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Chapter 1 ®
The Notion of a Software Language

1

JEAN-MARIE FAVRE.

Abstract In this chapter, we characterize the notion of “software language” in a
broad sense. We begin by setting out diverse examples of programming, modeling,
and specification languages to cover a wide range of use cases of software lan-
guages in software engineering. Then, we classify software languages along multi-
ple dimensions and describe the lifecycle of software languages, with phases such as
language definition and implementation. Finally, we identify areas in software en-
gineering that involve software languages in different ways, for example, software
reverse engineering and software re-engineering.

1 When the “Software Languages” community was formed around 2005-2007, Jean-Marie Favre
was perhaps the key pillar and visionary and community engineer. His views and interests are
captured very well in publications like these: [105, 104, 106, 100, 103].

Artwork Credits for Chapter Opening: This work by Wojciech Kwasnik is licensed under CC BY-SA 4.0.
This artwork quotes the artwork DMT, acrylic, 2006 by Matt Sheehy with the artist’s permission. This work also
quotes https://commons.wikimedia.org/wiki/File:Vincent_van_Gogh_-_Zeegezicht_bij_
Les_Saintes-Maries-de-la-Mer_-_Google_ Art_Project. jpg, subjectto the attribution “Vincent van
Gogh: Seascape near Les Saintes-Maries-de-la-Mer (1888) [Public domain], via Wikimedia Commons.” This work artis-
tically morphes an image, https://www.flickr.com/photos/eelcovisser/4772847104, showing the
person honored, subject to the attribution “Permission granted by Eelco Visser for use in this book.”

© Springer International Publishing AG, part of Springer Nature 2018 |
R. Lammel, Software Languages,
https://doi.org/10.1007/978-3-319-90800-7_1



2 1 The Notion of a Software Language

1.1 Examples of Software Languages

In this book, we discuss diverse software languages; we may use them for illustrative
purposes, and we may even define or implement them or some subsets thereof. For
clarity, we would like to enumerate all these languages here in one place so that the
reader will get an impression of the “language-related profile” of this book.

1.1.1 Real-World Software Languages

By “real-world language”, we mean a language that exists independently of this
book and is more or less well known. We begin with programming languages that
will be used for illustrative code in this book. We order these languages loosely in
terms of their significance in this book.

* Haskell’: The functional programming language Haskell
 Java®: The Java programming language
»  Python®: The dynamic programming language Python

We will use some additional software languages in this book; these languages
serve the purpose of specification, modeling, or data exchange rather than program-
ming; we order these languages alphabetically.

e ANTLR®: The grammar notation of the ANTLR technology
+ JSON®: The JavaScript Object Notation

+ JSON Schema’: The JSON Schema language

+ XML3: Extensible Markup Language

+ XSD?: XML Schema Definition

Furthermore, we will refer to diverse software languages in different contexts, for
example, for the purpose of language classification in Section 1.2; we order these
languages alphabetically.

+ Alloy'": The Alloy specification language
+ CIL'"": Bytecode of .NET’s CLR

2 Haskell language: https://www.haskell.org/

3 Java language: https://en.wikipedia.org/wiki/Java_ (programming_language)

4 Python Ianguage: https://www.python.org/

3 ANTLR language: http://www.antlr.org/

6 JSON language: https://en.wikipedia.org/wiki/JSON

7 JSON Schema language: http://json-schema.org/

8 XML language: https://en.wikipedia.org/wiki/XML

9 XSD language: https://en.wikipedia.org/wiki/XML_Schema_ (W3C)

10 Alloy language: http://alloy.nit.edu/alloy/

1 CIL language: https://en.wikipedia.org/wiki/Common_Intermediate_Language



1.1 Examples of Software Languages 3

« Common Log Format'?: The NCSA Common log format
DocBook"?: The DocBook semantic markup language for documentation

« FOAF': The friend of a friend ontology

« INI file'>: The INI file format

* Java bytecode'®: Bytecode of the JVM

+ make'”: The make tool and its language

+ OWL'3: Web Ontology Language

+ Prolog": The logic programming language Prolog

» QTFF?: QuickTime File Format

+ RDF?': Resource Description Framework

* RDFS”’: RDF Schema

+ Scala®®: The functional OO programming language Scala

»  Smalltalk®*: The OO reflective programming language Smalltalk

* SPARQL?: SPARQL Protocol and RDF Query Language

+  UML?®: Unified Modeling Language

»  XPath®’: The XML path language for querying

« XSLT?®: Extensible Stylesheet Language Transformations

1.1.2 Fabricated Software Languages

In this book, we “fabricated” a few software languages: these are small, idealized
languages that have been specifically designed and implemented for the purposes
of the book, although in fact these languages are actual or de facto subsets of real-
world software languages. The language names are typically acronyms with expan-
sions hinting at the nature of the languages. Language definitions of language-based

12 Common Log Format Ianguage: https://en.wikipedia.org/wiki/Common_Log_Format
13 DocBook language: nttps://en.wikipedia.org/wiki/DocBook

14 FOAF language: http://semanticweb.org/wiki/FOAF.html

15 INI file language: nhttps://en.wikipedia.org/wiki/INI_file

16 Java bylecode ]anguage: https://en.wikipedia.org/wiki/Java_bytecode

17 make ]anguagez https://en.wikipedia.org/wiki/Make_ (software)

18 OWL language: https://en.wikipedia.org/wiki/Web_Ontology_Language

19 Prolog language: https://en.wikipedia.org/wiki/Prolog

20 QTFF language‘. https://en.wikipedia.org/wiki/QuickTime_File_Format

21 RDF language: https://www.w3.0rg/RDE/

22 RDFS ]anguage: https://www.w3.o0rg/TR/rdf-schema/

23 Scala language: https://en.wikipedia.org/wiki/Scala_(programming_language)
24 Smalltalk language: https://en.wikipedia.org/wiki/Smalltalk

25 SPARQL language: https://en.wikipedia.org/wiki/SPARQL

26 UML language: https://en.wikipedia.org/wiki/Unified_Modeling_Language

27 XPath language: https://en.wikipedia.org/wiki/XPath

28 XSLT language: https://en.wikipedia.org/wiki/XSLT
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software components are available for these languages from the book’s repository.>’
The footnotes in the following list link to the repository locations for the languages.

