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Preface

Big data are ubiquitous. They come in varying volume, velocity, and variety.
They have a deep impact on systems such as storages, communications and
computing architectures and analysis such as statistics, computation, opti-
mization, and privacy. Engulfed by a multitude of applications, data science
aims to address the large-scale challenges of data analysis, turning big data
into smart data for decision making and knowledge discoveries. Data science
integrates theories and methods from statistics, optimization, mathematical
science, computer science, and information science to extract knowledge, make
decisions, discover new insights, and reveal new phenomena from data. The
concept of data science has appeared in the literature for several decades and
has been interpreted differently by different researchers. It has nowadays be-
come a multi-disciplinary field that distills knowledge in various disciplines to
develop new methods, processes, algorithms and systems for knowledge dis-
covery from various kinds of data, which can be either low or high dimensional,
and either structured, unstructured or semi-structured. Statistical modeling
plays critical roles in the analysis of complex and heterogeneous data and
quantifies uncertainties of scientific hypotheses and statistical results.

This book introduces commonly-used statistical models, contemporary sta-
tistical machine learning techniques and algorithms, along with their mathe-
matical insights and statistical theories. It aims to serve as a graduate-level
textbook on the statistical foundations of data science as well as a research
monograph on sparsity, covariance learning, machine learning and statistical
inference. For a one-semester graduate level course, it may cover Chapters 2,
3,9, 10, 12, 13 and some topics selected from the remaining chapters. This
gives a comprehensive view on statistical machine learning models, theories
and methods. Alternatively, a one-semester graduate course may cover Chap-
ters 2, 3, 5, 7, 8 and selected topics from the remaining chapters. This track
focuses more on high-dimensional statistics, model selection and inferences
but both paths strongly emphasize sparsity and variable selections.

Frontiers of scientific research rely on the collection and processing of mas-
sive complex data. Information and technology allow us to collect big data of
unprecedented size and complexity. Accompanying big data is the rise of di-
mensionality, and high dimensionality characterizes many contemporary sta-
tistical problems, from sciences and engineering to social science and humani-
ties. Many traditional statistical procedures for finite or low-dimensional data
are still useful in data science, but they become infeasible or ineffective for

xvii
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dealing with high-dimensional data. Hence, new statistical methods are in-
dispensable. The authors have worked on high-dimensional statistics for two
decades, and started to write the book on the topics of high-dimensional data
analysis over a decade ago. Over the last decide, there have been surges in
interest and exciting developments in high-dimensional and big data. This led
us to concentrate mainly on statistical aspects of data science.

We aim to introduce commonly-used statistical models, methods and pro-
cedures in data science and provide readers with sufficient and sound theoret-
ical justifications. It has been a challenge for us to balance statistical theories
and methods and to choose the topics and works to cover since the num-
ber of publications in this emerging area is enormous. Thus, we focus on the
foundational aspects that are related to sparsity, covariance learning, machine
learning, and statistical inference.

Sparsity is a common assumption in the analysis of high-dimensional data.
By sparsity, we mean that only a handful of features embedded in a huge pool
suffice for certain scientific questions or predictions. This book introduces var-
ious regularization methods to deal with sparsity, including how to determine
penalties and how to choose tuning parameters in regularization methods and
numerical optimization algorithms for various statistical models. They can be
found in Chapters 3—6 and 8.

High-dimensional measurements are frequently dependent, since these vari-
ables often measure similar things, such as aspects of economics or personal
health. Many of these variables have heavy tails due to a large number of
collected variables. To model the dependence, factor models are frequently
employed, which exhibit low-rank plus sparse structures in data matrices and
can be solved by robust principal component analysis from high-dimensional
covariance. Robust covariance learning, principal component analysis, as well
as their applications to community detection, topic modeling, recommender
systems, etc. are also a feature of this book. They can be found in Chapters
9-11. Note that factor learning or more generally latent structure learning can
also be regarded as unsupervised statistical machine learning.

Machine learning is critical in analyzing high-dimensional and complex
data. This book also provides readers with a comprehensive account on statis-
tical machine learning methods and algorithms in data science. We introduce
statistical procedures for supervised learning in which the response variable
(often categorical) is available and the goal is to predict the response based
on input variables. This book also provides readers with statistical procedures
for unsupervised learning, in which the responsible variable is missing and
the goal concentrates on learning the association and patterns among a set
of input variables. Feature creations and sparsity learning also arise in these
problems. See Chapters 2, 12-14 for details.

Statistical inferences on high-dimensional data are another focus of this
book. Statistical inferences require one to characterize the uncertainty, esti-
mate the standard errors of the estimated parameters of primary interest and
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derive the asymptotic distributions of the resulting estimates. This is very
challenging under the high-dimensional regime. See Chapter 7.

Fueled by the surging demands on processing high-dimensional and big
data, there have been rapid and vast developments in high-dimensional statis-
tics and machine learning over the last decade, contributed by data scientists
from various fields such as statistics, computer science, information theory,
applied and computational mathematics, and others. Even though we have
narrowed the scope of the book to the statistical aspects of data science, the
field is still too broad for us to cover. Many important contributions that do
not fit our presentation have been omitted. Conscientious effort was made in
the composition of the reference list and bibliographical notes, but they merely
reflect our immediate interests. Omissions and discrepancies are inevitable. We
apologize for their occurrence.

Although we all contribute to various chapters and share the responsibility
for the whole book, Jianging Fan was the lead author for Chapters 1, 3 and
9-11, 14 and some sections in other chapters, Runze Li for Chapters 5, and 8
and part of Chapters 6-7, Cun-Hui Zhang for Chapters 4 and 7, and Hui Zou
for Chapters 2, 6, 11 and 12 and part of Chapter 5.

Many people have contributed importantly to the completion of this book.
In particular, we would like to thank the editor, John Kimmel, who has been
extremely helpful and patient with us for over 10 years! We greatly appreciate
a set of around 10 anonymous reviewers for valuable comments that have led
to the improvement of the book. We are particularly grateful to Cong Ma and
Yigiao Zhong for preparing a draft of Chapter 14, to Zhao Chen for helping us
with putting our unsorted and non-uniform references into the present form,
to Tracy Ke, Bryan Kelly, Dacheng Xiu and Jia Wang for helping us with con-
structing Figure 1.3, to Krishna Balasubramanian, Cong Ma, Lingzhou Xue,
Boxiang Wang, Kaizheng Wang, Yi Yang, and Ziwei Zhu for producing some
figures. Various people have carefully proof-read certain chapters of the book
and made useful suggestions. They include Krishna Balasubramanian, Pierre
Bayle, Alexander Chen, Elynn Chen, Wenyan Gong, Yongyi Guo, Bai Jiang,
Cong Ma, Igor Silin, Qiang Sun, Francesca Tang, Bingyan Wang, Kaizheng
Wang, Weichen Wang, Yuling Yan, Zhuoran Yang, Mengxin Yu, Wen-Xin
Zhou, Yifeng Zhou, and Ziwei Zhu. We owe them many thanks.

We used a draft of this book as a textbook for a first-year graduate course
at Princeton University in 2019 and 2020 and a senior graduate topic course
at Pennsylvania State University in 2019. We would like to thank the graduate
students in the classes for their careful readings. In particular, we are indebted
to Cong Ma, Kaizheng Wang and Zongjun Tan for assisting in preparing the
homework problems used for the Princeton course, most of which are now
a part of our exercise at the end of each chapter. At Princeton, we covered
chapters 2-3, 5, 8.1, 8.3, 9-12, 13.1-13.3, 14.

We are grateful to our teachers who educate us and to all of our collab-
orators for many enjoyable and stimulating collaborations. Finally, we would
like to thank our families for their love and support.
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Chapter 1

Introduction

The first two decades of this century have witnessed the explosion of data
collection in a blossoming age of information and technology. The recent tech-
nological revolution has made information acquisition easy and inexpensive
through automated data collection processes. The frontiers of scientific re-
search and technological developments have collected huge amounts of data
that are widely available to statisticians and data scientists via internet dis-
semination. Modern computing power and massive storage allow us to process
this data of unprecedented size and complexity. This provides mathematical
sciences great opportunities with significant challenges. Innovative reasoning
and processing of massive data are now required; novel statistical and com-
putational methods are needed; insightful statistical modeling and theoretical
understandings of the methods are essential.

1.1 Rise of Big Data and Dimensionality

Information and technology have revolutionized data collection. Millions
of surveillance video cameras, billions of internet searches and social media
chats and tweets produce massive data that contain vital information about
security, public health, consumer preference, business sentiments, economic
health, among others; billions of prescriptions, and an enormous amount of
genetics and genomics information provide critical data on health and pre-
cision medicine; numerous experiments and observations in astrophysics and
geosciences give rise to big data in science.

Nowadays, Big Data are ubiquitous: from the internet, engineering, science,
biology and medicine to government, business, economy, finance, legal, and
digital humanities. “There were 5 exabytes of information created between
the dawn of civilization through 2003, but that much information is now
created every 2 days”, according to Eric Schmidt, the CEO of Google, in
2010; “Data are becoming the new raw material of business”, according to
Craig Mundie, Senior Advisor to the CEO at Microsoft; “Big data is not
about the data”, according to Gary King of Harvard University. The first
quote is on the volume, velocity, variety, and variability of big data nowadays,
the second is about the value of big data and its impact on society, and the
third quote is on the importance of the smart analysis of big data.



2 INTRODUCTION

Accompanying Big Data is rising dimensionality. Frontiers of scientific re-
search depend heavily on the collection and processing of massive complex
data. Big data collection and high dimensionality characterize many contem-
porary statistical problems, from sciences and engineering to social science
and humanities. For example, in disease classification using microarray or
proteomics data, tens of thousands of expressions of molecules or proteins are
potential predictors; in genome-wide association studies, hundreds of thou-
sands of single-nucleotide polymorphisms (SNPs) are potential covariates; in
machine learning, millions or even billions of features are extracted from doc-
uments, images and other objects; in spatial-temporal problems in economics
and earth sciences, time series of hundreds or thousands of regions are col-
lected. When interactions are considered, the dimensionality grows much more
quickly. Yet, interaction terms are needed for understanding the synergy of
two genes, proteins or SNPs or the meanings of words. Other examples of
massive data include high-resolution images, high-frequency financial data,
e-commerce data, warehouse data, functional and longitudinal data, among
others. See also Donoho (2000), Fan and Li (2006), Hastie, Tibshirani and
Friedman (2009), Bithlmann and van de Geer (2011), Hastie, Tibshirani and
Wainwright (2015), and Wainwright (2019) for other examples.

