?
One Company’s Experience

The Software Industry’s Systemic Problem
3.3. Benefits of Accurate Estimates

3.4. Value of Predictability Compared with Other Desirable Project
Attributes

3.5. Problems with Common Estimation Techniques

Additional Resources

4. Where Does Estimation Error Come From?

4.1. Sources of Estimation Uncertainty
4.2. The Cone of Uncertainty

Can You Beat the Cone?

The Cone Doesn’t Narrow Itself

Accounting for the Cone of Uncertainty in Software Estimates

Relationship Between the Cone of Uncertainty and Commitment
The Cone of Uncertainty and Iterative Development

4.3. Chaotic Development Processes

4.4. Unstable Requirements

Estimating Requirements Growth

4.5. Omitted Activities

4.6. Unfounded Optimism
4.7. Subjectivity and Bias
4.8. Off-the-Cuff Estimates
4.9. Unwarranted Precision
4.10. Other Sources of Error

Additional Resources

5. Estimate Influences

5.1. Project Size

Why Is This Book Discussing Size in Lines of Code?

Diseconomies of Scale

When You Can Safely Ignore Diseconomies of Scale

Importance of Diseconomy of Scale in Software Estimation
5.2. Kind of Software Being Developed

5.3. Personnel Factors

5.4. Programming Language

5.5. Other Project Influences

5.6. Diseconomies of Scale Revisited

Additional Resources

II. Fundamental Estimation Techniques

6. Introduction to Estimation Techniques

6.1. Considerations in Choosing Estimation Technigues

What’s Being Estimated

Project Size
Software Development Style

Effect of Development Style on Choice of Estimation
Techniques

Development Stage

Accuracy Possible
6.2. Technigque Applicability Tables

7. Count, Compute, Judge
7.1. Count First

7.2. What to Count

7.3. Use Computation to Convert Counts to Estimates

7.4. Use Judgment Only as a Last Resort

Additional Resources

8. Calibration and Historical Data

8.1. Improved Accuracy and Other Benefits of Historical Data

Accounts for Organizational Influences
Avoids Subjectivity and Unfounded Optimism

Reduces Estimation Politics
8.2. Data to Collect

Issues Related to Size Measures

Issues Related to Effort Measures

Issues Related to Calendar Time Measures

Issues Related to Defect Measures

Other Data Collection Issues

8.3. How to Calibrate

8.4. Using Project Data to Refine Your Estimates

8.5. Calibration with Industry Average Data

8.6. Summary
Additional Resources

9. Individual Expert Judgment
9.1. Structured Expert Judgment

Who Creates the Estimates?

Granularity
Use of Ranges

Formulas
Checklists

9.2. Compare Estimates to Actuals
Additional Resources

10. Decomposition and Recomposition

10.1. Calculating an Accurate Overall Expected Case

The Law of Large Numbers
How Small Should the Estimated Pieces Be?

10.2. Decomposition via an Activity-Based Work Breakdown
Structure

10.3. Hazards of Adding Up Best Case and Worst Case Estimates
Warning: Math Ahead!
What Went Wrong?

10.4. Creating Meaningful Overall Best Case and Worst Case
Estimates

Computing Aggregate Best and Worst Cases for Small Numbers
of Tasks (Simple Standard Deviation Formula)

Computing Aggregate Best and Worst Cases for [.arge Numbers
of Tasks (Complex Standard Deviation Formula)

Creating the Aggregate Best and Worst Case Estimates

Cautions About Percentage Confident Estimates

Additional Resources

11. Estimation by Analogy

11.1. Basic Approach to Estimating by Analogy

Step 1: Get Detailed Size, Effort, and Cost Results for a Similar
Previous Project

Step 2: Compare the Size of the New Project to a Similar Past
Project

Step 3: Build Up the Estimate for the New Project’s Size as a
Percentage of the Old Project’s Size

Step 4: Create an Effort Estimate Based on the Size of the New
Project Compared to the Previous Project

Step 5: Check for Consistent Assumptions Across the Old and
New Projects
11.2. Comments on Uncertainty in the Triad Estimate

Estimation Uncertainty, Plans, and Commitments

12. Proxy-Based Estimates

12.1. Fuzzy Logic

How to Get the Average Size Numbers

How to Classify New Functionality

How Not to Use Fuzzy Logic

Extensions of Fuzzy Logic

12.2. Standard Components

Using Standard Components with Percentiles

Limitations of Standard Components

12.3. Storv Points

Cautions About Ratings Scales
12.4. T-Shirt Sizing
12.5. Other Uses of Proxy-Based Techniques
12.6. Additional Resources

13. Expert Judgment in Groups

13.1. Group Reviews

13.2. Wideband Delphi
Effectiveness of Wideband Delphi
“The Truth Is Out There”

When to Use Wideband Delphi

Additional Resources

14. Software Estimation Tools

14.1. Things You Can Do with Tools That You Can’t Do Manually
14.2. Data You’ll Need to Calibrate the Tools

14.3. One Thing You Shouldn’t Do with a Tool Any More than You
Should Do Otherwise

14.4. Summary of Available Tools

Additional Resources

15. Use of Multiple Approaches

Additional Resources

16. Flow of Software Estimates on a Well-Estimated Project

16.1. Flow of an Individual Estimate on a Poorly Estimated Project

16.2. Flow of an Individual Estimate on a Well-Estimated Project

16.3. Chronological Estimation Flow for an Entire Project

Estimation Flow for Large Projects

Estimation Flow for Small Projects

16.4. Estimate Refinement

16.5. How to Present Reestimation to Other Project Stakeholders

When to Present the Reestimates
What If Your Management Won't Let You Reestimate?
16.6. A View of a Well-Estimated Project

17. Standardized Estimation Procedures

17.1. Usual Elements of a Standardized Procedure

17.2. Fitting Estimation into a Stage-Gate Process
17.3. An Example of a Standardized Estimation Procedure for

Sequential Projects

17.4. An Example of a Standardized Estimation Procedure for
Iterative Projects

17.5. An Example of a Standardized Estimation Procedure from an

Advanced Organization

17.6. Improving Your Standardized Procedure

Additional Resources

I11. Specific Estimation Challenges

18. Special Issues in Estimating Size

18.1. Challenges with Estimating Size
Role of Lines of Code in Size Estimation

18.2. Function-Point Estimation

Converting from Function Points to Lines of Code
18.3. Simplified Function-Point Techniques

The Dutch Method

GUI Elements
18.4. Summary of Techniques for Estimating Size

Additional Resources

19. Special Issues in Estimating Effort

19.1. Influences on Effort

19.2. Computing Effort from Size

Computing Effort Estimates by Using Informal Comparison to
Past Projects

What Kinds of Effort Are Included in This Estimate?

19.3. Computing Effort Estimates by Using the Science of
Estimation

19.4. Industry-Average Effort Graphs
19.5. ISBSG Method

Kind of project: General

Kind of project: Mainframe
Kind of project: Mid-Range
Kind of project: Desktop

Kind of project: Third Generation Language
Kind of project: Fourth Generation Language

Kind of project: Enhancement

Kind of project: New Development

19.6. Comparing Effort Estimates

Additional Resources

20. Special Issues in Estimating Schedule
20.1. The Basic Schedule Equation

20.2. Computing Schedule by Using Informal Comparisons to Past
Projects
20.3. Jones’s First-Order Estimation Practice

20.4. Computing a Schedule Estimate by Using the Science of
Estimation

20.5. Schedule Compression and the Shortest Possible Schedule
20.6. Tradeoffs Between Schedule and Effort

Schedule Compression and Team Size

20.7. Schedule Estimation and Staffing Constraints

20.8. Comparison of Results from Different Methods

Additional Resources

21. Estimating Planning Parameters
21.1. Estimating Activity Breakdown on a Project
Estimating Allocation of Effort to Different Technical Activities

Estimating Requirements Effort
Estimating Management Effort

Estimating Total Activity

Adjustments Due to Project Type

Example of Allocating Effort to Activities

Developer-to-Tester Ratios

21.2. Estimating Schedule for Different Activities

21.3. Converting Estimated Effort (Ideal Effort) to Planned Effort
21.4. Cost Estimates

Overtime

Is the Project Cost Based on Direct Cost, Fully Burdened Cost, or
Some Other Variation?

Other Direct Costs

21.5. Estimating Defect Production and Removal
Estimating Defect Removal
An Example of Estimating Defect-Removal Efficiency

21.6. Estimating Risk and Contingency Buffers
21.7. Other Rules of Thumb

21.8. Additional Resources

22. Estimate Presentation Styles

22.1. Communicating Estimate Assumptions
22.2. Expressing Uncertainty

Plus-or-Minus Qualifiers

Risk Quantification

Confidence Factors

Case-Based Estimates

Coarse Dates and Time Periods
22.3. Using Ranges (of Any Kind)
Usefulness of Estimates Presented as Ranges

Ranges and Commitments
Additional Resources

23. Politics, Negotiation, and Problem Solving

23.1. Attributes of Executives

23.2. Political Influences on Estimates

External Constraints

Budgeting and Dates

Negotiating an Estimate vs. Negotiating a Commitment
What to Do if Your Estimate Doesn’t Get Accepted

Responsibility of Technical Staff to Educate Nontechnical
Stakeholders

23.3. Problem Solving and Principled Negotiation

A Problem-Solving Approach to Negotiation

Separate the People from the Problem

Focus on Interests, Not Positions

Invent Options for Mutual Gain

Insist on Using Objective Criteria

Technical Staff and Technical Management Own the Estimate

Nontechnical Stakeholders Own the Target

Technical Staff and Nontechnical Staff Jointly Own the
Commitment

Additional Resources

A. Estimate Sanity Check
Scoring

B. Answers to Chapter 2 Quiz, "Table 2-1"

C. Software Estimation Tips

Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
Chapter 6
Chapter 7
Chapter 8

Chapter 9

Chapter 10
Chapter 11
Chapter 12
Chapter 13
Chapter 14
Chapter 15
Chapter 16
Chapter 17
Chapter 18
Chapter 19
Chapter 20
Chapter 21
Chapter 22
Chapter 23

Bibliography

Steve McConnell

Index

About the Author

Welcome

The most unsuccessful three years in the education of cost estimators appears to be fifth-
grade arithmetic.

—Norman R. Augustine

Software estimation is not hard. Experts have been researching and writing about
software estimation for four decades, and they have developed numerous
techniques that support accurate software estimates. Creating accurate estimates is
straightforward—once you understand how to create them. But not all estimation
practices are intuitively obvious, and even smart people won’t discover all the good
practices on their own. The fact that someone is an expert developer doesn’t make
that person an expert estimator.