* BAL: Basic Assembly Language

¢ BFPL: Basic Functional Programming Language

¢ BGL: Basic Grammar Language

¢ BIPL: Basic Imperative Programming Language

e BML: Binary Machine Language

« BNL: Binary Number Language

* BSL: Basic Signature Language

s BTL: Basic TAPL Language

* BL: Buddy Language

* EFPL: Extended Functional Programming Language
* EGL: Extended Grammar Language

* EIPL: Extended Imperative Programming Language
e [EL: Expression Language

e [ESL: Extended Signature Language

* FSML: Finite State Machine Language

* MML: Meta Modeling Language

e TLL: Typed Lambda Language

» Text: The “language” of text (such as Unicode 8.0 strings)
e ULL: Untyped Lambda Language

In the rest of this section, we quickly introduce some of these languages, thereby
providing a first indication of the diversity of language aspects covered by the book.

Binary Number Language (BNL) A trivial language of binary numbers with an
intended semantics that maps binary to decimal values.

Basic TAPL Language (BTL) A trivial expression language in reference to the
TAPL textbook (Types and programming languages [210]).

Buddy Language (BL) A trivial language for modeling persons in terms of their
names and buddy relationships.

Basic Functional Programming Language (BFPL) A really simple functional
programming language which is an actual syntactic subset of the established pro-
gramming language Haskell.

Basic Imperative Programming Language (BIPL) A really simple imperative
programming language which is a de-facto subset of the established program-
ming language C.

Finite State Machine Language (FSML) A really simple language for behav-
ioral modeling which is variation on statecharts of the established modeling lan-
guage UML.

Basic Grammar Language (BGL) A specification language for concrete syntax,
which can also be executed for the purpose of parsing; it is a variation on the
established Backus-Naur form (BNF).

Y http://github.com/softlang/yas
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1.1.2.1 BNL: A Language of Binary Numbers

We introduce BNL (Binary Number Language). This is a trivial language whose
elements are essentially the binary numbers. Here are some binary numbers and
their associated “interpretations” as decimal numbers:

¢ 0: 0 as a decimal number;

e 1:1 as a decimal number;

* 10: 2 as a decimal number;

* 11: 3 as a decimal number;

* 100: 4 as a decimal number;

¢ 101: 5 as a decimal number;

+ 101.01: 5.25 as a decimal number.

Thus, the language contains integer and rational numbers — only positive ones,
as it happens. BNL is a trivial language that is nevertheless sufficient to discuss the
most basic aspects of software languages such as syntax and semantics. A syntax
definition of BNL should define valid sequences of digits, possibly containing a
period. A semantics definition of BNL could map binary to decimal numbers. We
will discuss BNL's abstract syntax in Chapter 3 and the concrete syntax in Chapter 6.

1.1.2.2 BTL: An Expression Language

We introduce BTL (Basic TAPL Language). This is a trivial language whose ele-
ments are essentially expressions over natural numbers and Boolean values. Here is
a simple expression:

pred if iszero zero then succ succ zero else zero

The meaning of such expressions should be defined by expression evaluation. For
instance, the expression form iszero e corresponds to a test of whether e evaluates to
the natural number zero; evaluation of the form is thus assumed to return a Boolean
value. The expression shown above evaluates to zero because iszero zero should
compute to true, making the if-expression select the then-branch succ succ zero, the
predecessor of which is succ zero.

An interpreter of BTL expressions should recursively evaluate BTL expression
forms. BTL is a trivial language that is nevertheless sufficient to discuss basic as-
pects of interpretation (Chapter 5), semantics (Chapter 8), and type systems (Chap-
ter 9).
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mute

ticket/eject

release ticket/collect

Fig. 1.2 A finite state machine for a turnstile.

The FSM also identifies possible transitions between states triggered by “events,”
possibly causing “actions”; see the edges in the visual notation.
These are these states in the turnstile FSM:

* locked: The turnstile is locked. No passenger is allowed to pass.
¢ unlocked: The turnstile is unlocked. A passenger may pass.
* exception: A problem has occurred and metro personnel need to intervene.

There are input symbols which correspond to the events that a user or the envi-
ronment may trigger. There are output symbols which correspond to the actions that
the state machine should perform upon a transition. These are some of the events
and actions of the turnstile FSM:

» Event ticket: A passenger enters a ticket into the card reader.

» Event pass: A passenger passes through the turnstile, as noticed by a sensor.
» Action collect: The ticket is collected by the card reader.

¢ Action alarm: An alarm is turned on, thereby requesting metro personnel.

The meanings of the various transitions should be clear. Consider, for example,
the transition from the source state “locked” to the target state “unlocked”, which
is annotated by “ticket/collect” to mean that the transition is triggered by entering a
ticket and the transition causes ticket collection to happen.