1.1.1 Biological sciences

Bioimaging technology allows us to simultaneously monitor tens of thou-
sands of genes or proteins as they are expressed differently in the tissues or
cells under different experimental conditions. Microarray measures expression
profiles of genes, typically in the order of tens of thousands, in a single hy-
bridization experiment, depending on the microarray technology being used.
For customized microarrays, the number of genes printed on the chip can be
much smaller, giving more accurate measurements on the genes of focused
interest. Figure 1.1 shows two microarrays using the Agilent microarray tech-
nology and ¢DNA micorarray technology. The intensity of each spot represents
the level of expression of a particular gene. Depending on the nature of the
studies, the sample sizes range from a couple to tens or hundreds. For cell
lines, the individual variations are relatively small and the sample size can be
very small, whereas for tissues from different human subjects, the individual
variations are far larger and the sample sizes can be a few hundred.

RNA-seq (Nagalakshmi, et al., 2008), a methodology for RNA profiling
based on next-generation sequencing (NGS, Shendure and Ji, 2008), has re-
placed microarrays for the study of gene expression. Next-generation sequenc-
ing is a term used to describe a number of different modern sequencing tech-
nologies that allow us to sequence DNA and RNA much more quickly and
cheaply. RNA-seq technologies, based on assembling short reads 30~400 base
pairs, offer advantages such as a wider range of expression levels, less noise,
higher throughput, in addition to more information to detect allele-specific
expression, novel promoters, and isoforms. There are a number of papers on
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Figure 1.1: Gene expression profiles of microarrays. The intensity at each spot
represents the gene expression profile (e.g. Agilent microarray, left panel) or
relative profile (e.g. cDNA-microarray, right panel).

statistical methods for detecting differentially expressed genes across treat-
ments/conditions; see Kvam, Liu and Si (2012) for an overview.

After the gene/RNA expression measurements have been properly nor-
malized through RNA-seq or microarray technology, one can then select genes
with different expressions under different experimental conditions (e.g. treated
with cytokines) or tissues (e.g. normal versus tumor) and genes that express
differently over time after treatments (time course experiments). See Speed
(2003). This results in a lot of various literature on statistical analysis of
controlling the false discovery rate in large scale hypothesis testing. See, for
example, Benjamini and Hochberg (1995), Storey (2002), Storey and Tibshi-
rani (2003), Efron (2007, 2010b), Fan, Han and Gu (2012), Barber and Candés
(2015), Candés, Fan, Janson and Lv (2018), Fan, Ke, Sun and Zhou (2018),
among others. The monograph by Efron (2010a) contains a comprehensive
account on the subject.

Other aspects of analysis of gene/RNA expression data include associa-
tion of gene/RNA expression profiles with clinical outcomes such as disease
stages or survival time. In this case, the gene expressions are taken as the co-
variates and the number of variables is usually large even after preprocessing
and screening. This results in high-dimensional regression and classification
(corresponding to categorical responses, such as tumor types). It is widely
believed that only a small group of genes are responsible for a particular clin-
ical outcome. In other words, most of the regression coefficients are zero. This
results in high-dimensional sparse regression and classification problems.

There are many other high throughput measurements in biomedical stud-
ies. In proteomics, thousands of proteins expression profiles, which are directly
related to biological functionality, are simultaneously measured. Similar to ge-
nomics studies, the interest is to associate the protein expressions with clini-
cal outcomes and biological functionality. In genomewide association studies,
many common genetic variants (typically single-nucleotide polymorphisms or
SNPs) in different individuals are examined to study if any variant is associ-
ated with a trait (heights, weights, eye colors, yields, etc.) or a disease. These
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Figure 1.2: Schematic illustration of a brain response to a cognitive task and
several slices of its associated fMRI measurements .

genetic variants are referred to as the guantitative trait loci (QTL) and hun-
dreds of thousands or millions of SNPs are available for examination. The
need for understanding pathophysiology has also led to investigating the so-
called e@QTL studies, the association between SNPs and the expressions of
nearby genes. In this case, the gene expressions are regarded as the responses
whereas the individual SNPs are taken as the covariates. This again results in
high-dimensional regression problems.

High throughput measurements are also commonly used in neuroscience,
astronomy, and agriculture and resource surveys using satellite and other
imaging technology. In neuroscience, for example, functional magnetic res-
onance imaging (fMRI) technology is frequently applied to measure Blood
Oxygenation Level-Dependent (BOLD) response to stimuli. This allows in-
vestigators to determine which areas of the brain are involved in a cognitive
task, or more generally, the functionality of brains. Figure 1.2 gives a schematic
illustration. fMRI data contain time-course measurements over tens or hun-
dreds of thousand voxels, resulting in high-dimensional statistical problems.

1.1.2 Health sciences

Health scientists employ many advanced bioinformatic tools to understand
molecular mechanisms of disease initiation and progression, and the impact
of genetic variations on clinical outcomes. Many health studies also collect a
number of risk factors as well as clinical responses over a period of time: many
covariates and responses of each subject are collected at different time points.
These kinds of longitudinal studies can give rise to high-dimensional big data.

A famous example is the Framingham Heart Study, initiated in 1948 and
sponsored by the National Heart, Lung and Blood Institute. Documentation
of its first 55 years can be found at the website

http://www.framinghamheartstudy.org/.

More details on this study can be found from the website of the American
Heart Association. Briefly, the study follows a representative sample of 5,209
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adult residents and their offspring aged 28-62 years in Framingham, Mas-
sachusetts. These subjects have been tracked using standardized biennial car-
diovascular examination, daily surveillance of hospital admissions, death infor-
mation and information from physicians and other sources outside the clinic.
In 1971, the study enrolled a second-generation group, consisting of 5,124 of
the original participants’ adult children and their spouses, to participate in
similar examinations.

The aim of the Framingham Heart Study is to identify risk factors asso-
ciated with heart disease, stroke and other diseases, and to understand the
circumstances under which cardiovascular diseases arise, evolve and end fa-
tally in the general population. In this study, there are more than 25,000
samples, each consisting of more than 100 variables. Because of the nature of
this longitudinal study, some participants cannot be followed up due to their
migrations. Thus, the collected data contain many missing values. During the
study, cardiovascular diseases may develop for some participants, while other
participants may never experience cardiovascular diseases. This implies that
some data are censored because the event of particular interest never occurs.
Furthermore, data between individuals may not be independent because data
for individuals in a family are clustered and likely positively correlated. Miss-
ing, censoring and clustering are common features in health studies. These
three issues make the data structure complicated and identification of impor-
tant risk factors more challenging.

High-dimensionality is frequently seen in many other biomedical studies.
It also arises in the studies of health costs, health care and health records.

1.1.3  Computer and information sciences

The development of information and technology itself collects massive
amounts of data. For example, there are billions of web pages on the internet,
and an internet search engine needs to statistically learn the most likely out-
comes of a query and fast algorithms need to evolve with empirical data. The
input dimensionality of queries can be huge. In Google, Facebook and other
social networks, algorithms are designed to predict the potential interests of
individuals in certain services or products. A familiar example of this kind is
amazon.com in which related books are recommended online based on user
inputs. This kind of recommendation system applies to other types of services
such as music and movies. These are just a few examples of statistical learn-
ing in which the data sets are huge and highly complex, and the number of
variables is ultrahigh.

Machine learning algorithms have been widely applied to pattern recog-
nition, search engines, computer vision, document and image classification,
bioinformatics, medical diagnosis, natural language processing, knowledge
graphs, automatic driving machines, internet doctors, among others. The de-
velopment of these algorithms is based on high-dimensional statistical regres-
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Figure 1.3: Some illustrations of machine learning. Top panel: the word clouds
of sentiments of a company (Left: Negative Words; Right: Positive Words).
The plots were constructed by using data used in Ke, Kelly and Xiu (2019).
Bottom left: It is challenging for a computer to recognize the pavilion from the
background in computer vision. Bottom right: Visualization of the friendship
connections in Facebook.

sion and classification with a large number of predictors and a large amount of
empirical data. For example, in text and document classification, the data of
documents are summarized by word-document information matrices: the fre-
quencies of the words and phrases x in document y are computed. This step
of feature extraction is very important for the accuracy of classification. A
specific example of document classification is E-mail spam in which there are
only two classes of E-mails, junk or non-junk. Clearly, the number of features
should be very large in order to find important features for accurate document
classifications. This results in high-dimensional classification problems.
Similar problems arise for image or object classifications. Feature extrac-
tions play critical roles. One approach for such a feature extrapolation is the
classical vector quantization technique, in which images are represented by
many small subimages or wavelet coefficients, which are further reduced by
summary statistics. Again, this results in high-dimensional predictive vari-
ables. Figure 1.3 illustrates a few problems that arise in machine learning.
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1.1.4 FEconomics and finance

Thanks to the revolution in information and technology, high-frequency
financial data have been collected for a host of financial assets, from stocks,
bonds, and commodity prices to foreign exchange rates and financial deriva-
tives. The asset correlations among 500 stocks in the S&P500 Index already
involve over a hundred thousand parameters. This poses challenges in accu-
rately measuring the financial risks of the portfolios, systemic risks in the
financial systems, bubble migrations, and risk contagions, in additional to
portfolio allocation and management (Fan, Zhang and Yu, 2012; Brownlees
and Engle, 2017). For an overview of high-dimensional economics and finance,
see, for example, Fan, Lv and Qi (2012).

To understand the dynamics of financial assets, large panels of financial
time series are widely available within asset classes (e.g. components of Russell
3000 stocks) and across asset classes (e.g. stocks, bonds, options, commodi-
ties, and other financial derivatives). This is important for understanding the
dynamics of price co-movements, time-dependent large volatility matrices of
asset returns, systemic risks, and bubble migrations.

Large panel data also arise frequently in economic studies. To analyze the
joint evolution of macroeconomic time series, hundreds of macroeconomic vari-
ables are compiled to better understand the impact of government policies and
to gain better statistical accuracy via, for example, the vector autoregressive
model (Sims, 1980). The number of parameters is very large since it grows
quadratically with the number of predictors. To enrich the model informa-
tion, Bernanke et al. (2005) propose to augment standard VAR models with
estimated factors (FAVAR) to measure the effects of monetary policy. Factor
analysis also plays an important role in prediction using large dimensional
data sets (for reviews, see Stock and Watson (2006), Bai and Ng (2008)). A
comprehensive collection of 131 macroeconomics time series (McCracken and
Ng, 2015) with monthly updates can be found in the website

https://research.stlouisfed.org/econ/mccracken/fred-databases/ .