Numerous aspects of estimation are not what they seem. Many so-called estimation
problems arise from misunderstanding what an “estimate” is or blurring other
similar-but-not-identical concepts with estimation. Some estimation practices that
seem intuitively useful don’t produce accurate results. Complex formulas
sometimes do more harm than good, and some deceptively simple practices
produce surprisingly accurate results.

This book distills four decades of research and even more decades of hands-on
experience to help developers, leads, testers, and managers become effective
estimators. Learning about software estimation turns out to be generally useful
because the influences that affect software estimates are the influences that affect
software development itself.

Art vs. Science of Software Estimation

Software estimation research is currently focused on improving estimation
techniques so that sophisticated organizations can achieve project results within
1+5% of estimated results instead of within +10%. These techniques are
mathematically intensive. Understanding them requires a strong math background
and concentrated study. Using them requires number crunching well beyond what
you can do on your hand calculator. These techniques work best when embodied in
commercial software estimation tools. I refer to this set of practices as the science
of estimation.

Meanwhile, the typical software organization is not struggling to improve its
estimates from £10% to £5% accuracy. The typical software organization is
struggling to avoid estimates that are incorrect by 100% or more. (The reasons for
this are manifold and will be discussed in detail in Chapter 3 and Chapter 4.)

Our natural tendency is to believe that complex formulas like this:

v5

Effort = 2.94 * (KSLOC) 191 * 091 " =131+ 117 e,

will always produce more accurate results than simple formulas like this:
Effort = NumberOfRequirements * AverageEffortPerRequirement

But complex formulas aren’t necessarily better. Software projects are influenced by
numerous factors that undermine many of the assumptions contained in the
complex formulas of the science of estimation. Those dynamics will be explained
later in this book. Moreover, most software practitioners have neither the time nor
the inclination to learn the intensive math required to understand the science of
estimation.

Consequently, this book emphasizes rules of thumb, procedures, and simple
formulas that are highly effective and understandable to practicing software
professionals. These techniques will not produce estimates that are accurate to
within £5%, but they will reduce estimation error to about 25% or less, which turns
out to be about as useful as most projects need, anyway. I call this set of techniques
the art of estimation.

This book draws from both the art and science of software estimation, but its focus
is on software estimation as an art.

Why This Book Was Written and Who ItIs For

The literature on software estimation is widely scattered. Researchers have
published hundreds of articles, and many of them are useful. But the typical
practitioner doesn’t have time to track down dozens of papers from obscure
technical journals. A few previous books have described the science of estimation.
Those books are 800—1000 pages long, require a good math background, and are
targeted mainly at professional estimators—consultants or specialists who estimate
large projects and do so frequently.

I wrote this book for developers, leads, testers, and managers who need to create
estimates occasionally as one of their many job responsibilities. I believe that most
practitioners want to improve the accuracy of their estimates but don’t have the
time to obtain a Ph.D. in software estimation. These practitioners struggle with
practical issues like how to deal with the politics that surround the estimate, how to
present an estimate so that it will actually be accepted, and how to avoid having
someone change your estimate arbitrarily. If you are in this category, this book was
written for you.

The techniques in this book apply to Internet and intranet development, embedded
software, shrink-wrapped software, business systems, new development, legacy
systems, large projects, small projects—essentially, to estimates for all kinds of
software.

Key Benefits Of This Book

By focusing on the art of estimation, this book provides numerous important
estimation insights:

= What an “estimate” is. (You might think you already know what an estimate is,

but common usages of the term are inaccurate in ways that undermine effective
estimation.)

» The specific factors that have made your past estimates less accurate than they
could have been.

= Ways to distinguish a good estimate from a poor one.
» Numerous techniques that will allow you personally to create good estimates.

= Several techniques you can use to help other people on your team create good
estimates.

= Ways that your organization can create good estimates. (There are important
differences between personal techniques, group techniques, and organizational
techniques.)

= Estimation approaches that work on agile projects, and approaches that work on
traditional, sequential (plan-driven) projects.

= Estimation approaches that work on small projects and approaches that work on
large projects.

= How to navigate the shark-infested political waters that often surround software
estimation.

In addition to gaining a better understanding of estimation concepts, the practices in
this book will help you estimate numerous specific attributes of software projects,
including:

= New development work, including schedule, effort, and cost
» Schedule, effort, and cost of legacy systems work

= How many features you can deliver within a specific development iteration

» The amount of functionality you can deliver for a whole project when schedule
and team size are fixed

» Proportions of different software development activities needed, including how
much management work, requirements, construction, testing, and defect
correction will be needed

= Planning parameters, such as tradeoffs between cost and schedule, best team
size, amount of contingency buffer, ratio of developers to testers, and so on

» Quality parameters, including time needed for defect correction work, defects
that will remain in your software at release time, and other factors

» Practically anything else you want to estimate

In many cases, you’ll be able to put this book’s practices to use right away.

Most practitioners will not need to go any further than the concepts described in
this book. But understanding the concepts in this book will lay enough groundwork
that you’ll be able to graduate to more mathematically intensive approaches later
on, if you want to.

What This Book Is Not About

This book is not about how to estimate the very largest projects—more than 1
million lines of code, or more than 100 staff years. Very large projects should be
estimated by professional estimators who have read the dozens of obscure journal
articles, who have studied the 800-1000-page books, who are familiar with
commercial estimation software, and who are skilled in both the art and science of
estimation.

Where to Start

Where you start will depend on what you want to get out of the book.

If you bought this book because you need to create an estimate right now... Begin
with Chapter 1, and then move to Chapter 7 and Chapter 8. After that, skim the tips
in Chapter 10—Chapter 20 to find the techniques that will be the most immediately
useful to you. By the way, this book’s tips are highlighted in the text and numbered,
and all of the tips—118 total—are also collected in Appendix C.

If you want to improve your personal estimation skills, if you want to improve
your organization’s estimation track record, or if you’re looking for a better
understanding of software estimation in general... You can read the whole book.
If you like to understand general principles before you dive into the details, read the
book in order. If you like to see the details first and then draw general conclusions
from the details, you can start with Chapter 1, read Chapter 7 through Chapter 23,
and then go back and read the earlier chapters that you skipped.

Bellevue, Washington New Year’s Day, 2006

MICROSOFT PRESS SUPPORT

Every effort has been made to ensure the accuracy of this book. Microsoft Press
provides corrections for books through the World Wide Web at the following address:

http://www.microsoft.com/learning/support/books/

To connect directly to the Microsoft Press Knowledge Base and enter a query regarding
a question or issue that you may have, go to:

http://www.microsoft.com/mspress/support/search.asp

If you have comments, questions, or ideas regarding this book, please send them to
Microsoft Press using either of the following methods:

Postal Mail:

Microsoft PressAttn: Software Estimation EditorOne Microsoft WayRedmond, WA 98052-
6399

E-Mail:

mspinput@microsoft.com

Acknowledgments

I continue to be amazed at the many ways the Internet supports high-quality
work. My first book’s manuscript was reviewed almost entirely by people
who lived within 50 miles of me. This book’s manuscript included
reviewers from Argentina, Australia, Canada, Denmark, England,
Germany, Iceland, The Netherlands, Northern Ireland, Japan, Scotland,
Spain, and the United States. The book has benefited enormously from
these reviews.

Thanks first to the people who contributed review comments on significant
portions of the book: Fernando Berzal, Steven Black, David E. Burgess,
Stella M. Burns, Gavin Burrows, Dale Campbell, Robert A. Clinkenbeard,
Bob Corrick, Brian Donaldson, Jason Hills, William Horn, Carl J
Krzystofczyk, Jeffrey D. Moser, Thomas Oswald, Alan M. Pinder, Jon
Price, Kathy Rhode, Simon Robbie, Edmund Schweppe, Gerald Simon,
Creig R. Smith, Linda Taylor, and Bernd Viefhues.

Thanks also to the people who reviewed selected portions of the book: Lisa
M. Adams, Hakon Agﬁstsson, Bryon Baker, Tina Coleman, Chris
Crawford, Dominic Cronin, Jerry Deville, Conrado Estol, Eric Freeman,
Hideo Fukumori, C. Dale Hildebrandt, Barbara Hitchings, Jim Holmes,
Rick Hower, Kevin Hutchison, Finnur Hrafn Jonsson, Aaron Kiander,
Mehmet Kerem Kiziltung, Selimir Kustudic, Molly J. Mahai, Steve
Mattingly, Joe Nicholas, Al Noel, David O’Donoghue, Sheldon Porcina,
David J. Preston, Daniel Read, David Spokane, Janco Tanis, Ben Tilly, and

Wendy Wilhelm.

I’d especially like to acknowledge Construx’s estimation seminar
instructors. After years of stimulating discussions, it’s often impossible to
tell which ideas originated with me and which originated with them.
Thanks to Earl Beede, Gregg Boer, Matt Peloquin, Pamela Perrott, and
Steve Tockey.

This book focuses on estimation as an art, and this book’s simplifications
were made possible by researchers who have spent decades clarifying
estimation as a science. My heartfelt appreciation to three of the giants of
estimation science: Barry Boehm, Capers Jones, and Lawrence Putnam.

Working with Devon Musgrave, project editor for this book, has once again
been a privilege. Thanks, Devon! Becka McKay, assistant editor, also
improved my original manuscript in countless ways. Thanks also to the rest
of the Microsoft Press staff, including Patricia Bradbury, Carl Diltz, Tracey
Freel, Jessie Good, Patricia Masserman, Joel Panchot, and Sandi Resnick.
And thanks to indexer Seth Maislin.

Thanks finally to my wife, Ashlie, who is—in my estimation—the best life
partner I could ever hope for.

Equations

Equation #1

Equation #2

Equation #3

Equation #4

Equation #5

Equation #6

Equation #7

Equation #8

Equation #9

Equation #10

Equation #11

Equation #12

Equation #13

Equation #14

Equation #15

Equation #16

Equation #17

Equation #18

Figures

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 1-6
Figure 1-7
Figure 1-8
Figure 1-9
Figure 2-1
Figure 3-1
Figure 3-2
Figure 3-3

Figure 3-4

Figure 4-1

Figure 4-2

Figure 4-3

Figure 4-4

Figure 4-5

Figure 4-6

Figure 4-7

Figure 4-8

Figure 5-1

Figure 5-2

Figure 5-3

Figure 5-4

Figure 5-5

Figure 5-6

Figure 5-7

Figure 5-8

Figure 5-9

Figure 5-10

Figure 8-1

Figure 8-2

Figure 10-1

Figure 13-1

Figure 13-2

Figure 13-3

Figure 13-4

Figure 13-5

Figure 13-6

Figure 14-1

Figure 14-2

Figure 14-3

Figure 14-4

Figure 15-1

Figure 16-1

Figure 16-2

Figure 16-3

Figure 16-4

Figure 16-5

Figure 16-6

Figure 17-1

Figure 19-1

Figure 19-2

Figure 19-3

Figure 19-4

Figure 19-5

Figure 19-6

Figure 19-7

Figure 19-8

Figure 19-9

Figure 19-10

Figure 20-1

Figure 20-2

Figure 20-3

Figure 20-4

Figure 20-5

Table 22-1

Figure 22-2

Figure 22-3

Copyrighted material

Part |. Critical Estimation Concepts

Chapter 1. What Is an
“Estimate”?