FSML is a domain-specific modeling language (DSML). FSML supports state-
based modeling of systems. The specification can be executed to simulate possible
behaviors of a turnstile. The specification could also be used to generate a code
skeleton for controlling an actual turnstile, as part of an actual metro system. FSML
is a trivial language that can be used to discuss basic aspects of domain-specific
language definition and implementation. For what it matters, languages for state-
based behavior are widely established in software and systems engineering. For
instance, the established modeling language UML consists, in fact, of several mod-
eling languages; UML’s state machine diagrams are more general than FSML. We
will discuss FSML in detail in Chapter 2.
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1.1.2.7 BGL: A Language for Context-Free Grammars

We introduce BGL (Basic Grammar Language). This language can be used to define
the concrete textual syntax of other software languages. Thus, BGL gets us to the
metalevel. Here is an illustration of BGL — a definition of the syntax of BNL — the
language of binary numbers, as introduced earlier:

[number] number : bits rest ; /A binary number
[single] bits : bit ; // A single bit

[many] bits : bit bits ; # More than one bit

[zero] bit : '0"; // The zero bit

[one] bit : '1"; // The nonzero bit

[integer] rest : ; / An integer number

[rational] rest : ""bits ; /A rational number

Each line is a grammar production (a rule) with the syntactic category (or the
so-called nonterminal) to the left of *“:” and its definition to the right of *“:”. For
instance, the first production defines that a binary number consists of a bit sequence
bits for the integer part followed by rest for the optional rational part. The right-hand
phrases compose so-called terminals (“0”, “17, and “.”) and nonterminals (bit, bits,
rest, and number) by juxtaposition. The rules are labeled, thereby giving a name to
each construct.

BGL is a domain-specific modeling language in that it supports modeling (or
specifying or defining) concrete textual syntax. One may “execute” BGL in differ-
ent ways. Most obviously, one may execute a BGL grammar for the purpose of ac-
cepting or parsing input according to the syntax defined. BGL, like many other nota-
tions for syntax definition, is grounded in the fundamental formalism of context-free
grammars (CFGs). BGL is a variation on BNF [21]. There exist many real-world
notations for syntax definition [277]; they are usually more complex than BGL and
may be tied to specific technology, for example, for parsing. We will develop BGL
in detail in Chapter 6.

1.2 Classification of Software Languages

There are hundreds or even thousands of established software languages, depending
on how we count them. It may be useful to group languages in an ontological man-
ner. In particular, a classification of software languages (i.e., a language taxonomy)
is a useful (if not necessary) pillar of a definition of “software language”.
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Wikipedia, which actually uses the term “computer language” at the root of the
classification, identifies the following top-level classifiers:*"

« data-modeling languages;
« markup languages;

¢ programming languages;
« specification languages;

« stylesheet languages;

« transformation languages.

Any such branch can be classified further in terms of constructs and concepts.
For instance, in the case of programming languages, there exist textbooks on pro-
gramming languages, programming paradigms, and programming language theory
such as [199, 232], which identify constructs and concepts. There is also scholarly
work on the classification of programming languages [20, 90] and the identification
of language concepts and corresponding paradigms [258].

Several classes of software languages (other than programming languages) have
been identified, for example, model transformation languages [75], business rule
modeling languages [239], visual languages [46, 49, 190], and architecture de-
scription languages [192]. There is more recent work aimed at the classification
of software languages (or computer languages) more broadly [13, 237, 3, 171]. The
101companies project®! [102, 101, 173, 166] is also aimed at a taxonomy of soft-
ware languages, but the results are of limited use, at the time of writing.

In the remainder of this section, we classify software languages along differ-
ent dimensions. A key insight here is that a single classification tree is insufficient.
Multiple inheritance may be needed, or orthogonal dimensions may need to be con-
sidered separately.

1.2.1 Classification by Paradigm

When focusing on programming languages as a category of software languages,
classification may be based on the programming paradigm. A paradigm is charac-
terized by a central notion of programming or computing. Here is an incomplete,
classical list of paradigms:

Imperative programming Assignable (updatable) variables and updatable (in-
place) data structures and sequential execution of statements of operations on
variables. Typically, procedural abstractions capture statements that describe
control flow with basic statements for updates. We exercise imperative program-
ming with the fabricated language BIPL (Section 1.1.2.5) in this book.

30 We show Wikipedia categories based on a particular data-cleaning effort [171]. This is just a
snapshot, as Wikipedia is obviously evolving continuously.

3 http://10lcompanies.org
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Functional programming The application of functions models computation with
compound expressions to be reduced to values. Functions are first-class citizens
in that functions may receive and return functions; these are higher-order func-
tions. We exercise functional programming with the fabricated language BFPL
(Section 1.1.2.4) in this book — however, though higher-order functions are not
supported.

Object-oriented (O0) programming An object is a capsule of state and behav-
ior. Objects can communicate with each other by sending messages, the same
message being implementable differently by different kinds of objects. Objects
also engage in structural relationships, i.e., they can participate in whole—part
and reference relationships. Objects may be constructed by instantiation of a
given template (e.g., a class). Java and C# are well-known OO programming
languages.

Logic programming A program is represented as a collection of logic formulae.
Program execution corresponds to some kind of proof derivation. For instance,
Prolog is a well-known logic programming language; computation is based on
depth-first, left-to-right proof search through the application of definite clauses.

There exist yet other programming or computing notions that may character-
ize a paradigm, for example, message passing and concurrency. Many program-
ming languages are, in fact, multi-paradigm languages in that they support several
paradigms. For instance, JavaScript is typically said to be both a functional and an
imperative OO programming language and a scripting language. Programming lan-
guages may be able to support programming according to a paradigm on the basis
of some encoding scheme without being considered a member of that paradigm. For
instance, in Java prior to version 8, it was possible to encode functional programs in
Java, while proper support was added only in version 8.