Spatial-temporal data also give rise to big data in economics. Unemploy-
ment rates, housing price indices and sale data are frequently collected in
many regions, detailed up to zip code level, over a period of time. The use of
spatial correlation enables us to better model the joint dynamics of the data
and forecast future outcomes. In addition, exploring homogeneity enables us
to aggregate a number of homogeneous regions to reduce the dimensionality,
and hence statistical uncertainties, and to better understand heterogeneity
across spatial locations. An example of this in prediction of housing appreci-
ation was illustrated in the paper by Fan, Lv, and Qi (2012). See Figure 1.4
and Section 3.9.
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Figure 1.4: Prediction of monthly housing appreciation. Top panel-left: Choro-
pleth map for the 2009 U.S. unemployment rate by county. Top panel-right:
Spatial correlation of monthly housing price appreciation among 352 largest
counties in the United States from January 2000 to December 2009 (from
Fan, Lv, and Qi, 2012). Bottom panel: Prediction of monthly housing pricing
appreciation in 48 regions from January 2006 to December 2009 using a large
sparse econometrics model with 352 monthly time series from January 2000 to
December 2005. Blue: OLS. Red: PLS. Black: Actual. Thickness: Proportion
to repeated sales. Adapted from Fan, Lv, and Qi (2012).
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1.1.5 Business and program evaluation

Big data arises frequently in marketing and program evaluation. Multi-
channel strategies are frequently used to market products, such as drugs and
medical devices. Data from hundreds of thousands of doctors are collected with
different marketing strategies over a period of time, resulting in big data. The
design of marketing strategies and the evaluation of a program’s effectiveness
are important to corporate revenues and cost savings. This also applies to
online advertisements and AB-tests.

Similarly, to evaluate government programs and policies, large numbers
of confounders are collected, along with many individual responses to the
treatment. This results in big and high-dimensional data.

1.1.6  FEarth sciences and astronomy

Spatial-temporal data have been widely available in the earth sciences. In
meteorology and climatology studies, measurements such as temperatures and
precipitations are widely available across many regions over a long period of
time. They are critical for understanding climate changes, local and global
warming, and weather forecasts, and provide an important basis for energy
storage and pricing weather based financial derivatives.

In astronomy, sky surveys collect a huge amount of high-resolution imag-
ing data. They are fundamental to new astronomical discoveries and to un-
derstanding the origin and dynamics of the universe.

1.2 Impact of Big Data

The arrival of Big Data has had deep impact on data systems and analysis.
It poses great challenges in terms of storage, communication and analysis. It
has forever changed many aspects of computer science, statistics, and compu-
tational and applied mathematics: from hardware to software; from storage
to super-computing; from data base to data security; from data communi-
cation to parallel computing; from data analysis to statistical inference and
modeling; from scientific computing to optimization. The efforts to provide
solutions to these challenges gave birth to a new disciplinary science, data sci-
ence. Engulfed by the applications in various disciplines, data science consists
of studies on data acquisition, storage and communication, data analysis and
modeling, and scalable algorithms for data analysis and artificial intelligence.
For an overview, see Fan, Han, and Liu (2014).

Big Data powers the success of statistical prediction and artificial intelli-
gence. Deep artificial neural network models have been very successfully ap-
plied to many machine learning and prediction problems, resulting in a dis-
cipline called deep learning (LeCun, Bengio and Hinton, 2015; Goodfellow,
Bengio and Courville, 2016). Deep learning uses a family of over parameter-
ized models, defined through deep neural networks, that have small modeling
biases. Such an over-parameterized family of models typically has large vari-
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ances, too big to be useful. It is the big amount of data that reduces the
variance to an acceptable level, achieving bias and variance trade-offs in pre-
diction. Similarly, such an over-parameterized family of models typically is
too hard to find reasonable local minima, and it is modern computing power
and cheap GPUs that make the implementation possible. It is fair to say
that today’s success of deep learning is powered by the arrivals of big data
and modern computing power. These successes will be further carried into
the future, as we collect even bigger data and become even better computing
architecture.

As Big Data are typically collected by automated process and by different
generations of technologies, the quality of data is low and measurement errors
are inevitable. Since data are collected from various sources and populations,
the problem of heterogeneity of big data arises. In addition, since the number
of variables is typically large, many variables have high kurtosis (much higher
than the normal distribution). Moreover, endogeneity occurs incidentally due
to high-dimensionality that has huge impacts on model selection and statistical
inference (Fan and Liao, 2014). These intrinsic features of Big Data have
significant impacts on the future developments of big data analysis techniques,
from heterogeneity and heavy tailedness to endogeneity and measurement
errors. See Fan, Han, and Liu (2014).

Big data are often collected at multiple locations and owned by different
parties. They are often too big and unsafe to be stored in one single machine. In
addition, the processing power required to manipulate big data is not satisfied
by standard computers. For these reasons, big data are often distributed in
multiple locations. This creates the issues of communications, privacy and
owner issues.

Figure 1.5: Schematic illustration of the distributed data analysis and com-
puting architecture.
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A simple architecture that tackles simultaneously the storage, communica-
tion, privacy and ownership issues is the distributed data analysis in Figure 1.5.
Here, each node analyzes the local data and communicates only the results to
the central machine. The central machine then aggregates the results and re-
ports the final results (one-shot analysis) or communicates the results back to
each node machine for further analysis (multi-shot analysis). For recent devel-
opments on this subject, see Shamir, Srebro and Zhang (2014), Zhang, Duchi
and Wainwright (2015), Jordan, Lee and Yang (2018) for low-dimensional
regression; Chen and Xie (2014), Lee, Liu, Sun and Taylor (2017), Battey,
Fan, Liu, Lu and Zhu (2018) for high-dimensional sparse regression and infer-
ence, and El Karoui and d’Aspremont (2010), Liang, et al. (2014), Bertrand
and Moonen (2014), Schizas and Aduroja (2015), Garber, Shamir and Sre-
bro (2017), and Fan, Wang, Wang and Zhu (2019) for principal component
analysis.

As mentioned before, big data are frequently accompanied by high-
dimensionality. We now highlight the impacts of dimensionality on data anal-
ysis.

1.3 Impact of Dimensionality

What makes high-dimensional statistical inference different from tradi-
tional statistics? High-dimensionality has a significant impact on computa-
tion, spurious correlation, noise accumulation, and theoretical studies. We
now briefly touch these topics.

1.2.1  Computation

Statistical inferences frequently involve numerical optimization. Optimiza-
tions in millions and billions of dimensional spaces are not unheard of and
arise easily when interactions are considered. High-dimensional optimization
is not only expensive in computation, but also slow in convergence. It also
creates numerical instability. Algorithms can easily get trapped at local min-
ima. In addition, algorithms frequently use iteratively the inversions of large
matrices, which causes many instability issues in addition to large compu-
tational costs and memory storages. Scalable and stable implementations of
high-dimensional statistical procedures are very important to statistical learn-
ing.

Intensive computation comes also from the large number of observations,
which can be in the order of millions or even billions as in marketing and
machine learning studies. In these cases, computation of summary statistics
such as correlations among all variables is expensive, yet statistical methods
often involve repeated evaluations of summation of loss functions. In addition,
when new cases are added, it is ideal to only update some of the summary
statistics, rather than to use the entire updated data set to redo the compu-
tation. This also saves considerable data storage and computation. Therefore,
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scalability of statistical techniques to both dimensionality and the number of
cases is paramountly important.

The high dimensionality and the availability of big data have reshaped
statistical thinking and data analysis. Dimensionality reduction and feature
extraction play pivotal roles in all high-dimensional statistical problems. This
helps reduce computation costs as well as improve statistical accuracy and
scientific interpretability. The intensive computation inherent in these prob-
lems has altered the course of methodological developments. Simplified meth-
ods have been developed to address the large-scale computational problems.
Data scientists are willing to trade statistical efficiencies with computational
expediency and robust implementations. Fast and stable implementations of
optimization techniques are frequently used.

1.3.2  Noise accumulation

High-dimensionality has significant impact on statistical inference in at
least two important aspects: noise accumulation and spurious correlation.
Noise accumulation refers to the fact that when a statistical rule depends on
many parameters, each estimated with stochastic errors, the estimation errors
in the rule can accumulate. For high-dimensional statistics, noise accumula-
tion is more severe, and can even dominate the underlying signals. Consider,
for example, a linear classification rule which classifies a new data point x to
class 1 if x'3 > 0. This rule can have high discrimination power when 3 is
known. However, when an estimator 3 is used instead, due to accumulation
of errors in estimating the high-dimensional vector 3, the classification rule
can be as bad as random guessing.

To illustrate the above point, let us assume that we have random samples
{X;}r, and {Y;}, from class 0 and class 1 with the population distri-
butions N (g, I,) and N(pq,I,), respectively. To mimic the gene expression
data, we take p = 4500, p, = 0 without loss of generality, and p; from a real-
ization of 0.98dq + 0.02 x DE, a mixture of point mass 0 with probability 0.98
and the standard double exponential distribution with probability 0.02. The
realized g, is shown in Figure 1.6, which should have about 90 non-vanishing
components and is taken as true p,. The components that are considerably
different from zero are numbered far less than 90, around 20 to 30 or so.

Unlike high-dimensional regression problems, high-dimensional classifica-
tion does not have implementation issues if the Euclidian distance based clas-
sifier is used; see Figure 1.6. It classifies x to class 1 if

I = pal® < llx = pol* or BT (x—p) >0, (1.1)

where 8 = p; — py and g = (pep + 1) /2. For the particular setting in the last
paragraph, the distance-based classifier is the Fisher classifier and is the opti-
mal Bayes classifier if prior probability of class 0 is 0.5. The misclassification
probability for x from class 1 into class 0 is ®(—||g¢; — pto]//2). This reveals the
fact that components with large differences contribute more to differentiating
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Figure 1.6: Illustration of Classification. Left panel: a realization of {u; }?5:010

from the mixture distribution 0.985y + 0.02 * DE, where DE stands for the
standard Double Exponential distribution. Right panel: Illustration of the Eu-
clidian distance based classifier, which classifies the query to a class according
to its distances to the centroids.

the two classes, and the more components the smaller the discrimination er-
ror. In other words, A, = [[pt; — pp| is a nondecreasing function of p. Let
Ay be the distance computed based on the m largest components of the
difference vector p; — py. For our particular specification in the last para-
graph, the misclassification rate is around ®(—+/22 + 2.52/2) = 0.054 when
the two most powerful components are used (m = 2). In addition, A, stops
increasing noticeably when m reaches 30 and will be constant when m > 100.

__ The practical implementation requires estimates of the parameters such as
3. The actual performance of the classifiers can differ from our expectation due
to the noise accumulation. To illustrate the noise accumulation phenomenon,
let us assume that the rank of the importance of the p features is known to
us. In this case, if we use only two features, the classification power is very
high. This is shown in Figure 1.7(a). Since the dimensionality is low, the noise
in the estimated parameters is negligible. Now, if we take m = 100, the signal
strength A,, increases. On the other hand, we need to estimate 100 coefficients
3, which accumulate stochastic noises in the classifier. To visualize this, we
project the observed data onto the first two principal components of these
100-dimensional selected features. From Figure 1.7(b), it is clear that signal
and noise effect cancel. We still have classification power to differentiate the
two classes. When m = 500 and 4500, there is no further increase of signals
and noise accumulation effect dominates. The performance is as poorly as
random guessing. Indeed, Fan and Fan (2008) show that almost all high-
dimensional classifiers can perform as poorly as random guessing unless the
signal is excessively strong. See Figure 1.7(c) and (d).
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Figure 1.7: Mlustration of noise accumulation. Left panel: Projection of ob-
served data (n = 100 from each class) onto the first two principal components
of m-dimensional selected feature space. The m most important features are
extracted before applying the principal component analysis.