It is very difficult to make a vigorous, plausible, and job-risking defense of an
estimate that is derived by no quantitative method, supported by little data, and
certified chiefly by the hunches of the managers.

—Fred Brooks

You might think you already know what an estimate is. My goal by the end
of this chapter is to convince you that an estimate is different from what
most people think. A good estimate is even more different.

Here is a dictionary definition of estimate: 1. A tentative evaluation or
rough calculation. 2. A preliminary calculation of the cost of a project. 3. A
judgment based upon one’s impressions; opinion. (Source: The American
Heritage Dictionary, Second College Edition, 1985.)

Does this sound like what you are asked for when you're asked for an
estimate? Are you asked for a tentative or preliminary calculation—that is,
do you expect that you can change your mind later?

Probably not. When executives ask for an “estimate,” they’re often asking
for a commitment or for a plan to meet a target. The distinctions between
estimates, targets, and commitments are critical to understanding what an
estimate is, what an estimate is not, and how to make your estimates better.

Estimates, Targets, and Commitments

Strictly speaking, the dictionary definition of estimate is correct: an
estimate is a prediction of how long a project will take or how much it will
cost. But estimation on software projects interplays with business targets,
commitments, and control.

A target is a statement of a desirable business objective. Examples include
the following:

» “We need to have Version 2.1 ready to demonstrate at a trade show in
May.”

» “We need to have this release stabilized in time for the holiday sales
cycle.”

» “These functions need to be completed by July 1 so that we’ll be in
compliance with government regulations.”

» “We must limit the cost of the next release to $2 million, because that’s
the maximum budget we have for that release.”

Businesses have important reasons to establish targets independent of
software estimates. But the fact that a target is desirable or even mandatory
does not necessarily mean that it is achievable.

While a target is a description of a desirable business objective, a
commitment is a promise to deliver defined functionality at a specific level
of quality by a certain date. A commitment can be the same as the estimate,
or it can be more aggressive or more conservative than the estimate. In
other words, do not assume that the commitment has to be the same as the
estimate; it doesn’t.

Distinguish between estimates, targets, and commitments.

Relationship Between Estimates and Plans

Estimation and planning are related topics, but estimation is not planning,
and planning is not estimation. Estimation should be treated as an unbiased,
analytical process; planning should be treated as a biased, goal-seeking
process. With estimation, it’s hazardous to want the estimate to come out to
any particular answer. The goal is accuracy; the goal is not to seek a
particular result. But the goal of planning is to seek a particular result. We
deliberately (and appropriately) bias our plans to achieve specific
outcomes. We plan specific means to reach a specific end.

Estimates form the foundation for the plans, but the plans don’t have to be
the same as the estimates. If the estimates are dramatically different from
the targets, the project plans will need to recognize that gap and account for
a high level of risk. If the estimates are close to the targets, then the plans
can assume less risk.

Both estimation and planning are important, but the fundamental
differences between the two activities mean that combining the two tends to
lead to poor estimates and poor plans. The presence of a strong planning
target can lead to substitution of the target for an analytically derived
estimate; project members might even refer to the target as an “estimate,”
giving it a halo of objectivity that it doesn’t deserve.

Here are examples of planning considerations that depend in part on

accurate estimates:

» Creating a detailed schedule

Identifying a project’s critical path

Creating a complete work breakdown structure

Prioritizing functionality for delivery

Breaking a project into iterations

Accurate estimates support better work in each of these areas (and
Chapter 21, goes into more detail on these topics).

Communicating about Estimates, Targets, and
Commitments

One implication of the close and sometimes confusing relationship between
estimation and planning is that project stakeholders sometimes
miscommunicate about these activities. Here’s an example of a typical
miscommunication:

Executive: How long do you think this project will take? We need to have
this software ready in 3 months for a trade show. I can’t give you any more
team members, so you’ll have to do the work with your current staff. Here’s
a list of the features we’ll need.

Project Lead: OK, let me crunch some numbers, and get back to you.

Later...

Project Lead: We've estimated the project will take 5 months.

Executive: Five months!? Didn’t you hear me? I said we needed to have this
software ready in 3 months for a trade show!

In this interaction, the project lead will probably walk away thinking that
the executive is irrational, because he is asking for the team to deliver 5
months’ worth of functionality in 3 months. The executive will walk away
thinking that the project lead doesn’t “get” the business reality, because he
doesn’t understand how important it is to be ready for the trade show in 3
months.

Note in this example that the executive was not really asking for an
estimate; he was asking the project lead to come up with a plan to hit a
target. Most executives don’t have the technical background that would
allow them to make fine distinctions between estimates, targets,
commitments, and plans. So it becomes the technical leader’s responsibility
to translate the executive’s request into more specific technical terms.

Here’s a more productive way that the interaction could go:

Executive: How long do you think this project will take? We need to have
this software ready in 3 months for a trade show. I can’t give you any more
team members, so you’ll have to do the work with your current staff. Here’s
a list of the features we’ll need.

Project Lead: Let me make sure I understand what you’re asking for. Is it
more important for us to deliver 100% of these features, or is it more
important to have something ready for the trade show?

Executive: We have to have something ready for the trade show. We’d like to
have 100% of those features if possible.

Project Lead: T want to be sure I follow through on your priorities as best I
can. If it turns out that we can’t deliver 100% of the features by the trade
show, should we be ready to ship what we’ve got at trade show time, or
should we plan to slip the ship date beyond the trade show?

Executive: We have to have something for the trade show, so if push comes
to shove, we have to ship something, even if it isn’t 100% of what we want.

Project Lead: OK, I'll come up with a plan for delivering as many features
as we can in the next 3 months.

When you’re asked to provide an estimate, determine whether you’re
supposed to be estimating or figuring out how to hit a target.

Estimates as Probability Statements

If three-quarters of software projects overrun their estimates, the odds of
any given software project completing on time and within budget are not
100%. Once we recognize that the odds of on-time completion are not

100%, an obvious question arises: “If the odds aren’t 100%, what are
they?” This is one of the central questions of software estimation.

Software estimates are routinely presented as single-point numbers, such as
“This project will take 14 weeks.” Such simplistic single-point estimates
are meaningless because they don’t include any indication of the
probability associated with the single point. They imply a probability as
shown in Figure 1-1—the only possible outcome is the single point given.

Only Possibfe Qutcome

100% Likel
100% T e T

Probability

Schedule (or Cost or Effort)

Figure 1-1. Single-point estimates assume 100% probability of the actual
outcome equaling the planned outcome. This isn’t realistic.

A single-point estimate is usually a target masquerading as an estimate.
Occasionally, it is the sign of a more sophisticated estimate that has been
stripped of meaningful probability information somewhere along the way.

When you see a single-point “estimate,” ask whether the number is an
estimate or whether it’s really a target.

Accurate software estimates acknowledge that software projects are
assailed by uncertainty from all quarters. Collectively, these various
sources of uncertainty mean that project outcomes follow a probability
distribution—some outcomes are more likely, some outcomes are less
likely, and a cluster of outcomes in the middle of the distribution are most
likely. You might expect that the distribution of project outcomes would
look like a common bell curve, as shown in Figure 1-2.

Nominal Qutcome
|
)
I
I
I
I
Probability -
|
)
]
|
I
)
|

Schedule (or Cost or Effort)

Figure 1-2. A common assumption is that software project outcomes follow a
bell curve. This assumption is incorrect because there are limits to how
efficiently a project team can complete any given amount of work.

Each point on the curve represents the chance of the project finishing
exactly on that date (or costing exactly that much). The area under the
curve adds up to 100%. This sort of probability distribution acknowledges
the possibility of a broad range of outcomes. But the assumption that the
outcomes are symmetrically distributed about the mean (average) is not
valid. There is a limit to how well a project can be conducted, which means
that the tail on the left side of the distribution is truncated rather than
extending as far to the left as it does in the bell curve. And while there is a
limit to how well a project can go, there is no limit to how poorly a project
can go, and so the probability distribution does have a very long tail on the
right.

Figure 1-3 provides an accurate representation of the probability
distribution of a software project’s outcomes.

Nominal Outcome
100% (50,50 estimate)

Probability

Schedule {(or Cost or Effort)

Figure 1-3. An accurate depiction of possible software project outcomes. There
is a limit to how well a project can go but no limit to how many problems can
occur.

The vertical dashed line shows the “nominal” outcome, which is also the
“50/50” outcome—there’s a 50% chance that the project will finish better
and a 50% chance that it will finish worse. Statistically, this is known as the
“median” outcome.

Figure 1-4 shows another way of expressing this probability distribution.
While Figure 1-3 showed the probabilities of delivering on specific dates,
Figure 1-5 shows the probabilities of delivering on each specific date or
earlier.

100%

Probability of
delivering on a
specific date or
earlier (or for a

particular cost or
effort or less)

MNominal Outcome

50% . .
; {50/50 Estimate)

Schedule (or Cost or Effort)

Figure 1-4. The probability of a software project delivering on or before a
particular date (or less than or equal to a specific cost or level of effort).

Probability » Estimated

of Success Completion Time
90% 24 weeks
75% 22 weeks
50% 20 weeks
10% 18 weeks
0% 16 weeks
14 weeks
12 weeks
10 weeks
8 weeks
6 weeks
4 weeks
2 weeks

o

Figure 1-5. All single-point estimates are associated with a probability,
explicitly or implicitly.

Figure 1-5 presents the idea of probabilistic project outcomes in another
way. As you can see from the figure, a naked estimate like “18 weeks”
leaves out the interesting information that 18 weeks is only 10% likely. An

estimate like “18 to 24 weeks” is more informative and conveys useful
information about the likely range of project outcomes.

When you see a single-point estimate, that number’s probability is not
100%. Ask what the probability of that number is.