Van Roy offers a rich discussion of programming paradigms [258]. Program-
ming concepts are the basic primitive elements used to construct programming
paradigms. Often, two paradigms that seem quite different (for example, functional
programming and object-oriented programming) differ by just one concept. The
following are the concepts discussed by Van Roy: record, procedure, closure, con-
tinuation, thread, single assignment, (different forms of) cell (state), name (unforge-
able constant), unification, search, solver, log, nondeterministic choice, (different
forms of) synchronization, port (channel), clocked computation. Van Roy identi-
fies 27 paradigms, which are characterized as sets of programming concepts. These
paradigms can be clearly related in terms of the concepts that have to be added to
go from one paradigm to another.

1.2.2 Classification by Type System

Furthermore, languages may also be classified in terms of their typing discipline
or type system [210] (or the lack thereof). Here are some important options for
programming languages in particular:
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Static typing The types of variables and other abstractions (e.g., the argument
and result types of methods or functions) are statically known, i.e., without exe-
cuting the program — this is at compile time for compiled languages. For instance,
Haskell and Java are statically typed languages.

Dynamic typing The types of variables and other abstractions are determined at
runtime. A variable’s type is the type of the value that is stored in that variable.
A method or function’s type is the one that is implied by a particular method
invocation or function application. For instance, Python is a dynamically typed
language.

Duck typing The suitability of a variable (e.g., an object variable in object-
oriented programming) is determined at runtime on the basis of checking for
the presence of certain methods or properties. Python uses duck typing.

Structural typing The equivalence or subtyping relationship between types in
a static typing setting is determined on the basis of type structure, such as the
components of record types. Scala supports some form of structural typing.

Nominal typing The equivalence or subtyping relationship between types in a
static typing setting is determined on the basis of explicit type names and de-
clared relationships between them. Java’s reference types (classes and interfaces
including “extends” and “implements” relationships) commit to nominal typing.

1.2.3 Classification by Purpose

Languages may be classified on the basis of the purpose of the language (its usage)
or its elements. Admittedly, the term “purpose” may be somewhat vague, but the
illustrative classifiers in Table 1.1 may convey our intuition. We offer two views:
the purpose of the language versus that of its elements; these two views are very
similar.

Table 1.1 Classification by the purpose of language elements

Purpose Purpose Classifier Example

(language) (element)

Programming Program Programming language |Java

Querying Query Query language XPath
Transformation Transformation | Transformation language | XSLT

Modeling Model Modeling language UML

Specification Specification |Specification language |Alloy

Data representation | Data Data format QTFF (QuickTime file format)
Documentation Documentation | Documentation language | DocBook
Configuration Configuration |Configuration language |[INT file

Logging Log Log format Common Log Format
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tion of Section 1.1.2.7. Several of the illustrative languages of Section 1.1 were
introduced as string languages.

Tree language (See also “markup language” below.) Language elements are rep-
resented, viewed, and edited as trees, for example, as XML trees or JSON dictio-
naries. A tree language is defined in terms of a suitable grammar or data modeling
notation, for example, XSD in the case of XML. As it happens, we did not present
any tree languages in Section 1.1.2.7, but we will discuss tree-based abstract syn-
tax definitions later for some of the string languages that we have already seen.
Tree languages play an important role in language implementation.

Graph language Language elements are represented, viewed, and edited as graphs,
i.e., more or less constrained collections of nodes and edges. Appropriate gram-
mar and data modeling notations exist for this case as well. The language BL
for buddy relationships (Section 1.1.2.3) was introduced as a graph language and
we hinted at a visual concrete syntax. A graph language may be coupled with
a string or tree language in the sense of alternative representations of the same
“conceptual” language. For instance, BL may be represented in a string-, tree-,
or graph-based manner.

1.2.6 Classification by Notation

One may also distinguish languages in terms of notation; this classification is very
similar to the classification by representation:

Textual (text) language This is essentially a synonym for “string language”.

Markup language Markup, as in XML, is used as the main principle for express-
ing language elements. The use of markup is one popular notation for tree lan-
guages. With an appropriate semantics of identities, markup can also be used as
a notation for graphs. Not every tree language relies on markup for the notation.
For instance, JSON provides another, more dictionary-oriented notation for tree
languages.

Visual (graphical) language A visual notation is used. The languages BL for
buddy relationships (Section 1.1.2.3) and FSML for state-based modeling (Sec-
tion 1.1.2.6) were introduced in terms of a visual notation.

1.2.7 Classification by Degree of Declarativeness

An (executable) language may be said to be (more or less) declarative. It turns out
to be hard to identify a consensual definition of declarativeness, but this style of
classification is nevertheless common. For instance, one may say that programs (or
models) of a declarative language describe more the “what” than the “how”. That
is, a declarative program’s semantics is not strongly tied to execution order.

Let us review the languages of Section 1.1:
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Binary Number Language (BNL) A trivial language.

Buddy Language (BL) A trivial language.

Basic Functional Programming Language (BFPL) This language is “pure”, i.e.,
free of side effects. Regardless of the evaluation order of subexpressions, com-
plete evaluation of a main expression should lead to the same result — modulo
some constraints to preserve termination. For instance, argument expressions of
a function application could be evaluated in different orders without affecting the
result. Thus, BFPL is a declarative programming language.

Basic Imperative Programming Language (BIPL) This language features im-
perative variables such that the execution order of statements affects the result of
computation. Thus, BIPL is not a declarative programming language.

Finite State Machine Language (FSML) This language models finite states and
event- and action-labeled transitions between states. Its actual semantics or exe-
cution order is driven by an event sequence. FSML would usually be regarded as
a declarative (modeling) language.