Fan and Fan (2008) quantify explicitly the price paid with use of more fea-
tures. They demonstrate that the classification error rate depends on A, /+/m.
The numerator shows the benefit of the dimensionality through the increase
of signals A,,, whereas the denominator represents the noise accumulation
effect due to estimation of the unknown parameters. In particular, when
Ap//p — o0 as p — oo, Hall, Pittelkow and Ghosh (2008) show that the
problem is perfectly classifiable (error rate converges to zero).

The above illustration of the noise accumulation phenomenon reveals the
pivotal role of feature selection in high dimensional statistical endeavors. Not
only does it reduce the prediction error, but also improves the interpretability
of the classification rule. In other words, the use of sparse 3 is preferable.

1.3.3  Spurious correlation

Spurious correlation refers to the observation that two variables which
have no population correlation have a high sample correlation. The analogy
is that two persons look alike but have no genetic relation. In a small village,
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spurious correlation rarely occurs. This explains why spurious correlation is
not an issue in traditional low-dimensional statistics. In a moderate sized city,
however, spurious correlations start to occur. One can find two similar looking
persons with no genetic relation. In a large city, one can easily find two persons
with similar appearances who have no genetic relation. In the same vein, high
dimensionality easily creates issues of spurious correlation.
To illustrate the above concept, let us generate a random sample of size n =
50 of p+1 independent standard normal random variables Z1,--- , Z,11 ~ii.4.
N(0,1). Theoretically, the sample correlation between any of two random
variables is small. When p is small, say p = 10, this is indeed the case and
the issue of spurious correlation is not severe. However, when p is large, the
spurious correlation starts to be noticeable. To illustrate this, let us compute
= I?Zag(cor(Zl,Zj) (1.2)
where cor(Zy, Z;) is the sample correlation between the variables Z; and Z;.
Similarly, let us compute

R = max éot(Z,, Zs) (1.3)
IS|=5

where cor(Z;,Zs) is the multiple correlation between Z; and Zg, namely,
the correlation between Z; and its best linear predictor using Zs. To avoid
computing all (}) multiple R? in (1.3), we use the forward selection algorithm
to compute R. The actual value of R is larger than what we present here. We
repeat this experiment 200 times and present the distributions of ¥ and R in
Figure 1.8.
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Figure 1.8: Illustration of spurious correlation. Left panel: a typical realization
of Z; with its mostly spuriously correlated variable (p = 1000); middle and left
panels: distributions of 7 and R for p = 1,000 and p = 10, 000, respectively.
The sample size is n = 50.

The maximum spurious correlation 7 is around 0.45 for p = 1000 and
0.55 for p = 10,000. They become 0.85 and 0.91 respectively when multiple
correlation R in (1.3) is considered. Theoretical results on the order of these
spurious correlations can be found in Cai and Jiang (2012) and Fan, Guo and
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Hao (2012), and more comprehensively in Fan, Shao, and Zhou (2018) and
Fan and Zhou (2016).

The impact of spurious correlation includes false scientific discoveries and
false statistical inferences. Since the correlation between Z; and Zg is around
0.9 for a set S with || = 5 (Figure 1.8), Z; and Z; are practically indistin-
guishable given n = 50. If Z; represents the gene expression of a gene that is
responsible for a disease, we will also discover 5 genes S that have a similar
predictive power although they have no relation to the disease.

To further appreciate the concept of spurious correlation, let us consider
the neuroblastoma data used in Oberthuer et al. (2006). The study consists
of 251 patients, aged from 0 to 296 months at diagnosis with a median age
of 15 months, of the German Neuroblastoma Trials NB90-NB2004, diagnosed
between 1989 and 2004. Neuroblastoma is a common pediatric solid cancer,
accounting for around 15% of pediatric cancers. 251 neuroblastoma specimens
were analyzed using a customized oligonucleotide microarray with p = 10, 707
gene expressions available after preprocessing. The clinical outcome is taken
as the indicator of whether a neuroblastoma child has a 3 year event-free sur-
vival. 125 cases are taken at random as the training sample (with 25 positives)
and the remaining data are taken as the testing sample. To illustrate the spu-
rious correlation, we now replace the gene expressions by artificially simulated
Gaussian data. Using only p = 1000 artificial variables along with the tradi-
tional forward selection, we can easily find 10 of those artificial variables that
perfectly classify the clinical outcomes. Of course, these 10 artificial variables
have no relation with the clinical outcomes. When the classification rule is
applied to the test samples, the classification result is the same as random
guessing.

To see the impact of spurious correlation on statistical inference, let us
consider a linear model

Y=X"B+e,  o%=Var(e). (1.4)

Let S be a selected subset and we compute the residual variances based on
the selected variables S:

7 =YT(I,-P5)Y/(n—|S)), Pg=Xg(XLxg) XL (15

In particular, when 3 = (0, all selected variables are spurious. In this case,
Y =€ and '
7% = (L=)llel*/n~ (1 -77)0?, (1.6)

2 is underestimated

when [8|/n — 0, where 72 = €"Pgze/|e||*. Therefore, o
by a factor of 42

Suppose that we select only one spurious variable, then that variable must
be mostly correlated with Y. Since the spurious correlation is high, the bias
is large. The two left panels of Figure 1.9 depicts the distribution of ~, along
with the associated estimates of 52 for different choices of p. Clearly, the bias

increases with the dimensionality p.
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Figure 1.9: Distributions of spurious correlations. Left panel: Distributions of
¥y for the null model when |S| = 1 and their associated estimates of o2 = 1
for various choices of p. Right panel: Distributions of 7, for the model ¥ =
2X Lt 0.3X5 + ¢ and their associated estimates of a2 = 1 for various choices
of || but fixed p = 1000. The sample size n = 50. Adapted from Fan, Guo,
and Hao (2012).

Spurious correlation gets larger when more than one spurious variables are
selected, as seen in Figure 1.8. To see this, let us consider the linear model ¥ =
2X, 4+ 0.3X2+¢ and use forward selection methods to recruit variables. Again,
the spurious variables are selected mainly due to their spurious correlation
with e, the unobservable but realized random noises. As shown in the right
panel of Figure 1.9, the spurious correlation is very large and 72 gets notably
more biased when |S| gets larger.

Underestimate of residual variance leads to further wrong statistical infer-
ences. More variables will be called statistically significant and that further
leads to wrong scientific conclusions. There is active literature on selective in-
ference for dealing with such kinds of issues, starting from Lockhart, Taylor,
Tibshirani and Tibshirani (2014); see also Taylor and Tibshirani (2015) and
Tibshirani, Taylor, Lockhart and Tibshirani (2016).

1.3.4 Statistical theory

High dimensionality has a strong impact on statistical theory. The tradi-
tional asymptotic theory assumes that sample size n tends to infinity while
keeping p fixed. This does not reflect the reality of the high dimensionality
and cannot explain the observed phenomena such as noise accumulation and
spurious correlation. A more reasonable framework is to assume p grows with
n and investigate how high the dimensionality p,, a given procedure can han-
dle given the sample size n. This new paradigm is now popularly used in the
literature.
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High dimensionality gives rise to new statistical theory. Many new insights
have been unveiled and many new phenomena have been discovered. Subse-
quent chapters will unveil some of these.

1.4 Aim of High-dimensional Statistical Learning

As shown in Section 1.1, high-dimensional statistical learning arises from
various different scientific contexts and has very different disciplinary goals.
Nevertheless, its statistical endeavor can be abstracted as follows. The main
goals of high dimensional inferences, according to Bickel (2008), are

(a) to construct a method as effective as possible to predict future observa-
tions and

(b) to gain insight into the relationship between features and responses for
scientific purposes, as well as, hopefully, to construct an improved predic-
tion method.

This view is also shared by Fan and Li (2006). The former appears in prob-
lems such as text and document classifications or portfolio optimizations, in
which the performance of the procedure is more important than understand-
ing the features that select spam e-mail or stocks that are chosen for portfolio
construction. The latter appears naturally in many genomic studies and other
scientific endeavors. In these cases, scientists would like to know which genes
are responsible for diseases or other biological functions, to understand the
molecular mechanisms and biological processes, and predict future outcomes.
Clearly, the second goal of high dimensional inferences is more challenging.

The above two objectives are closely related. However, they are not neces-
sarily the same and can be decisively different. A procedure that has a good
mean squared error or, more generally risk properties, might not have model
selection consistency. For example, if an important variable is missing in a
model selection process, the method might find 10 other variables, whose lin-
ear combination acts like the missing important variable, to proxy it. As a
result, the procedure can still have good prediction power. Yet, the absence
of that important variable can lead to false scientific discoveries for objective
(b).

As will be seen in Sec. 3.3.2, Lasso (Tibshirani, 1996) has very good risk
properties under mild conditions. Yet, its model selection consistency requires
the restricted irrepresentable condition (Zhao and Yu, 2006; Zou, 2006; Mein-
shausen and Biihlmann, 2006). In other words, one can get optimal rates in
mean squared errors, and yet the selected variables can still differ substantially
from the underlying true model. In addition, the estimated coefficients are bi-
ased. In this view, Lasso aims more at objective (a). In an effort to resolve the
problems caused by the Li-penalty, a class of folded-concave penalized least-
squares or likelihood procedures, including SCAD, was introduced by Fan and
Li (2001), which aims more at objective (b).
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1.5 What Big Data Can Do

Big Data hold great promise for the discovery of heterogeneity and search
for personalized treatments and precision marketing. An important aim for
big data analysis is to understand heterogeneity for personalized medicine or
services from large pools of variables, factors, genes, environments and their
interactions as well as latent factors. Such a kind of understanding is only
possible when sample size is very large, particularly for rare diseases.

Another important aim of big data is to discover the commonality and
weak patterns, such as the impact of drinking teas and wines on health, in
the presence of large variations. Big data allow us to reduce large variances
of complexity models such as deep neural network models, as discussed in
Section 1.2. The successes of deep learning technologies rest to quite an extent
on the variance reduction due to big data so that a stable model can be
constructed.