You can express probabilities associated with estimates in numerous ways.
You could use a “percent confident” attached to a single-point number:
“We’re 90% confident in the 24-week schedule.” You could describe
estimates as best case and worst case, which implies a probability: “We
estimate a best case of 18 weeks and a worst case of 24 weeks.” Or you
could simply state the estimated outcome as a range rather than a single-
point number: “We’re estimating 18 to 24 weeks.” The key point is that all
estimates include a probability, whether the probability is stated or implied.
An explicitly stated probability is one sign of a good estimate.

You can make a commitment to the optimistic end or the pessimistic end of
an estimation range—or anywhere in the middle. The important thing is for
you to know where in the range your commitment falls so that you can plan
accordingly.

Common Definitions of a “Good” Estimate

The answer to the question of what an “estimate” is still leaves us with the
question of what a good estimate is. Estimation experts have proposed

various definitions of a good estimate. Capers Jones has stated that
accuracy with £10% is possible, but only on well-controlled projects (Jones
1998). Chaotic projects have too much variability to achieve that level of
accuracy.

In 1986, Professors S.D. Conte, H.E. Dunsmore, and V.Y. Shen proposed
that a good estimation approach should provide estimates that are within
25% of the actual results 75% of the time (Conte, Dunsmore, and Shen
1986). This evaluation standard is the most common standard used to
evaluate estimation accuracy (Stutzke 2005).

Numerous companies have reported estimation results that are close to the
accuracy Conte, Dunsmore, and Shen and Jones have suggested. Figure 1-6
shows actual results compared to estimates from a set of U.S. Air Force
projects.

500% %
<
400% +
Actual Results as
a Percentage of 300% + O
Estimated Results O
2009% 4 o
100% 8 ﬁ &
0% -+ " : ;
1 2 3

CMM Level of Organization Conducting the Project

Source: “A Correlational Study of the CMM and Software Development
Performance” (Lawlis, Flowe, and Thordahl 1995).
Figure 1-6. Improvement in estimation of a set of U.S. Air Force projects. The

predictability of the projects improved dramatically as the organizations moved
toward higher CMM levels.!]

Figure 1-7 shows results of a similar improvement program at the Boeing

Company.

+150%

Historical data used for
all project estimates
[|

0% o = H H

Estimation
Error

-150%
1 2 3 4 5

CMM Level

Figure 1-7. Improvement in estimation at the Boeing Company. As with the U.S.
Air Force projects, the predictability of the projects improved dramatically at
higher CMM levels.

A final, similar example, shown in Figure 1-8, comes from improved
estimation results at Schlumberger.

35

30
25
20
Average Overrun 15
(weeks)

10
5

0 1=
-5

1 2 3 4 5 6 7

(4) 0 (3) (3) “4) (2) (3)

Starting Period Half Year
(# of projects)

Figure 1-8. Schlumberger improved its estimation accuracy from an average
overrun of 35 weeks to an average underrun of 1 week.

One of my client companies delivers 97% of its projects on time and within
budget. Telcordia reported that it delivers 98% of its projects on time and
within budget (Pitterman 2000). Numerous other companies have published
similar results (Putham and Myers 2003). Organizations are creating good
estimates by both Jones’s definition and Conte, Dunsmore, and Shen’s
definition. However, an important concept is missing from both of these
definitions—namely, that accurate estimation results cannot be
accomplished through estimation practices alone. They must also be
supported by effective project control.

Estimates and Project Control

Sometimes when people discuss software estimation they treat estimation
as a purely predictive activity. They act as though the estimate is made by
an impartial estimator, sitting somewhere in outer space, disconnected from
project planning and prioritization activities.

In reality, there is little that is pure about software estimation. If you ever
wanted an example of Heisenberg’s Uncertainty Principle applied to
software, estimation would be it. (Heisenberg’s Uncertainty Principle is the
idea that the mere act of observing a thing changes it, so you can never be
sure how that thing would behave if you weren’t observing it.) Once we
make an estimate and, on the basis of that estimate, make a commitment to
deliver functionality and quality by a particular date, then we control the
project to meet the target. Typical project control activities include
removing noncritical requirements, redefining requirements, replacing less-
experienced staff with more-experienced staff, and so on. Figure 1-9
illustrates these dynamics.

Staff diverted
to support
Staff nat trade show

ready when
planned

Unstable
functionality
removed

Requirements
removed

Outcome =
20 staff months

“Estimate” =

20 staff months The Project

Requirements

added More

Staff diverted | | requirements
to support added
old project

Less-experienced
staff than planned

Figure 1-9. Projects change significantly from inception to delivery. Changes
are usually significant enough that the project delivered is not the same as the
project that was estimated. Nonetheless, if the outcome is similar to the
estimate, we say the project met its estimate.

In addition to project control activities, projects are often affected by
unforeseen external events. The project team might need to create an
interim release to support a key customer. Staff might be diverted to
support an old project, and so on.

Events that happen during the project nearly always invalidate the
assumptions that were used to estimate the project in the first place.
Functionality assumptions change, staffing assumptions change, and
priorities change. It becomes impossible to make a clean analytical
assessment of whether the project was estimated accurately—because the
software project that was ultimately delivered is not the project that was

originally estimated.

In practice, if we deliver a project with about the level of functionality
intended, using about the level of resources planned, in about the time
frame targeted, then we typically say that the project “met its estimates,”
despite all the analytical impurities implicit in that statement.

Thus, the criteria for a “good” estimate cannot be based on its predictive
capability, which is impossible to assess, but on the estimate’s ability to
support project success, which brings us to the next topic: the Proper Role
of Estimation.

Estimation’s Real Purpose

Suppose you’re preparing for a trip and deciding which suitcase to take.
You have a small suitcase that you like because it’s easy to carry and will
fit into an airplane’s overhead storage bin. You also have a large suitcase,
which you don’t like because you’ll have to check it in and then wait for it
at baggage claim, lengthening your trip. You lay your clothes beside the
small suitcase, and it appears that they will almost fit. What do you do?
You might try packing them very carefully, not wasting any space, and
hoping they all fit. If that approach doesn’t work, you might try stuffing
them into the suitcase with brute force, sitting on the top and trying to
squeeze the latches closed. If that still doesn’t work, you’re faced with a
choice: leave a few clothes at home or take the larger suitcase.

Software projects face a similar dilemma. Project planners often find a gap
between a project’s business targets and its estimated schedule and cost. If
the gap is small, the planner might be able to control the project to a
successful conclusion by preparing extra carefully or by squeezing the

project’s schedule, budget, or feature set. If the gap is large, the project’s
targets must be reconsidered.

The primary purpose of software estimation is not to predict a project’s
outcome; it is to determine whether a project’s targets are realistic enough
to allow the project to be controlled to meet them. Will the clothes you
want to take on your trip fit into the small suitcase or will you be forced to
take the large suitcase? Can you take the small suitcase if you make minor
adjustments? Executives want the same kinds of answers. They often don’t
want an accurate estimate that tells them that the desired clothes won’t fit
into the suitcase; they want a plan for making as many of the clothes fit as
possible.

Problems arise when the gap between the business targets and the schedule
and effort needed to achieve those targets becomes too large. [have found
that if the initial target and initial estimate are within about 20% of each
other, the project manager will have enough maneuvering room to control
the feature set, schedule, team size, and other parameters to meet the
project’s business goals; other experts concur (Boehm 1981, Stutzke 2005).
If the gap between the target and what is actually needed is too large, the
manager will not be able to control the project to a successful conclusion by
making minor adjustments to project parameters. No amount of careful
packing or sitting on the suitcase will squeeze all your clothes into the
smaller suitcase, and you’ll have to take the larger one, even if it isn’t your
first choice, or you’ll have to leave some clothes behind. The project targets
will need to be brought into better alignment with reality before the
manager can control the project to meet its targets.

Estimates don’t need to be perfectly accurate as much as they need to be
useful. When we have the combination of accurate estimates, good target
setting, and good planning and control, we can end up with project results

that are close to the “estimates.” (As you’ve guessed, the word “estimate” is
in quotation marks because the project that was estimated is not the same
project that was ultimately delivered.)

These dynamics of changing project assumptions are a major reason that
this book focuses more on the art of estimation than on the science.
Accuracy of +5% won’t do you much good if the project’s underlying
assumptions change by 100%.

A Working Definition of a “Good Estimate”

With the background provided in the past few sections, we’re now ready to
answer the question of what qualifies as a good estimate.

A good estimate is an estimate that provides a clear enough view of the
project reality to allow the project leadership to make good decisions about
how to control the project to hit its targets..

This definition is the foundation of the estimation discussion throughout the
rest of this book.

Additional Resources

[biblio01_001] Conte,S.D., H.E.Dunsmore, and V.Y .Shen. Software
Engineering Metrics and Models. Menlo Park, CA: Benjamin/Cummings,
1986. Conte, Dunsmore, and Shen’s book contains the definitive discussion
of evaluating estimation models. It discusses the “within 25% of actual
75% of the time” criteria, as well as many other evaluation criteria.

[biblio01_002] DeMarco,Tom. Controlling Software Projects. New York,
NY: Yourdon Press, 1982. DeMarco discusses the probabilistic nature of
software projects.

[biblio01_003] Stutzke,RichardD. Estimating Software-Intensive Systems.
Upper Saddle River, NJ: Addison-Wesley, 2005. Appendix C of Stutzke’s
book contains a summary of measures of estimation accuracy.

[I'The CMM (Capability Maturity Model) is a system defined by the Software
Engineering Institute to assess the effectiveness of software organizations.

Chapter 2. How Good an
Estimator Are You?

The process is called estimation, not exactimation.
—Phillip Armour

Now that you know what a good estimate is, how good an estimator are
you? The following section will help you find out.

A Simple Estimation Quiz

Table 2-1, appearing on the following page, contains a quiz designed to test
your estimation skills. Please read and observe the following directions
carefully:

Table 2-1. How Good an Estimator Are You?

[Low Estimate — High
Estimate] Description

[- Surface temperature of the Sun

[- Latitude of Shanghai

| - Area of the Asian continent

[- The year of Alexander the Great’s birth
]

[- Total value of U.S. currency in circulation in
1 2004

[- Total volume of the Great Lakes
|

[- Worldwide box office receipts for the movie
1 Titanic

[- Total length of the coastline of the Pacific
1 Ocean

[- Number of book titles published in the U.S.
] since 1776

| - Heaviest blue whale ever recorded

]

Source: Inspired by a similar quiz in Programming Pearls, Second Edition (Bentley

2000).

This quiz is from Software Estimation by Steve McConnell (Microsoft Press, 2006)
and is © 2006 Steve McConnell. All Rights Reserved. Permission to copy this quiz
is granted provided that this copyright notice is included.