Basic Grammar Language (BGL) This grammar notation defines sets of strings
in a rule-based manner. Thus, BGL’s most fundamental semantics is “declara-
tive” in the sense that it is purely mathematical, without reference to any opera-
tional details. Eventually, we may attach a more or less constrained operational
interpretation to BGL so that we can use it for efficient, deterministic parsing.
Until that point, BGL would be usually regarded as a declarative (specification)
language.

We may also consider subcategories of declarative languages such that it is em-
phasized how declarativeness is achieved. Two examples may suffice:

Rule-based language Programs are composed from rules, where a rule typically
combines a condition and an action part. The condition part states when the rule
is applicable; the action part states the implications of rule application. Some
logic programming languages, for example, Prolog, can be very well considered
to be rule-based languages. Some schemes for using functional programming, for
example, in interpretation or program transformation, also adopt the rule-based
approach. Event-driven approaches may also use rules with an additional “event”
component, for example, the “event condition action” (ECA) paradigm, as used
in active databases [88].

Constraint-based language Programs involve constraints as means of selecting
or combining computations. These constraints are aggregated during program
execution and constraint resolution is leveraged to establish whether and how
given constraints can be solved. For instance, there exist various constraint-logic
programming languages which enrich basic logic programming with constraints
on sets of algebras for numbers [117].
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Language * Language * Language
design . . definition implementation

-
Language T
evolution
5
Domain * Language Language * Language
analysis usage analysis usage retirement
— —

Fig. 1.3 The lifecycle of a software language. The nodes denote phases of the lifecycle. The edges
denote transitions between these phases. The lifecycle starts with domain analysis. The lifecycle
ends (theoretically) with language retirement. We may enter cycles owing to language evolution.

Exercise 1.2 (Classification of make) [Basic level]
Study the language used by the well-known make utility and argue that the language
is declarative and identify what subcategory of declarativeness applies.

1.3 The Lifecycle of Software Languages

The notion of a software lifecycle can be usefully adopted for languages. That is, a
language goes through a lifecycle, possibly iterating or skipping some phases; see
Fig. 1.3. These phases are described in some detail as follows:

Domain analysis A domain analysis is required to discover the domain that is
to be addressed by a new language. A domain analysis answers these questions:
What are the central concepts in the domain? For instance, the central concepts
are states and transitions between states for FSML, differential equations and
their solution in a language for weather forecasts, or layouts and their rendering
in a language for HTML/XML stylesheets. These concepts form the foundation
of language design and for everything onwards. Arguably, no domain analysis is
performed for general-purpose programming languages.

Language design The domain concepts are mapped, at the design level of ab-
straction, to language constructs and language concepts. The emerging language
should be classified in terms of paradigm, degree of declarativeness, and other
characteristics. A language may be presented as a composition of very specific
language constructs as well as reusable language constructs, for example, for
basic expressions or modules. The first samples are written so that a syntax
emerges, and the transition to the phase of language definition has then begun.

Language definition The language design is refined into a language definition.
Most notably, the syntax and semantics of the language are defined. Assuming



18 1 The Notion of a Software Language

an executable language definition, a first language implementation (a proof of
concept) is made available for experiments, so that the transition to the phases of
language implementation and usage has begun.

Language implementation The language is properly implemented. Initially, a
usable and efficient compiler or interpreter needs to provided. Eventually, ad-
ditional language processors and tool support may be provided, for example,
documentation tools, formatters, style checkers, and refactorings. Furthermore,
support for an integrated development environment (IDE) may be implemented.

Language usage The language is used in actual software development. That is,
language artifacts are “routinely” authored and a body of software artifacts ac-
quire dependencies on the language. This is not explicitly modeled in Fig. 1.3,
but the assumption is, of course, that the language implementation is continu-
ously improved and new language processors are made available.

Language evolution Language definitions may revised to incorporate new lan-
guage features or respond to experience with language usage. Obviously, changes
to language definitions imply work on language implementations. Language
changes may even break backward compatibility, in which cases these changes
will necessitate migration of existing code in those languages.

Language usage analysis Language evolution and the systematic improvement
of domain analysis as well as language design, definition, and implementation,
may benefit from language usage analysis [155, 100, 172], as an empirical ele-
ment of the lifecycle. By going through the lifecycle in cycles, the language may
evolve in different ways. For instance, the language may be extended so that a
new version becomes available, which again needs to be implemented and put to
use.

Language retirement In practice, languages, once adopted, are rarely retired
completely, because the costs and risks of retirement are severe impediments.
Retirement may still happen in the narrow scope of projects or organizations.
In theory, a language may become obsolete, i.e., there are no software artifacts
left that depend on that language. Otherwise, language migration may be con-
sidered. That is, software artifacts that depend on a language are migrated (i.e.,
transformed manually or automatically) to another language.

Many aspects of these phases, with some particular emphasis on the lifecycle
of DSLs are discussed in [133, 272, 273, 197, 214, 56, 98, 94, 78, 265, 229]. In
the present book, the focus is on language definition and implementation; we are
concerned only superficially with domain analysis, language design, evolution, and
retirement.

1.3.1 Language Definition

Let us have a deeper look at the lifecycle phase of language definition. A language is
defined to facilitate implementation and use of the language. There are these aspects
of language definition:
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Syntax The definition of the syntax consists of rules that describe the valid lan-
guage elements which may be drawn from different “universes™: the set of all
strings (say, text), the set of all trees (of some form, e.g., XML-like trees), or
the set of all graphs (of some form). Different kinds of formalisms may be used
to specify the rules defining the syntax. We may distinguish concrete and ab-
stract syntax — the former is tailored towards users who need to read and write
language elements, and the latter is tailored towards language implementation.
Abstract syntax is discussed in Chapters 3and 4. Concrete syntax is discussed in
Chapters 6and 7.