1.6 Scope of the Book

This book will provide a comprehensive and systematic account of theo-
ries and methods in high-dimensional data analysis. The statistical problems
range from high-dimensional sparse regression, compressed sensing, sparse
likelihood-based models, supervised and unsupervised learning, large covari-
ance matrix estimation and graphical models, high-dimensional survival analy-
sis, robust and quantile regression, among others. The modeling techniques can
either be parametric, semi-parametric or nonparametric. In addition, variable
selection via regularization methods and sure independent feature screening
methods will be introduced.
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Chapter 2

Multiple and Nonparametric Regression

2.1 Introduction

In this chapter we discuss some popular linear methods for regression analysis
with continuous response variable. We call them linear regression models in
general, but our discussion is not limited to the classical multiple linear re-
gression. They are extended to multivariate nonparametric regression via the
kernel trick. We first give a brief introduction to multiple linear regression
and least-squares, presenting the basic and important ideas such as inferential
results, Box-Cox transformation and basis expansion. We then discuss linear
methods based on regularized least-squares with ridge regression as the first
example. We then touch on the topic of nonparametric regression in a re-
producing kernel Hilbert space (RKHS) via the kernel trick and kernel ridge
regression. Some basic elements of the RKHS theory are presented, including
the famous representer theorem. Lastly, we discuss the leave-one-out analysis
and generalized cross-validation for tuning parameter selection in regularized
linear models.

2.2 Multiple Linear Regression

Consider a multiple linear regression model:
Y=0X14+-+5,X,+¢, (2.1)

where Y represents the response or dependent variable and the X variables are
often called explanatory variables or covariates or independent variables. The
intercept term can be included in the model by including 1 as one of the co-
variates, say X; = 1. Note that the term “random error” ¢ in (2.1) is a generic
name used in statistics. In general, the “random error” here corresponds to
the part of the response variable that cannot be explained or predicted by
the covariates. It is often assumed that “random error” e has zero mean, un-
correlated with covariates X, which is referred to as erogenous variables. Our
goal is to estimate these §’s, called regression coefficients, based on a random
sample generated from model (2.1).

Suppose that {(Xi1, -+, X, Yi)},4 = 1,--- ,n is a random sample from

21
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model (2.1). Then, we can write
P
Y, = Z Xijﬁj + &;- (2.2)
j=1

The method of least-squares is a standard and popular technique for data fit-
ting. It was advanced early in the nineteenth century by Gauss and Legendre.
In (2.2) we have the residuals (r;’s)

P
ri =Y — ZX«;jﬁj-
=1

Assume that random errors £;’s are homoscedastic, i.e., they are uncorrelated
random variables with mean 0 and common variance o2. The least-squares
method is to minimize the residual sum-of-squares (RSS):

n n P
RSS(B) =Y ri =) (Yi— > XiiBj)*. (2.3)
i=1 i=1 i=1
with respect to 3. Since (2.3) is a nice quadratic function of 3, there is a

closed-form solution. Denote by
Y1 Xij X1 - Xy B €1
Yn an an T an rB;p En
Then (2.2) can be written in the matrix form

Y =X3+e.

The matrix X is known as the design matriz and is of crucial importance to
the whole theory of linear regression analysis. The RSS(3) can be written as

RSS(B) = |Y —XB|* = (Y - XB)" (Y - XB).

Differentiating RSS(3) with respect to 8 and setting the gradient vector to
zero, we obtain the normal equations

X7y = X7X3.

Here we assume that p < n and X has rank p. Hence X7 X is invertible and
the normal equations yield the least-squares estimator of 3

B=(X"X)"'X"Y. (2.4)

In this chapter X7 X is assumed to be invertible unless specifically mentioned
otherwise.
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The fitted Y value is

Y = X3 =X(X"X)'XTY,
and the regression residual is
F=Y-Y=(1-XX"X)"'xX")Y.
Theorem 2.1 Define P = X(X"X)"'X". Then we have
PX;=X;, 7=12,---,p
P?’=P or P(I,-P)=0,
namely P is a projection matriz onto the space spanned by the columns of X.
Proof. It follows from the direct calculation that
PX = X(XTX)"'XTX = X.
Taking the j column of the above equality, we obtain the first results. Similarly,
PP = X(X7X) ' XTX(X"X) ' XT = x(X'X) X" =P.

This completes the proof. ]
By Theorem 2.1 we can write

Y=PY, 7=(I,-P)Y (2.5)
and we see two simple identities:
PY=Y, Y'F=o.

This reveals an interesting geometric interpretation of the method of least-
squares: the least-squares fit amounts to projecting the response vector onto
the linear space spanned by the covariates. See Figure 2.1 for an illustration
with two covariates.

2.2.1 The Gauss-Markov theorem

We assume the linear regression model (2.1) with
o cxogeneity: E(¢|X) = 0;
o homoscedasticity: Var(e|X) = o2.

Theorem 2.2 Under model (2.1) with exogenous and homoscedastic error, it
follows that

(i) (unbiasedness) E(3|X) = 3.
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Figure 2.1: Geometric view of least-squares. The fitted value is the blue arrow,
which is the projection of Y on the plane spanned by X; and Xo.

(ii) (conditional standard errors) Var(8|X) = ¢2(X7X)~1,

(iii) (BLUE) The least-squares estimator E is the best linear unbiased esti-
mator (BLUE). That is, for any given vector a, aT,@ is a linear unbiased
estimator of the parameter 0 = a’ B8. Further, for any linear unbiased esti-
mator bTY of 0, its variance is at least as large as that of a™ 3.

Proof. The first property follows directly from E(Y|X) = X3 and
B(BIX) = (X"X)"'X"(XB) = 8.

To prove the second property, note that for any linear combination AY,
its variance-covariance matrix is given by

Var(AY|X) = A Var(Y|X)A” = o AAT. (2.6)

Applying this formula to the least-squares estimator with A = (X7X)"1XT,
we obtain the property (ii).

To prove property (iii), we first notice that aT,a is an unbiased estimator
of the parameter 6 = a” 3, with the variance

Var(a” B|X) = a” Var(3|X)a = ¢%a” (X" X) 'a.

Now, consider any linear unbiased estimator, b?Y, of the parameter . The
unbiasedness requires that

b"X3 =a’p,
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namely X”b = a. The variance of this linear estimator is
a’bTb.
To prove (iii), we need only to show that
a’(XTX)'a<b’b.

Note that
a’(X"X)'a=b"X(X"X)"'X"b = b"Pb.

P = P? means that the eigenvalues of P are either 1 or 0 and hence I,, — P
is a semi-positive matrix. Thus,

b’(I, —P)b >0,

or equivalently b”b > b"Pb. ]

Property (ii) of Theorem 2.2 gives the variance-covariance matrix of the
least-squares estimate. In particular, the conditional standard error of ﬁi is
simply (J’G,,}i/ % and the covariance between Ei and Ej is agaij, where a;; is the
(i,7)-th element of matrix (X7X)~!.

In many applications o? is often an unknown parameter of the model in
addition to the regression coefficient vector 8. In order to use the variance-
covariance formula, we first need to find a good estimate of 2. Given the
least-squares estimate of 3, RSS can be written as

RSS = Zn:(y;- — V)= (Y -Y)T(Y -Y). (2.7)
i=1

Define
7% = RSS /(n — p).

We will show in Theorem 2.3 that 2 is an unbiased estimator of 2.

Theorem 2.3 Under the linear model (2.1) with homoscedastic error, it fol-
lows that
E(@%X) = o2

Proof. First by Theorem 2.1 we have
RSS = ||(I, = P)Y|* = (L, = P)(Y — XB)|* = " (I, — P)e.

Let tr(A) be the trace of the matrix A. Using the property that tr(AB) =
tr(BA), we have
RSS = tr{(I, — P)ee” }.

Hence,
E(RSS [X) = o? tr(I,, — P).



26 MULTIPLE AND NONPARAMETRIC REGRESSION

Because the eigenvalues of P are either 1 or 0, its trace is equal to its rank
which is p under the assumption that XX is invertible. Thus,

E(5%X) = o*(n—p)/(n—p) = 0.

This completes the proof. [

2.2.2  Statistical tests

After fitting the regression model, we often need to perform some tests on
the model parameters. For example, we may be interested in testing whether a
particular regression coefficient should be zero, or whether several regression
coefficients should be zero at the same time, which is equivalent to asking
whether these variables are important in the presence of other covariates. To
facilitate the discussion, we focus on the fixed design case where X is fixed.
This is essentially the same as the random design case but conditioned upon
the given realization X.

We assume a homoscedastic model (2.1) with normal error. That is, &
is a Gaussian random variable with zero mean and variance o2, written as

g ~ N(0,0?%). Note that

B=pB+(XTX) 'XTe. (2.8)
Then it is easy to see that

B~ N(B,(XTX)""0?). (2.9)

If we look at each f)’\j marginally, then Ej ~ N(Bj,v;o0%) where v; is the jth
diagonal element of (X”X)~!. In addition,

(n—p)a* ~o’xi_, (2.10)
and &2 is independent of E The latter can easily be shown as follow. By
(2.7), 32 depends on Y through Y — Y = (I, — P)e whereas 3 depends on Y
through (2.8) or X”e. Note that both (I, — P)e and X”e are jointly normal
because they are linear transforms of normally distributed random variables,
and therefore their independence is equivalent to their uncorrelatedness. This
can easily be checked by computing their covariance

E(I, - P)e(XTe)T = E(I,, - P)ee’X = 0*(I,, - P)X = 0.

If we want to test the hypothesis that 3; = 0, we can use the following ¢
test statistic

—~

t; = B (2.11)

’U‘jO‘

which follows a t-distribution with n — p degrees of freedom under the null
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hypothesis Hy : 8; = 0. A level « test rejects the null hypothesis if [t;| >
tn—pi1—as2, Where t,_,1_,/2 denotes the 100(1 — «/2) percentile of the ¢-
distribution with n — p degrees of freedom.

In many applications the null hypothesis is that a subset of the covari-
ates have zero regression coefficients. That is, this subset of covariates can be
deleted from the regression model: they are unrelated to the response variable
given the remaining variables. Under such a null hypothesis, we can reduce the
model to a smaller model. Suppose that the reduced model has py many re-
gression coefficients. Let RSS and RSSy be the residual sum-of-squares based
on the least-squares fit of the full model and the reduced smaller model, re-
spectively. If the null hypothesis is true, then these two quantities should be
similar: The RSS reduction by using the full model is small, in relative terms.
This leads to the F'-statistic:

o (RSSy —RSS)/(p — po) o12)
RSS /(n — p)
Under the null hypothesis that the reduced model is correct, F' ~ F,_p; n—p-

The normal error assumption can be relaxed if the sample size n is large.
First, we know that (XTX)% (B — B)/c always has zero mean and an identity
variance-covariance matrix. On the other hand, (2.8) gives us

(XTX):(B - B)/o = (XTX) X e/o.