For each question, fill in the upper and lower bounds that, in your opinion,
give you a 90% chance of including the correct value. Be careful not to
make your ranges either too wide or too narrow. Make them wide enough
so that, in your best judgment, the ranges give you a 90% chance of

including the correct answer. Please do not research any of the answers—
this quiz is intended to assess your estimation skills, not your research
skills. You must fill in an answer for each item; an omitted item will be
scored as an incorrect item. Please limit your time on this exercise to 10
minutes.

(Also, you might want to photocopy the quiz before taking it so that the
next person who reads this book can take it, too.)

The correct answers to this exercise (the latitude of Shanghai, for example)
are listed in Appendix B in the back of the book. Give yourself one point
for each of your ranges that includes the related correct answer.

How did you do? (Don’t feel bad. Most people do poorly on this quiz!)
Please write your score here:

Discussion of Quiz Results

The purpose of this quiz is not to determine whether you know when
Alexander the Great was born or the latitude of Shanghai. Its purpose is to
determine how well you understand your own estimation capabilities.

How Confident Is “90% Confident”?

The directions above are specific that the goal of the exercise is to estimate
at the 90% confidence level. Because there are 10 questions in the quiz, if
you were truly estimating at the 90% confidence level, you should have

gotten about 9 answers correct.'!

If you were cautious, you made your ranges conservatively wide, in which
case you scored 10 out of 10 correctly. If you were just a little hasty, you

made your ranges narrower than they needed to be, in which case you
scored 7 or 8 out of 10 correctly. I’ve given this quiz to hundreds of
estimators. Figure 2-1 shows the results from the most recent 600 people
who have taken the quiz.

25%

20%

15%

Test
Takers

10%

5%

0% | & N N
0 1 2 3 4 5 6 7 a 9 10

Correct Answers

Figure 2-1. Results from administering the “How Good an Estimator Are You?”
quiz. Most quiz-takers get 1-3 answers correct.

For the test takers whose results are shown in the figure, the average
number of correct answers is 2.8. Only 2 percent of quiz takers score 8 or

more answers correctly. No one has ever gotten 10 correct. I’ve concluded
that most people’s intuitive sense of “90% confident” is really comparable
to something closer to “30% confident.” Other studies have confirmed this
basic finding (Zultner 1999, Jargensen 2002).

Similarly, I’ve seen numerous project teams present “90% confident”
schedules, and I’ve frequently seen those project teams overrun their “90%
confident” schedules—more often than not. If those schedules represented a
true 90% confidence, the project teams would overrun them only about 1
time out of 10.

I’ve concluded that specific percentages such as “90%” are not meaningful
unless they are supported through some kind of statistical analysis.
Otherwise those specific percentages are just wishful thinking. How to get
to a real 90% confidence level will be discussed later in the book.

Don’t provide “percentage confident” estimates (especially “90%
confident”) unless you have a quantitatively derived basis for doing
S0.

If you didn’t take the quiz earlier in this chapter, this would be a good time
to go back and take it. I think you’ll be surprised at how few answers you
get correct even after reading this explanation.

How Wide Should You Make Your Ranges?

When I find the rare person who gets 7 or 8 answers correct, I ask “How

did you get that many correct?” The typical response? “I made my ranges
too wide.”

My response is, “No, you didn’t! You didn’t make your ranges wide
enough!” If you got only 7 or 8 correct, your ranges were still too narrow to
include the correct answer as often as you should have.

We are conditioned to believe that estimates expressed as narrow ranges are
more accurate than estimates expressed as wider ranges. We believe that
wide ranges make us appear ignorant or incompetent. The opposite is
usually the case. (Of course, narrow ranges are desirable in the cases when
the underlying data supports them.)

Avoid using artificially narrow ranges. Be sure the ranges you use in
your estimates don’t misrepresent your confidence in your estimates.

Where Does Pressure to Use Narrow Ranges Come
From?

When you were taking the quiz, did you feel pressure to make your ranges
wider? Or did you feel pressure to make your ranges narrower? Most
people report that they feel pressure to make the ranges as narrow as
possible. But if you go back and review the instructions, you’ll find that
they do not encourage you to use narrow ranges. Indeed, I was careful to
state that you should make your ranges neither too wide nor too narrow—
just wide enough to give you a 90% confidence in including the correct
danswer.

After discussing this issue with hundreds of developers and managers, 1've
concluded that much of the pressure to provide narrow ranges is self-
induced. Some of the pressure comes from people’s sense of professional
pride. They believe that narrow ranges are a sign of a better estimate, even
though that isn’t the case. And some of the pressure comes from
experiences with bosses or customers who insisted on the use of overly
narrow ranges.

This same self-induced pressure has been found in interactions between
customers and estimators. Jgrgensen and Sjgberg reported that information
about customers’ expectations exerts strong influence on estimates and that
estimators are typically not conscious of the degree to which their estimates
are affected (Jorgensen and Sjgberg 2002).

If you are feeling pressure to make your ranges narrower, verify that
the pressure actually is coming from an external source and not from
yourself.

For those cases in which the pressure truly is coming from an external
source, Chapter 22, and Chapter 23. discuss how to deal with that pressure.

How Representative Is This Quiz of Real Software
Estimates?

In software, you aren’t often asked to estimate the volume of the Great
Lakes or the surface temperature of the Sun. Is it reasonable to expect you

to be able to estimate the amount of U.S. currency in circulation or the
number of books published in the U.S., especially if you’re not in the U.S.?

Software developers are often asked to estimate projects in unfamiliar
business areas, projects that will be implemented in new technologies, the
impacts of new programming tools on productivity, the productivity of
unidentified personnel, and so on. Estimating in the face of uncertainty is
business as usual for software estimators. The rest of this book explains
how to succeed in such circumstances.

() The mathematics behind “90% confident” are a little complicated. If you were
really estimating with 90% confidence, you would have a 34.9% chance of getting
10 answers correct, 38.7% chance of getting 9 answers correct, and a 19.4% chance
of getting 8 answers correct. In other words, you’d have a 93% chance of getting 8
Or more answers correct.

Chapter 3. Value of Accurate
Estimates

[The common definition of estimate is] “the most optimistic prediction that has a
non-zero probability of coming true.” ... Accepting this definition leads
irrevocably toward a method called what’s-the-earliest-date-by-which-you-
can’t-prove-you-won't-be-finished estimating.

—Tom DeMarco

The inaccuracy of software project estimates—as muddied by unrealistic
targets and unachievable commitments—has been a problem for many
years. In the 1970s, Fred Brooks pointed out that “more software projects
have gone awry for lack of calendar time than all other causes combined”
(Brooks 1975). A decade later, Scott Costello observed that “deadline
pressure is the single greatest enemy of software engineering” (Costello
1984). In the 1990s, Capers Jones reported that “excessive or irrational
schedules are probably the single most destructive influence in all of
software” (Jones 1994, 1997).

Tom DeMarco wrote his common definition of an estimate in 1982. Despite
the successes I mentioned in the first chapter, not much has changed in the
years since he wrote that definition. You might already agree that accurate
estimates are valuable. This chapter details the specific benefits of accurate
estimates and provides supporting data for them.

Is It Better to Overestimate or Underestimate?

Intuitively, a perfectly accurate estimate forms the ideal planning
foundation for a project. If the estimates are accurate, work among different
developers can be coordinated efficiently. Deliveries from one development
group to another can be planned to the day, hour, or minute. We know that
accurate estimates are rare, so if we’re going to err, is it better to err on the
side of overestimation or underestimation?

Arguments Against Overestimation

Managers and other project stakeholders sometimes fear that, if a project is
overestimated, Parkinson’s Law will kick in—the idea that work will
expand to fill available time. If you give a developer 5 days to deliver a task
that could be completed in 4 days, the developer will find something to do
with the extra day. If you give a project team 6 months to complete a
project that could be completed in 4 months, the project team will find a
way to use up the extra 2 months. As a result, some managers consciously
squeeze the estimates to try to avoid Parkinson’s Law.

Another concern is Goldratt’s “Student Syndrome” (Goldratt 1997). If
developers are given too much time, they’ll procrastinate until late in the
project, at which point they’ll rush to complete their work, and they
probably won’t finish the project on time.

A related motivation for underestimation is the desire to instill a sense of
urgency in the development team. The line of reason goes like this:

The developers say that this project will take 6 months. I think there’s some
padding in their estimates and some fat that can be squeezed out of them. In
addition, I'd like to have some schedule urgency on this project to force
prioritizations among features. So I'm going to insist on a 3-month schedule.
I don’t really believe the project can be completed in 3 months, but that’s
what I'm going to present to the developers. If I'm right, the developers
might deliver in 4 or 5 months. Worst case, the developers will deliver in the
6 months they originally estimated.

Are these arguments compelling? To determine that, we need to examine
the arguments in favor of erring on the side of overestimation.

Arguments Against Underestimation

Underestimation creates numerous problems—some obvious, some not so
obvious.

Reduced effectiveness of project plans. Low estimates undermine effective
planning by feeding bad assumptions into plans for specific activities. They
can cause planning errors in the team size, such as planning to use a team
that’s smaller than it should be. They can undermine the ability to
coordinate among groups—if the groups aren’t ready when they said they
would be, other groups won’t be able to integrate with their work.

If the estimation errors caused the plans to be off by only 5% or 10%, those
errors wouldn’t cause any significant problems. But numerous studies have
found that software estimates are often inaccurate by 100% or more
(Lawlis, Flowe, and Thordahl 1995; Jones 1998; Standish Group 2004,
ISBSG 2005). When the planning assumptions are wrong by this
magnitude, the average project’s plans are based on assumptions that are so
far off that the plans are virtually useless.

Statistically reduced chance of on-time completion. Developers typically

estimate 20% to 30% lower than their actual effort (van Genuchten 1991).
Merely using their normal estimates makes the project plans optimistic.
Reducing their estimates even further simply reduces the chances of on-
time completion even more.

Poor technical foundation leads to worse-than-nominal results. A low
estimate can cause you to spend too little time on upstream activities such
as requirements and design. If you don’t put enough focus on requirements
and design, you’ll get to redo your requirements and redo your design later
in the project—at greater cost than if you’d done those activities well in the
first place (Boehm and Turner 2004, McConnell 2004a). This ultimately
makes your project take longer than it would have taken with an accurate
estimate.

Destructive late-project dynamics make the project worse than
nominal. Once a project gets into “late” status, project teams engage in
numerous activities that they don’t need to engage in during an “on-time”
project. Here are some examples:

= More status meetings with upper management to discuss how to get the
project back on track.

» Frequent reestimation, late in the project, to determine just when the
project will be completed.