Semantics The definition of semantics provides a mapping from the syntactic cat-
egories of a language (such as statements and expressions) to suitable domains of
meanings. The actual mapping can be defined in different ways. For instance, the
mapping can be defined as a set of syntax-driven inference rules which model the
stepwise execution or reduction of a program; this is known as small-step opera-
tional semantics (Chapter 8). The mapping can also be applied by a translation,
for example, by a model-to-model transformation in model-driven engineering
(MDE).

Pragmatics The definition of the pragmatics explains the purpose of language
concepts and provides recommendations for their usage. Language pragmatics is
often defined only informally through text and samples. For instance, the prag-
matics definition for a C-like language with arrays may state that arrays should be
used for efficient (constant-time) access to indices in ordered collections of val-
ues of the same type. Also, arrays should be favored over (random-access) files or
databases for as long as in-memory representation of the entire data structure is
reasonable. In modeling languages for finite state machine (e.g., FSML), events
proxy for sensors and actions proxy for actors in an embedded system.

Types Some languages also feature a fype system as a part of the language defini-
tion. A type system provides a set of rules for assigning or verifying types, i.e.,
properties of language phrases, for example, different expression types such as
“int” or “string” in a program with expressions. We speak of type checking if the
type system is used to check explicitly declared types. We speak of type inference
if the type system is used additionally to infer missing type declarations. A type
system needs to be able to bind names in the sense that any use of an abstrac-
tion such as a variable, a method, or a function is linked to the corresponding
declaration. Such name binding may defined as part of the type system or they
may be defined somewhat separately. We discuss types in detail in Chapter 9.
Even when a language does not have an interesting type system, i.e., different
types and rules about their use in abstractions, the language may still feature
other constraints regarding, for example, the correct use of names. Thus, we may
also speak of well-formedness more generally, as opposed to well-typedness more
specifically. For instance, in FSML, the events handled by a given source state
must be distinct for the sake of determinism.

When definitions of syntax, types, and semantics are considered formal artifacts
such that these artifacts are treated in a formal (mathematical) manner, then we
operate within the context of programming language theory. A formal approach
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pass compilation”) or may be integrated into one phase (“single-pass compilation™).
The components are explained more in detail as follows:

Parser A parser verifies the conformance of given input (i.e., text) to the syntax
rules of a language and represents the input in terms of the structure defined by
the rules. A parser performs parsing. Compilers and interpreters begin by parsing.
Many other language processors, as discussed below, also involve parsing.

Semantic analysis A syntax tree only represents the structure of the source code.
For any sort of nontrivial treatment such as code generation, the syntax tree
needs to be enriched with attributes and links related to typing and name bind-
ing. Names with their bindings and other attributes may be aggregated in a data
structure which is referred to as a symbol table or environment.

Code generator The enriched syntax tree is translated, more or less directly, into
machine code, i.e., code of some actual or virtual machine. In particular, code
generation involves resource and storage decisions such as register allocation,
i.e., assigning program variables to processor registers of the target machine.
In this book, few technicalities of code generation are discussed; this topic is
covered perfectly by the literature on compiler construction.

Ideally, the components are described by specifications such as grammars, type
systems, name-binding rules, and rewrite systems, as indicated in Fig. 1.4. In prac-
tice, the components are often implemented in a more ad hoc fashion.

This is a simplified data flow, because actual compilers may involve additional
phases. That is, parsing may consist of several phases in itself: preprocessing; lexi-
cal analysis (scanning, lexing, or tokenization); syntax analysis including parse-tree
construction and syntax desugaring. Also, there may be extra steps preceding code
generation: translation to a (simpler) intermediate representation (IR) and IR-level
optimization. Further, code generation may also involve optimization at the level of
the target language and a separation between translation to assembly code, mapping
to machine code, and some elements of linking. Finally, code generation may actu-
ally rely on translation such that the given input language is translated into a well-
defined subset of an existing (programming) language so that an available compiler
can be used afterwards.

Exercise 1.3 (An exercise on language implementation) [Basic level]
Research the current version of the JDK (Java Development Kit) and identify and
characterize at least two language implementations that are part of it.

1.3.2.3 Classification of Language Processors

Languages are implemented in many ways other than just regular compilers and
interpreters. We use the term “language processor” to refer to any sort of function-
ality for automated processing of software artifacts in a language-aware manner,
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i.e., with more or less awareness of the syntax, types, and semantics of the arti-
facts. Examples of language processors include documentation generators, refactor-
ing tools, bug checkers, and metrics calculation tools. Language processors often
consist of several components and perform processing in phases, as we discussed
above for compilers. Rather than classifying language processors directly, let us
classify language-based software components. We do not make any claim of com-
pleteness for this classification. Several of the classifiers below will reappear in the
discussion of the role of software languages across different software engineering
areas (Section 1.4):

Parser or text-to-model transformation The term “parser” has already been in-
troduced in the context of compilation and interpretation. The term “text-to-
model transformation™ is specifically used in the MDE community when one
wants to emphasize that the result of parsing is not a parse tree, but rather a
model in the sense of metamodeling, thus potentially involving, for example,
references after completing name binding.

Unparser, formatter, pretty printer, or model-to-text transformation  An arti-
fact is formatted as text, possibly also subject to formatting conventions for the
use of spaces and line breaks. Formatting may start from source code (i.e., text),
concrete syntax trees (i.e., parse trees), or abstract syntax trees. Formatting is
typically provided as a service in an IDE.