Observe that (XTX)~2X%e/o is a linear combination of n i.i.d. random vari-
ables {g;}, with zero mean and variance 1. Then the central limit theorem
implies that under some regularity conditions,

B2 N3, (XTX) 1a?). (2.13)

Consequently, when n is large, the distribution of the ¢ test statistic in (2.11)
is approximately N(0,1), and the distribution of the F test statistic in (2.12)

is approximately Xf:fpn/(’ﬁ — Po)-

2.3 Weighted Least-Squares

The method of least-squares can be further generalized to handle the sit-
uations where errors are heteroscedastic or correlated. In the linear regression
model (2.2), we would like to keep the assumption E(g|X) = 0 which means
there is no structure information left in the error term. However, the constant
variance assumption Var(g;|X;) = ¢? may not likely hold in many applica-
tions. For example, if y; is the average response value of the ith subject in
a study in which k; many repeated measurements have been taken, then it
would be more reasonable to assume Var(e;|X;) = 0% /k;.

Let us consider a modification of model (2.1) as follows

P
Yi=) XiBj+ei Var(ei|Xi) = oy, (2.14)

j=1
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where v;s are known positive constants but o2 remains unknown. One can still
use the ordinary least-squares (OLS) estimator 8 = (X7X)"'XTY. It is casy
to show that the OLS estimator is unbiased but no longer BLUE. In fact, the
OLS estimator can be improved by using the weighted least-squares method.

Let Y;* = v{l/QYi, le"j = v{l/zXz-j, £ = U;l/in. Then the new model

(2.14) can be written as

P
Y=Y X8+ (2.15)
i=1
with Var(g}|X}) = o?. Therefore, the working data {(X},,---,X;,,¥;")}i,
obey the standard homoscedastic linear regression model. Applying the stan-
dard least-squares method to the working data, we have

2 2

n P n P

~wls : . N . _

B  =argming E Y — E X585 | = argming g Dl D E Xi;iB;
=1 =1 i=1 7j=1

It follows easily from Theorem 2.2 that the weighted least-squares estimator
is the BLUE for 3.

In model (2.14) the errors are assumed to be uncorrelated. In general,
the method of least-squares can be extended to handle heteroscedastic and
correlated errors.

Assume that

Y =X3+e.

and the variance-covariance matrix of € is given
Var(g|X) = 0°W, (2.16)

in which W is a known positive definite matrix. Let W~1/2 be the square
root of W1, ie.,
(W—I/Z)Tw—lfz — W_l.

Then
Var(W~1/2¢) = o1,

which are homoscedastic and uncorrelated.
Define the working data as follows:

Y =W Y, X*=W X, & =W i

Then we have
Y"=X"B+¢€". (2.17)

Thus, we can apply the standard least-squares to the working data. First, the
residual sum-of-squares (RSS) is

RSS(B) = ||Y* = X"8[]* = (Y - XB)"W (Y - XB). (2.18)
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Then the general leasi-squares estimator is defined by
B = argming RSS(3) (2.19)
— (X*Tx*)fl X*TY*
(XTWIX)"'X"wly.

Again, B is the BLUE according to Theorem 2.2.

In practice, it is difficult to know precisely the n x n covariance matrix W;
the misspecification of W in the general least-squares seems hard to avoid.
Let us examine the robustness of the general least-squares estimate. Assume
that Var(e) = 0?W, where W, is unknown to us, but we employ the general
least-squares method (2.19) with the wrong covariance matrix W. We can see
that the general least-squares estimator is still unbiased:

E@BIX) = (XTWIX)"'XTW~1X3 = 3.
Furthermore, the variance-covariance matrix is given by
Var(8) = (X" W IX)  (XTW W W X)(XTW1X) !,

which is of order O(n~!) under some mild conditions. In other words, using
the wrong covariance matrix would still give us a root-n consistent estimate.
So even when errors are heteroscedastic and correlated, the ordinary least-
squares estimate with W = I and the weighted least-squares estimate with
W = diag(Wy) still give us an unbiased and n~1/2 consistent estimator. Of
course, we still prefer using a working W matrix that is identical or close to
the true Wy.

2.4 Box-Cox Transformation

In practice we often take a transformation of the response variable before

fitting a linear regression model. The idea is that the transformed response
variable can be modeled by the set of covariates via the classical multiple
linear regression model. For example, in many engineering problems we expect
Y o« X f 'X5% - X7 where all variables are positive. Then a linear model
seems proper by taking logarithms: log(Y) = EE’:I 3;X; + €. If we assume
£ ~ N(0,0?), then in the original scale the model is Y = (HiJ ij )e* where
* is a log-normal random variable: loge* ~ N(0,0?).
Box and Cox (1964) advocated the variable transformation idea in linear
regression and also proposed a systematic way to estimate the transformation
function from data. Their method is now known as the Box-Cox transform
in the literature. Box and Cox (1964) suggested a parametric family for the
transformation function. Let Y (M) denote the transformed response where A
parameterizes the transformation function:

v — Y);_l ifA#0
log(Y) fA=0

£
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The Box-Cox model assumes that

p
Y(A) = ZXjIBj +e€
i=1

where £ ~ N(0,02).
The likelihood function of the Box-Cox model is given by

LOA.0%) = (o

o)
where J(X\,Y) =[], |d;’;i | = (T~ |lw[)* . Given A, the maximum likeli-

hood estimators (MLE) of 3 and 2 are obtained by the ordinary least-squares:

)nefﬁzl\Y(”*XﬁHz CJ(NY)

_ - N 1 _
BN = (XTX)"'XTyW, 02(,\)=E||Y<*LX(XTX) IXTy ()2,

Plugging B()),52()\) into L(\, B, 02) yields a likelihood function of A

log L(\) = (A= 1) Y log(|uil) — 5 loga*(\) — 5.

i=1

Then the MLE of A is

o~

Amite = argmax, log L(\),
and the MLE of 8 and o2 are B(szg) and az(imle), respectively.

2.5 Model Building and Basis Expansions

Multiple linear regression can be used to produce nonlinear regression and
other very complicated models. The key idea is to create new covariates from
the original ones by adopting some transformations. We then fit a multiple
linear regression model using augmented covariates.

For simplicity, we first illustrate some useful transformations in the case of
p = 1, which is closely related to the curve fitting problem in nonparametric
regression. In a nonparametric regression model

Y = f(X) +e,

we do not assume a specific form of the regression function f(x), but assume
only some qualitative aspects of the regression function. Examples include
that f(-) is continuous with a certain number of derivatives or that f(-) is
convex. The aim is to estimate the function f(x) and its derivatives, without
a specific parametric form of f(-). See, for example Fan and Gijbels (1996),
Li and Racine (2007), Hastie, Tibshirani and Friedman (2009), among others.
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Polynomial versus cubic spline fit
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Figure 2.2: Scatter plot of time (in milliseconds) after a simulated impact
on motorcycles against the head acceleration of a test object. Red = cubic
polynomial fit, blue = cubic spline fit.

2.5.1 Polynomial regression

Without loss of generality, assume X is bounded on [0, 1] for simplicity. The
Weierstrass approximation theorem states that any continuous f(x) can be
uniformly approximated by a polynomial function up to any precision factor.
Let us approximate the model by

Y =80+5X+ - +BaX"+e

~F(X)

This polynomial regression is a multiple regression problem by setting Xo =
1,X: =X, - ,Xg= X% The design matrix now becomes

1 2 - :c?f
B, =

sa e

We estimate f(z) by
d
f(‘r) = EO + Z mems
m=1

where 3 = (BTB,) " 'BTY is the least-squares estimate.

Polynomial functions have derivatives everywhere and are global functions.
They are not very flexible in approximating functions with local features such
as functions with various degrees of smoothness at different locations. Fig-
ure 2.2 shows the cubic polynomial fit to a motorcycle data. Clearly, it does
not fit the data very well. Increasing the order of the polynomial fits will
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help reduce the bias issue, but will not solve the lack of fit issue. This is
because the underlying function cannot be economically approximated by a
polynomial function. It requires high-order polynomials to reduce approxima-
tion biases, but this increases both variances and instability of the fits. This
leads to the introduction of spline functions that allow for more flexibility in
function approximation.

2.5.2  Spline regression

Let 9 < 73 < -+ < Tg+1- A spline function of degree d on |74, Ti+1)
is a piecewise polynomial function of degree d on intervals [1j,7j41) (j =
0,---, K), with continuous first d — 1 derivatives. The points where the spline
function might not have continuous d** derivatives are {r;}/_,, which are
called knots. Thus, a cubic spline function is a piecewise polynomial function
with continuous first two derivatives and the points where the third derivative
might not exist are called knots of the cubic spline. An example of a cubic fit
is given by Figure 2.2.

All spline functions of degree d form a linear space. Let us determine its
basis functions.

Linear Splines: A continuous function on [0, 1] can also be approximated
by a piecewise constant or linear function. We wish to use a continuous func-
tion to approximate f(z). Since a piecewise constant function is not continuous
unless the function is a constant in the entire interval, we use a continuous
piecewise linear function to fit f(x). Suppose that we split the interval [0, 1]
into three regions: [0, 7], [11, 72], [T2, 1] with given knots 7, 7. Denote by I(x)
the continuous piecewise linear function. In the first interval [0, 7] we write

l(z) = Bo+ Prx, x € [0,71],

as it is linear. Since [(x) must be continuous at 71, the newly added linear
function must have an intercept 0 at point 71. Thus, in |71, T2] we must have

I(x) = Bo + Prx + Bo(x — T1)4, x € [11, 2],

where z equals z if z > 0 and zero otherwise. The function is linear in [y, 72]
with slope 81 + (. Likewise, in [12, 1] we write

l(z) = Bo+ fiz+ Ba(x — 11)4 + Bs(x — 12) 4, x € [12,1].

The function is now clearly a piecewise linear function with possible different
slopes on different intervals. Therefore, the basis functions are

By(z) = 1,Bi1(x) =z, Ba(z) = (z — 1)+, Bs(z) = (z —m2)4;  (2.20)

which are called a linear spline basis. We then approximate the nonparametric
regression model as

Y = pOBO(X) + ,BlBl(X) + BQBQ(X) =+ ﬁgB3(Xl+E
~f(X)




MODEL BUILDING AND BASIS EXPANSIONS 33

This is again a multiple regression problem where we set Xy = By(X), X; =
Bi1(X), Xy = B3(X), X3 = B3(X). The corresponding design matrix becomes

Iz (z1—m)+ (71— T2)+
Bo=|: 1 S

Lz, (Tn—T1)+ (Tn—T2)s

and we estimate f(x) by
f(x) = Bo+ Bra + Bala — 1)1 + Ba(w — 7).+,

where B = (BIB,) !BYY. The above method applies more generally to a
multiple knot setting for the data on any intervals.