» Apologizing to key customers for missing delivery dates (including
attending meetings with those customers).

» Preparing interim releases to support customer demos, trade shows, and
so on. If the software were ready on time, the software itself could be
used, and no interim release would be necessary.

» More discussions about which requirements absolutely must be added
because the project has been underway so long.

» Fixing problems arising from quick and dirty workarounds that were
implemented earlier in response to the schedule pressure.

The important characteristic of each of these activities is that they don’t
need to occur at all when a project is meeting its goals. These extra
activities drain time away from productive work on the project and make it
take longer than it would if it were estimated and planned accurately.

Weighing the Arguments

Goldratt’s Student Syndrome can be a factor on software projects, but I've
found that the most effective way to address Student Syndrome is through
active task tracking and buffer management (that is, project control),
similar to what Goldratt suggests, not through biasing the estimates.

As Figure 3-1 shows, the best project results come from the most accurate
estimates (Symons 1991). If the estimate is too low, planning inefficiencies
will drive up the actual cost and schedule of the project. If the estimate is
too high, Parkinson’s Law kicks in.

Nonlinear penalty
due to planning errors,
upstream defects,

high-risk practices Effort
2 & Cost Linear penalty due
Schedule to Parkinson’s Law
+— Underestimation Overerestimation —¥

<100% 100% >100%
Target as a Percentage of Nominal Estimate

Figure 3-1. The penalties for underestimation are more severe than the
penalties for overestimation, so, if you can’t estimate with complete accuracy,
try to err on the side of overestimation rather than underestimation.

I believe that Parkinson’s Law does apply to software projects. Work does
expand to fill available time. But deliberately underestimating a project
because of Parkinson’s Law makes sense only if the penalty for
overestimation is worse than the penalty for underestimation. In software,
the penalty for overestimation is linear and bounded—work will expand to
fill available time, but it will not expand any further. But the penalty for
underestimation is nonlinear and unbounded—planning errors,
shortchanging upstream activities, and the creation of more defects cause
more damage than overestimation does, and with little ability to predict the
extent of the damage ahead of time.

Don’t intentionally underestimate. The penalty for underestimation is
more severe than the penalty for overestimation. Address concerns
about overestimation through planning and control, not by biasing
your estimates.

Details on the Software Industry’s Estimation
Track Record

The software industry’s estimation track record provides some interesting
clues to the nature of software’s estimation problems. In recent years, The
Standish Group has published a biennial survey called “The Chaos Report,
which describes software project outcomes. In the 2004 report, 54% of
projects were delivered late, 18% failed outright, and 28% were delivered
on time and within budget. Figure 3-2 shows the results for the 10 years
from 1994 to 2004.

»

Percentage

1994 1996 1998 2000 2002 2004

Z| Failed .

Figure 3-2. Project outcomes reported in The Standish Group’s Chaos report
have fluctuated year to year. About three quarters of all software projects are
delivered late or fail outright.

Late / Over . On Time /
Budget On Budget

What’s notable about The Standish Group’s data is that it doesn’t even have
a category for early delivery! The best possible performance is meeting
expectations “On Time/On Budget”—and the other options are all downhill
from there.

Capers Jones presents another view of project outcomes. Jones has
observed for many years that project success depends on project size. That
is, larger projects struggle more than smaller projects do. Table 3-1
illustrates this point.

Copyrighted material

Table 3-1. Project Outcomes by Project Size

Size in Function Points (and On Failed
Approximate Lines of Code) Early Time Late (Canceled)
10 FP (1,000 LOC) 11% 81% 6% 2%

100 FP (10,000 LOC) 6% 75% 12% 7%

1,000 FP (100,000 LOC) 1% 61% 18% 20%

10,000 FP (1,000,000 LOC) <1% 28% 24% 48%
100,000 FP (10,000,000 LOC) 0% 14% 21% 65%

Source: Estimating Software Costs (Jones 1998).

As you can see from Jones’s data, the larger a project, the less chance the
project has of completing on time and the greater chance it has of failing
outright.

Overall, a compelling number of studies have found results in line with the
results reported by The Standish Group and Jones, that about one quarter of
all projects are delivered on time; about one quarter are canceled; and about
half are delivered late, over budget, or both (Lederer and Prasad 1992;
Jones 1998; ISBSG 2001; Krasner 2003; Putnam and Myers 2003;
Heemstra, Siskens and van der Stelt 2003; Standish Group 2004).

The reasons that projects miss their targets are manifold. Poor estimates are
one reason but not the only reason. We’ll discuss the reasons in depth in
Chapter 4.

How Late Are the Late Projects?

The number of projects that run late or over budget is one consideration.
The degree to which these projects miss their targets is another
consideration. According to the first Standish Group survey, the average
project schedule overrun was about 120% and the average cost overrun was
about 100% (Standish Group 1994). But the estimation accuracy is
probably worse than those numbers reflect. The Standish Group found that
late projects routinely threw out significant amounts of functionality to
achieve the schedules and budgets they eventually did meet. Of course,
these projects’ estimates weren’t for the abbreviated versions they
eventually delivered; they were for the originally specified, full-featured
versions. If these late projects had delivered all of their originally specified
functionality, they would have overrun their plans even more.

One Company’s Experience

A more company-specific view of project outcomes is shown in the data
reported by one of my clients in Figure 3-3.

280
260 -
240
220
200
180

160 ~

Actual
Completion 1407
Date (days) 120 -

100

ao—+

GD:
40 3
203

- T4 Average
+=+ + Target: 22 days
+ + Actual: 56 days

Perfect accuracy

@_ (Actual Completion = Target Completion)

Figure 3-3. Estimat

o

T T T T 11
20 40 6[} 8{} 100 120 140 160 180 200 220
Target Completion Date (days)

ion results from one organization. General industry data

suggests that this company’s estimates being about 100% low is typical. Data

used by permission.

The points that are clustered on the “0” line on the left side of the graph
represent projects for which the developers reported that they were done
but which were found not to be complete when the software teams began
integrating their work with other groups.

The diagonal line represents perfect scheduling accuracy. Ideally, the graph
would show data points clustering tightly around the diagonal line. Instead,
nearly all of the 80 data points shown are above the line and represent
project overruns. One point is below the line, and a handful of points are on
the line. The line illustrates DeMarco’s common definition of an
“estimate”—the earliest date by which you could possibly be finished.

The Software Industry’s Systemic Problem

We often speak of the software industry’s estimation problem as though it
were a neutral estimation problem—that is, sometimes we overestimate,
sometimes we underestimate, and we just can’t get our estimates right.

But the software does not have a neutral estimation problem. The industry
data shows clearly that the software industry has an underestimation
problem. Before we can make our estimates more accurate, we need to start
making the estimates bigger. That is the key challenge for many
organizations.

Benefits of Accurate Estimates

Once your estimates become accurate enough that you get past worrying
about large estimation errors on either the high or low side, truly accurate
estimates produce additional benefits.

Improved status visibility. One of the best ways to track progress is to
compare planned progress with actual progress. If the planned progress is
realistic (that is, based on accurate estimates), it’s possible to track progress
according to plan. If the planned progress is fantasy, a project typically
begins to run without paying much attention to its plan and it soon becomes
meaningless to compare actual progress with planned progress. Good
estimates thus provide important support for project tracking.

Higher quality. Accurate estimates help avoid schedule-stress-related
quality problems. About 40% of all software errors have been found to be
caused by stress; those errors could have been avoided by scheduling
appropriately and by placing less stress on the developers (Glass 1994).
When schedule pressure is extreme, about four times as many defects are
reported in the released software as are reported for software developed
under less extreme pressure (Jones 1994). One reason is that teams
implement quick-and-dirty versions of features that absolutely must be
completed in time to release the software. Excessive schedule pressure has
also been found to be the most significant cause of extremely costly error-
prone modules (Jones 1997).

Projects that aim from the beginning to have the lowest number of defects
usually also have the shortest schedules (Jones 2000). Projects that apply
pressure to create unrealistic estimates and subsequently shortchange
quality are rudely awakened when they discover that they have also
shortchanged cost and schedule.

Better coordination with nonsoftware functions. Software projects usually
need to coordinate with other business functions, including testing,
document writing, marketing campaigns, sales staff training, financial
projections, software support training, and so on. If the software schedule is
not reliable, that can cause related functions to slip, which can cause the

entire project schedule to slip. Better software estimates allow for tighter
coordination of the whole project, including both software and nonsoftware
activities.

Better budgeting. Although it is almost too obvious to state, accurate
estimates support accurate budgets. An organization that doesn’t support
accurate estimates undermines its ability to forecast the costs of its projects.

Increased credibility for the development team. One of the great ironies in
software development is that after a project team creates an estimate,
managers, marketers, and sales staff take the estimate and turn it into an
optimistic business target—over the objections of the project team. The
developers then overrun the optimistic business target, at which point,
managers, marketers, and sales staff blame the developers for being poor
estimators! A project team that holds its ground and insists on an accurate
estimate will improve its credibility within its organization.

Early risk information. One of the most common wasted opportunities in
software development is the failure to correctly interpret the meaning of an
initial mismatch between project goals and project estimates. Consider what
happens when the business sponsor says, “This project needs to be done in
4 months because we have a major trade show coming up,” and the project
team says, “Our best estimate is that this project will take 6 months.” The
most typical interaction is for the business sponsor and the project
leadership to negotiate the estimate, and for the project team eventually to
be pressured into committing to try to achieve the 4-month schedule.

Bzzzzzt! Wrong answer! The detection of a mismatch between the project
goal and the project estimate should be interpreted as incredibly useful,
incredibly rare, early-in-the-project risk information. The mismatch
indicates a substantial chance that the project will fail to meet its business

objective. Detected early, numerous corrective actions are available, and
many of them are high leverage. You might redefine the scope of the
project, you might increase staff, you might transfer your best staff onto the
project, or you might stagger the delivery of different functionality. You
might even decide the project is not worth doing after all.

But if this mismatch is allowed to persist, the options that will be available
for corrective action will be far fewer and will be much lower leverage. The
options will generally consist of “overrun the schedule and budget” or “cut
painful amounts of functionality.”

Recognize a mismatch between a project’s business target and a
project’s estimate for what it is: valuable risk information that the
project might not be successful. Take corrective action early, when it
can do some good.