Preprocessor  As part of parsing, code may be subject to macro expansion and
conditional compilation. Such preprocessing may serve the purpose of, for ex-
ample, configuration management in the sense of software variability and desug-
aring in the sense of language extension by macros. Interestingly, preprocessing
gives rise to a language of its own for the preprocessing syntax such that the pre-
processor can be seen as an interpreter of that language; the result type of this
sort of interpretation is, of course, text [99]. One may also assume that a base
language is extended by preprocessing constructs so that preprocessing can be
modeled as a translation from the extended to the base language. In fact, some
macro system work in that manner. In practice, preprocessing is often used in an
undisciplined (i.e., not completely syntax-aware) manner [29, 18, 184].

Software transformation or model-to-model transformation A software trans-
formation is a mapping between software languages. The term “model-to-model
transformation” is used in the model transformation and MDE community. We
may classify transformations in terms of whether the source and target languages
are the same and whether the source and target reside at the same level of ab-
straction [195]. Thus:

Exogenous transformation  The source and target languages are different, as
in the case of code generation (translation) or language migration.

Endogenous transformation The source and target languages are the same,
as in the case of program refactoring or compiler optimization [116, 196].
We can further distinguish in-place and out-place transformations [195, 35] in
terms of whether the source model is “reused” to produce the target model.
(Exogenous transformations are necessarily out-place transformations.)
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Fig. 1.5 The code compilation pipeline of Helvetia, showing multiple interception paths; there
are hooks to intercept parsing <parse>, AST transformation <transform>, and semantic analysis
<attribute>. Source: [215]. Additional capabilities of Helvetia support editing (coloring), debug-
ging, etc. © 2010 Springer.

and PLT Redex [107]), compiler frameworks (e.g., LLVM [180]), and modeling
Jrameworks (e.g., AM3 [24]).

Metaprogramming and software language engineering efforts may be “adver-
tised” through seftware language repositories (SLRs) [165], i.e., repositories with
components for language processing (interpreters, translators, analyzers, transform-
ers, pretty printers, etc.). Further examples of SLRs include the repositories for
Krishnamurthi’s textbook on programming languages [160], Batory’s Prolog-based
work on teaching MDE [28], Zaytsev et al.’s software language processing suite
(SLPS) [278], and Basciani et al.’s extensible web-based modeling platform MDE-
Forge [26].

1.3.2.5 Language Workbenches

Metaprogrammers may also be supported in an interactive and integrated fashion.
Accordingly, the notion of language workbenches [96, 97, 144, 143, 267, 266, 269,
263] encompasses enhanced metaprogramming systems that are, in fact, IDEs for
language implementation. A language workbench assumes specialized language
definitions that cater for IDE services such as syntax-directed, structural, or pro-
jectional editing, coloring, synthesis of warnings and errors, package exploration,
quick fixes, and refactorings.

Figure 1.5 illustrates the compilation pipeline of the metaprogramming system
Helvetia [214, 215]. In fact, Helvetia is an extensible development environment for
embedding DSLs into a host language (Smalltalk) and its tools such as the editor
and debugger. Thus, Helvetia is a language workbench.
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void printOwing(double amount) {

prlntBanner()

System out.println("name: " + name);

:: System out.println("amount: " + amount)";“

\

void printOwing(double amount) { \
printBanner();
printDetails(amount);

}

void printDetails(double amount) {

System.out.println ("name: " + name);

System.out.println ("amount: " + amount);

Fig. 1.6 Illustration of the “extract method” refactoring.
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Fig. 1.7 Overall data flow for a re-engineering transformation. We have marked the phase which
replaces code generation in the standard data flow for compilation.

228]. Even in the simple example at hand, some constraints have to be met; for
example, the extracted statements must not return.

Figure 1.7 shows the overall data flow for a re-engineering transformation as
needed, for example, for refactoring or restructuring. This data flow should be com-
pared with the data flow for compilation; see Fig. 1.4. The two data flows share
the phases of parsing and semantic analysis. The actual transformation is described
(ideally) by declarative rules of a transformation language. Not every re-engineering
use case requires a full-blown semantic analysis, which is why we have grayed out
slightly the corresponding phase in Fig. 1.7. In fact, not even a proper syntax-aware
transformation is needed in all cases, but instead a lexical approach may be applica-
ble [152].
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Fig. 1.8 An API-usage map for an open-source Java project. The complete rectangle (in terms of
its size) models the references to all APIs made by all developers. The nested rectangles partition
references by domain (e.g., GUI rather than Swing or AWT). The rectangles nested further partition
references by API; one color is used per API. Within each such rectangle, the contributions of
distinct developers (1, ..., 8 for the top-eight committers and “R” for the rest) are shown. Source:

[4].

1.4.2 Software Reverse Engineering

We quote: “reverse engineering is the process of analyzing a subject system to iden-
tify the system’s components and their interrelationships and create representations
of the system in another form or at a higher level of abstraction” [59]. For instance,
we may extract a call graph from a system, thereby identifying call sites (such as
packages, files, classes, methods, or functions) and actual calls (such as method or
function calls). Reverse engineering may also be concerned with architecture recov-
ery [126, 128, 158, 33], for example, the identification of components in a legacy
system. Overall, reverse engineering is usually meant to help with program compre-
hension and to prepare for software re-engineering or to otherwise facilitate software
development.

Figure 1.8 shows the visual result of a concrete reverse engineering effort aimed
at understanding API usage in Java projects [4]. The tree map groups API references
(i.e., source code-level references to API methods) so that we can assess the contri-
butions of different APIs and of individual developers for each API to the project.