Cubic Splines: We can further consider fitting piecewise polynomials
whose derivatives are also continuous. A popular choice is the so-called cu-
bic spline that is a piecewise cubic polynomial function with continuous
first and second derivatives. Again, we consider two knots and three regions:
[0, 7], [T1, 2], [T2, 1]. Let ¢(z) be a cubic spline. In [0, 74| we write

o(z) = Bo + Bz + o’ + Paz’, < 7.
And c(z) = By + frx + Bex? + B32° 4+ d(z) in [r1, 2. By definition, &(z) is

a cubic function in [ry, 2] and its first and second derivatives equal zero at
2 = 71. Then we must have

8(z) = Ba(z — )3, @ € [, 7]
which means
co(z) = Bo + Prz + Box® + B3z® + Bz — Tl):i: T € [1y,To).
Likewise, in 72, 1] we must have
c(x) = fo + Pz + Box® + Baz® + Ba(z — 1)L + Bs(x — )3, > 1
Therefore, the basis functions are

By(z) = 1,By(2) = x, Ba(z) = 2°, Bs(z) = 2°
By(z) = (x — 71)%, Bs(z) = (z — 72)3.
The corresponding transformed design matrix becomes
1 2 2} 23 (-m)} (-7}
By=|: : ]
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and we estimate f(z) by
J?(ff) = Bo + Brz + Bax® + Baz® + 34(5'3 - Tl)i +Bs(€'3 - ""2)1,

where 8 = (BIB3) 'BTY is the least-squares estimate of the coefficients.
In general, if there are K knots {7y, -+ , 7k}, then the basis functions of
cubic splines are

Bo(x) = 1, By (z) = z, Ba(z) = 2, B3(z) = 2
By(z) = (z — )%, , Brys(z) = (z — i)

By approximating the nonparametric function f(X) by the spline function
with knots {7;}/<,, we have

Y = BoBo(X) + f1B1(X) + Br+3Bry3(X) +e (2.21)

1

4

+ ..
F(X)
This spline regression is again a multiple regression problem.

Natural Cubic Splines: Extrapolation is always a serious issue in regres-
sion. It is not wise to fit a cubic function to a region where the observations
are scarce. If we must, extrapolation with a linear function is preferred. A
natural cubic spline is a special cubic spline with additional constraints: the
cubic spline must be linear beyond two end knots. Consider a natural cubic
spline, NC(z), with knots at {r,--- ,7x}. By its cubic spline representation,
we can write

K
NC(z) = fo + i + Boa” + Bsa® + > Baps(z —75)%.
=1
First, NC(z) is linear for = < 71, which implies that

B2 = B3 =0.

Second, NC(z) is linear for > 7x, which means that

K K
> Bari=0, > 7miBay; =0,
j=1 =1

corresponding to the coefficients for the cubic and quadratic term of the poly-
nomial Z;il Baij(x — ;) for z > 7. We solve for Sk 2, ks from the
above equations and then write NC(z) as

K-1
NC) = ) B;B;(a),

7=0
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where the natural cubic spline basis functions are given by

Bo(z) = 1, By () =,

Byai(z) = (z-7)} - (@-1)} (2-7r-1)i—(v—7x)

Tj —TK TK-1—TK
forj=1,--- ,K—2.

Again, by approximating the nonparametric function with the natural cubic
spline, we have

K—1
Y =Y BiBi(X) +e. (2.22)
j=0

which can be solved by using multiple regression techniques.

2.5.3 Multiple covariates

The concept of polynomial regression extends to multivariate covariates.
The simplest example is the bivariate regression model

Y = Bo+ 1 X1 + BaXa + B3 XT + LaX1 X2 + B X35 + e

The term XX, is called the interaction, which quantifies how X; and X,
work together to contribute to the response. Often, one introduces interactions
without using the quadratic term, leading to a slightly simplified model

Y = B0+ 51 X1 + BoXo + B3 X1 X+

More generally, the multivariate quadratic regression is of the form

14
Y= BiX;+ > BinX;Xe+e (2.23)
j=1

i<k

and the multivariate regression with main effects (the linear terms) and inter-
actions is of the form

P
Y= "8X;+ > BuX; Xy +e. (2.24)
j=1 i<k

This concept can also be extended to the multivariate spline case. The
basis function can be the tensor of the univariate spline basis function for not
only unstructured f(x), but also other basis functions for structured f(x).
Unstructured nonparametric functions are not very useful: If each variable
uses 100 basis functions, then there are 1007 basis functions in the tensor
products, which is prohibitively large for say, p = 10. Such an issue is termed
the “curse-of-dimensionality” in literature. See Hastie and Tibshirani (1990)
and Fan and Gijbels (1996). On the other hand, for the structured multivariate
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model, such as the following additive model (Stone, 1985, 1994; Hastie and
Tibshirani, 1990),

Y =hH(X)+ + f(Xp) +¢ (2.25)
the basis functions are simply the collection of all univariate basis functions
for approximating fi,---, f,. The total number grows only linearly with p.

In general, let B,,(x) be the basis functions m = 1,---, M. Then, we
approximate the multivariate nonparametric regression model ¥ = f(X) + ¢
by

M
Y =" 8B(X) +e. (2.26)
m=1
This can be fit using a multiple regression technique. The new design matrix

15
Bi(X;) -+ Bn(Xy)

B = :

By (Xn) -+ Bun (Xn)

and the least-squares estimate is given by

_~ M —~
f(x) = Z BmBm(X)a
m=1

where R
B=B"B)'B"Y.

The above fitting implicitly assumes that M < n. This condition in fact
can easily be violated in unstructured multivariate nonparametric regression.
For the additive model (2.25), in which we assume f(x) = Z?=1 fi(z;) where
each f;(z;) is a smooth univariate function of z;, the univariate basis expan-
sion ideas can be readily applied to approximation of each f;(z;):

M;
filw)) = Y Bim(x)Bjm
m=1

which implies that the fitted regression function is

p M

FE) 2> Bim(;)Bjm-

j=1m=1

In Section 2.6.5 and Section 2.7 we introduce a fully nonparametric multi-
ple regression technique which can be regarded as a basis expansion method
where the basis functions are given by kernel functions.
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2.6 Ridge Regression

2.6.1 DBias-variance tradeoff

Recall that the ordinary least squares estimate is defined by ,@ =
(XTX)"IXTY when X is of full rank. In practice, we often encounter highly
correlated covariates, which is known as the collinearity issue. As a result,
although X7 X is still invertible, its smallest eigenvalue can be very small.
Under the homoscedastic error model, the variance-covariance matrix of the
OLS estimate is Var(8) = (XTX)~'¢2. Thus, the collinearity issue makes
Var(,@) large.

Hoerl and Kennard (1970) introduced the ridge regression estimator as

follows: R
By = (XTX + A1) XY, (2.27)

where A > 0 is a regularization parameter. In the usual case (X?X is in-
vertible), ridge regression reduces to OLS by setting A = 0. However, ridge
regression is always well defined even when X is not full rank.

Under the assumption Var(e) = 021, it is easy to show that

Var(8,) = (XTX + A ' XTX(XTX + AI) 102, (2.28)

We always have Var{f‘}/\) < (XTX)~1o% The ridge regression estimator re-
duces the estimation variance by paying a price in estimation bias:

EB,) - B=XTX+AI)'X"X3 - B=-MNXTX+)"!18. (2.29)

The overall estimation accuracy is gauged by the mean squared error
(MSE). For 3, its MSE is given by

MSE(B,) = E(|1B, - 8]1°). (2.30)
By (2.28) and (2.29) we have

MSE(3,) = tr((X"X+A)'X"X(X"X +AI)"'0?)
28T (XTX +A1)28
= tr ((XTX +A) 22887 + ozXTX]) : (2.31)

It can be shown that )| r=0 < 0, which implies that there are some
proper A values by which ridge regression improves OLS.

dMSE(B,
A
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2.6.2 [y penalized least squares

Define a penalized residual sum-of-squares (PRSS) as follows:

n P 4
PRSS(BIA) = > (Vi = Y XiyB)* + 2> 52 (2:32)
i=1 j=1 j=1
Then let N
B3, = argming PRSS(B|)). (2.33)

Note that we can write it in a matrix form
PRSS(B[A) = Y — X8| + | 8]>.

The term A||B3||? is called the f>-penalty of 3. Taking derivatives with respect
to 3 and setting it to zero, we solve the root of the following equation

X7 (Y - XB)+ A8 =0,

which yields R
By, = (XTX + A1) XTY.

The above discussion shows that ridge regression is equivalent to the ¢» pe-
nalized least-squares.

We have seen that ridge regression can achieve a smaller MSE than OLS. In
other words, the ¢» penalty term helps regularize (reduce) estimation variance
and produces a better estimator when the reduction in variance exceeds the
induced extra bias. From this perspective, one can also consider a more general
£, penalized least-squares estimate

P
min |[Y = X8I+ A3 13/ (2.34)

j=1

where ¢ is a positive constant. This is referred to as the Bridge estimator
(Frank and Friedman, 1993). The ¢, penalty is strictly concave when 0 < g <
1, and strictly convex when g > 1. For ¢ = 1, the resulting ¢; penalized least-
squares is also known as the Lasso (Tibshirani, 1996). Chapter 3 covers the
Lasso in great detail. Among all Bridge estimators only the ridge regression
has a nice closed-form solution with a general design matrix.

2.6.3 DBayesian interpretation

Ridge regression has a neat Bayesian interpretation in the sense that it
can be a formal Bayes estimator. We begin with the homoscedastic Gaussian
error model:

P
Y; =) Xi;Bj +e

i=1
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and &;/X; ~ N(0,0?%). Now suppose that /3;’s are also independent N(0,7?)
variables, which represent our knowledge about the regression coefficients be-
fore seeing the data. In Bayesian statistics, N(0,7%) is called the prior dis-
tribution of ;. The model and the prior together give us the posterior dis-
tribution of 3 given the data (the conditional distribution of 3 given Y, X).
Straightforward calculations yield

1 1
P(BY,X) o exp(—5—5|IY — X% eXP(—Q—Tzllﬁllz)- (2.35)

A maximum posteriori probability (MAP) estimate is defined as

~MAP
B

argmaxﬁP(mY, X)

1 1
axgmaxg {5 IY - X601 - L0011 230)

It is easy to see that EMAP is ridge regression with A = ‘;—2 Another popular
Bayesian estimate is the posterior mean. In this model, the posterior mean
and posterior mode are the same.

From the Bayesian perspective, it is easy to construct a generalized ridge
regression estimator. Suppose that the prior distribution for the entire 3 vector
is N(0,3), where X is a general positive definite matrix. Then the posterior
distribution is computed as

1 1 _
PBIY,X) x exp(— 55 |[Y = XBP)esp(—5 475 18). (237)
The corresponding MAP estimate is
~MAP

argmaxg P(B[Y, X)

1 1 -

It is easy to see that

~MAP
B =X"X o2 ) IXTY. (2.39)

This generalized ridge regression can take into account different scales of co-
variates, by an appropriate choice of X.