Value of Predictability Compared with Other
Desirable Project Attributes
Software organizations and individual software projects try to achieve

numerous objectives for their projects. Here are some of the goals they
strive for:

» Schedule. Shortest possible schedule for the desired functionality at the
desired quality level

» Cost. Minimum cost to deliver the desired functionality in the desired
time

» Functionality. Maximum feature richness for the time and money
available

Projects will prioritize these generic goals as well as more specific goals
differently. Agile development tends to focus on the goals of flexibility,
repeatability, robustness, sustainability, and visibility (Cockburn 2001,
McConnell 2002). The SEI's CMM tends to focus on the goals of
efficiency, improvability, predictability, repeatability, and visibility.

In my discussions with executives, I've frequently asked, “What is more
important to you: the ability to change your mind about features, or the
ability to know cost, schedule, and functionality in advance?” At least 8
times out of 10, executives respond “The ability to know cost, schedule,
and functionality in advance”—in other words, predictability. Other
software experts have made the same observation (Moseman 2002, Putnam
and Myers 2003).

I often follow up by saying, “Suppose I could offer you project results
similar to either Option #1 or Option #2 in Figure 3-4. Let’s suppose
Option #1 means that I can deliver a project with an expected duration of 4
months, but it might be 1 month early and it might be as many as 4 months
late. Let’s suppose Option #2 means that I can deliver a project with an
expected duration of 5 months (rather than 4), and I can guarantee that it
will be completed within a week of that date. Which would you prefer?”

OO X

Range of > 6
Project
Qutcomes 4 g
{(months) 3
2
1
0

Option Option
1 2

Figure 3-4. When given the option of a shorter average schedule with higher
variability or a longer average schedule with lower variability, most businesses
will choose the second option.

In my experience, nearly all executives will choose Option #2. The shorter
schedule offered by Option #1 won’t do the business any good because the
business can’t depend on it. Because the overrun could easily be as large as
4 months, the business has to plan on an 8-month schedule rather than a 4-
month schedule. Or it delays making any plans at all until the software is
actually ready. In comparison, the guaranteed 5-month schedule of Option
#2 looks much better.

Over the years, the software industry has focused on time to market, cost,
and flexibility. Each of these goals is desirable, but what top executives
usually value most is predictability. Businesses need to make commitments
to customers, investors, suppliers, the marketplace, and other stakeholders.
These commitments are all supported by predictability.

None of this proves that predictability is the top priority for your business,
but it suggests that you shouldn’t make assumptions about your business’s
priorities.

Many businesses value predictability more than development time,
cost, or flexibility. Be sure you understand what your business values
the most.

Problems with Common Estimation Techniques

Considering the widespread poor results from software estimation, it
shouldn’t be a surprise that the techniques used to produce the estimates are
not effective. These techniques should be carefully examined and thrown
out!

Albert Lederer and Jayesh Prasad found that the most commonly used
estimation technique was comparing a new project with a similar past
project, based solely on personal memory. This technique was not found to
be correlated with accurate estimates. The common techniques of
“intuition” and “guessing” were found to be correlated with cost and

schedule overruns (Lederer and Prasad 1992). Numerous other researchers
have found that guessing, intuition, unstructured expert judgment, use of
informal analogies, and similar techniques are the dominant strategies used
for about 60 to 85% of all estimates (Hihn and Habib-Agahi 1991,
Heemstra and Kusters 1991, Paynter 1996, Jargensen 2002, Kitchenham et
al. 2002).

Chapter 5, presents a more detailed examination of sources of estimation
error, and the rest of this book provides alternatives to these common
techniques.

Additional Resources

[biblio03_001] Goldratt,EliyahuM. Critical Chain. Great Barrington, MA:
The North River Press, 1997. Goldratt describes an approach to dealing
with Student Syndrome as well as an approach to buffer management that
addresses Parkinson’s Law.

[biblio03_002] Putnam,L.awrenceH. and WareMyers. Five Core Metrics.
New York, NY: Dorset House, 2003. Chapter 4 contains an extended
discussion of the importance of predictability compared to other project
objectives.

Chapter 4. Where Does
Estimation Error Come From?

There’s no point in being exact about something if you don’t even know what
you're talking about.

—John von Neumann

A University of Washington Computer Science Department project was in
serious estimation trouble. The project was months late and $20.5 million
over budget. The causes ranged from design problems and
miscommunications to last-minute changes and numerous errors. The
university argued that the plans for the project weren’t adequate. But this
wasn’t an ordinary software project. In fact, it wasn’t a software project at
all; it was the creation of the university’s new Computer Science and
Engineering Building (Sanchez 1998).

Software estimation presents challenges because estimation itself presents
challenges. The Seattle Mariners’ new baseball stadium was estimated in
1995 to cost $250 million. It was finally completed in 1999 at a cost of
$517 million—an estimation error of more than 100% (Withers 1999). The
most massive cost overrun in recent times was probably Boston’s Big Dig
highway construction project. Originally estimated to cost $2.6 billion,
costs eventually totaled about $15 billion—an estimation error of more than
400% (Associated Press 2003).

Of course, the software world has its own dramatic estimation problems.

The Irish Personnel, Payroll and Related Systems (PPARS) system was
cancelled after it overran its €8.8 million system by €140 million (The Irish
Times 2005). The FBI’s Virtual Case File (VCF) project was shelved in
March 2005 after costing $170 million and delivering only one-tenth of its
planned capability (Amone 2005). The software contractor for VCF
complained that the FBI went through 5 different CIOs and 10 different
project managers, not to mention 36 contract changes (Knorr 2005).
Background chaos like that is not unusual in projects that have experienced
estimation problems.

A chapter on sources of estimation error might just as well be titled
“Classic Mistakes in Software Estimation.” Merely avoiding the problems
identified in this chapter will get you halfway to creating accurate
estimates.

Estimation error creeps into estimates from four generic sources:

» Inaccurate information about the project being estimated

» Inaccurate information about the capabilities of the organization that
will perform the project

» Too much chaos in the project to support accurate estimation (that is,
trying to estimate a moving target)

» Inaccuracies arising from the estimation process itself

This chapter describes each source of estimation error in detail.

Sources of Estimation Uncertainty

How much does a new house cost? It depends on the house. How much
does a Web site cost? It depends on the Web site. Until each specific
feature is understood in detail, it’s impossible to estimate the cost of a
software project accurately. It isn’t possible to estimate the amount of work
required to build something when that “something” has not been defined.

Software development is a process of gradual refinement. You start with a
general product concept (the vision of the software you intend to build),
and you refine that concept based on the product and project goals.
Sometimes your goal is to estimate the budget and schedule needed to
deliver a specific amount of functionality. Other times your goal is to
estimate how much functionality can be built in a predetermined amount of
time under a fixed budget. Many projects navigate under a happy medium
of some flexibility in budget, schedule, and features. In any of these cases
the different ways the software could ultimately take shape will produce
widely different combinations of cost, schedule, and feature set.

Suppose you’re developing an order-entry system and you haven’t yet
pinned down the requirements for entering telephone numbers. Some of the
uncertainties that could affect a software estimate from the requirements
activity through release include the following:

= When telephone numbers are entered, will the customer want a
Telephone Number Checker to check whether the numbers are valid?

=« If the customer wants the Telephone Number Checker, will the
customer want the cheap or expensive version of the Telephone
Number Checker? (There are typically 2-hour, 2-day, and 2-week
versions of any particular feature—for example, U.S.-only versus
international phone numbers.)

» If you implement the cheap version of the Telephone Number Checker,
will the customer later want the expensive version after all?

» Can you use an off-the-shelf Telephone Number Checker, or are there
design constraints that require you to develop your own?

» How will the Telephone Number Checker be designed? (Typically
there is at least a factor of 10 difference in design complexity among
different designs for the same feature.)

» How long will it take to code the Telephone Number Checker? (There
can be a factor of 10 difference—or more—in the time that different
developers need to code the same feature.)

» Do the Telephone Number Checker and the Address Checker interact?
How long will it take to integrate the Telephone Number Checker and
the Address Checker?

» What will the quality level of the Telephone Number Checker be?
(Depending on the care taken during implementation, there can be a
factor of 10 difference in the number of defects contained in the
original implementation.)

» How long will it take to debug and correct mistakes made in the
implementation of the Telephone Number Checker? (Individual
performance among different programmers with the same level of
experience varies by at least a factor of 10 in debugging and correcting
the same problems.)

As you can see just from this short list of uncertainties, potential

differences in how a single feature is specified, designed, and implemented
can introduce cumulative differences of a hundredfold or more in
implementation time for any given feature. When you combine these
uncertainties across hundreds or thousands of features in a large feature set,
you end up with significant uncertainty in the project itself.

The Cone of Uncertainty

Software development consists of making literally thousands of decisions
about all the feature-related issues described in the previous section.
Uncertainty in a software estimate results from uncertainty in how the
decisions will be resolved. As you make a greater percentage of those
decisions, you reduce the estimation uncertainty.

As a result of this process of resolving decisions, researchers have found
that project estimates are subject to predictable amounts of uncertainty at
various stages. The Cone of Uncertainty in Figure 4-1 shows how estimates
become more accurate as a project progresses. (The following discussion
initially describes a sequential development approach for ease of
explanation. The end of this section will explain how to apply the concepts
to iterative projects.)

dx

2%

1.5x
Variability in the 1.25x
Estimate of 1 (y- —
Project Scope g,
[effort, cost, features)

0.67x
0.5x—
0.25x
Initial Approved Requirements User Detailed Software
Concept Product Complete Interface Design Complete
Definition Design Complete
Complete

Figure 4-1. The Cone of Uncertainty based on common project milestones.

The horizontal axis contains common project milestones, such as Initial
Concept, Approved Product Definition, Requirements Complete, and so on.
Because of its origins, this terminology sounds somewhat product-oriented.
“Product Definition” just refers to the agreed-upon vision for the software,
or the software concept, and applies equally to Web services, internal
business systems, and most other kinds of software projects.

The vertical axis contains the degree of error that has been found in
estimates created by skilled estimators at various points in the project. The
estimates could be for how much a particular feature set will cost and how
much effort will be required to deliver that feature set, or it could be for

how many features can be delivered for a particular amount of effort or
schedule. This book uses the generic term scope to refer to project size in
effort, cost, features, or some combination thereof.

As you can see from the graph, estimates created very early in the project
are subject to a high degree of error. Estimates created at Initial Concept
time can be inaccurate by a factor of 4x on the high side or 4x on the low
side (also expressed as 0.25x, which is just 1 divided by 4). The total range
from high estimate to low estimate is 4x divided by 0.25x, or 16x!

One question that managers and customers ask is, “If I give you another
week to work on your estimate, can you refine it so that it contains less
uncertainty?” That’s a reasonable request, but unfortunately it’s not
possible to deliver on that request. Research by Luiz Laranjeira suggests
that the accuracy of the software estimate depends on the level of
refinement of the software’s definition (Laranjeira 1990). The more refined
the definition, the more accurate the estimate. The reason the estimate
contains variability is that the software project itself contains variability.
The only way to reduce the variability in the estimate is to reduce the
variability in the project.