Figure 1.9 shows the overall data flow for a reverse engineering component that
is based on the paradigm of fact extraction [109, 201, 185, 27]. Just as in the cases of
compilation or transformation for re-engineering, we begin with parsing and (pos-
sibly customized) semantic analysis. The data flow differs in terms of last phase for
fact extraction. The extracted facts can be thought of as sets of tuples, for example,
pairs of caller/callee sites to be visualized eventually as a call graph.

Reverse engineering often starts from some sort of fact extraction. Reverse en-
gineering may also involve data analysis based, for example, on relational alge-
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Figure 1.10 gives an example of how metrics and simple visualization can be com-
bined to analyze a software process — in this case, a process for the improvement of
a grammar [7]. The changes of the values of the metrics can be explained as con-
sequences of the specific grammar revisions applied at the corresponding commit
points.

1.4.4 Technological Spaces

We quote: “A technological space is a working context with a set of associated
concepts, body of knowledge, tools, required skills, and possibilities. It is often
associated to a given user community with shared know-how, educational support,
common literature and even workshop and conference regular meetings” [161].
For instance, there are the following technological spaces, which we characterize
in a keyword style by pointing out associated languages, technologies, and concepts:

Grammarware string, grammar, parsing, CST, AST, term, rewriting, ...

XMLware XML, XML infoset, DOM, DTD, XML Schema, XPath, XQuery,
XSLT, ...

JSONware JSON, JSON Schema, ...

Modelware UML, MOF, EMF, class diagram, modeling, metamodeling, model
transformation, MDE, . ..

SQLware table, SQL, relational model, relational algebra, ...

RDFware resource, triple, Linked Data, WWW, RDF, RDFS, OWL, SPARQL,

Objectware objects, object graphs, object models, state, behavior, ...
Javaware Java, Java bytecode, JVM, Eclipse, JUnit, ...

We refer to [40] for a rather detailed discussion of one technological space — mod-
elware (MDE). We refer to [89] for a discussion of multiple technological spaces
with focus on Modelware and RDFware centric and cursory coverage of grammar-
ware, Javaware, and XMLware and the interconnections between these spaces.

Technological spaces are deeply concerned with software languages:

Data models The data in a space conforms to some data model, which can be
viewed as a “semantic domain” in the sense of semantics in the context of lan-
guage definition. For instance, the data model of XML is defined by a certain set
of trees, according to the XML infoset [274]; the data model JSON is a dictio-
nary format that is a simple subset of Javascript objects; and the data model of
SQLware is the relational model [67].

Schema languages Domain- or application-specific data can be defined by ap-
propriate schema-like languages. Schemas are to tree- or graph-based data what
(context-free) grammars are to string languages [149]. For instance, the schema
language of JSON is JSON Schema [208]; the schema language of grammarware
is EBNF [137] in many notational variations [277]; and the schema languages of
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tion may be more or less aligned with an assumed ontology of language con-
cepts. Typically, an interpreter-based approach is used for illustration. Examples
include Sebesta’s “Concepts of Programming Languages” [128], Sethi’s “Pro-
gramming Languages: Concepts and Constructs” [129] and Scott’s “Program-
ming Language Pragmatics™ [127]. These books also cover, to some extent, pro-
gramming language theory and compiler construction.

The present book is not concerned with a systematic discussion of programming
paradigms and programming language concepts. Nevertheless, the book exer-
cises (in fact, “defines”) languages of different paradigms and discusses various
language concepts in a cursory manner. This book goes beyond textbooks on
programming paradigms by covering metaprogramming broadly, which is not a
central concern in textbooks on paradigms.

Compiler construction This is the classical subject in computer science that, ar-

guably, comes closest to the subject of software languages. Examples of text-
books on compiler construction and overall programming language implemen-
tation include Aho, Lam, Sethi, and Ullman’s seminal “Compilers: Principles,
Techniques, and Tools™ [1], Louden’s “Compiler Construction: Principles and
Practice™ [87], and Appel’s product line of textbooks such as Appel and Pals-
berg’s “ Modern Compiler Implementation in Java” [3].
The present book briefly discusses compilation (translation), but it otherwise cov-
ers compiler construction at best superficially. For instance, lower-level code op-
timization and code generation are not covered. This book covers language im-
plementation more broadly than textbooks on compiler construction, with regard
to both the kinds of software languages and the kinds of language-based software
components. Most notably, this book covers metaprogramming scenarios other
than compilation, and metaprogramming techniques other than those used in a
typical compiler.

Hybrids There are a number of books that touch upon several of the aforemen-

tioned topics in a significant manner. There is Krishnamurthi’s “Programming
Languages: Application and Interpretation” [74], which combines programming
language theory and programming paradigms in a powerful manner. There is
Ranta’s “Implementing Programming Languages: An Introduction to Compilers
and Interpreters” [116] with coverage of programming paradigms and compiler
construction. There is also Stuart’s “Understanding Computation: From Simple
Machines to Impossible Programs” [137], which is exceptionally broad in scope:
it covers various fundamental topics in computer science, including parsing and
interpretation; it explains all notions covered to the working Ruby programmer
in a pragmatic manner.
The present book aims at a deeper discussion of the implementation and lifecycle
of software languages in the broader context of software engineering, with the
central topic being metaprogramming in the sense of source-code analysis and
manipulation.

Domain-specific languages There are some more or less recent textbooks on
DSLs. Fowler’s “Domain-Specific Languages” [41] discusses relatively basic or
mainstream OO techniques and corresponding patterns for language implemen-