2.6.4 Ridge regression solution path

The performance of ridge regression heavily depends on the choice of A. In
practice we only need to compute ridge regression estimates at a fine grid of A
values and then select the best from these candidate solutions. Although ridge
regression is easy to compute for a A owing to its nice closed-form solution
expression, the total cost could be high if the process is repeated many times.
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Through a more careful analysis, one can see that the solutions of ridge re-
gression at a fine grid of A values can be computed very efficiently via singular
value decomposition.
Assume n > p and X is full rank. The singular value decomposition (SVD)
of X is given by
X =UDV”

where U is a n x p orthogonal matrix, V is a p x p orthogonal matrix and
D is a p x p diagonal matrix whose diagonal elements are the ordered (from
large to small) singular values of X. Then

XX = vDUTUDVT = VD?*V7T,
XTX + A= VD*VT + AT = V(D? + AI) V7,
(XTX + A"t = V(D? + A1)~ VT,

The ridge regression estimator 3, can now be written as

—~

B, (XTX 4+ AD)IXTY

= V(D*+AI)"'DU'Y

P
d;
Y (UL Y)V, (2.40)
2 J 7
L B4

where d; is the j'" diagonal element of D and (U;,Y) is the inner product
between U; and Y and U; (V; are respectively the j' column of U and V).
In particular, when A = 0, ridge regression reduces to OLS and we have

(U;,Y)V;. (2.41)

Based on (2.40) we suggest the following procedure to compute ridge re-
gression at a fine grid Ay, -+, Aps:
1. Compute the SVD of X and save U,D, V.
2. Compute w; = di(Uj -Y)V; for j =1,-- ,p and save w;s.

3. Form=1,2---,M,
. d2
(i). compute v; = Pjﬁ

(i). compute By = >1_, 7w
The essence of the above algorithm is to compute the common vectors {w }?:]
first and then utilize (2.40).
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2.6.5 Kernel ridge regression

In this section we introduce a nonparametric generalization of ridge re-
gression. Our discussion begins with the following theorem.
Theorem 2.4 Ridge regression estimator is equal to

B, =XT(XXT +A)"'Y (2.42)

and the fitted value of Y at x is

T=x"8, =x"XT(XXT + A\I)"'Y (2.43)

Proof. Observe the following identity
(XTX 4 ADX" = XTXXT 4 AXT = XT(XXT + AI).

Thus, we have

XT = (XTX + AI) 7 IXT(XXT + AT
and

XT(XXT A1) = (XTX 4+ A1) 'XT,

Then by using (2.27) we obtain (2.42) and hence (2.43). [

It is important to see that XX" and not XTX appears in the expression
for B,. Note that XX’ is a n x n matrix and its ij elements are (x;,X;).
Similarly, x” X" is an n-dimensional vector with the ith element being (x,X;)
i =1,--+ ,n. Therefore, the prediction by ridge regression boils down to com-
puting the inner product between p-dimensional covariate vectors. This is the
foundation of the so-called “kernel trick”.

Suppose that we use another “inner product” to replace the usual inner
product in Theorem 2.4; then we may end up with a new ridge regression
estimator. To be more specific, let us replace (x;,x;) with K(x;,x;) where
K(-,-) is a known function:

XTXT — (K(X, Xl)a e 1K(X: Xn)) ’
XX' & K = (K(X;, Xi)1<ij<n -
By doing so, we turn (2.43) into
J=(KxX),  KxX,) (K+ADT'Y =Y aK(x,X,), (244)
i=1
where & = (K + M) ~'Y. In particular, the fitted Y vector is
Y = K(K+ AI)7'Y. (2.45)

The above formula gives the so-called kernel ridge regression. Because XX7
is at least positive semi-definite, it is required that K is also positive semi-
definite. Some widely used kernel functions (Hastie, Tibshirani and Friedman,
2009) include
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o linear kernel: K(x;,%;) = (X, X;),

o polynomial kernel: K(x;,%;) = (1 + (x;,x;))4, d=2,3,---,

o radial basis kernel: K(x;,x;) = e Vlxi—x; ”2, ~ > 0, which is the Gaussian
kernel, and K(x;,x;) = e~ VIxi=x5ll 4 > 0, which is the Laplacian kernel.

To show how we get (2.45) more formally, let us consider to approximate
the multivariate regression by using the kernel basis functions {K(-, xj)}}?zl
so that our observed data are now modeled as

Y=Y o K(X;,X;) + e
=1

or in matrix form Y = Ka + . If we apply the ridge regression
%HY —Ka|? + A\aKa,
the minimizer of the above problem is
a=(K'K+)MK)'K'Y = {K(K + AI)} 'KY,

where we use the fact that K is symmetric. Assuming K is invertible, we easily
get (2.45).

So far we have only derived the kernel ridge regression based on heuristics
and the kernel trick. In Sec. 2.7 we show that the kernel ridge regression can be
formally derived based on the theory of function estimation in a reproducing
kernel Hilbert space.

2.7 Regression in Reproducing Kernel Hilbert Space

A Hilbert space is an abstract vector space endowed by the structure of an
inner product. Let X be an arbitrary set and H be a Hilbert space of real-
valued functions on X', endowed by the inner product (-,-)3. The evaluation
functional over the Hilbert space of functions H is a linear functional that
evaluates each function at a point x:

Ly:f— f(z),VfeH

A Hilbert space H is called a reproducing kernel Hilbert space (RKHS) if, for
all x € X, the map L, is continuous at any f € H, namely, there exists some
C > 0 such that

[La(D] = [f@) <Clfllw,  VfEH.

By the Riesz representation theorem, for all x € X, there exists a unique
element K, € H with the reproducing property
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This proves part (i). Now we apply part (i) to get part (ii) by letting g(x) =
K(x,x2).
For part (iii) we observe that

(Z a; K (x, %), ZO‘J X, Xj))m
= ZZO{;O{] X xz K(x7xj)>7‘iK

9117

i=1 j=1
= Z Z oo K (x;,%5),
i=1 j=1
where we have used part (ii) in the final step.
Consider a general regression model -
Y=fX)+¢ (2.49)

where ¢ is independent of X and has zero mean and variance o2. Given a
realization {(X;,Y;)}", from the above model, we wish to fit the regression
function in H g via the following penalized least-squares:

F=argmingp, SV = F(X)2+ M fl3. A >0 (2.50)
i=1

Note that without the || f||3, term there are infinitely many functions in H
that can fit the observations perfectly, ie., ¥; = f(X;) for 1 = 1,--- ,n. By
using the eigen-function expansion of f

%)= 3 B,0(0), (251)
j=1
an equivalent formulation of (2.50) is

n

min Zﬁﬂbg X; )]2+)\Z — B3, (2.52)
B3¥5z i 1 i=1 =11
Define g7 = f_% and ¢ = \/A;¢; for j = 1,2,---. Then (2.52) can be
rewritten as
{épig Zﬂ* X2+ A (8) (2.53)
J=14=1 j=1

The above can be seen as a ridge regression estimate in an infinite dimensional
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Table 2.2: A list of commonly used regression methods and their S matrices.
d;s are the singular values of X and ;s are the eigenvalues of K.

Method S trS
Multiple Linear Regression X(XTX)~1xT p
. . _ d3
Ridge Regression X(XTX + A1)~ 1XT Pt i
Kernel Regression in RKHS K(K+AI)~! D el T

fitting process n times to compute the leave-one-out CV. Fortunately, we can
avoid much computation for many popular regression methods.
A fitting method is called a linear smoother if we can write

Y =SY (2.63)

for any dataset {(X;, Y;}} where S is a n x n matrix that only depends on X.
Many regression methods are linear smoothers with different S matrices. See
Table 2.2.

Assume that a linear smoother is fitted on {X;,Y;}™ ;. Let x be a new co-
variate vector and f{x) be its the predicted value by using the linear smoother.
We then augment the dataset by including (x, f(x)) and refit the linear
smoother on this augmented dataset. The linear smoother is said to be self-
stable if the fit based on the augmented dataset is identical to the fit based
on the original data regardless of x.

It is easy to check that the three linear smoothers in Table 2.2 all have the
self-stable property.

Theorem 2.7 For a linear smoother Y = SY with the self-stable property,
we have

Y- F0K) = 1= (264

) , 1 (Yi-Y
and its leave-one-out CV error is equal to > (14_—3:)

Proof. We first apply the linear smoother to all the data except the ith
to compute f(=9(X;). Write §; = y; for j # i and 7; = f(=9(X;). Then we
apply the linear smoother to the following working dataset:

The self-stable property implies that the fit stays the same. In particular,
Y= FU(X) = (SY); = SV + Y S,V (2.65)
JFi
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(¢) If ¥ is the equi-correlation matrix with unknown correlation p, what is
the solution to part (a)?

2.5 Suppose that Yi,---,Y, are random variables with common mean p
and covariance matrix a?V, where V is of the form v; = 1 and Vij = p
(0< p<1)for#j.

(a) Find the generalized least squares estimate of .

(b) Show that it is the same as the ordinary least squares estimate.

2.6 Suppose that data {Xj1, -, Xjp,Yi},i = 1,--+ ,n, are an independent
and identically distributed sample from the model

Y = f(X]_,Bl +"‘+Xp6p+5)1

where ¢ ~ N(0,0?) with unknown o2, and f(-) is a known, differentiable,
strictly increasing, non-linear function.

(a) Consider transform Y;* = h(Y;), where h(-) is a differentiable function
yet to be determined. Show that Var(Y;*) =constant for all 7 leads to
the equation: [h/{f(u)}]?{f’(u)}? =constant for all u.

(b) Let f(x) = z” (p > 1). Find the corresponding h(-) using the equation
in (a).

(¢) Let f(z) = exp(z). Find the corresponding h transform.

2.7 The data set ‘hkepd.txt’ consists of daily measurements of levels of air
pollutants and the number of total hospital admissions for circulatory and
respiratory problems from January 1, 1994 to December 31, 1995 in Hong
Kong. This data set can be downloaded from this book website. Of inter-
est is to investigate the association between the number of total hospital
admissions and the levels of air pollutants.

We set the Y variable to be the number of total hospital admissions and
the X variables the levels of air pollutants. Define

X1 = the level of sulfur dioxide (ug/m?);
X5 = the level of nitrogen dioxide (pg/m?);
X3 = the level of dust (ug/m?).

(a) Fit the data to the following linear regression model
Y = fo+ f1X1 + Bo X + B5X5 + e, (2.67)

and test whether the level of each air pollutant has significant impact
on the number of total hospital admissions.

(b) Construct residual plots and examine whether the random error approx-
imately follows a normal distribution.

(c) Take Z =log(Y) and fit the data to the following linear regression model

Z = Po+ 1 X1+ BaXo + B3 X3 + ¢, (2.68)
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