One misleading implication of this common depiction of the Cone of
Uncertainty is that it looks like the Cone takes forever to narrow—as if you
can’t have very good estimation accuracy until you’re nearly done with the
project. Fortunately, that impression is created because the milestones on
the horizontal axis are equally spaced, and we naturally assume that the
horizontal axis is calendar time.

In reality, the milestones listed tend to be front-loaded in the project’s
schedule. When the Cone is redrawn on a calendar-time basis, it looks like
Figure 4-2.

4x-

2%
1.5x
Variability in the 1,25x
Estimate of 10x-| Requirements
o P"Dlefc" Scope gy Complete D\ — Software
(effort, cost, features) etaile
0.67x User Design Complete
Interface Complete
0.5x Design
Approved Complete
Product
0.25%- Definition
L Initial
Concept Time

Figure 4-2. The Cone of Uncertainty based on calendar time. The Cone narrows
much more quickly than would appear from the previous depiction in Figure 4-
1.

As you can see from this version of the Cone, estimation accuracy
improves rapidly for the first 30% of the project, improving from +4x to
+1.25x.

Can You Beat the Cone?

An important—and difficult—concept is that the Cone of Uncertainty
represents the best-case accuracy that is possible to have in software
estimates at different points in a project. The Cone represents the error in
estimates created by skilled estimators. It’s easily possible to do worse. It
isn’t possible to be more accurate; it’s only possible to be more lucky.

Consider the effect of the Cone of Uncertainty on the accuracy of your
estimate. Your estimate cannot have more accuracy than is possible at
your project’s current position within the Cone.

The Cone Doesn’t Narrow Itself

Another way in which the Cone of Uncertainty represents a best-case
estimate is that if the project is not well controlled, or if the estimators
aren’t very skilled, estimates can fail to improve. Figure 4-3 shows what
happens when the project doesn’t focus on reducing variability—the
uncertainty isn’t a Cone, but rather a Cloud that persists to the end of the
project. The issue isn’t really that the estimates don’t converge; the issue is
that the project itself doesn’t converge—that is, it doesn’t drive out enough
variability to support more accurate estimates.

4x -

/- Product Definition
Detailed Requirements
/ User Interface Design
1.5x- /
Vanability in the 1.25x-

Estimate of 1 0x— e —

Project Scope gy ————

(effort, cost, features)
0.67x-

231

0.5x

0.25x

Time

Figure 4-4. The Cone of Uncertainty doesn’t narrow itself. You narrow the
Cone by making decisions that remove sources of variability from the project.
Some of these decisions are about what the project will deliver; some are about
what the project will not deliver. If these decisions change later, the Cone will
widen.

Don’t assume that the Cone of Uncertainty will narrow itself. You
must force the Cone to narrow by removing sources of variability from
your project.

Accounting for the Cone of Uncertainty in Software
Estimates

create the estimate you won’t know whether the actual project outcome will
fall toward the high end or the low end of your range.

Account for the Cone of Uncertainty by using predefined uncertainty
ranges in your estimates.

A second approach is based on the finding that estimation “know-how-
much” and estimation “know-how-uncertain” are two different skills. You
can have one person estimate the best-case and worst-case ends of the range
and a second person estimate the likelihood that the actual result will fall
within that range (Jgrgensen 2002).

Account for the Cone of Uncertainty by having one person create the
“how much” part of the estimate and a different person create the
“how uncertain” part of the estimate.

Relationship Between the Cone of Uncertainty and
Commitment
Software organizations routinely sabotage their own projects by making

commitments too early in the Cone of Uncertainty. If you commit at Initial
Concept or Product Definition time, you will have a factor of 2x to 4x error

in your estimates. As discussed in Chapter 1, a skilled project manager can
navigate a project to completion if the estimate is within about 20% of the
project reality. But no manager can navigate a project to a successful
conclusion when the estimates are off by several hundred percent.

Meaningful commitments are not possible in the early, wide part of the
Cone. Effective organizations delay their commitments until they have
done the work to force the Cone to narrow. Meaningful commitments in the
early-middle part of the project (about 30% of the way in) are possible and
appropriate.

The Cone of Uncertainty and Iterative Development

Applying the Cone of Uncertainty to iterative projects is somewhat more
involved than applying it to sequential projects is.

If you’re working on a project that does a full development cycle each
iteration—that is, from requirements definition through release—you’ll go
through a miniature Cone on each iteration. Before you do the requirements
work for the iteration, you’ll be at the Approved Product Definition point in
the Cone, subject to 4x variability from high to low estimates. With short
iterations (less than a month), you can move from Approved Product
Definition to Requirements Complete and User Interface Design Complete
in a few days, reducing your variability from 4x to 1.6x. If your schedule is
immovable, the 1.6x variability will apply to the specific features you can
deliver in the time available, rather than to the effort or schedule. There are
estimation advantages that flow from short iterations, which are discussed
in Using Project Data to Refine Your Estimates.

What you give up with approaches that leave requirements undefined until
the beginning of each iteration is long-range predictability about the

Common examples of project chaos include the following:

» Requirements that weren’t investigated very well in the first place
» Lack of end-user involvement in requirements validation

= Poor designs that lead to numerous errors in the code

» Poor coding practices that give rise to extensive bug fixing

» Inexperienced personnel

» Incomplete or unskilled project planning

» Prima donna team members

» Abandoning planning under pressure

= Developer gold-plating

» Lack of automated source code control

This is just a partial list of possible sources of chaos. For a more complete
discussion, see Chapter 3, of my book Rapid Development (McConnell
1996) and on the Web at www.stevemcconnell.com/rdenum.htm.

These sources of chaos share two commonalities. The first is that each
introduces variability that makes accurate estimation difficult. The second
is that the best way to address each of these issues is not through
estimation, but through better project control.

Don’t expect better estimation practices alone to provide more
accurate estimates for chaotic projects. You can’t accurately estimate
an out-of-control process. As a first step, fixing the chaos is more
important than improving the estimates.

Unstable Requirements

Requirements changes have often been reported as a common source of
estimation problems (Lederer and Prasad 1992, Jones 1994, Stutzke 2005).
In addition to all the general challenges that unstable requirements create,
they present two specific estimation challenges.

The first challenge is that unstable requirements represent one specific
flavor of project chaos. If requirements cannot be stabilized, the Cone of
Uncertainty can’t be narrowed, and estimation variability will remain high
through the end of the project.

The second challenge is that requirements changes are often not tracked
and the project is often not reestimated when it should be. In a well-run
project, an initial set of requirements will be baselined, and cost and
schedule will be estimated from that baselined set of requirements. As new
requirements are added or old requirements are revised, cost and schedule
estimates will be modified to reflect those changes. In practice, project
managers often neglect to update their cost and schedule assumptions as
their requirements change. The irony in these cases is that the estimate for
the original functionality might have been accurate, but after dozens of new
requirements have been piled onto the project—requirements that have

been agreed to but not accounted for—the project won’t have any chance of
meeting its original estimates, and the project will be perceived as being
late, even though everyone agreed that the feature additions were good
ideas.

The estimation techniques described in this book will certainly help you
estimate better when you have high requirements volatility, but better
estimation alone cannot address problems arising from requirements
instability. The more powerful responses are project control responses
rather than estimation responses. If your environment doesn’t allow you to
stabilize requirements, consider alternative development approaches that
are designed to work in high-volatility environments, such as short
iterations, Scrum, Extreme Programming, DSDM (Dynamic Systems
Development Method), time box development, and so on.

To deal with unstable requirements, consider project control strategies
instead of or in addition to estimation strategies.

Estimating Requirements Growth

If you do want to estimate the effect of unstable requirements, you might
consider simply incorporating an allowance for requirements growth,
requirements changes, or both into your estimates. Figure 4-5 shows a
revised Cone of Uncertainty that accounts for approximately 50% growth in
requirements over the course of a project. (This particular Cone is for
purposes of illustration only. The specific data points are not supported by

the same research as the original Cone.)

x4

o=

1.5x ?

Variability in the 1.25x
Estimate of 1.0x -
Project 5cope () gy~

(effort, cost, features)
0.67x

0.5x—

0.25x

Time

Figure 4-5. A Cone of Uncertainty that allows for requirements increases over
the course of the project.

This approach has been used by leading organizations, including NASA’s
Software Engineering Laboratory, which plans on a 40% increase in
requirements (NASA SEL 1990). A similar concept is incorporated into the
Cocomo II estimation model, which includes the notion of requirements
“breakage” (Boehm et al. 2000).

Omitted Activities

Table 4-3 lists software activities that estimators often overlook.

Table 4-3. Software-Development Activities Commonly Missing from
Software Estimates

Ramp-up time for new team
members

Mentoring of new team members

Management coordination/manager
meetings

Cutover/deployment

Data conversion
Installation

Customization
Requirements clarifications

Maintaining the revision control
system

Supporting the build

Maintaining the scripts required to
run the daily build

Maintaining the automated smoke
test used in conjunction with the
daily build

Installation of test builds at user
location(s)

Creation of test data
Management of beta test program

Participation in technical reviews

Technical support of existing systems during
the project

Maintenance work on previous systems during
the project

Defect-correction work

Performance tuning

Learning new development tools
Administrative work related to defect tracking
Coordination with test (for developers)
Coordination with developers (for test)
Answering questions from quality assurance

Input to user documentation and review of
user documentation

Review of technical documentation
Demonstrating software to customers or users
Demonstrating software at trade shows

Demonstrating the software or prototypes of
the software to upper management, clients, and
end users

Interacting with clients or end users;
supporting beta installations at client locations

Reviewing plans, estimates, architecture,
detailed designs, stage plans, code, test cases,

what-if analysis, Things You Can Do with Tools That You Can’t Do
Manually

project requirements

creating, effort for, Estimating Allocation of Effort to Different
Technical Activities, Estimating Schedule for Different Activities

Requirements Complete phase, Sources of Estimation Uncertainty,

Accounting for the Cone of Uncertainty in Software Estimates

(see also)

iterative development, Accounting for the Cone of Uncertainty

in Software Estimates

unstable (creeping), Chaotic Development Processes, Estimating
Risk and Contingency Buffers

requirements omitted from estimates, Estimating Requirements
Growth, Checklists

software to account for, Things You Can Do with Tools That
You Can’t Do Manually

project size, Details on the Software Industry’s Estimation Track
Record, Estimate Influences

